1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/signal.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/tty.h>
28 #include <linux/binfmts.h>
29 #include <linux/coredump.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/ptrace.h>
33 #include <linux/signal.h>
34 #include <linux/signalfd.h>
35 #include <linux/ratelimit.h>
36 #include <linux/task_work.h>
37 #include <linux/capability.h>
38 #include <linux/freezer.h>
39 #include <linux/pid_namespace.h>
40 #include <linux/nsproxy.h>
41 #include <linux/user_namespace.h>
42 #include <linux/uprobes.h>
43 #include <linux/compat.h>
44 #include <linux/cn_proc.h>
45 #include <linux/compiler.h>
46 #include <linux/posix-timers.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49 #include <linux/sysctl.h>
50 #include <uapi/linux/pidfd.h>
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/signal.h>
55 #include <asm/param.h>
56 #include <linux/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/siginfo.h>
59 #include <asm/cacheflush.h>
60 #include <asm/syscall.h> /* for syscall_get_* */
62 #include "time/posix-timers.h"
65 * SLAB caches for signal bits.
68 static struct kmem_cache
*sigqueue_cachep
;
70 int print_fatal_signals __read_mostly
;
72 static void __user
*sig_handler(struct task_struct
*t
, int sig
)
74 return t
->sighand
->action
[sig
- 1].sa
.sa_handler
;
77 static inline bool sig_handler_ignored(void __user
*handler
, int sig
)
79 /* Is it explicitly or implicitly ignored? */
80 return handler
== SIG_IGN
||
81 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
84 static bool sig_task_ignored(struct task_struct
*t
, int sig
, bool force
)
88 handler
= sig_handler(t
, sig
);
90 /* SIGKILL and SIGSTOP may not be sent to the global init */
91 if (unlikely(is_global_init(t
) && sig_kernel_only(sig
)))
94 if (unlikely(t
->signal
->flags
& SIGNAL_UNKILLABLE
) &&
95 handler
== SIG_DFL
&& !(force
&& sig_kernel_only(sig
)))
98 /* Only allow kernel generated signals to this kthread */
99 if (unlikely((t
->flags
& PF_KTHREAD
) &&
100 (handler
== SIG_KTHREAD_KERNEL
) && !force
))
103 return sig_handler_ignored(handler
, sig
);
106 static bool sig_ignored(struct task_struct
*t
, int sig
, bool force
)
109 * Blocked signals are never ignored, since the
110 * signal handler may change by the time it is
113 if (sigismember(&t
->blocked
, sig
) || sigismember(&t
->real_blocked
, sig
))
117 * Tracers may want to know about even ignored signal unless it
118 * is SIGKILL which can't be reported anyway but can be ignored
119 * by SIGNAL_UNKILLABLE task.
121 if (t
->ptrace
&& sig
!= SIGKILL
)
124 return sig_task_ignored(t
, sig
, force
);
128 * Re-calculate pending state from the set of locally pending
129 * signals, globally pending signals, and blocked signals.
131 static inline bool has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
136 switch (_NSIG_WORDS
) {
138 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
139 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
142 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
143 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
144 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
145 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
148 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
149 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
152 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
157 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
159 static bool recalc_sigpending_tsk(struct task_struct
*t
)
161 if ((t
->jobctl
& (JOBCTL_PENDING_MASK
| JOBCTL_TRAP_FREEZE
)) ||
162 PENDING(&t
->pending
, &t
->blocked
) ||
163 PENDING(&t
->signal
->shared_pending
, &t
->blocked
) ||
164 cgroup_task_frozen(t
)) {
165 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
170 * We must never clear the flag in another thread, or in current
171 * when it's possible the current syscall is returning -ERESTART*.
172 * So we don't clear it here, and only callers who know they should do.
177 void recalc_sigpending(void)
179 if (!recalc_sigpending_tsk(current
) && !freezing(current
))
180 clear_thread_flag(TIF_SIGPENDING
);
183 EXPORT_SYMBOL(recalc_sigpending
);
185 void calculate_sigpending(void)
187 /* Have any signals or users of TIF_SIGPENDING been delayed
190 spin_lock_irq(¤t
->sighand
->siglock
);
191 set_tsk_thread_flag(current
, TIF_SIGPENDING
);
193 spin_unlock_irq(¤t
->sighand
->siglock
);
196 /* Given the mask, find the first available signal that should be serviced. */
198 #define SYNCHRONOUS_MASK \
199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
202 int next_signal(struct sigpending
*pending
, sigset_t
*mask
)
204 unsigned long i
, *s
, *m
, x
;
207 s
= pending
->signal
.sig
;
211 * Handle the first word specially: it contains the
212 * synchronous signals that need to be dequeued first.
216 if (x
& SYNCHRONOUS_MASK
)
217 x
&= SYNCHRONOUS_MASK
;
222 switch (_NSIG_WORDS
) {
224 for (i
= 1; i
< _NSIG_WORDS
; ++i
) {
228 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
237 sig
= ffz(~x
) + _NSIG_BPW
+ 1;
248 static inline void print_dropped_signal(int sig
)
250 static DEFINE_RATELIMIT_STATE(ratelimit_state
, 5 * HZ
, 10);
252 if (!print_fatal_signals
)
255 if (!__ratelimit(&ratelimit_state
))
258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 current
->comm
, current
->pid
, sig
);
263 * task_set_jobctl_pending - set jobctl pending bits
265 * @mask: pending bits to set
267 * Clear @mask from @task->jobctl. @mask must be subset of
268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
270 * cleared. If @task is already being killed or exiting, this function
274 * Must be called with @task->sighand->siglock held.
277 * %true if @mask is set, %false if made noop because @task was dying.
279 bool task_set_jobctl_pending(struct task_struct
*task
, unsigned long mask
)
281 BUG_ON(mask
& ~(JOBCTL_PENDING_MASK
| JOBCTL_STOP_CONSUME
|
282 JOBCTL_STOP_SIGMASK
| JOBCTL_TRAPPING
));
283 BUG_ON((mask
& JOBCTL_TRAPPING
) && !(mask
& JOBCTL_PENDING_MASK
));
285 if (unlikely(fatal_signal_pending(task
) || (task
->flags
& PF_EXITING
)))
288 if (mask
& JOBCTL_STOP_SIGMASK
)
289 task
->jobctl
&= ~JOBCTL_STOP_SIGMASK
;
291 task
->jobctl
|= mask
;
296 * task_clear_jobctl_trapping - clear jobctl trapping bit
299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300 * Clear it and wake up the ptracer. Note that we don't need any further
301 * locking. @task->siglock guarantees that @task->parent points to the
305 * Must be called with @task->sighand->siglock held.
307 void task_clear_jobctl_trapping(struct task_struct
*task
)
309 if (unlikely(task
->jobctl
& JOBCTL_TRAPPING
)) {
310 task
->jobctl
&= ~JOBCTL_TRAPPING
;
311 smp_mb(); /* advised by wake_up_bit() */
312 wake_up_bit(&task
->jobctl
, JOBCTL_TRAPPING_BIT
);
317 * task_clear_jobctl_pending - clear jobctl pending bits
319 * @mask: pending bits to clear
321 * Clear @mask from @task->jobctl. @mask must be subset of
322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
323 * STOP bits are cleared together.
325 * If clearing of @mask leaves no stop or trap pending, this function calls
326 * task_clear_jobctl_trapping().
329 * Must be called with @task->sighand->siglock held.
331 void task_clear_jobctl_pending(struct task_struct
*task
, unsigned long mask
)
333 BUG_ON(mask
& ~JOBCTL_PENDING_MASK
);
335 if (mask
& JOBCTL_STOP_PENDING
)
336 mask
|= JOBCTL_STOP_CONSUME
| JOBCTL_STOP_DEQUEUED
;
338 task
->jobctl
&= ~mask
;
340 if (!(task
->jobctl
& JOBCTL_PENDING_MASK
))
341 task_clear_jobctl_trapping(task
);
345 * task_participate_group_stop - participate in a group stop
346 * @task: task participating in a group stop
348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349 * Group stop states are cleared and the group stop count is consumed if
350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
351 * stop, the appropriate `SIGNAL_*` flags are set.
354 * Must be called with @task->sighand->siglock held.
357 * %true if group stop completion should be notified to the parent, %false
360 static bool task_participate_group_stop(struct task_struct
*task
)
362 struct signal_struct
*sig
= task
->signal
;
363 bool consume
= task
->jobctl
& JOBCTL_STOP_CONSUME
;
365 WARN_ON_ONCE(!(task
->jobctl
& JOBCTL_STOP_PENDING
));
367 task_clear_jobctl_pending(task
, JOBCTL_STOP_PENDING
);
372 if (!WARN_ON_ONCE(sig
->group_stop_count
== 0))
373 sig
->group_stop_count
--;
376 * Tell the caller to notify completion iff we are entering into a
377 * fresh group stop. Read comment in do_signal_stop() for details.
379 if (!sig
->group_stop_count
&& !(sig
->flags
& SIGNAL_STOP_STOPPED
)) {
380 signal_set_stop_flags(sig
, SIGNAL_STOP_STOPPED
);
386 void task_join_group_stop(struct task_struct
*task
)
388 unsigned long mask
= current
->jobctl
& JOBCTL_STOP_SIGMASK
;
389 struct signal_struct
*sig
= current
->signal
;
391 if (sig
->group_stop_count
) {
392 sig
->group_stop_count
++;
393 mask
|= JOBCTL_STOP_CONSUME
;
394 } else if (!(sig
->flags
& SIGNAL_STOP_STOPPED
))
397 /* Have the new thread join an on-going signal group stop */
398 task_set_jobctl_pending(task
, mask
| JOBCTL_STOP_PENDING
);
401 static struct ucounts
*sig_get_ucounts(struct task_struct
*t
, int sig
,
404 struct ucounts
*ucounts
;
408 * Protect access to @t credentials. This can go away when all
409 * callers hold rcu read lock.
411 * NOTE! A pending signal will hold on to the user refcount,
412 * and we get/put the refcount only when the sigpending count
413 * changes from/to zero.
416 ucounts
= task_ucounts(t
);
417 sigpending
= inc_rlimit_get_ucounts(ucounts
, UCOUNT_RLIMIT_SIGPENDING
,
423 if (unlikely(!override_rlimit
&& sigpending
> task_rlimit(t
, RLIMIT_SIGPENDING
))) {
424 dec_rlimit_put_ucounts(ucounts
, UCOUNT_RLIMIT_SIGPENDING
);
425 print_dropped_signal(sig
);
432 static void __sigqueue_init(struct sigqueue
*q
, struct ucounts
*ucounts
,
433 const unsigned int sigqueue_flags
)
435 INIT_LIST_HEAD(&q
->list
);
436 q
->flags
= sigqueue_flags
;
437 q
->ucounts
= ucounts
;
441 * allocate a new signal queue record
442 * - this may be called without locks if and only if t == current, otherwise an
443 * appropriate lock must be held to stop the target task from exiting
445 static struct sigqueue
*sigqueue_alloc(int sig
, struct task_struct
*t
, gfp_t gfp_flags
,
448 struct ucounts
*ucounts
= sig_get_ucounts(t
, sig
, override_rlimit
);
454 q
= kmem_cache_alloc(sigqueue_cachep
, gfp_flags
);
456 dec_rlimit_put_ucounts(ucounts
, UCOUNT_RLIMIT_SIGPENDING
);
460 __sigqueue_init(q
, ucounts
, 0);
464 static void __sigqueue_free(struct sigqueue
*q
)
466 if (q
->flags
& SIGQUEUE_PREALLOC
) {
467 posixtimer_sigqueue_putref(q
);
471 dec_rlimit_put_ucounts(q
->ucounts
, UCOUNT_RLIMIT_SIGPENDING
);
474 kmem_cache_free(sigqueue_cachep
, q
);
477 void flush_sigqueue(struct sigpending
*queue
)
481 sigemptyset(&queue
->signal
);
482 while (!list_empty(&queue
->list
)) {
483 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
484 list_del_init(&q
->list
);
490 * Flush all pending signals for this kthread.
492 void flush_signals(struct task_struct
*t
)
496 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
497 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
498 flush_sigqueue(&t
->pending
);
499 flush_sigqueue(&t
->signal
->shared_pending
);
500 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
502 EXPORT_SYMBOL(flush_signals
);
504 void ignore_signals(struct task_struct
*t
)
508 for (i
= 0; i
< _NSIG
; ++i
)
509 t
->sighand
->action
[i
].sa
.sa_handler
= SIG_IGN
;
515 * Flush all handlers for a task.
519 flush_signal_handlers(struct task_struct
*t
, int force_default
)
522 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
523 for (i
= _NSIG
; i
!= 0 ; i
--) {
524 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
525 ka
->sa
.sa_handler
= SIG_DFL
;
527 #ifdef __ARCH_HAS_SA_RESTORER
528 ka
->sa
.sa_restorer
= NULL
;
530 sigemptyset(&ka
->sa
.sa_mask
);
535 bool unhandled_signal(struct task_struct
*tsk
, int sig
)
537 void __user
*handler
= tsk
->sighand
->action
[sig
-1].sa
.sa_handler
;
538 if (is_global_init(tsk
))
541 if (handler
!= SIG_IGN
&& handler
!= SIG_DFL
)
544 /* If dying, we handle all new signals by ignoring them */
545 if (fatal_signal_pending(tsk
))
548 /* if ptraced, let the tracer determine */
552 static void collect_signal(int sig
, struct sigpending
*list
, kernel_siginfo_t
*info
,
553 struct sigqueue
**timer_sigq
)
555 struct sigqueue
*q
, *first
= NULL
;
558 * Collect the siginfo appropriate to this signal. Check if
559 * there is another siginfo for the same signal.
561 list_for_each_entry(q
, &list
->list
, list
) {
562 if (q
->info
.si_signo
== sig
) {
569 sigdelset(&list
->signal
, sig
);
573 list_del_init(&first
->list
);
574 copy_siginfo(info
, &first
->info
);
577 * posix-timer signals are preallocated and freed when the last
578 * reference count is dropped in posixtimer_deliver_signal() or
579 * immediately on timer deletion when the signal is not pending.
580 * Spare the extra round through __sigqueue_free() which is
581 * ignoring preallocated signals.
583 if (unlikely((first
->flags
& SIGQUEUE_PREALLOC
) && (info
->si_code
== SI_TIMER
)))
586 __sigqueue_free(first
);
589 * Ok, it wasn't in the queue. This must be
590 * a fast-pathed signal or we must have been
591 * out of queue space. So zero out the info.
594 info
->si_signo
= sig
;
596 info
->si_code
= SI_USER
;
602 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
603 kernel_siginfo_t
*info
, struct sigqueue
**timer_sigq
)
605 int sig
= next_signal(pending
, mask
);
608 collect_signal(sig
, pending
, info
, timer_sigq
);
613 * Try to dequeue a signal. If a deliverable signal is found fill in the
614 * caller provided siginfo and return the signal number. Otherwise return
617 int dequeue_signal(sigset_t
*mask
, kernel_siginfo_t
*info
, enum pid_type
*type
)
619 struct task_struct
*tsk
= current
;
620 struct sigqueue
*timer_sigq
;
623 lockdep_assert_held(&tsk
->sighand
->siglock
);
628 signr
= __dequeue_signal(&tsk
->pending
, mask
, info
, &timer_sigq
);
630 *type
= PIDTYPE_TGID
;
631 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
632 mask
, info
, &timer_sigq
);
634 if (unlikely(signr
== SIGALRM
))
635 posixtimer_rearm_itimer(tsk
);
642 if (unlikely(sig_kernel_stop(signr
))) {
644 * Set a marker that we have dequeued a stop signal. Our
645 * caller might release the siglock and then the pending
646 * stop signal it is about to process is no longer in the
647 * pending bitmasks, but must still be cleared by a SIGCONT
648 * (and overruled by a SIGKILL). So those cases clear this
649 * shared flag after we've set it. Note that this flag may
650 * remain set after the signal we return is ignored or
651 * handled. That doesn't matter because its only purpose
652 * is to alert stop-signal processing code when another
653 * processor has come along and cleared the flag.
655 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
658 if (IS_ENABLED(CONFIG_POSIX_TIMERS
) && unlikely(timer_sigq
)) {
659 if (!posixtimer_deliver_signal(info
, timer_sigq
))
665 EXPORT_SYMBOL_GPL(dequeue_signal
);
667 static int dequeue_synchronous_signal(kernel_siginfo_t
*info
)
669 struct task_struct
*tsk
= current
;
670 struct sigpending
*pending
= &tsk
->pending
;
671 struct sigqueue
*q
, *sync
= NULL
;
674 * Might a synchronous signal be in the queue?
676 if (!((pending
->signal
.sig
[0] & ~tsk
->blocked
.sig
[0]) & SYNCHRONOUS_MASK
))
680 * Return the first synchronous signal in the queue.
682 list_for_each_entry(q
, &pending
->list
, list
) {
683 /* Synchronous signals have a positive si_code */
684 if ((q
->info
.si_code
> SI_USER
) &&
685 (sigmask(q
->info
.si_signo
) & SYNCHRONOUS_MASK
)) {
693 * Check if there is another siginfo for the same signal.
695 list_for_each_entry_continue(q
, &pending
->list
, list
) {
696 if (q
->info
.si_signo
== sync
->info
.si_signo
)
700 sigdelset(&pending
->signal
, sync
->info
.si_signo
);
703 list_del_init(&sync
->list
);
704 copy_siginfo(info
, &sync
->info
);
705 __sigqueue_free(sync
);
706 return info
->si_signo
;
710 * Tell a process that it has a new active signal..
712 * NOTE! we rely on the previous spin_lock to
713 * lock interrupts for us! We can only be called with
714 * "siglock" held, and the local interrupt must
715 * have been disabled when that got acquired!
717 * No need to set need_resched since signal event passing
718 * goes through ->blocked
720 void signal_wake_up_state(struct task_struct
*t
, unsigned int state
)
722 lockdep_assert_held(&t
->sighand
->siglock
);
724 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 * case. We don't check t->state here because there is a race with it
729 * executing another processor and just now entering stopped state.
730 * By using wake_up_state, we ensure the process will wake up and
731 * handle its death signal.
733 if (!wake_up_state(t
, state
| TASK_INTERRUPTIBLE
))
737 static inline void posixtimer_sig_ignore(struct task_struct
*tsk
, struct sigqueue
*q
);
739 static void sigqueue_free_ignored(struct task_struct
*tsk
, struct sigqueue
*q
)
741 if (likely(!(q
->flags
& SIGQUEUE_PREALLOC
) || q
->info
.si_code
!= SI_TIMER
))
744 posixtimer_sig_ignore(tsk
, q
);
747 /* Remove signals in mask from the pending set and queue. */
748 static void flush_sigqueue_mask(struct task_struct
*p
, sigset_t
*mask
, struct sigpending
*s
)
750 struct sigqueue
*q
, *n
;
753 lockdep_assert_held(&p
->sighand
->siglock
);
755 sigandsets(&m
, mask
, &s
->signal
);
756 if (sigisemptyset(&m
))
759 sigandnsets(&s
->signal
, &s
->signal
, mask
);
760 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
761 if (sigismember(mask
, q
->info
.si_signo
)) {
762 list_del_init(&q
->list
);
763 sigqueue_free_ignored(p
, q
);
768 static inline int is_si_special(const struct kernel_siginfo
*info
)
770 return info
<= SEND_SIG_PRIV
;
773 static inline bool si_fromuser(const struct kernel_siginfo
*info
)
775 return info
== SEND_SIG_NOINFO
||
776 (!is_si_special(info
) && SI_FROMUSER(info
));
780 * called with RCU read lock from check_kill_permission()
782 static bool kill_ok_by_cred(struct task_struct
*t
)
784 const struct cred
*cred
= current_cred();
785 const struct cred
*tcred
= __task_cred(t
);
787 return uid_eq(cred
->euid
, tcred
->suid
) ||
788 uid_eq(cred
->euid
, tcred
->uid
) ||
789 uid_eq(cred
->uid
, tcred
->suid
) ||
790 uid_eq(cred
->uid
, tcred
->uid
) ||
791 ns_capable(tcred
->user_ns
, CAP_KILL
);
795 * Bad permissions for sending the signal
796 * - the caller must hold the RCU read lock
798 static int check_kill_permission(int sig
, struct kernel_siginfo
*info
,
799 struct task_struct
*t
)
804 if (!valid_signal(sig
))
807 if (!si_fromuser(info
))
810 error
= audit_signal_info(sig
, t
); /* Let audit system see the signal */
814 if (!same_thread_group(current
, t
) &&
815 !kill_ok_by_cred(t
)) {
818 sid
= task_session(t
);
820 * We don't return the error if sid == NULL. The
821 * task was unhashed, the caller must notice this.
823 if (!sid
|| sid
== task_session(current
))
831 return security_task_kill(t
, info
, sig
, NULL
);
835 * ptrace_trap_notify - schedule trap to notify ptracer
836 * @t: tracee wanting to notify tracer
838 * This function schedules sticky ptrace trap which is cleared on the next
839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
842 * If @t is running, STOP trap will be taken. If trapped for STOP and
843 * ptracer is listening for events, tracee is woken up so that it can
844 * re-trap for the new event. If trapped otherwise, STOP trap will be
845 * eventually taken without returning to userland after the existing traps
846 * are finished by PTRACE_CONT.
849 * Must be called with @task->sighand->siglock held.
851 static void ptrace_trap_notify(struct task_struct
*t
)
853 WARN_ON_ONCE(!(t
->ptrace
& PT_SEIZED
));
854 lockdep_assert_held(&t
->sighand
->siglock
);
856 task_set_jobctl_pending(t
, JOBCTL_TRAP_NOTIFY
);
857 ptrace_signal_wake_up(t
, t
->jobctl
& JOBCTL_LISTENING
);
861 * Handle magic process-wide effects of stop/continue signals. Unlike
862 * the signal actions, these happen immediately at signal-generation
863 * time regardless of blocking, ignoring, or handling. This does the
864 * actual continuing for SIGCONT, but not the actual stopping for stop
865 * signals. The process stop is done as a signal action for SIG_DFL.
867 * Returns true if the signal should be actually delivered, otherwise
868 * it should be dropped.
870 static bool prepare_signal(int sig
, struct task_struct
*p
, bool force
)
872 struct signal_struct
*signal
= p
->signal
;
873 struct task_struct
*t
;
876 if (signal
->flags
& SIGNAL_GROUP_EXIT
) {
877 if (signal
->core_state
)
878 return sig
== SIGKILL
;
880 * The process is in the middle of dying, drop the signal.
883 } else if (sig_kernel_stop(sig
)) {
885 * This is a stop signal. Remove SIGCONT from all queues.
887 siginitset(&flush
, sigmask(SIGCONT
));
888 flush_sigqueue_mask(p
, &flush
, &signal
->shared_pending
);
889 for_each_thread(p
, t
)
890 flush_sigqueue_mask(p
, &flush
, &t
->pending
);
891 } else if (sig
== SIGCONT
) {
894 * Remove all stop signals from all queues, wake all threads.
896 siginitset(&flush
, SIG_KERNEL_STOP_MASK
);
897 flush_sigqueue_mask(p
, &flush
, &signal
->shared_pending
);
898 for_each_thread(p
, t
) {
899 flush_sigqueue_mask(p
, &flush
, &t
->pending
);
900 task_clear_jobctl_pending(t
, JOBCTL_STOP_PENDING
);
901 if (likely(!(t
->ptrace
& PT_SEIZED
))) {
902 t
->jobctl
&= ~JOBCTL_STOPPED
;
903 wake_up_state(t
, __TASK_STOPPED
);
905 ptrace_trap_notify(t
);
909 * Notify the parent with CLD_CONTINUED if we were stopped.
911 * If we were in the middle of a group stop, we pretend it
912 * was already finished, and then continued. Since SIGCHLD
913 * doesn't queue we report only CLD_STOPPED, as if the next
914 * CLD_CONTINUED was dropped.
917 if (signal
->flags
& SIGNAL_STOP_STOPPED
)
918 why
|= SIGNAL_CLD_CONTINUED
;
919 else if (signal
->group_stop_count
)
920 why
|= SIGNAL_CLD_STOPPED
;
924 * The first thread which returns from do_signal_stop()
925 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 * notify its parent. See get_signal().
928 signal_set_stop_flags(signal
, why
| SIGNAL_STOP_CONTINUED
);
929 signal
->group_stop_count
= 0;
930 signal
->group_exit_code
= 0;
934 return !sig_ignored(p
, sig
, force
);
938 * Test if P wants to take SIG. After we've checked all threads with this,
939 * it's equivalent to finding no threads not blocking SIG. Any threads not
940 * blocking SIG were ruled out because they are not running and already
941 * have pending signals. Such threads will dequeue from the shared queue
942 * as soon as they're available, so putting the signal on the shared queue
943 * will be equivalent to sending it to one such thread.
945 static inline bool wants_signal(int sig
, struct task_struct
*p
)
947 if (sigismember(&p
->blocked
, sig
))
950 if (p
->flags
& PF_EXITING
)
956 if (task_is_stopped_or_traced(p
))
959 return task_curr(p
) || !task_sigpending(p
);
962 static void complete_signal(int sig
, struct task_struct
*p
, enum pid_type type
)
964 struct signal_struct
*signal
= p
->signal
;
965 struct task_struct
*t
;
968 * Now find a thread we can wake up to take the signal off the queue.
970 * Try the suggested task first (may or may not be the main thread).
972 if (wants_signal(sig
, p
))
974 else if ((type
== PIDTYPE_PID
) || thread_group_empty(p
))
976 * There is just one thread and it does not need to be woken.
977 * It will dequeue unblocked signals before it runs again.
982 * Otherwise try to find a suitable thread.
984 t
= signal
->curr_target
;
985 while (!wants_signal(sig
, t
)) {
987 if (t
== signal
->curr_target
)
989 * No thread needs to be woken.
990 * Any eligible threads will see
991 * the signal in the queue soon.
995 signal
->curr_target
= t
;
999 * Found a killable thread. If the signal will be fatal,
1000 * then start taking the whole group down immediately.
1002 if (sig_fatal(p
, sig
) &&
1003 (signal
->core_state
|| !(signal
->flags
& SIGNAL_GROUP_EXIT
)) &&
1004 !sigismember(&t
->real_blocked
, sig
) &&
1005 (sig
== SIGKILL
|| !p
->ptrace
)) {
1007 * This signal will be fatal to the whole group.
1009 if (!sig_kernel_coredump(sig
)) {
1011 * Start a group exit and wake everybody up.
1012 * This way we don't have other threads
1013 * running and doing things after a slower
1014 * thread has the fatal signal pending.
1016 signal
->flags
= SIGNAL_GROUP_EXIT
;
1017 signal
->group_exit_code
= sig
;
1018 signal
->group_stop_count
= 0;
1019 __for_each_thread(signal
, t
) {
1020 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1021 sigaddset(&t
->pending
.signal
, SIGKILL
);
1022 signal_wake_up(t
, 1);
1029 * The signal is already in the shared-pending queue.
1030 * Tell the chosen thread to wake up and dequeue it.
1032 signal_wake_up(t
, sig
== SIGKILL
);
1036 static inline bool legacy_queue(struct sigpending
*signals
, int sig
)
1038 return (sig
< SIGRTMIN
) && sigismember(&signals
->signal
, sig
);
1041 static int __send_signal_locked(int sig
, struct kernel_siginfo
*info
,
1042 struct task_struct
*t
, enum pid_type type
, bool force
)
1044 struct sigpending
*pending
;
1046 int override_rlimit
;
1047 int ret
= 0, result
;
1049 lockdep_assert_held(&t
->sighand
->siglock
);
1051 result
= TRACE_SIGNAL_IGNORED
;
1052 if (!prepare_signal(sig
, t
, force
))
1055 pending
= (type
!= PIDTYPE_PID
) ? &t
->signal
->shared_pending
: &t
->pending
;
1057 * Short-circuit ignored signals and support queuing
1058 * exactly one non-rt signal, so that we can get more
1059 * detailed information about the cause of the signal.
1061 result
= TRACE_SIGNAL_ALREADY_PENDING
;
1062 if (legacy_queue(pending
, sig
))
1065 result
= TRACE_SIGNAL_DELIVERED
;
1067 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1069 if ((sig
== SIGKILL
) || (t
->flags
& PF_KTHREAD
))
1073 * Real-time signals must be queued if sent by sigqueue, or
1074 * some other real-time mechanism. It is implementation
1075 * defined whether kill() does so. We attempt to do so, on
1076 * the principle of least surprise, but since kill is not
1077 * allowed to fail with EAGAIN when low on memory we just
1078 * make sure at least one signal gets delivered and don't
1079 * pass on the info struct.
1082 override_rlimit
= (is_si_special(info
) || info
->si_code
>= 0);
1084 override_rlimit
= 0;
1086 q
= sigqueue_alloc(sig
, t
, GFP_ATOMIC
, override_rlimit
);
1089 list_add_tail(&q
->list
, &pending
->list
);
1090 switch ((unsigned long) info
) {
1091 case (unsigned long) SEND_SIG_NOINFO
:
1092 clear_siginfo(&q
->info
);
1093 q
->info
.si_signo
= sig
;
1094 q
->info
.si_errno
= 0;
1095 q
->info
.si_code
= SI_USER
;
1096 q
->info
.si_pid
= task_tgid_nr_ns(current
,
1097 task_active_pid_ns(t
));
1100 from_kuid_munged(task_cred_xxx(t
, user_ns
),
1104 case (unsigned long) SEND_SIG_PRIV
:
1105 clear_siginfo(&q
->info
);
1106 q
->info
.si_signo
= sig
;
1107 q
->info
.si_errno
= 0;
1108 q
->info
.si_code
= SI_KERNEL
;
1113 copy_siginfo(&q
->info
, info
);
1116 } else if (!is_si_special(info
) &&
1117 sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
) {
1119 * Queue overflow, abort. We may abort if the
1120 * signal was rt and sent by user using something
1121 * other than kill().
1123 result
= TRACE_SIGNAL_OVERFLOW_FAIL
;
1128 * This is a silent loss of information. We still
1129 * send the signal, but the *info bits are lost.
1131 result
= TRACE_SIGNAL_LOSE_INFO
;
1135 signalfd_notify(t
, sig
);
1136 sigaddset(&pending
->signal
, sig
);
1138 /* Let multiprocess signals appear after on-going forks */
1139 if (type
> PIDTYPE_TGID
) {
1140 struct multiprocess_signals
*delayed
;
1141 hlist_for_each_entry(delayed
, &t
->signal
->multiprocess
, node
) {
1142 sigset_t
*signal
= &delayed
->signal
;
1143 /* Can't queue both a stop and a continue signal */
1145 sigdelsetmask(signal
, SIG_KERNEL_STOP_MASK
);
1146 else if (sig_kernel_stop(sig
))
1147 sigdelset(signal
, SIGCONT
);
1148 sigaddset(signal
, sig
);
1152 complete_signal(sig
, t
, type
);
1154 trace_signal_generate(sig
, info
, t
, type
!= PIDTYPE_PID
, result
);
1158 static inline bool has_si_pid_and_uid(struct kernel_siginfo
*info
)
1161 switch (siginfo_layout(info
->si_signo
, info
->si_code
)) {
1170 case SIL_FAULT_TRAPNO
:
1171 case SIL_FAULT_MCEERR
:
1172 case SIL_FAULT_BNDERR
:
1173 case SIL_FAULT_PKUERR
:
1174 case SIL_FAULT_PERF_EVENT
:
1182 int send_signal_locked(int sig
, struct kernel_siginfo
*info
,
1183 struct task_struct
*t
, enum pid_type type
)
1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1188 if (info
== SEND_SIG_NOINFO
) {
1189 /* Force if sent from an ancestor pid namespace */
1190 force
= !task_pid_nr_ns(current
, task_active_pid_ns(t
));
1191 } else if (info
== SEND_SIG_PRIV
) {
1192 /* Don't ignore kernel generated signals */
1194 } else if (has_si_pid_and_uid(info
)) {
1195 /* SIGKILL and SIGSTOP is special or has ids */
1196 struct user_namespace
*t_user_ns
;
1199 t_user_ns
= task_cred_xxx(t
, user_ns
);
1200 if (current_user_ns() != t_user_ns
) {
1201 kuid_t uid
= make_kuid(current_user_ns(), info
->si_uid
);
1202 info
->si_uid
= from_kuid_munged(t_user_ns
, uid
);
1206 /* A kernel generated signal? */
1207 force
= (info
->si_code
== SI_KERNEL
);
1209 /* From an ancestor pid namespace? */
1210 if (!task_pid_nr_ns(current
, task_active_pid_ns(t
))) {
1215 return __send_signal_locked(sig
, info
, t
, type
, force
);
1218 static void print_fatal_signal(int signr
)
1220 struct pt_regs
*regs
= task_pt_regs(current
);
1221 struct file
*exe_file
;
1223 exe_file
= get_task_exe_file(current
);
1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 exe_file
, current
->comm
, signr
);
1229 pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 current
->comm
, signr
);
1233 #if defined(__i386__) && !defined(__arch_um__)
1234 pr_info("code at %08lx: ", regs
->ip
);
1237 for (i
= 0; i
< 16; i
++) {
1240 if (get_user(insn
, (unsigned char *)(regs
->ip
+ i
)))
1242 pr_cont("%02x ", insn
);
1252 static int __init
setup_print_fatal_signals(char *str
)
1254 get_option (&str
, &print_fatal_signals
);
1259 __setup("print-fatal-signals=", setup_print_fatal_signals
);
1261 int do_send_sig_info(int sig
, struct kernel_siginfo
*info
, struct task_struct
*p
,
1264 unsigned long flags
;
1267 if (lock_task_sighand(p
, &flags
)) {
1268 ret
= send_signal_locked(sig
, info
, p
, type
);
1269 unlock_task_sighand(p
, &flags
);
1276 HANDLER_CURRENT
, /* If reachable use the current handler */
1277 HANDLER_SIG_DFL
, /* Always use SIG_DFL handler semantics */
1278 HANDLER_EXIT
, /* Only visible as the process exit code */
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1293 force_sig_info_to_task(struct kernel_siginfo
*info
, struct task_struct
*t
,
1294 enum sig_handler handler
)
1296 unsigned long int flags
;
1297 int ret
, blocked
, ignored
;
1298 struct k_sigaction
*action
;
1299 int sig
= info
->si_signo
;
1301 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
1302 action
= &t
->sighand
->action
[sig
-1];
1303 ignored
= action
->sa
.sa_handler
== SIG_IGN
;
1304 blocked
= sigismember(&t
->blocked
, sig
);
1305 if (blocked
|| ignored
|| (handler
!= HANDLER_CURRENT
)) {
1306 action
->sa
.sa_handler
= SIG_DFL
;
1307 if (handler
== HANDLER_EXIT
)
1308 action
->sa
.sa_flags
|= SA_IMMUTABLE
;
1310 sigdelset(&t
->blocked
, sig
);
1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1316 if (action
->sa
.sa_handler
== SIG_DFL
&&
1317 (!t
->ptrace
|| (handler
== HANDLER_EXIT
)))
1318 t
->signal
->flags
&= ~SIGNAL_UNKILLABLE
;
1319 ret
= send_signal_locked(sig
, info
, t
, PIDTYPE_PID
);
1320 /* This can happen if the signal was already pending and blocked */
1321 if (!task_sigpending(t
))
1322 signal_wake_up(t
, 0);
1323 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
1328 int force_sig_info(struct kernel_siginfo
*info
)
1330 return force_sig_info_to_task(info
, current
, HANDLER_CURRENT
);
1334 * Nuke all other threads in the group.
1336 int zap_other_threads(struct task_struct
*p
)
1338 struct task_struct
*t
;
1341 p
->signal
->group_stop_count
= 0;
1343 for_other_threads(p
, t
) {
1344 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
1347 /* Don't bother with already dead threads */
1350 sigaddset(&t
->pending
.signal
, SIGKILL
);
1351 signal_wake_up(t
, 1);
1357 struct sighand_struct
*__lock_task_sighand(struct task_struct
*tsk
,
1358 unsigned long *flags
)
1360 struct sighand_struct
*sighand
;
1364 sighand
= rcu_dereference(tsk
->sighand
);
1365 if (unlikely(sighand
== NULL
))
1369 * This sighand can be already freed and even reused, but
1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 * initializes ->siglock: this slab can't go away, it has
1372 * the same object type, ->siglock can't be reinitialized.
1374 * We need to ensure that tsk->sighand is still the same
1375 * after we take the lock, we can race with de_thread() or
1376 * __exit_signal(). In the latter case the next iteration
1377 * must see ->sighand == NULL.
1379 spin_lock_irqsave(&sighand
->siglock
, *flags
);
1380 if (likely(sighand
== rcu_access_pointer(tsk
->sighand
)))
1382 spin_unlock_irqrestore(&sighand
->siglock
, *flags
);
1389 #ifdef CONFIG_LOCKDEP
1390 void lockdep_assert_task_sighand_held(struct task_struct
*task
)
1392 struct sighand_struct
*sighand
;
1395 sighand
= rcu_dereference(task
->sighand
);
1397 lockdep_assert_held(&sighand
->siglock
);
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1408 int group_send_sig_info(int sig
, struct kernel_siginfo
*info
,
1409 struct task_struct
*p
, enum pid_type type
)
1414 ret
= check_kill_permission(sig
, info
, p
);
1418 ret
= do_send_sig_info(sig
, info
, p
, type
);
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1428 int __kill_pgrp_info(int sig
, struct kernel_siginfo
*info
, struct pid
*pgrp
)
1430 struct task_struct
*p
= NULL
;
1433 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
1434 int err
= group_send_sig_info(sig
, info
, p
, PIDTYPE_PGID
);
1436 * If group_send_sig_info() succeeds at least once ret
1437 * becomes 0 and after that the code below has no effect.
1438 * Otherwise we return the last err or -ESRCH if this
1439 * process group is empty.
1443 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
1448 static int kill_pid_info_type(int sig
, struct kernel_siginfo
*info
,
1449 struct pid
*pid
, enum pid_type type
)
1452 struct task_struct
*p
;
1456 p
= pid_task(pid
, PIDTYPE_PID
);
1458 error
= group_send_sig_info(sig
, info
, p
, type
);
1460 if (likely(!p
|| error
!= -ESRCH
))
1463 * The task was unhashed in between, try again. If it
1464 * is dead, pid_task() will return NULL, if we race with
1465 * de_thread() it will find the new leader.
1470 int kill_pid_info(int sig
, struct kernel_siginfo
*info
, struct pid
*pid
)
1472 return kill_pid_info_type(sig
, info
, pid
, PIDTYPE_TGID
);
1475 static int kill_proc_info(int sig
, struct kernel_siginfo
*info
, pid_t pid
)
1479 error
= kill_pid_info(sig
, info
, find_vpid(pid
));
1484 static inline bool kill_as_cred_perm(const struct cred
*cred
,
1485 struct task_struct
*target
)
1487 const struct cred
*pcred
= __task_cred(target
);
1489 return uid_eq(cred
->euid
, pcred
->suid
) ||
1490 uid_eq(cred
->euid
, pcred
->uid
) ||
1491 uid_eq(cred
->uid
, pcred
->suid
) ||
1492 uid_eq(cred
->uid
, pcred
->uid
);
1496 * The usb asyncio usage of siginfo is wrong. The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 * kernel_pid_t si_pid;
1500 * kernel_uid32_t si_uid;
1501 * sigval_t si_value;
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 * void __user *si_addr;
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace. As the 32bit address will encoded in the low
1509 * 32bits of the pointer. Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer. So userspace will not
1511 * see the address it was expecting for it's completions.
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1520 int kill_pid_usb_asyncio(int sig
, int errno
, sigval_t addr
,
1521 struct pid
*pid
, const struct cred
*cred
)
1523 struct kernel_siginfo info
;
1524 struct task_struct
*p
;
1525 unsigned long flags
;
1528 if (!valid_signal(sig
))
1531 clear_siginfo(&info
);
1532 info
.si_signo
= sig
;
1533 info
.si_errno
= errno
;
1534 info
.si_code
= SI_ASYNCIO
;
1535 *((sigval_t
*)&info
.si_pid
) = addr
;
1538 p
= pid_task(pid
, PIDTYPE_PID
);
1543 if (!kill_as_cred_perm(cred
, p
)) {
1547 ret
= security_task_kill(p
, &info
, sig
, cred
);
1552 if (lock_task_sighand(p
, &flags
)) {
1553 ret
= __send_signal_locked(sig
, &info
, p
, PIDTYPE_TGID
, false);
1554 unlock_task_sighand(p
, &flags
);
1562 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio
);
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong. Should make it like BSD or SYSV.
1571 static int kill_something_info(int sig
, struct kernel_siginfo
*info
, pid_t pid
)
1576 return kill_proc_info(sig
, info
, pid
);
1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1582 read_lock(&tasklist_lock
);
1584 ret
= __kill_pgrp_info(sig
, info
,
1585 pid
? find_vpid(-pid
) : task_pgrp(current
));
1587 int retval
= 0, count
= 0;
1588 struct task_struct
* p
;
1590 for_each_process(p
) {
1591 if (task_pid_vnr(p
) > 1 &&
1592 !same_thread_group(p
, current
)) {
1593 int err
= group_send_sig_info(sig
, info
, p
,
1600 ret
= count
? retval
: -ESRCH
;
1602 read_unlock(&tasklist_lock
);
1608 * These are for backward compatibility with the rest of the kernel source.
1611 int send_sig_info(int sig
, struct kernel_siginfo
*info
, struct task_struct
*p
)
1614 * Make sure legacy kernel users don't send in bad values
1615 * (normal paths check this in check_kill_permission).
1617 if (!valid_signal(sig
))
1620 return do_send_sig_info(sig
, info
, p
, PIDTYPE_PID
);
1622 EXPORT_SYMBOL(send_sig_info
);
1624 #define __si_special(priv) \
1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1628 send_sig(int sig
, struct task_struct
*p
, int priv
)
1630 return send_sig_info(sig
, __si_special(priv
), p
);
1632 EXPORT_SYMBOL(send_sig
);
1634 void force_sig(int sig
)
1636 struct kernel_siginfo info
;
1638 clear_siginfo(&info
);
1639 info
.si_signo
= sig
;
1641 info
.si_code
= SI_KERNEL
;
1644 force_sig_info(&info
);
1646 EXPORT_SYMBOL(force_sig
);
1648 void force_fatal_sig(int sig
)
1650 struct kernel_siginfo info
;
1652 clear_siginfo(&info
);
1653 info
.si_signo
= sig
;
1655 info
.si_code
= SI_KERNEL
;
1658 force_sig_info_to_task(&info
, current
, HANDLER_SIG_DFL
);
1661 void force_exit_sig(int sig
)
1663 struct kernel_siginfo info
;
1665 clear_siginfo(&info
);
1666 info
.si_signo
= sig
;
1668 info
.si_code
= SI_KERNEL
;
1671 force_sig_info_to_task(&info
, current
, HANDLER_EXIT
);
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1680 void force_sigsegv(int sig
)
1683 force_fatal_sig(SIGSEGV
);
1688 int force_sig_fault_to_task(int sig
, int code
, void __user
*addr
,
1689 struct task_struct
*t
)
1691 struct kernel_siginfo info
;
1693 clear_siginfo(&info
);
1694 info
.si_signo
= sig
;
1696 info
.si_code
= code
;
1697 info
.si_addr
= addr
;
1698 return force_sig_info_to_task(&info
, t
, HANDLER_CURRENT
);
1701 int force_sig_fault(int sig
, int code
, void __user
*addr
)
1703 return force_sig_fault_to_task(sig
, code
, addr
, current
);
1706 int send_sig_fault(int sig
, int code
, void __user
*addr
, struct task_struct
*t
)
1708 struct kernel_siginfo info
;
1710 clear_siginfo(&info
);
1711 info
.si_signo
= sig
;
1713 info
.si_code
= code
;
1714 info
.si_addr
= addr
;
1715 return send_sig_info(info
.si_signo
, &info
, t
);
1718 int force_sig_mceerr(int code
, void __user
*addr
, short lsb
)
1720 struct kernel_siginfo info
;
1722 WARN_ON((code
!= BUS_MCEERR_AO
) && (code
!= BUS_MCEERR_AR
));
1723 clear_siginfo(&info
);
1724 info
.si_signo
= SIGBUS
;
1726 info
.si_code
= code
;
1727 info
.si_addr
= addr
;
1728 info
.si_addr_lsb
= lsb
;
1729 return force_sig_info(&info
);
1732 int send_sig_mceerr(int code
, void __user
*addr
, short lsb
, struct task_struct
*t
)
1734 struct kernel_siginfo info
;
1736 WARN_ON((code
!= BUS_MCEERR_AO
) && (code
!= BUS_MCEERR_AR
));
1737 clear_siginfo(&info
);
1738 info
.si_signo
= SIGBUS
;
1740 info
.si_code
= code
;
1741 info
.si_addr
= addr
;
1742 info
.si_addr_lsb
= lsb
;
1743 return send_sig_info(info
.si_signo
, &info
, t
);
1745 EXPORT_SYMBOL(send_sig_mceerr
);
1747 int force_sig_bnderr(void __user
*addr
, void __user
*lower
, void __user
*upper
)
1749 struct kernel_siginfo info
;
1751 clear_siginfo(&info
);
1752 info
.si_signo
= SIGSEGV
;
1754 info
.si_code
= SEGV_BNDERR
;
1755 info
.si_addr
= addr
;
1756 info
.si_lower
= lower
;
1757 info
.si_upper
= upper
;
1758 return force_sig_info(&info
);
1762 int force_sig_pkuerr(void __user
*addr
, u32 pkey
)
1764 struct kernel_siginfo info
;
1766 clear_siginfo(&info
);
1767 info
.si_signo
= SIGSEGV
;
1769 info
.si_code
= SEGV_PKUERR
;
1770 info
.si_addr
= addr
;
1771 info
.si_pkey
= pkey
;
1772 return force_sig_info(&info
);
1776 int send_sig_perf(void __user
*addr
, u32 type
, u64 sig_data
)
1778 struct kernel_siginfo info
;
1780 clear_siginfo(&info
);
1781 info
.si_signo
= SIGTRAP
;
1783 info
.si_code
= TRAP_PERF
;
1784 info
.si_addr
= addr
;
1785 info
.si_perf_data
= sig_data
;
1786 info
.si_perf_type
= type
;
1789 * Signals generated by perf events should not terminate the whole
1790 * process if SIGTRAP is blocked, however, delivering the signal
1791 * asynchronously is better than not delivering at all. But tell user
1792 * space if the signal was asynchronous, so it can clearly be
1793 * distinguished from normal synchronous ones.
1795 info
.si_perf_flags
= sigismember(¤t
->blocked
, info
.si_signo
) ?
1796 TRAP_PERF_FLAG_ASYNC
:
1799 return send_sig_info(info
.si_signo
, &info
, current
);
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1810 int force_sig_seccomp(int syscall
, int reason
, bool force_coredump
)
1812 struct kernel_siginfo info
;
1814 clear_siginfo(&info
);
1815 info
.si_signo
= SIGSYS
;
1816 info
.si_code
= SYS_SECCOMP
;
1817 info
.si_call_addr
= (void __user
*)KSTK_EIP(current
);
1818 info
.si_errno
= reason
;
1819 info
.si_arch
= syscall_get_arch(current
);
1820 info
.si_syscall
= syscall
;
1821 return force_sig_info_to_task(&info
, current
,
1822 force_coredump
? HANDLER_EXIT
: HANDLER_CURRENT
);
1825 /* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1828 int force_sig_ptrace_errno_trap(int errno
, void __user
*addr
)
1830 struct kernel_siginfo info
;
1832 clear_siginfo(&info
);
1833 info
.si_signo
= SIGTRAP
;
1834 info
.si_errno
= errno
;
1835 info
.si_code
= TRAP_HWBKPT
;
1836 info
.si_addr
= addr
;
1837 return force_sig_info(&info
);
1840 /* For the rare architectures that include trap information using
1843 int force_sig_fault_trapno(int sig
, int code
, void __user
*addr
, int trapno
)
1845 struct kernel_siginfo info
;
1847 clear_siginfo(&info
);
1848 info
.si_signo
= sig
;
1850 info
.si_code
= code
;
1851 info
.si_addr
= addr
;
1852 info
.si_trapno
= trapno
;
1853 return force_sig_info(&info
);
1856 /* For the rare architectures that include trap information using
1859 int send_sig_fault_trapno(int sig
, int code
, void __user
*addr
, int trapno
,
1860 struct task_struct
*t
)
1862 struct kernel_siginfo info
;
1864 clear_siginfo(&info
);
1865 info
.si_signo
= sig
;
1867 info
.si_code
= code
;
1868 info
.si_addr
= addr
;
1869 info
.si_trapno
= trapno
;
1870 return send_sig_info(info
.si_signo
, &info
, t
);
1873 static int kill_pgrp_info(int sig
, struct kernel_siginfo
*info
, struct pid
*pgrp
)
1876 read_lock(&tasklist_lock
);
1877 ret
= __kill_pgrp_info(sig
, info
, pgrp
);
1878 read_unlock(&tasklist_lock
);
1882 int kill_pgrp(struct pid
*pid
, int sig
, int priv
)
1884 return kill_pgrp_info(sig
, __si_special(priv
), pid
);
1886 EXPORT_SYMBOL(kill_pgrp
);
1888 int kill_pid(struct pid
*pid
, int sig
, int priv
)
1890 return kill_pid_info(sig
, __si_special(priv
), pid
);
1892 EXPORT_SYMBOL(kill_pid
);
1894 #ifdef CONFIG_POSIX_TIMERS
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
1899 static void __flush_itimer_signals(struct sigpending
*pending
)
1901 sigset_t signal
, retain
;
1902 struct sigqueue
*q
, *n
;
1904 signal
= pending
->signal
;
1905 sigemptyset(&retain
);
1907 list_for_each_entry_safe(q
, n
, &pending
->list
, list
) {
1908 int sig
= q
->info
.si_signo
;
1910 if (likely(q
->info
.si_code
!= SI_TIMER
)) {
1911 sigaddset(&retain
, sig
);
1913 sigdelset(&signal
, sig
);
1914 list_del_init(&q
->list
);
1919 sigorsets(&pending
->signal
, &signal
, &retain
);
1922 void flush_itimer_signals(void)
1924 struct task_struct
*tsk
= current
;
1926 guard(spinlock_irqsave
)(&tsk
->sighand
->siglock
);
1927 __flush_itimer_signals(&tsk
->pending
);
1928 __flush_itimer_signals(&tsk
->signal
->shared_pending
);
1931 bool posixtimer_init_sigqueue(struct sigqueue
*q
)
1933 struct ucounts
*ucounts
= sig_get_ucounts(current
, -1, 0);
1937 clear_siginfo(&q
->info
);
1938 __sigqueue_init(q
, ucounts
, SIGQUEUE_PREALLOC
);
1942 static void posixtimer_queue_sigqueue(struct sigqueue
*q
, struct task_struct
*t
, enum pid_type type
)
1944 struct sigpending
*pending
;
1945 int sig
= q
->info
.si_signo
;
1947 signalfd_notify(t
, sig
);
1948 pending
= (type
!= PIDTYPE_PID
) ? &t
->signal
->shared_pending
: &t
->pending
;
1949 list_add_tail(&q
->list
, &pending
->list
);
1950 sigaddset(&pending
->signal
, sig
);
1951 complete_signal(sig
, t
, type
);
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process, which avoids
1963 * unnecessarily waking up a potentially idle task.
1965 static inline struct task_struct
*posixtimer_get_target(struct k_itimer
*tmr
)
1967 struct task_struct
*t
= pid_task(tmr
->it_pid
, tmr
->it_pid_type
);
1969 if (t
&& tmr
->it_pid_type
!= PIDTYPE_PID
&& same_thread_group(t
, current
))
1974 void posixtimer_send_sigqueue(struct k_itimer
*tmr
)
1976 struct sigqueue
*q
= &tmr
->sigq
;
1977 int sig
= q
->info
.si_signo
;
1978 struct task_struct
*t
;
1979 unsigned long flags
;
1984 t
= posixtimer_get_target(tmr
);
1988 if (!likely(lock_task_sighand(t
, &flags
)))
1992 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1993 * locked to prevent a race against dequeue_signal().
1995 tmr
->it_sigqueue_seq
= tmr
->it_signal_seq
;
1998 * Set the signal delivery status under sighand lock, so that the
1999 * ignored signal handling can distinguish between a periodic and a
2000 * non-periodic timer.
2002 tmr
->it_sig_periodic
= tmr
->it_status
== POSIX_TIMER_REQUEUE_PENDING
;
2004 if (!prepare_signal(sig
, t
, false)) {
2005 result
= TRACE_SIGNAL_IGNORED
;
2007 if (!list_empty(&q
->list
)) {
2009 * If task group is exiting with the signal already pending,
2010 * wait for __exit_signal() to do its job. Otherwise if
2011 * ignored, it's not supposed to be queued. Try to survive.
2013 WARN_ON_ONCE(!(t
->signal
->flags
& SIGNAL_GROUP_EXIT
));
2017 /* Periodic timers with SIG_IGN are queued on the ignored list */
2018 if (tmr
->it_sig_periodic
) {
2020 * Already queued means the timer was rearmed after
2021 * the previous expiry got it on the ignore list.
2022 * Nothing to do for that case.
2024 if (hlist_unhashed(&tmr
->ignored_list
)) {
2026 * Take a signal reference and queue it on
2029 posixtimer_sigqueue_getref(q
);
2030 posixtimer_sig_ignore(t
, q
);
2032 } else if (!hlist_unhashed(&tmr
->ignored_list
)) {
2034 * Covers the case where a timer was periodic and
2035 * then the signal was ignored. Later it was rearmed
2036 * as oneshot timer. The previous signal is invalid
2037 * now, and this oneshot signal has to be dropped.
2038 * Remove it from the ignored list and drop the
2039 * reference count as the signal is not longer
2042 hlist_del_init(&tmr
->ignored_list
);
2043 posixtimer_putref(tmr
);
2048 /* This should never happen and leaks a reference count */
2049 if (WARN_ON_ONCE(!hlist_unhashed(&tmr
->ignored_list
)))
2050 hlist_del_init(&tmr
->ignored_list
);
2052 if (unlikely(!list_empty(&q
->list
))) {
2053 /* This holds a reference count already */
2054 result
= TRACE_SIGNAL_ALREADY_PENDING
;
2058 posixtimer_sigqueue_getref(q
);
2059 posixtimer_queue_sigqueue(q
, t
, tmr
->it_pid_type
);
2060 result
= TRACE_SIGNAL_DELIVERED
;
2062 trace_signal_generate(sig
, &q
->info
, t
, tmr
->it_pid_type
!= PIDTYPE_PID
, result
);
2063 unlock_task_sighand(t
, &flags
);
2066 static inline void posixtimer_sig_ignore(struct task_struct
*tsk
, struct sigqueue
*q
)
2068 struct k_itimer
*tmr
= container_of(q
, struct k_itimer
, sigq
);
2071 * If the timer is marked deleted already or the signal originates
2072 * from a non-periodic timer, then just drop the reference
2073 * count. Otherwise queue it on the ignored list.
2075 if (tmr
->it_signal
&& tmr
->it_sig_periodic
)
2076 hlist_add_head(&tmr
->ignored_list
, &tsk
->signal
->ignored_posix_timers
);
2078 posixtimer_putref(tmr
);
2081 static void posixtimer_sig_unignore(struct task_struct
*tsk
, int sig
)
2083 struct hlist_head
*head
= &tsk
->signal
->ignored_posix_timers
;
2084 struct hlist_node
*tmp
;
2085 struct k_itimer
*tmr
;
2087 if (likely(hlist_empty(head
)))
2091 * Rearming a timer with sighand lock held is not possible due to
2092 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2093 * let the signal delivery path deal with it whether it needs to be
2094 * rearmed or not. This cannot be decided here w/o dropping sighand
2095 * lock and creating a loop retry horror show.
2097 hlist_for_each_entry_safe(tmr
, tmp
, head
, ignored_list
) {
2098 struct task_struct
*target
;
2101 * tmr::sigq.info.si_signo is immutable, so accessing it
2102 * without holding tmr::it_lock is safe.
2104 if (tmr
->sigq
.info
.si_signo
!= sig
)
2107 hlist_del_init(&tmr
->ignored_list
);
2109 /* This should never happen and leaks a reference count */
2110 if (WARN_ON_ONCE(!list_empty(&tmr
->sigq
.list
)))
2114 * Get the target for the signal. If target is a thread and
2115 * has exited by now, drop the reference count.
2118 target
= posixtimer_get_target(tmr
);
2120 posixtimer_queue_sigqueue(&tmr
->sigq
, target
, tmr
->it_pid_type
);
2122 posixtimer_putref(tmr
);
2125 #else /* CONFIG_POSIX_TIMERS */
2126 static inline void posixtimer_sig_ignore(struct task_struct
*tsk
, struct sigqueue
*q
) { }
2127 static inline void posixtimer_sig_unignore(struct task_struct
*tsk
, int sig
) { }
2128 #endif /* !CONFIG_POSIX_TIMERS */
2130 void do_notify_pidfd(struct task_struct
*task
)
2132 struct pid
*pid
= task_pid(task
);
2134 WARN_ON(task
->exit_state
== 0);
2136 __wake_up(&pid
->wait_pidfd
, TASK_NORMAL
, 0,
2137 poll_to_key(EPOLLIN
| EPOLLRDNORM
));
2141 * Let a parent know about the death of a child.
2142 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2144 * Returns true if our parent ignored us and so we've switched to
2147 bool do_notify_parent(struct task_struct
*tsk
, int sig
)
2149 struct kernel_siginfo info
;
2150 unsigned long flags
;
2151 struct sighand_struct
*psig
;
2152 bool autoreap
= false;
2155 WARN_ON_ONCE(sig
== -1);
2157 /* do_notify_parent_cldstop should have been called instead. */
2158 WARN_ON_ONCE(task_is_stopped_or_traced(tsk
));
2160 WARN_ON_ONCE(!tsk
->ptrace
&&
2161 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
2163 * tsk is a group leader and has no threads, wake up the
2164 * non-PIDFD_THREAD waiters.
2166 if (thread_group_empty(tsk
))
2167 do_notify_pidfd(tsk
);
2169 if (sig
!= SIGCHLD
) {
2171 * This is only possible if parent == real_parent.
2172 * Check if it has changed security domain.
2174 if (tsk
->parent_exec_id
!= READ_ONCE(tsk
->parent
->self_exec_id
))
2178 clear_siginfo(&info
);
2179 info
.si_signo
= sig
;
2182 * We are under tasklist_lock here so our parent is tied to
2183 * us and cannot change.
2185 * task_active_pid_ns will always return the same pid namespace
2186 * until a task passes through release_task.
2188 * write_lock() currently calls preempt_disable() which is the
2189 * same as rcu_read_lock(), but according to Oleg, this is not
2190 * correct to rely on this
2193 info
.si_pid
= task_pid_nr_ns(tsk
, task_active_pid_ns(tsk
->parent
));
2194 info
.si_uid
= from_kuid_munged(task_cred_xxx(tsk
->parent
, user_ns
),
2198 task_cputime(tsk
, &utime
, &stime
);
2199 info
.si_utime
= nsec_to_clock_t(utime
+ tsk
->signal
->utime
);
2200 info
.si_stime
= nsec_to_clock_t(stime
+ tsk
->signal
->stime
);
2202 info
.si_status
= tsk
->exit_code
& 0x7f;
2203 if (tsk
->exit_code
& 0x80)
2204 info
.si_code
= CLD_DUMPED
;
2205 else if (tsk
->exit_code
& 0x7f)
2206 info
.si_code
= CLD_KILLED
;
2208 info
.si_code
= CLD_EXITED
;
2209 info
.si_status
= tsk
->exit_code
>> 8;
2212 psig
= tsk
->parent
->sighand
;
2213 spin_lock_irqsave(&psig
->siglock
, flags
);
2214 if (!tsk
->ptrace
&& sig
== SIGCHLD
&&
2215 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
2216 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
2218 * We are exiting and our parent doesn't care. POSIX.1
2219 * defines special semantics for setting SIGCHLD to SIG_IGN
2220 * or setting the SA_NOCLDWAIT flag: we should be reaped
2221 * automatically and not left for our parent's wait4 call.
2222 * Rather than having the parent do it as a magic kind of
2223 * signal handler, we just set this to tell do_exit that we
2224 * can be cleaned up without becoming a zombie. Note that
2225 * we still call __wake_up_parent in this case, because a
2226 * blocked sys_wait4 might now return -ECHILD.
2228 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2229 * is implementation-defined: we do (if you don't want
2230 * it, just use SIG_IGN instead).
2233 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
2237 * Send with __send_signal as si_pid and si_uid are in the
2238 * parent's namespaces.
2240 if (valid_signal(sig
) && sig
)
2241 __send_signal_locked(sig
, &info
, tsk
->parent
, PIDTYPE_TGID
, false);
2242 __wake_up_parent(tsk
, tsk
->parent
);
2243 spin_unlock_irqrestore(&psig
->siglock
, flags
);
2249 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2250 * @tsk: task reporting the state change
2251 * @for_ptracer: the notification is for ptracer
2252 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2254 * Notify @tsk's parent that the stopped/continued state has changed. If
2255 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2256 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2259 * Must be called with tasklist_lock at least read locked.
2261 static void do_notify_parent_cldstop(struct task_struct
*tsk
,
2262 bool for_ptracer
, int why
)
2264 struct kernel_siginfo info
;
2265 unsigned long flags
;
2266 struct task_struct
*parent
;
2267 struct sighand_struct
*sighand
;
2271 parent
= tsk
->parent
;
2273 tsk
= tsk
->group_leader
;
2274 parent
= tsk
->real_parent
;
2277 clear_siginfo(&info
);
2278 info
.si_signo
= SIGCHLD
;
2281 * see comment in do_notify_parent() about the following 4 lines
2284 info
.si_pid
= task_pid_nr_ns(tsk
, task_active_pid_ns(parent
));
2285 info
.si_uid
= from_kuid_munged(task_cred_xxx(parent
, user_ns
), task_uid(tsk
));
2288 task_cputime(tsk
, &utime
, &stime
);
2289 info
.si_utime
= nsec_to_clock_t(utime
);
2290 info
.si_stime
= nsec_to_clock_t(stime
);
2295 info
.si_status
= SIGCONT
;
2298 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
2301 info
.si_status
= tsk
->exit_code
& 0x7f;
2307 sighand
= parent
->sighand
;
2308 spin_lock_irqsave(&sighand
->siglock
, flags
);
2309 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
2310 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
2311 send_signal_locked(SIGCHLD
, &info
, parent
, PIDTYPE_TGID
);
2313 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2315 __wake_up_parent(tsk
, parent
);
2316 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
2320 * This must be called with current->sighand->siglock held.
2322 * This should be the path for all ptrace stops.
2323 * We always set current->last_siginfo while stopped here.
2324 * That makes it a way to test a stopped process for
2325 * being ptrace-stopped vs being job-control-stopped.
2327 * Returns the signal the ptracer requested the code resume
2328 * with. If the code did not stop because the tracer is gone,
2329 * the stop signal remains unchanged unless clear_code.
2331 static int ptrace_stop(int exit_code
, int why
, unsigned long message
,
2332 kernel_siginfo_t
*info
)
2333 __releases(¤t
->sighand
->siglock
)
2334 __acquires(¤t
->sighand
->siglock
)
2336 bool gstop_done
= false;
2338 if (arch_ptrace_stop_needed()) {
2340 * The arch code has something special to do before a
2341 * ptrace stop. This is allowed to block, e.g. for faults
2342 * on user stack pages. We can't keep the siglock while
2343 * calling arch_ptrace_stop, so we must release it now.
2344 * To preserve proper semantics, we must do this before
2345 * any signal bookkeeping like checking group_stop_count.
2347 spin_unlock_irq(¤t
->sighand
->siglock
);
2349 spin_lock_irq(¤t
->sighand
->siglock
);
2353 * After this point ptrace_signal_wake_up or signal_wake_up
2354 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2355 * signal comes in. Handle previous ptrace_unlinks and fatal
2356 * signals here to prevent ptrace_stop sleeping in schedule.
2358 if (!current
->ptrace
|| __fatal_signal_pending(current
))
2361 set_special_state(TASK_TRACED
);
2362 current
->jobctl
|= JOBCTL_TRACED
;
2365 * We're committing to trapping. TRACED should be visible before
2366 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2367 * Also, transition to TRACED and updates to ->jobctl should be
2368 * atomic with respect to siglock and should be done after the arch
2369 * hook as siglock is released and regrabbed across it.
2374 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2376 * set_current_state() smp_wmb();
2378 * wait_task_stopped()
2379 * task_stopped_code()
2380 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2384 current
->ptrace_message
= message
;
2385 current
->last_siginfo
= info
;
2386 current
->exit_code
= exit_code
;
2389 * If @why is CLD_STOPPED, we're trapping to participate in a group
2390 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2391 * across siglock relocks since INTERRUPT was scheduled, PENDING
2392 * could be clear now. We act as if SIGCONT is received after
2393 * TASK_TRACED is entered - ignore it.
2395 if (why
== CLD_STOPPED
&& (current
->jobctl
& JOBCTL_STOP_PENDING
))
2396 gstop_done
= task_participate_group_stop(current
);
2398 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2399 task_clear_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
2400 if (info
&& info
->si_code
>> 8 == PTRACE_EVENT_STOP
)
2401 task_clear_jobctl_pending(current
, JOBCTL_TRAP_NOTIFY
);
2403 /* entering a trap, clear TRAPPING */
2404 task_clear_jobctl_trapping(current
);
2406 spin_unlock_irq(¤t
->sighand
->siglock
);
2407 read_lock(&tasklist_lock
);
2409 * Notify parents of the stop.
2411 * While ptraced, there are two parents - the ptracer and
2412 * the real_parent of the group_leader. The ptracer should
2413 * know about every stop while the real parent is only
2414 * interested in the completion of group stop. The states
2415 * for the two don't interact with each other. Notify
2416 * separately unless they're gonna be duplicates.
2418 if (current
->ptrace
)
2419 do_notify_parent_cldstop(current
, true, why
);
2420 if (gstop_done
&& (!current
->ptrace
|| ptrace_reparented(current
)))
2421 do_notify_parent_cldstop(current
, false, why
);
2424 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2425 * One a PREEMPTION kernel this can result in preemption requirement
2426 * which will be fulfilled after read_unlock() and the ptracer will be
2428 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2429 * this task wait in schedule(). If this task gets preempted then it
2430 * remains enqueued on the runqueue. The ptracer will observe this and
2431 * then sleep for a delay of one HZ tick. In the meantime this task
2432 * gets scheduled, enters schedule() and will wait for the ptracer.
2434 * This preemption point is not bad from a correctness point of
2435 * view but extends the runtime by one HZ tick time due to the
2436 * ptracer's sleep. The preempt-disable section ensures that there
2437 * will be no preemption between unlock and schedule() and so
2438 * improving the performance since the ptracer will observe that
2439 * the tracee is scheduled out once it gets on the CPU.
2441 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2442 * Therefore the task can be preempted after do_notify_parent_cldstop()
2443 * before unlocking tasklist_lock so there is no benefit in doing this.
2445 * In fact disabling preemption is harmful on PREEMPT_RT because
2446 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2447 * with preemption disabled due to the 'sleeping' spinlock
2448 * substitution of RT.
2450 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
2452 read_unlock(&tasklist_lock
);
2453 cgroup_enter_frozen();
2454 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
2455 preempt_enable_no_resched();
2457 cgroup_leave_frozen(true);
2460 * We are back. Now reacquire the siglock before touching
2461 * last_siginfo, so that we are sure to have synchronized with
2462 * any signal-sending on another CPU that wants to examine it.
2464 spin_lock_irq(¤t
->sighand
->siglock
);
2465 exit_code
= current
->exit_code
;
2466 current
->last_siginfo
= NULL
;
2467 current
->ptrace_message
= 0;
2468 current
->exit_code
= 0;
2470 /* LISTENING can be set only during STOP traps, clear it */
2471 current
->jobctl
&= ~(JOBCTL_LISTENING
| JOBCTL_PTRACE_FROZEN
);
2474 * Queued signals ignored us while we were stopped for tracing.
2475 * So check for any that we should take before resuming user mode.
2476 * This sets TIF_SIGPENDING, but never clears it.
2478 recalc_sigpending_tsk(current
);
2482 static int ptrace_do_notify(int signr
, int exit_code
, int why
, unsigned long message
)
2484 kernel_siginfo_t info
;
2486 clear_siginfo(&info
);
2487 info
.si_signo
= signr
;
2488 info
.si_code
= exit_code
;
2489 info
.si_pid
= task_pid_vnr(current
);
2490 info
.si_uid
= from_kuid_munged(current_user_ns(), current_uid());
2492 /* Let the debugger run. */
2493 return ptrace_stop(exit_code
, why
, message
, &info
);
2496 int ptrace_notify(int exit_code
, unsigned long message
)
2500 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
2501 if (unlikely(task_work_pending(current
)))
2504 spin_lock_irq(¤t
->sighand
->siglock
);
2505 signr
= ptrace_do_notify(SIGTRAP
, exit_code
, CLD_TRAPPED
, message
);
2506 spin_unlock_irq(¤t
->sighand
->siglock
);
2511 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2512 * @signr: signr causing group stop if initiating
2514 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2515 * and participate in it. If already set, participate in the existing
2516 * group stop. If participated in a group stop (and thus slept), %true is
2517 * returned with siglock released.
2519 * If ptraced, this function doesn't handle stop itself. Instead,
2520 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2521 * untouched. The caller must ensure that INTERRUPT trap handling takes
2522 * places afterwards.
2525 * Must be called with @current->sighand->siglock held, which is released
2529 * %false if group stop is already cancelled or ptrace trap is scheduled.
2530 * %true if participated in group stop.
2532 static bool do_signal_stop(int signr
)
2533 __releases(¤t
->sighand
->siglock
)
2535 struct signal_struct
*sig
= current
->signal
;
2537 if (!(current
->jobctl
& JOBCTL_STOP_PENDING
)) {
2538 unsigned long gstop
= JOBCTL_STOP_PENDING
| JOBCTL_STOP_CONSUME
;
2539 struct task_struct
*t
;
2541 /* signr will be recorded in task->jobctl for retries */
2542 WARN_ON_ONCE(signr
& ~JOBCTL_STOP_SIGMASK
);
2544 if (!likely(current
->jobctl
& JOBCTL_STOP_DEQUEUED
) ||
2545 unlikely(sig
->flags
& SIGNAL_GROUP_EXIT
) ||
2546 unlikely(sig
->group_exec_task
))
2549 * There is no group stop already in progress. We must
2552 * While ptraced, a task may be resumed while group stop is
2553 * still in effect and then receive a stop signal and
2554 * initiate another group stop. This deviates from the
2555 * usual behavior as two consecutive stop signals can't
2556 * cause two group stops when !ptraced. That is why we
2557 * also check !task_is_stopped(t) below.
2559 * The condition can be distinguished by testing whether
2560 * SIGNAL_STOP_STOPPED is already set. Don't generate
2561 * group_exit_code in such case.
2563 * This is not necessary for SIGNAL_STOP_CONTINUED because
2564 * an intervening stop signal is required to cause two
2565 * continued events regardless of ptrace.
2567 if (!(sig
->flags
& SIGNAL_STOP_STOPPED
))
2568 sig
->group_exit_code
= signr
;
2570 sig
->group_stop_count
= 0;
2571 if (task_set_jobctl_pending(current
, signr
| gstop
))
2572 sig
->group_stop_count
++;
2574 for_other_threads(current
, t
) {
2576 * Setting state to TASK_STOPPED for a group
2577 * stop is always done with the siglock held,
2578 * so this check has no races.
2580 if (!task_is_stopped(t
) &&
2581 task_set_jobctl_pending(t
, signr
| gstop
)) {
2582 sig
->group_stop_count
++;
2583 if (likely(!(t
->ptrace
& PT_SEIZED
)))
2584 signal_wake_up(t
, 0);
2586 ptrace_trap_notify(t
);
2591 if (likely(!current
->ptrace
)) {
2595 * If there are no other threads in the group, or if there
2596 * is a group stop in progress and we are the last to stop,
2597 * report to the parent.
2599 if (task_participate_group_stop(current
))
2600 notify
= CLD_STOPPED
;
2602 current
->jobctl
|= JOBCTL_STOPPED
;
2603 set_special_state(TASK_STOPPED
);
2604 spin_unlock_irq(¤t
->sighand
->siglock
);
2607 * Notify the parent of the group stop completion. Because
2608 * we're not holding either the siglock or tasklist_lock
2609 * here, ptracer may attach inbetween; however, this is for
2610 * group stop and should always be delivered to the real
2611 * parent of the group leader. The new ptracer will get
2612 * its notification when this task transitions into
2616 read_lock(&tasklist_lock
);
2617 do_notify_parent_cldstop(current
, false, notify
);
2618 read_unlock(&tasklist_lock
);
2621 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2622 cgroup_enter_frozen();
2627 * While ptraced, group stop is handled by STOP trap.
2628 * Schedule it and let the caller deal with it.
2630 task_set_jobctl_pending(current
, JOBCTL_TRAP_STOP
);
2636 * do_jobctl_trap - take care of ptrace jobctl traps
2638 * When PT_SEIZED, it's used for both group stop and explicit
2639 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2640 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2641 * the stop signal; otherwise, %SIGTRAP.
2643 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2644 * number as exit_code and no siginfo.
2647 * Must be called with @current->sighand->siglock held, which may be
2648 * released and re-acquired before returning with intervening sleep.
2650 static void do_jobctl_trap(void)
2652 struct signal_struct
*signal
= current
->signal
;
2653 int signr
= current
->jobctl
& JOBCTL_STOP_SIGMASK
;
2655 if (current
->ptrace
& PT_SEIZED
) {
2656 if (!signal
->group_stop_count
&&
2657 !(signal
->flags
& SIGNAL_STOP_STOPPED
))
2659 WARN_ON_ONCE(!signr
);
2660 ptrace_do_notify(signr
, signr
| (PTRACE_EVENT_STOP
<< 8),
2663 WARN_ON_ONCE(!signr
);
2664 ptrace_stop(signr
, CLD_STOPPED
, 0, NULL
);
2669 * do_freezer_trap - handle the freezer jobctl trap
2671 * Puts the task into frozen state, if only the task is not about to quit.
2672 * In this case it drops JOBCTL_TRAP_FREEZE.
2675 * Must be called with @current->sighand->siglock held,
2676 * which is always released before returning.
2678 static void do_freezer_trap(void)
2679 __releases(¤t
->sighand
->siglock
)
2682 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2683 * let's make another loop to give it a chance to be handled.
2684 * In any case, we'll return back.
2686 if ((current
->jobctl
& (JOBCTL_PENDING_MASK
| JOBCTL_TRAP_FREEZE
)) !=
2687 JOBCTL_TRAP_FREEZE
) {
2688 spin_unlock_irq(¤t
->sighand
->siglock
);
2693 * Now we're sure that there is no pending fatal signal and no
2694 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2695 * immediately (if there is a non-fatal signal pending), and
2696 * put the task into sleep.
2698 __set_current_state(TASK_INTERRUPTIBLE
|TASK_FREEZABLE
);
2699 clear_thread_flag(TIF_SIGPENDING
);
2700 spin_unlock_irq(¤t
->sighand
->siglock
);
2701 cgroup_enter_frozen();
2705 * We could've been woken by task_work, run it to clear
2706 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2708 clear_notify_signal();
2709 if (unlikely(task_work_pending(current
)))
2713 static int ptrace_signal(int signr
, kernel_siginfo_t
*info
, enum pid_type type
)
2716 * We do not check sig_kernel_stop(signr) but set this marker
2717 * unconditionally because we do not know whether debugger will
2718 * change signr. This flag has no meaning unless we are going
2719 * to stop after return from ptrace_stop(). In this case it will
2720 * be checked in do_signal_stop(), we should only stop if it was
2721 * not cleared by SIGCONT while we were sleeping. See also the
2722 * comment in dequeue_signal().
2724 current
->jobctl
|= JOBCTL_STOP_DEQUEUED
;
2725 signr
= ptrace_stop(signr
, CLD_TRAPPED
, 0, info
);
2727 /* We're back. Did the debugger cancel the sig? */
2732 * Update the siginfo structure if the signal has
2733 * changed. If the debugger wanted something
2734 * specific in the siginfo structure then it should
2735 * have updated *info via PTRACE_SETSIGINFO.
2737 if (signr
!= info
->si_signo
) {
2738 clear_siginfo(info
);
2739 info
->si_signo
= signr
;
2741 info
->si_code
= SI_USER
;
2743 info
->si_pid
= task_pid_vnr(current
->parent
);
2744 info
->si_uid
= from_kuid_munged(current_user_ns(),
2745 task_uid(current
->parent
));
2749 /* If the (new) signal is now blocked, requeue it. */
2750 if (sigismember(¤t
->blocked
, signr
) ||
2751 fatal_signal_pending(current
)) {
2752 send_signal_locked(signr
, info
, current
, type
);
2759 static void hide_si_addr_tag_bits(struct ksignal
*ksig
)
2761 switch (siginfo_layout(ksig
->sig
, ksig
->info
.si_code
)) {
2763 case SIL_FAULT_TRAPNO
:
2764 case SIL_FAULT_MCEERR
:
2765 case SIL_FAULT_BNDERR
:
2766 case SIL_FAULT_PKUERR
:
2767 case SIL_FAULT_PERF_EVENT
:
2768 ksig
->info
.si_addr
= arch_untagged_si_addr(
2769 ksig
->info
.si_addr
, ksig
->sig
, ksig
->info
.si_code
);
2781 bool get_signal(struct ksignal
*ksig
)
2783 struct sighand_struct
*sighand
= current
->sighand
;
2784 struct signal_struct
*signal
= current
->signal
;
2787 clear_notify_signal();
2788 if (unlikely(task_work_pending(current
)))
2791 if (!task_sigpending(current
))
2794 if (unlikely(uprobe_deny_signal()))
2798 * Do this once, we can't return to user-mode if freezing() == T.
2799 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2800 * thus do not need another check after return.
2805 spin_lock_irq(&sighand
->siglock
);
2808 * Every stopped thread goes here after wakeup. Check to see if
2809 * we should notify the parent, prepare_signal(SIGCONT) encodes
2810 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2812 if (unlikely(signal
->flags
& SIGNAL_CLD_MASK
)) {
2815 if (signal
->flags
& SIGNAL_CLD_CONTINUED
)
2816 why
= CLD_CONTINUED
;
2820 signal
->flags
&= ~SIGNAL_CLD_MASK
;
2822 spin_unlock_irq(&sighand
->siglock
);
2825 * Notify the parent that we're continuing. This event is
2826 * always per-process and doesn't make whole lot of sense
2827 * for ptracers, who shouldn't consume the state via
2828 * wait(2) either, but, for backward compatibility, notify
2829 * the ptracer of the group leader too unless it's gonna be
2832 read_lock(&tasklist_lock
);
2833 do_notify_parent_cldstop(current
, false, why
);
2835 if (ptrace_reparented(current
->group_leader
))
2836 do_notify_parent_cldstop(current
->group_leader
,
2838 read_unlock(&tasklist_lock
);
2844 struct k_sigaction
*ka
;
2847 /* Has this task already been marked for death? */
2848 if ((signal
->flags
& SIGNAL_GROUP_EXIT
) ||
2849 signal
->group_exec_task
) {
2851 sigdelset(¤t
->pending
.signal
, SIGKILL
);
2852 trace_signal_deliver(SIGKILL
, SEND_SIG_NOINFO
,
2853 &sighand
->action
[SIGKILL
-1]);
2854 recalc_sigpending();
2856 * implies do_group_exit() or return to PF_USER_WORKER,
2857 * no need to initialize ksig->info/etc.
2862 if (unlikely(current
->jobctl
& JOBCTL_STOP_PENDING
) &&
2866 if (unlikely(current
->jobctl
&
2867 (JOBCTL_TRAP_MASK
| JOBCTL_TRAP_FREEZE
))) {
2868 if (current
->jobctl
& JOBCTL_TRAP_MASK
) {
2870 spin_unlock_irq(&sighand
->siglock
);
2871 } else if (current
->jobctl
& JOBCTL_TRAP_FREEZE
)
2878 * If the task is leaving the frozen state, let's update
2879 * cgroup counters and reset the frozen bit.
2881 if (unlikely(cgroup_task_frozen(current
))) {
2882 spin_unlock_irq(&sighand
->siglock
);
2883 cgroup_leave_frozen(false);
2888 * Signals generated by the execution of an instruction
2889 * need to be delivered before any other pending signals
2890 * so that the instruction pointer in the signal stack
2891 * frame points to the faulting instruction.
2894 signr
= dequeue_synchronous_signal(&ksig
->info
);
2896 signr
= dequeue_signal(¤t
->blocked
, &ksig
->info
, &type
);
2899 break; /* will return 0 */
2901 if (unlikely(current
->ptrace
) && (signr
!= SIGKILL
) &&
2902 !(sighand
->action
[signr
-1].sa
.sa_flags
& SA_IMMUTABLE
)) {
2903 signr
= ptrace_signal(signr
, &ksig
->info
, type
);
2908 ka
= &sighand
->action
[signr
-1];
2910 /* Trace actually delivered signals. */
2911 trace_signal_deliver(signr
, &ksig
->info
, ka
);
2913 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
2915 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
2916 /* Run the handler. */
2919 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
2920 ka
->sa
.sa_handler
= SIG_DFL
;
2922 break; /* will return non-zero "signr" value */
2926 * Now we are doing the default action for this signal.
2928 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
2932 * Global init gets no signals it doesn't want.
2933 * Container-init gets no signals it doesn't want from same
2936 * Note that if global/container-init sees a sig_kernel_only()
2937 * signal here, the signal must have been generated internally
2938 * or must have come from an ancestor namespace. In either
2939 * case, the signal cannot be dropped.
2941 if (unlikely(signal
->flags
& SIGNAL_UNKILLABLE
) &&
2942 !sig_kernel_only(signr
))
2945 if (sig_kernel_stop(signr
)) {
2947 * The default action is to stop all threads in
2948 * the thread group. The job control signals
2949 * do nothing in an orphaned pgrp, but SIGSTOP
2950 * always works. Note that siglock needs to be
2951 * dropped during the call to is_orphaned_pgrp()
2952 * because of lock ordering with tasklist_lock.
2953 * This allows an intervening SIGCONT to be posted.
2954 * We need to check for that and bail out if necessary.
2956 if (signr
!= SIGSTOP
) {
2957 spin_unlock_irq(&sighand
->siglock
);
2959 /* signals can be posted during this window */
2961 if (is_current_pgrp_orphaned())
2964 spin_lock_irq(&sighand
->siglock
);
2967 if (likely(do_signal_stop(signr
))) {
2968 /* It released the siglock. */
2973 * We didn't actually stop, due to a race
2974 * with SIGCONT or something like that.
2980 spin_unlock_irq(&sighand
->siglock
);
2981 if (unlikely(cgroup_task_frozen(current
)))
2982 cgroup_leave_frozen(true);
2985 * Anything else is fatal, maybe with a core dump.
2987 current
->flags
|= PF_SIGNALED
;
2989 if (sig_kernel_coredump(signr
)) {
2990 if (print_fatal_signals
)
2991 print_fatal_signal(signr
);
2992 proc_coredump_connector(current
);
2994 * If it was able to dump core, this kills all
2995 * other threads in the group and synchronizes with
2996 * their demise. If we lost the race with another
2997 * thread getting here, it set group_exit_code
2998 * first and our do_group_exit call below will use
2999 * that value and ignore the one we pass it.
3001 do_coredump(&ksig
->info
);
3005 * PF_USER_WORKER threads will catch and exit on fatal signals
3006 * themselves. They have cleanup that must be performed, so we
3007 * cannot call do_exit() on their behalf. Note that ksig won't
3008 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3010 if (current
->flags
& PF_USER_WORKER
)
3014 * Death signals, no core dump.
3016 do_group_exit(signr
);
3019 spin_unlock_irq(&sighand
->siglock
);
3023 if (signr
&& !(ksig
->ka
.sa
.sa_flags
& SA_EXPOSE_TAGBITS
))
3024 hide_si_addr_tag_bits(ksig
);
3030 * signal_delivered - called after signal delivery to update blocked signals
3031 * @ksig: kernel signal struct
3032 * @stepping: nonzero if debugger single-step or block-step in use
3034 * This function should be called when a signal has successfully been
3035 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3036 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3037 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
3039 static void signal_delivered(struct ksignal
*ksig
, int stepping
)
3043 /* A signal was successfully delivered, and the
3044 saved sigmask was stored on the signal frame,
3045 and will be restored by sigreturn. So we can
3046 simply clear the restore sigmask flag. */
3047 clear_restore_sigmask();
3049 sigorsets(&blocked
, ¤t
->blocked
, &ksig
->ka
.sa
.sa_mask
);
3050 if (!(ksig
->ka
.sa
.sa_flags
& SA_NODEFER
))
3051 sigaddset(&blocked
, ksig
->sig
);
3052 set_current_blocked(&blocked
);
3053 if (current
->sas_ss_flags
& SS_AUTODISARM
)
3054 sas_ss_reset(current
);
3056 ptrace_notify(SIGTRAP
, 0);
3059 void signal_setup_done(int failed
, struct ksignal
*ksig
, int stepping
)
3062 force_sigsegv(ksig
->sig
);
3064 signal_delivered(ksig
, stepping
);
3068 * It could be that complete_signal() picked us to notify about the
3069 * group-wide signal. Other threads should be notified now to take
3070 * the shared signals in @which since we will not.
3072 static void retarget_shared_pending(struct task_struct
*tsk
, sigset_t
*which
)
3075 struct task_struct
*t
;
3077 sigandsets(&retarget
, &tsk
->signal
->shared_pending
.signal
, which
);
3078 if (sigisemptyset(&retarget
))
3081 for_other_threads(tsk
, t
) {
3082 if (t
->flags
& PF_EXITING
)
3085 if (!has_pending_signals(&retarget
, &t
->blocked
))
3087 /* Remove the signals this thread can handle. */
3088 sigandsets(&retarget
, &retarget
, &t
->blocked
);
3090 if (!task_sigpending(t
))
3091 signal_wake_up(t
, 0);
3093 if (sigisemptyset(&retarget
))
3098 void exit_signals(struct task_struct
*tsk
)
3104 * @tsk is about to have PF_EXITING set - lock out users which
3105 * expect stable threadgroup.
3107 cgroup_threadgroup_change_begin(tsk
);
3109 if (thread_group_empty(tsk
) || (tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
3110 sched_mm_cid_exit_signals(tsk
);
3111 tsk
->flags
|= PF_EXITING
;
3112 cgroup_threadgroup_change_end(tsk
);
3116 spin_lock_irq(&tsk
->sighand
->siglock
);
3118 * From now this task is not visible for group-wide signals,
3119 * see wants_signal(), do_signal_stop().
3121 sched_mm_cid_exit_signals(tsk
);
3122 tsk
->flags
|= PF_EXITING
;
3124 cgroup_threadgroup_change_end(tsk
);
3126 if (!task_sigpending(tsk
))
3129 unblocked
= tsk
->blocked
;
3130 signotset(&unblocked
);
3131 retarget_shared_pending(tsk
, &unblocked
);
3133 if (unlikely(tsk
->jobctl
& JOBCTL_STOP_PENDING
) &&
3134 task_participate_group_stop(tsk
))
3135 group_stop
= CLD_STOPPED
;
3137 spin_unlock_irq(&tsk
->sighand
->siglock
);
3140 * If group stop has completed, deliver the notification. This
3141 * should always go to the real parent of the group leader.
3143 if (unlikely(group_stop
)) {
3144 read_lock(&tasklist_lock
);
3145 do_notify_parent_cldstop(tsk
, false, group_stop
);
3146 read_unlock(&tasklist_lock
);
3151 * System call entry points.
3155 * sys_restart_syscall - restart a system call
3157 SYSCALL_DEFINE0(restart_syscall
)
3159 struct restart_block
*restart
= ¤t
->restart_block
;
3160 return restart
->fn(restart
);
3163 long do_no_restart_syscall(struct restart_block
*param
)
3168 static void __set_task_blocked(struct task_struct
*tsk
, const sigset_t
*newset
)
3170 if (task_sigpending(tsk
) && !thread_group_empty(tsk
)) {
3171 sigset_t newblocked
;
3172 /* A set of now blocked but previously unblocked signals. */
3173 sigandnsets(&newblocked
, newset
, ¤t
->blocked
);
3174 retarget_shared_pending(tsk
, &newblocked
);
3176 tsk
->blocked
= *newset
;
3177 recalc_sigpending();
3181 * set_current_blocked - change current->blocked mask
3184 * It is wrong to change ->blocked directly, this helper should be used
3185 * to ensure the process can't miss a shared signal we are going to block.
3187 void set_current_blocked(sigset_t
*newset
)
3189 sigdelsetmask(newset
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
3190 __set_current_blocked(newset
);
3193 void __set_current_blocked(const sigset_t
*newset
)
3195 struct task_struct
*tsk
= current
;
3198 * In case the signal mask hasn't changed, there is nothing we need
3199 * to do. The current->blocked shouldn't be modified by other task.
3201 if (sigequalsets(&tsk
->blocked
, newset
))
3204 spin_lock_irq(&tsk
->sighand
->siglock
);
3205 __set_task_blocked(tsk
, newset
);
3206 spin_unlock_irq(&tsk
->sighand
->siglock
);
3210 * This is also useful for kernel threads that want to temporarily
3211 * (or permanently) block certain signals.
3213 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3214 * interface happily blocks "unblockable" signals like SIGKILL
3217 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
3219 struct task_struct
*tsk
= current
;
3222 /* Lockless, only current can change ->blocked, never from irq */
3224 *oldset
= tsk
->blocked
;
3228 sigorsets(&newset
, &tsk
->blocked
, set
);
3231 sigandnsets(&newset
, &tsk
->blocked
, set
);
3240 __set_current_blocked(&newset
);
3243 EXPORT_SYMBOL(sigprocmask
);
3246 * The api helps set app-provided sigmasks.
3248 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3249 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3251 * Note that it does set_restore_sigmask() in advance, so it must be always
3252 * paired with restore_saved_sigmask_unless() before return from syscall.
3254 int set_user_sigmask(const sigset_t __user
*umask
, size_t sigsetsize
)
3260 if (sigsetsize
!= sizeof(sigset_t
))
3262 if (copy_from_user(&kmask
, umask
, sizeof(sigset_t
)))
3265 set_restore_sigmask();
3266 current
->saved_sigmask
= current
->blocked
;
3267 set_current_blocked(&kmask
);
3272 #ifdef CONFIG_COMPAT
3273 int set_compat_user_sigmask(const compat_sigset_t __user
*umask
,
3280 if (sigsetsize
!= sizeof(compat_sigset_t
))
3282 if (get_compat_sigset(&kmask
, umask
))
3285 set_restore_sigmask();
3286 current
->saved_sigmask
= current
->blocked
;
3287 set_current_blocked(&kmask
);
3294 * sys_rt_sigprocmask - change the list of currently blocked signals
3295 * @how: whether to add, remove, or set signals
3296 * @nset: stores pending signals
3297 * @oset: previous value of signal mask if non-null
3298 * @sigsetsize: size of sigset_t type
3300 SYSCALL_DEFINE4(rt_sigprocmask
, int, how
, sigset_t __user
*, nset
,
3301 sigset_t __user
*, oset
, size_t, sigsetsize
)
3303 sigset_t old_set
, new_set
;
3306 /* XXX: Don't preclude handling different sized sigset_t's. */
3307 if (sigsetsize
!= sizeof(sigset_t
))
3310 old_set
= current
->blocked
;
3313 if (copy_from_user(&new_set
, nset
, sizeof(sigset_t
)))
3315 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
3317 error
= sigprocmask(how
, &new_set
, NULL
);
3323 if (copy_to_user(oset
, &old_set
, sizeof(sigset_t
)))
3330 #ifdef CONFIG_COMPAT
3331 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask
, int, how
, compat_sigset_t __user
*, nset
,
3332 compat_sigset_t __user
*, oset
, compat_size_t
, sigsetsize
)
3334 sigset_t old_set
= current
->blocked
;
3336 /* XXX: Don't preclude handling different sized sigset_t's. */
3337 if (sigsetsize
!= sizeof(sigset_t
))
3343 if (get_compat_sigset(&new_set
, nset
))
3345 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
3347 error
= sigprocmask(how
, &new_set
, NULL
);
3351 return oset
? put_compat_sigset(oset
, &old_set
, sizeof(*oset
)) : 0;
3355 static void do_sigpending(sigset_t
*set
)
3357 spin_lock_irq(¤t
->sighand
->siglock
);
3358 sigorsets(set
, ¤t
->pending
.signal
,
3359 ¤t
->signal
->shared_pending
.signal
);
3360 spin_unlock_irq(¤t
->sighand
->siglock
);
3362 /* Outside the lock because only this thread touches it. */
3363 sigandsets(set
, ¤t
->blocked
, set
);
3367 * sys_rt_sigpending - examine a pending signal that has been raised
3369 * @uset: stores pending signals
3370 * @sigsetsize: size of sigset_t type or larger
3372 SYSCALL_DEFINE2(rt_sigpending
, sigset_t __user
*, uset
, size_t, sigsetsize
)
3376 if (sigsetsize
> sizeof(*uset
))
3379 do_sigpending(&set
);
3381 if (copy_to_user(uset
, &set
, sigsetsize
))
3387 #ifdef CONFIG_COMPAT
3388 COMPAT_SYSCALL_DEFINE2(rt_sigpending
, compat_sigset_t __user
*, uset
,
3389 compat_size_t
, sigsetsize
)
3393 if (sigsetsize
> sizeof(*uset
))
3396 do_sigpending(&set
);
3398 return put_compat_sigset(uset
, &set
, sigsetsize
);
3402 static const struct {
3403 unsigned char limit
, layout
;
3405 [SIGILL
] = { NSIGILL
, SIL_FAULT
},
3406 [SIGFPE
] = { NSIGFPE
, SIL_FAULT
},
3407 [SIGSEGV
] = { NSIGSEGV
, SIL_FAULT
},
3408 [SIGBUS
] = { NSIGBUS
, SIL_FAULT
},
3409 [SIGTRAP
] = { NSIGTRAP
, SIL_FAULT
},
3411 [SIGEMT
] = { NSIGEMT
, SIL_FAULT
},
3413 [SIGCHLD
] = { NSIGCHLD
, SIL_CHLD
},
3414 [SIGPOLL
] = { NSIGPOLL
, SIL_POLL
},
3415 [SIGSYS
] = { NSIGSYS
, SIL_SYS
},
3418 static bool known_siginfo_layout(unsigned sig
, int si_code
)
3420 if (si_code
== SI_KERNEL
)
3422 else if ((si_code
> SI_USER
)) {
3423 if (sig_specific_sicodes(sig
)) {
3424 if (si_code
<= sig_sicodes
[sig
].limit
)
3427 else if (si_code
<= NSIGPOLL
)
3430 else if (si_code
>= SI_DETHREAD
)
3432 else if (si_code
== SI_ASYNCNL
)
3437 enum siginfo_layout
siginfo_layout(unsigned sig
, int si_code
)
3439 enum siginfo_layout layout
= SIL_KILL
;
3440 if ((si_code
> SI_USER
) && (si_code
< SI_KERNEL
)) {
3441 if ((sig
< ARRAY_SIZE(sig_sicodes
)) &&
3442 (si_code
<= sig_sicodes
[sig
].limit
)) {
3443 layout
= sig_sicodes
[sig
].layout
;
3444 /* Handle the exceptions */
3445 if ((sig
== SIGBUS
) &&
3446 (si_code
>= BUS_MCEERR_AR
) && (si_code
<= BUS_MCEERR_AO
))
3447 layout
= SIL_FAULT_MCEERR
;
3448 else if ((sig
== SIGSEGV
) && (si_code
== SEGV_BNDERR
))
3449 layout
= SIL_FAULT_BNDERR
;
3451 else if ((sig
== SIGSEGV
) && (si_code
== SEGV_PKUERR
))
3452 layout
= SIL_FAULT_PKUERR
;
3454 else if ((sig
== SIGTRAP
) && (si_code
== TRAP_PERF
))
3455 layout
= SIL_FAULT_PERF_EVENT
;
3456 else if (IS_ENABLED(CONFIG_SPARC
) &&
3457 (sig
== SIGILL
) && (si_code
== ILL_ILLTRP
))
3458 layout
= SIL_FAULT_TRAPNO
;
3459 else if (IS_ENABLED(CONFIG_ALPHA
) &&
3461 ((sig
== SIGTRAP
) && (si_code
== TRAP_UNK
))))
3462 layout
= SIL_FAULT_TRAPNO
;
3464 else if (si_code
<= NSIGPOLL
)
3467 if (si_code
== SI_TIMER
)
3469 else if (si_code
== SI_SIGIO
)
3471 else if (si_code
< 0)
3477 static inline char __user
*si_expansion(const siginfo_t __user
*info
)
3479 return ((char __user
*)info
) + sizeof(struct kernel_siginfo
);
3482 int copy_siginfo_to_user(siginfo_t __user
*to
, const kernel_siginfo_t
*from
)
3484 char __user
*expansion
= si_expansion(to
);
3485 if (copy_to_user(to
, from
, sizeof(struct kernel_siginfo
)))
3487 if (clear_user(expansion
, SI_EXPANSION_SIZE
))
3492 static int post_copy_siginfo_from_user(kernel_siginfo_t
*info
,
3493 const siginfo_t __user
*from
)
3495 if (unlikely(!known_siginfo_layout(info
->si_signo
, info
->si_code
))) {
3496 char __user
*expansion
= si_expansion(from
);
3497 char buf
[SI_EXPANSION_SIZE
];
3500 * An unknown si_code might need more than
3501 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3502 * extra bytes are 0. This guarantees copy_siginfo_to_user
3503 * will return this data to userspace exactly.
3505 if (copy_from_user(&buf
, expansion
, SI_EXPANSION_SIZE
))
3507 for (i
= 0; i
< SI_EXPANSION_SIZE
; i
++) {
3515 static int __copy_siginfo_from_user(int signo
, kernel_siginfo_t
*to
,
3516 const siginfo_t __user
*from
)
3518 if (copy_from_user(to
, from
, sizeof(struct kernel_siginfo
)))
3520 to
->si_signo
= signo
;
3521 return post_copy_siginfo_from_user(to
, from
);
3524 int copy_siginfo_from_user(kernel_siginfo_t
*to
, const siginfo_t __user
*from
)
3526 if (copy_from_user(to
, from
, sizeof(struct kernel_siginfo
)))
3528 return post_copy_siginfo_from_user(to
, from
);
3531 #ifdef CONFIG_COMPAT
3533 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3534 * @to: compat siginfo destination
3535 * @from: kernel siginfo source
3537 * Note: This function does not work properly for the SIGCHLD on x32, but
3538 * fortunately it doesn't have to. The only valid callers for this function are
3539 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3540 * The latter does not care because SIGCHLD will never cause a coredump.
3542 void copy_siginfo_to_external32(struct compat_siginfo
*to
,
3543 const struct kernel_siginfo
*from
)
3545 memset(to
, 0, sizeof(*to
));
3547 to
->si_signo
= from
->si_signo
;
3548 to
->si_errno
= from
->si_errno
;
3549 to
->si_code
= from
->si_code
;
3550 switch(siginfo_layout(from
->si_signo
, from
->si_code
)) {
3552 to
->si_pid
= from
->si_pid
;
3553 to
->si_uid
= from
->si_uid
;
3556 to
->si_tid
= from
->si_tid
;
3557 to
->si_overrun
= from
->si_overrun
;
3558 to
->si_int
= from
->si_int
;
3561 to
->si_band
= from
->si_band
;
3562 to
->si_fd
= from
->si_fd
;
3565 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3567 case SIL_FAULT_TRAPNO
:
3568 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3569 to
->si_trapno
= from
->si_trapno
;
3571 case SIL_FAULT_MCEERR
:
3572 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3573 to
->si_addr_lsb
= from
->si_addr_lsb
;
3575 case SIL_FAULT_BNDERR
:
3576 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3577 to
->si_lower
= ptr_to_compat(from
->si_lower
);
3578 to
->si_upper
= ptr_to_compat(from
->si_upper
);
3580 case SIL_FAULT_PKUERR
:
3581 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3582 to
->si_pkey
= from
->si_pkey
;
3584 case SIL_FAULT_PERF_EVENT
:
3585 to
->si_addr
= ptr_to_compat(from
->si_addr
);
3586 to
->si_perf_data
= from
->si_perf_data
;
3587 to
->si_perf_type
= from
->si_perf_type
;
3588 to
->si_perf_flags
= from
->si_perf_flags
;
3591 to
->si_pid
= from
->si_pid
;
3592 to
->si_uid
= from
->si_uid
;
3593 to
->si_status
= from
->si_status
;
3594 to
->si_utime
= from
->si_utime
;
3595 to
->si_stime
= from
->si_stime
;
3598 to
->si_pid
= from
->si_pid
;
3599 to
->si_uid
= from
->si_uid
;
3600 to
->si_int
= from
->si_int
;
3603 to
->si_call_addr
= ptr_to_compat(from
->si_call_addr
);
3604 to
->si_syscall
= from
->si_syscall
;
3605 to
->si_arch
= from
->si_arch
;
3610 int __copy_siginfo_to_user32(struct compat_siginfo __user
*to
,
3611 const struct kernel_siginfo
*from
)
3613 struct compat_siginfo
new;
3615 copy_siginfo_to_external32(&new, from
);
3616 if (copy_to_user(to
, &new, sizeof(struct compat_siginfo
)))
3621 static int post_copy_siginfo_from_user32(kernel_siginfo_t
*to
,
3622 const struct compat_siginfo
*from
)
3625 to
->si_signo
= from
->si_signo
;
3626 to
->si_errno
= from
->si_errno
;
3627 to
->si_code
= from
->si_code
;
3628 switch(siginfo_layout(from
->si_signo
, from
->si_code
)) {
3630 to
->si_pid
= from
->si_pid
;
3631 to
->si_uid
= from
->si_uid
;
3634 to
->si_tid
= from
->si_tid
;
3635 to
->si_overrun
= from
->si_overrun
;
3636 to
->si_int
= from
->si_int
;
3639 to
->si_band
= from
->si_band
;
3640 to
->si_fd
= from
->si_fd
;
3643 to
->si_addr
= compat_ptr(from
->si_addr
);
3645 case SIL_FAULT_TRAPNO
:
3646 to
->si_addr
= compat_ptr(from
->si_addr
);
3647 to
->si_trapno
= from
->si_trapno
;
3649 case SIL_FAULT_MCEERR
:
3650 to
->si_addr
= compat_ptr(from
->si_addr
);
3651 to
->si_addr_lsb
= from
->si_addr_lsb
;
3653 case SIL_FAULT_BNDERR
:
3654 to
->si_addr
= compat_ptr(from
->si_addr
);
3655 to
->si_lower
= compat_ptr(from
->si_lower
);
3656 to
->si_upper
= compat_ptr(from
->si_upper
);
3658 case SIL_FAULT_PKUERR
:
3659 to
->si_addr
= compat_ptr(from
->si_addr
);
3660 to
->si_pkey
= from
->si_pkey
;
3662 case SIL_FAULT_PERF_EVENT
:
3663 to
->si_addr
= compat_ptr(from
->si_addr
);
3664 to
->si_perf_data
= from
->si_perf_data
;
3665 to
->si_perf_type
= from
->si_perf_type
;
3666 to
->si_perf_flags
= from
->si_perf_flags
;
3669 to
->si_pid
= from
->si_pid
;
3670 to
->si_uid
= from
->si_uid
;
3671 to
->si_status
= from
->si_status
;
3672 #ifdef CONFIG_X86_X32_ABI
3673 if (in_x32_syscall()) {
3674 to
->si_utime
= from
->_sifields
._sigchld_x32
._utime
;
3675 to
->si_stime
= from
->_sifields
._sigchld_x32
._stime
;
3679 to
->si_utime
= from
->si_utime
;
3680 to
->si_stime
= from
->si_stime
;
3684 to
->si_pid
= from
->si_pid
;
3685 to
->si_uid
= from
->si_uid
;
3686 to
->si_int
= from
->si_int
;
3689 to
->si_call_addr
= compat_ptr(from
->si_call_addr
);
3690 to
->si_syscall
= from
->si_syscall
;
3691 to
->si_arch
= from
->si_arch
;
3697 static int __copy_siginfo_from_user32(int signo
, struct kernel_siginfo
*to
,
3698 const struct compat_siginfo __user
*ufrom
)
3700 struct compat_siginfo from
;
3702 if (copy_from_user(&from
, ufrom
, sizeof(struct compat_siginfo
)))
3705 from
.si_signo
= signo
;
3706 return post_copy_siginfo_from_user32(to
, &from
);
3709 int copy_siginfo_from_user32(struct kernel_siginfo
*to
,
3710 const struct compat_siginfo __user
*ufrom
)
3712 struct compat_siginfo from
;
3714 if (copy_from_user(&from
, ufrom
, sizeof(struct compat_siginfo
)))
3717 return post_copy_siginfo_from_user32(to
, &from
);
3719 #endif /* CONFIG_COMPAT */
3722 * do_sigtimedwait - wait for queued signals specified in @which
3723 * @which: queued signals to wait for
3724 * @info: if non-null, the signal's siginfo is returned here
3725 * @ts: upper bound on process time suspension
3727 static int do_sigtimedwait(const sigset_t
*which
, kernel_siginfo_t
*info
,
3728 const struct timespec64
*ts
)
3730 ktime_t
*to
= NULL
, timeout
= KTIME_MAX
;
3731 struct task_struct
*tsk
= current
;
3732 sigset_t mask
= *which
;
3737 if (!timespec64_valid(ts
))
3739 timeout
= timespec64_to_ktime(*ts
);
3744 * Invert the set of allowed signals to get those we want to block.
3746 sigdelsetmask(&mask
, sigmask(SIGKILL
) | sigmask(SIGSTOP
));
3749 spin_lock_irq(&tsk
->sighand
->siglock
);
3750 sig
= dequeue_signal(&mask
, info
, &type
);
3751 if (!sig
&& timeout
) {
3753 * None ready, temporarily unblock those we're interested
3754 * while we are sleeping in so that we'll be awakened when
3755 * they arrive. Unblocking is always fine, we can avoid
3756 * set_current_blocked().
3758 tsk
->real_blocked
= tsk
->blocked
;
3759 sigandsets(&tsk
->blocked
, &tsk
->blocked
, &mask
);
3760 recalc_sigpending();
3761 spin_unlock_irq(&tsk
->sighand
->siglock
);
3763 __set_current_state(TASK_INTERRUPTIBLE
|TASK_FREEZABLE
);
3764 ret
= schedule_hrtimeout_range(to
, tsk
->timer_slack_ns
,
3766 spin_lock_irq(&tsk
->sighand
->siglock
);
3767 __set_task_blocked(tsk
, &tsk
->real_blocked
);
3768 sigemptyset(&tsk
->real_blocked
);
3769 sig
= dequeue_signal(&mask
, info
, &type
);
3771 spin_unlock_irq(&tsk
->sighand
->siglock
);
3775 return ret
? -EINTR
: -EAGAIN
;
3779 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3781 * @uthese: queued signals to wait for
3782 * @uinfo: if non-null, the signal's siginfo is returned here
3783 * @uts: upper bound on process time suspension
3784 * @sigsetsize: size of sigset_t type
3786 SYSCALL_DEFINE4(rt_sigtimedwait
, const sigset_t __user
*, uthese
,
3787 siginfo_t __user
*, uinfo
,
3788 const struct __kernel_timespec __user
*, uts
,
3792 struct timespec64 ts
;
3793 kernel_siginfo_t info
;
3796 /* XXX: Don't preclude handling different sized sigset_t's. */
3797 if (sigsetsize
!= sizeof(sigset_t
))
3800 if (copy_from_user(&these
, uthese
, sizeof(these
)))
3804 if (get_timespec64(&ts
, uts
))
3808 ret
= do_sigtimedwait(&these
, &info
, uts
? &ts
: NULL
);
3810 if (ret
> 0 && uinfo
) {
3811 if (copy_siginfo_to_user(uinfo
, &info
))
3818 #ifdef CONFIG_COMPAT_32BIT_TIME
3819 SYSCALL_DEFINE4(rt_sigtimedwait_time32
, const sigset_t __user
*, uthese
,
3820 siginfo_t __user
*, uinfo
,
3821 const struct old_timespec32 __user
*, uts
,
3825 struct timespec64 ts
;
3826 kernel_siginfo_t info
;
3829 if (sigsetsize
!= sizeof(sigset_t
))
3832 if (copy_from_user(&these
, uthese
, sizeof(these
)))
3836 if (get_old_timespec32(&ts
, uts
))
3840 ret
= do_sigtimedwait(&these
, &info
, uts
? &ts
: NULL
);
3842 if (ret
> 0 && uinfo
) {
3843 if (copy_siginfo_to_user(uinfo
, &info
))
3851 #ifdef CONFIG_COMPAT
3852 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64
, compat_sigset_t __user
*, uthese
,
3853 struct compat_siginfo __user
*, uinfo
,
3854 struct __kernel_timespec __user
*, uts
, compat_size_t
, sigsetsize
)
3857 struct timespec64 t
;
3858 kernel_siginfo_t info
;
3861 if (sigsetsize
!= sizeof(sigset_t
))
3864 if (get_compat_sigset(&s
, uthese
))
3868 if (get_timespec64(&t
, uts
))
3872 ret
= do_sigtimedwait(&s
, &info
, uts
? &t
: NULL
);
3874 if (ret
> 0 && uinfo
) {
3875 if (copy_siginfo_to_user32(uinfo
, &info
))
3882 #ifdef CONFIG_COMPAT_32BIT_TIME
3883 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32
, compat_sigset_t __user
*, uthese
,
3884 struct compat_siginfo __user
*, uinfo
,
3885 struct old_timespec32 __user
*, uts
, compat_size_t
, sigsetsize
)
3888 struct timespec64 t
;
3889 kernel_siginfo_t info
;
3892 if (sigsetsize
!= sizeof(sigset_t
))
3895 if (get_compat_sigset(&s
, uthese
))
3899 if (get_old_timespec32(&t
, uts
))
3903 ret
= do_sigtimedwait(&s
, &info
, uts
? &t
: NULL
);
3905 if (ret
> 0 && uinfo
) {
3906 if (copy_siginfo_to_user32(uinfo
, &info
))
3915 static void prepare_kill_siginfo(int sig
, struct kernel_siginfo
*info
,
3918 clear_siginfo(info
);
3919 info
->si_signo
= sig
;
3921 info
->si_code
= (type
== PIDTYPE_PID
) ? SI_TKILL
: SI_USER
;
3922 info
->si_pid
= task_tgid_vnr(current
);
3923 info
->si_uid
= from_kuid_munged(current_user_ns(), current_uid());
3927 * sys_kill - send a signal to a process
3928 * @pid: the PID of the process
3929 * @sig: signal to be sent
3931 SYSCALL_DEFINE2(kill
, pid_t
, pid
, int, sig
)
3933 struct kernel_siginfo info
;
3935 prepare_kill_siginfo(sig
, &info
, PIDTYPE_TGID
);
3937 return kill_something_info(sig
, &info
, pid
);
3941 * Verify that the signaler and signalee either are in the same pid namespace
3942 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3945 static bool access_pidfd_pidns(struct pid
*pid
)
3947 struct pid_namespace
*active
= task_active_pid_ns(current
);
3948 struct pid_namespace
*p
= ns_of_pid(pid
);
3961 static int copy_siginfo_from_user_any(kernel_siginfo_t
*kinfo
,
3962 siginfo_t __user
*info
)
3964 #ifdef CONFIG_COMPAT
3966 * Avoid hooking up compat syscalls and instead handle necessary
3967 * conversions here. Note, this is a stop-gap measure and should not be
3968 * considered a generic solution.
3970 if (in_compat_syscall())
3971 return copy_siginfo_from_user32(
3972 kinfo
, (struct compat_siginfo __user
*)info
);
3974 return copy_siginfo_from_user(kinfo
, info
);
3977 static struct pid
*pidfd_to_pid(const struct file
*file
)
3981 pid
= pidfd_pid(file
);
3985 return tgid_pidfd_to_pid(file
);
3988 #define PIDFD_SEND_SIGNAL_FLAGS \
3989 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3990 PIDFD_SIGNAL_PROCESS_GROUP)
3993 * sys_pidfd_send_signal - Signal a process through a pidfd
3994 * @pidfd: file descriptor of the process
3995 * @sig: signal to send
3996 * @info: signal info
3997 * @flags: future flags
3999 * Send the signal to the thread group or to the individual thread depending
4001 * In the future extension to @flags may be used to override the default scope
4004 * Return: 0 on success, negative errno on failure
4006 SYSCALL_DEFINE4(pidfd_send_signal
, int, pidfd
, int, sig
,
4007 siginfo_t __user
*, info
, unsigned int, flags
)
4011 kernel_siginfo_t kinfo
;
4014 /* Enforce flags be set to 0 until we add an extension. */
4015 if (flags
& ~PIDFD_SEND_SIGNAL_FLAGS
)
4018 /* Ensure that only a single signal scope determining flag is set. */
4019 if (hweight32(flags
& PIDFD_SEND_SIGNAL_FLAGS
) > 1)
4022 CLASS(fd
, f
)(pidfd
);
4026 /* Is this a pidfd? */
4027 pid
= pidfd_to_pid(fd_file(f
));
4029 return PTR_ERR(pid
);
4031 if (!access_pidfd_pidns(pid
))
4036 /* Infer scope from the type of pidfd. */
4037 if (fd_file(f
)->f_flags
& PIDFD_THREAD
)
4040 type
= PIDTYPE_TGID
;
4042 case PIDFD_SIGNAL_THREAD
:
4045 case PIDFD_SIGNAL_THREAD_GROUP
:
4046 type
= PIDTYPE_TGID
;
4048 case PIDFD_SIGNAL_PROCESS_GROUP
:
4049 type
= PIDTYPE_PGID
;
4054 ret
= copy_siginfo_from_user_any(&kinfo
, info
);
4058 if (unlikely(sig
!= kinfo
.si_signo
))
4061 /* Only allow sending arbitrary signals to yourself. */
4062 if ((task_pid(current
) != pid
|| type
> PIDTYPE_TGID
) &&
4063 (kinfo
.si_code
>= 0 || kinfo
.si_code
== SI_TKILL
))
4066 prepare_kill_siginfo(sig
, &kinfo
, type
);
4069 if (type
== PIDTYPE_PGID
)
4070 return kill_pgrp_info(sig
, &kinfo
, pid
);
4072 return kill_pid_info_type(sig
, &kinfo
, pid
, type
);
4076 do_send_specific(pid_t tgid
, pid_t pid
, int sig
, struct kernel_siginfo
*info
)
4078 struct task_struct
*p
;
4082 p
= find_task_by_vpid(pid
);
4083 if (p
&& (tgid
<= 0 || task_tgid_vnr(p
) == tgid
)) {
4084 error
= check_kill_permission(sig
, info
, p
);
4086 * The null signal is a permissions and process existence
4087 * probe. No signal is actually delivered.
4089 if (!error
&& sig
) {
4090 error
= do_send_sig_info(sig
, info
, p
, PIDTYPE_PID
);
4092 * If lock_task_sighand() failed we pretend the task
4093 * dies after receiving the signal. The window is tiny,
4094 * and the signal is private anyway.
4096 if (unlikely(error
== -ESRCH
))
4105 static int do_tkill(pid_t tgid
, pid_t pid
, int sig
)
4107 struct kernel_siginfo info
;
4109 prepare_kill_siginfo(sig
, &info
, PIDTYPE_PID
);
4111 return do_send_specific(tgid
, pid
, sig
, &info
);
4115 * sys_tgkill - send signal to one specific thread
4116 * @tgid: the thread group ID of the thread
4117 * @pid: the PID of the thread
4118 * @sig: signal to be sent
4120 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4121 * exists but it's not belonging to the target process anymore. This
4122 * method solves the problem of threads exiting and PIDs getting reused.
4124 SYSCALL_DEFINE3(tgkill
, pid_t
, tgid
, pid_t
, pid
, int, sig
)
4126 /* This is only valid for single tasks */
4127 if (pid
<= 0 || tgid
<= 0)
4130 return do_tkill(tgid
, pid
, sig
);
4134 * sys_tkill - send signal to one specific task
4135 * @pid: the PID of the task
4136 * @sig: signal to be sent
4138 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4140 SYSCALL_DEFINE2(tkill
, pid_t
, pid
, int, sig
)
4142 /* This is only valid for single tasks */
4146 return do_tkill(0, pid
, sig
);
4149 static int do_rt_sigqueueinfo(pid_t pid
, int sig
, kernel_siginfo_t
*info
)
4151 /* Not even root can pretend to send signals from the kernel.
4152 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4154 if ((info
->si_code
>= 0 || info
->si_code
== SI_TKILL
) &&
4155 (task_pid_vnr(current
) != pid
))
4158 /* POSIX.1b doesn't mention process groups. */
4159 return kill_proc_info(sig
, info
, pid
);
4163 * sys_rt_sigqueueinfo - send signal information to a signal
4164 * @pid: the PID of the thread
4165 * @sig: signal to be sent
4166 * @uinfo: signal info to be sent
4168 SYSCALL_DEFINE3(rt_sigqueueinfo
, pid_t
, pid
, int, sig
,
4169 siginfo_t __user
*, uinfo
)
4171 kernel_siginfo_t info
;
4172 int ret
= __copy_siginfo_from_user(sig
, &info
, uinfo
);
4175 return do_rt_sigqueueinfo(pid
, sig
, &info
);
4178 #ifdef CONFIG_COMPAT
4179 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo
,
4182 struct compat_siginfo __user
*, uinfo
)
4184 kernel_siginfo_t info
;
4185 int ret
= __copy_siginfo_from_user32(sig
, &info
, uinfo
);
4188 return do_rt_sigqueueinfo(pid
, sig
, &info
);
4192 static int do_rt_tgsigqueueinfo(pid_t tgid
, pid_t pid
, int sig
, kernel_siginfo_t
*info
)
4194 /* This is only valid for single tasks */
4195 if (pid
<= 0 || tgid
<= 0)
4198 /* Not even root can pretend to send signals from the kernel.
4199 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4201 if ((info
->si_code
>= 0 || info
->si_code
== SI_TKILL
) &&
4202 (task_pid_vnr(current
) != pid
))
4205 return do_send_specific(tgid
, pid
, sig
, info
);
4208 SYSCALL_DEFINE4(rt_tgsigqueueinfo
, pid_t
, tgid
, pid_t
, pid
, int, sig
,
4209 siginfo_t __user
*, uinfo
)
4211 kernel_siginfo_t info
;
4212 int ret
= __copy_siginfo_from_user(sig
, &info
, uinfo
);
4215 return do_rt_tgsigqueueinfo(tgid
, pid
, sig
, &info
);
4218 #ifdef CONFIG_COMPAT
4219 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo
,
4223 struct compat_siginfo __user
*, uinfo
)
4225 kernel_siginfo_t info
;
4226 int ret
= __copy_siginfo_from_user32(sig
, &info
, uinfo
);
4229 return do_rt_tgsigqueueinfo(tgid
, pid
, sig
, &info
);
4234 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4236 void kernel_sigaction(int sig
, __sighandler_t action
)
4238 spin_lock_irq(¤t
->sighand
->siglock
);
4239 current
->sighand
->action
[sig
- 1].sa
.sa_handler
= action
;
4240 if (action
== SIG_IGN
) {
4244 sigaddset(&mask
, sig
);
4246 flush_sigqueue_mask(current
, &mask
, ¤t
->signal
->shared_pending
);
4247 flush_sigqueue_mask(current
, &mask
, ¤t
->pending
);
4248 recalc_sigpending();
4250 spin_unlock_irq(¤t
->sighand
->siglock
);
4252 EXPORT_SYMBOL(kernel_sigaction
);
4254 void __weak
sigaction_compat_abi(struct k_sigaction
*act
,
4255 struct k_sigaction
*oact
)
4259 int do_sigaction(int sig
, struct k_sigaction
*act
, struct k_sigaction
*oact
)
4261 struct task_struct
*p
= current
, *t
;
4262 struct k_sigaction
*k
;
4265 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
4268 k
= &p
->sighand
->action
[sig
-1];
4270 spin_lock_irq(&p
->sighand
->siglock
);
4271 if (k
->sa
.sa_flags
& SA_IMMUTABLE
) {
4272 spin_unlock_irq(&p
->sighand
->siglock
);
4279 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4280 * e.g. by having an architecture use the bit in their uapi.
4282 BUILD_BUG_ON(UAPI_SA_FLAGS
& SA_UNSUPPORTED
);
4285 * Clear unknown flag bits in order to allow userspace to detect missing
4286 * support for flag bits and to allow the kernel to use non-uapi bits
4290 act
->sa
.sa_flags
&= UAPI_SA_FLAGS
;
4292 oact
->sa
.sa_flags
&= UAPI_SA_FLAGS
;
4294 sigaction_compat_abi(act
, oact
);
4297 bool was_ignored
= k
->sa
.sa_handler
== SIG_IGN
;
4299 sigdelsetmask(&act
->sa
.sa_mask
,
4300 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
4304 * "Setting a signal action to SIG_IGN for a signal that is
4305 * pending shall cause the pending signal to be discarded,
4306 * whether or not it is blocked."
4308 * "Setting a signal action to SIG_DFL for a signal that is
4309 * pending and whose default action is to ignore the signal
4310 * (for example, SIGCHLD), shall cause the pending signal to
4311 * be discarded, whether or not it is blocked"
4313 if (sig_handler_ignored(sig_handler(p
, sig
), sig
)) {
4315 sigaddset(&mask
, sig
);
4316 flush_sigqueue_mask(p
, &mask
, &p
->signal
->shared_pending
);
4317 for_each_thread(p
, t
)
4318 flush_sigqueue_mask(p
, &mask
, &t
->pending
);
4319 } else if (was_ignored
) {
4320 posixtimer_sig_unignore(p
, sig
);
4324 spin_unlock_irq(&p
->sighand
->siglock
);
4328 #ifdef CONFIG_DYNAMIC_SIGFRAME
4329 static inline void sigaltstack_lock(void)
4330 __acquires(¤t
->sighand
->siglock
)
4332 spin_lock_irq(¤t
->sighand
->siglock
);
4335 static inline void sigaltstack_unlock(void)
4336 __releases(¤t
->sighand
->siglock
)
4338 spin_unlock_irq(¤t
->sighand
->siglock
);
4341 static inline void sigaltstack_lock(void) { }
4342 static inline void sigaltstack_unlock(void) { }
4346 do_sigaltstack (const stack_t
*ss
, stack_t
*oss
, unsigned long sp
,
4349 struct task_struct
*t
= current
;
4353 memset(oss
, 0, sizeof(stack_t
));
4354 oss
->ss_sp
= (void __user
*) t
->sas_ss_sp
;
4355 oss
->ss_size
= t
->sas_ss_size
;
4356 oss
->ss_flags
= sas_ss_flags(sp
) |
4357 (current
->sas_ss_flags
& SS_FLAG_BITS
);
4361 void __user
*ss_sp
= ss
->ss_sp
;
4362 size_t ss_size
= ss
->ss_size
;
4363 unsigned ss_flags
= ss
->ss_flags
;
4366 if (unlikely(on_sig_stack(sp
)))
4369 ss_mode
= ss_flags
& ~SS_FLAG_BITS
;
4370 if (unlikely(ss_mode
!= SS_DISABLE
&& ss_mode
!= SS_ONSTACK
&&
4375 * Return before taking any locks if no actual
4376 * sigaltstack changes were requested.
4378 if (t
->sas_ss_sp
== (unsigned long)ss_sp
&&
4379 t
->sas_ss_size
== ss_size
&&
4380 t
->sas_ss_flags
== ss_flags
)
4384 if (ss_mode
== SS_DISABLE
) {
4388 if (unlikely(ss_size
< min_ss_size
))
4390 if (!sigaltstack_size_valid(ss_size
))
4394 t
->sas_ss_sp
= (unsigned long) ss_sp
;
4395 t
->sas_ss_size
= ss_size
;
4396 t
->sas_ss_flags
= ss_flags
;
4398 sigaltstack_unlock();
4403 SYSCALL_DEFINE2(sigaltstack
,const stack_t __user
*,uss
, stack_t __user
*,uoss
)
4407 if (uss
&& copy_from_user(&new, uss
, sizeof(stack_t
)))
4409 err
= do_sigaltstack(uss
? &new : NULL
, uoss
? &old
: NULL
,
4410 current_user_stack_pointer(),
4412 if (!err
&& uoss
&& copy_to_user(uoss
, &old
, sizeof(stack_t
)))
4417 int restore_altstack(const stack_t __user
*uss
)
4420 if (copy_from_user(&new, uss
, sizeof(stack_t
)))
4422 (void)do_sigaltstack(&new, NULL
, current_user_stack_pointer(),
4424 /* squash all but EFAULT for now */
4428 int __save_altstack(stack_t __user
*uss
, unsigned long sp
)
4430 struct task_struct
*t
= current
;
4431 int err
= __put_user((void __user
*)t
->sas_ss_sp
, &uss
->ss_sp
) |
4432 __put_user(t
->sas_ss_flags
, &uss
->ss_flags
) |
4433 __put_user(t
->sas_ss_size
, &uss
->ss_size
);
4437 #ifdef CONFIG_COMPAT
4438 static int do_compat_sigaltstack(const compat_stack_t __user
*uss_ptr
,
4439 compat_stack_t __user
*uoss_ptr
)
4445 compat_stack_t uss32
;
4446 if (copy_from_user(&uss32
, uss_ptr
, sizeof(compat_stack_t
)))
4448 uss
.ss_sp
= compat_ptr(uss32
.ss_sp
);
4449 uss
.ss_flags
= uss32
.ss_flags
;
4450 uss
.ss_size
= uss32
.ss_size
;
4452 ret
= do_sigaltstack(uss_ptr
? &uss
: NULL
, &uoss
,
4453 compat_user_stack_pointer(),
4454 COMPAT_MINSIGSTKSZ
);
4455 if (ret
>= 0 && uoss_ptr
) {
4457 memset(&old
, 0, sizeof(old
));
4458 old
.ss_sp
= ptr_to_compat(uoss
.ss_sp
);
4459 old
.ss_flags
= uoss
.ss_flags
;
4460 old
.ss_size
= uoss
.ss_size
;
4461 if (copy_to_user(uoss_ptr
, &old
, sizeof(compat_stack_t
)))
4467 COMPAT_SYSCALL_DEFINE2(sigaltstack
,
4468 const compat_stack_t __user
*, uss_ptr
,
4469 compat_stack_t __user
*, uoss_ptr
)
4471 return do_compat_sigaltstack(uss_ptr
, uoss_ptr
);
4474 int compat_restore_altstack(const compat_stack_t __user
*uss
)
4476 int err
= do_compat_sigaltstack(uss
, NULL
);
4477 /* squash all but -EFAULT for now */
4478 return err
== -EFAULT
? err
: 0;
4481 int __compat_save_altstack(compat_stack_t __user
*uss
, unsigned long sp
)
4484 struct task_struct
*t
= current
;
4485 err
= __put_user(ptr_to_compat((void __user
*)t
->sas_ss_sp
),
4487 __put_user(t
->sas_ss_flags
, &uss
->ss_flags
) |
4488 __put_user(t
->sas_ss_size
, &uss
->ss_size
);
4493 #ifdef __ARCH_WANT_SYS_SIGPENDING
4496 * sys_sigpending - examine pending signals
4497 * @uset: where mask of pending signal is returned
4499 SYSCALL_DEFINE1(sigpending
, old_sigset_t __user
*, uset
)
4503 if (sizeof(old_sigset_t
) > sizeof(*uset
))
4506 do_sigpending(&set
);
4508 if (copy_to_user(uset
, &set
, sizeof(old_sigset_t
)))
4514 #ifdef CONFIG_COMPAT
4515 COMPAT_SYSCALL_DEFINE1(sigpending
, compat_old_sigset_t __user
*, set32
)
4519 do_sigpending(&set
);
4521 return put_user(set
.sig
[0], set32
);
4527 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4529 * sys_sigprocmask - examine and change blocked signals
4530 * @how: whether to add, remove, or set signals
4531 * @nset: signals to add or remove (if non-null)
4532 * @oset: previous value of signal mask if non-null
4534 * Some platforms have their own version with special arguments;
4535 * others support only sys_rt_sigprocmask.
4538 SYSCALL_DEFINE3(sigprocmask
, int, how
, old_sigset_t __user
*, nset
,
4539 old_sigset_t __user
*, oset
)
4541 old_sigset_t old_set
, new_set
;
4542 sigset_t new_blocked
;
4544 old_set
= current
->blocked
.sig
[0];
4547 if (copy_from_user(&new_set
, nset
, sizeof(*nset
)))
4550 new_blocked
= current
->blocked
;
4554 sigaddsetmask(&new_blocked
, new_set
);
4557 sigdelsetmask(&new_blocked
, new_set
);
4560 new_blocked
.sig
[0] = new_set
;
4566 set_current_blocked(&new_blocked
);
4570 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
4576 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4578 #ifndef CONFIG_ODD_RT_SIGACTION
4580 * sys_rt_sigaction - alter an action taken by a process
4581 * @sig: signal to be sent
4582 * @act: new sigaction
4583 * @oact: used to save the previous sigaction
4584 * @sigsetsize: size of sigset_t type
4586 SYSCALL_DEFINE4(rt_sigaction
, int, sig
,
4587 const struct sigaction __user
*, act
,
4588 struct sigaction __user
*, oact
,
4591 struct k_sigaction new_sa
, old_sa
;
4594 /* XXX: Don't preclude handling different sized sigset_t's. */
4595 if (sigsetsize
!= sizeof(sigset_t
))
4598 if (act
&& copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
4601 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
4605 if (oact
&& copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
4610 #ifdef CONFIG_COMPAT
4611 COMPAT_SYSCALL_DEFINE4(rt_sigaction
, int, sig
,
4612 const struct compat_sigaction __user
*, act
,
4613 struct compat_sigaction __user
*, oact
,
4614 compat_size_t
, sigsetsize
)
4616 struct k_sigaction new_ka
, old_ka
;
4617 #ifdef __ARCH_HAS_SA_RESTORER
4618 compat_uptr_t restorer
;
4622 /* XXX: Don't preclude handling different sized sigset_t's. */
4623 if (sigsetsize
!= sizeof(compat_sigset_t
))
4627 compat_uptr_t handler
;
4628 ret
= get_user(handler
, &act
->sa_handler
);
4629 new_ka
.sa
.sa_handler
= compat_ptr(handler
);
4630 #ifdef __ARCH_HAS_SA_RESTORER
4631 ret
|= get_user(restorer
, &act
->sa_restorer
);
4632 new_ka
.sa
.sa_restorer
= compat_ptr(restorer
);
4634 ret
|= get_compat_sigset(&new_ka
.sa
.sa_mask
, &act
->sa_mask
);
4635 ret
|= get_user(new_ka
.sa
.sa_flags
, &act
->sa_flags
);
4640 ret
= do_sigaction(sig
, act
? &new_ka
: NULL
, oact
? &old_ka
: NULL
);
4642 ret
= put_user(ptr_to_compat(old_ka
.sa
.sa_handler
),
4644 ret
|= put_compat_sigset(&oact
->sa_mask
, &old_ka
.sa
.sa_mask
,
4645 sizeof(oact
->sa_mask
));
4646 ret
|= put_user(old_ka
.sa
.sa_flags
, &oact
->sa_flags
);
4647 #ifdef __ARCH_HAS_SA_RESTORER
4648 ret
|= put_user(ptr_to_compat(old_ka
.sa
.sa_restorer
),
4649 &oact
->sa_restorer
);
4655 #endif /* !CONFIG_ODD_RT_SIGACTION */
4657 #ifdef CONFIG_OLD_SIGACTION
4658 SYSCALL_DEFINE3(sigaction
, int, sig
,
4659 const struct old_sigaction __user
*, act
,
4660 struct old_sigaction __user
*, oact
)
4662 struct k_sigaction new_ka
, old_ka
;
4667 if (!access_ok(act
, sizeof(*act
)) ||
4668 __get_user(new_ka
.sa
.sa_handler
, &act
->sa_handler
) ||
4669 __get_user(new_ka
.sa
.sa_restorer
, &act
->sa_restorer
) ||
4670 __get_user(new_ka
.sa
.sa_flags
, &act
->sa_flags
) ||
4671 __get_user(mask
, &act
->sa_mask
))
4673 #ifdef __ARCH_HAS_KA_RESTORER
4674 new_ka
.ka_restorer
= NULL
;
4676 siginitset(&new_ka
.sa
.sa_mask
, mask
);
4679 ret
= do_sigaction(sig
, act
? &new_ka
: NULL
, oact
? &old_ka
: NULL
);
4682 if (!access_ok(oact
, sizeof(*oact
)) ||
4683 __put_user(old_ka
.sa
.sa_handler
, &oact
->sa_handler
) ||
4684 __put_user(old_ka
.sa
.sa_restorer
, &oact
->sa_restorer
) ||
4685 __put_user(old_ka
.sa
.sa_flags
, &oact
->sa_flags
) ||
4686 __put_user(old_ka
.sa
.sa_mask
.sig
[0], &oact
->sa_mask
))
4693 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4694 COMPAT_SYSCALL_DEFINE3(sigaction
, int, sig
,
4695 const struct compat_old_sigaction __user
*, act
,
4696 struct compat_old_sigaction __user
*, oact
)
4698 struct k_sigaction new_ka
, old_ka
;
4700 compat_old_sigset_t mask
;
4701 compat_uptr_t handler
, restorer
;
4704 if (!access_ok(act
, sizeof(*act
)) ||
4705 __get_user(handler
, &act
->sa_handler
) ||
4706 __get_user(restorer
, &act
->sa_restorer
) ||
4707 __get_user(new_ka
.sa
.sa_flags
, &act
->sa_flags
) ||
4708 __get_user(mask
, &act
->sa_mask
))
4711 #ifdef __ARCH_HAS_KA_RESTORER
4712 new_ka
.ka_restorer
= NULL
;
4714 new_ka
.sa
.sa_handler
= compat_ptr(handler
);
4715 new_ka
.sa
.sa_restorer
= compat_ptr(restorer
);
4716 siginitset(&new_ka
.sa
.sa_mask
, mask
);
4719 ret
= do_sigaction(sig
, act
? &new_ka
: NULL
, oact
? &old_ka
: NULL
);
4722 if (!access_ok(oact
, sizeof(*oact
)) ||
4723 __put_user(ptr_to_compat(old_ka
.sa
.sa_handler
),
4724 &oact
->sa_handler
) ||
4725 __put_user(ptr_to_compat(old_ka
.sa
.sa_restorer
),
4726 &oact
->sa_restorer
) ||
4727 __put_user(old_ka
.sa
.sa_flags
, &oact
->sa_flags
) ||
4728 __put_user(old_ka
.sa
.sa_mask
.sig
[0], &oact
->sa_mask
))
4735 #ifdef CONFIG_SGETMASK_SYSCALL
4738 * For backwards compatibility. Functionality superseded by sigprocmask.
4740 SYSCALL_DEFINE0(sgetmask
)
4743 return current
->blocked
.sig
[0];
4746 SYSCALL_DEFINE1(ssetmask
, int, newmask
)
4748 int old
= current
->blocked
.sig
[0];
4751 siginitset(&newset
, newmask
);
4752 set_current_blocked(&newset
);
4756 #endif /* CONFIG_SGETMASK_SYSCALL */
4758 #ifdef __ARCH_WANT_SYS_SIGNAL
4760 * For backwards compatibility. Functionality superseded by sigaction.
4762 SYSCALL_DEFINE2(signal
, int, sig
, __sighandler_t
, handler
)
4764 struct k_sigaction new_sa
, old_sa
;
4767 new_sa
.sa
.sa_handler
= handler
;
4768 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
4769 sigemptyset(&new_sa
.sa
.sa_mask
);
4771 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
4773 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
4775 #endif /* __ARCH_WANT_SYS_SIGNAL */
4777 #ifdef __ARCH_WANT_SYS_PAUSE
4779 SYSCALL_DEFINE0(pause
)
4781 while (!signal_pending(current
)) {
4782 __set_current_state(TASK_INTERRUPTIBLE
);
4785 return -ERESTARTNOHAND
;
4790 static int sigsuspend(sigset_t
*set
)
4792 current
->saved_sigmask
= current
->blocked
;
4793 set_current_blocked(set
);
4795 while (!signal_pending(current
)) {
4796 __set_current_state(TASK_INTERRUPTIBLE
);
4799 set_restore_sigmask();
4800 return -ERESTARTNOHAND
;
4804 * sys_rt_sigsuspend - replace the signal mask for a value with the
4805 * @unewset value until a signal is received
4806 * @unewset: new signal mask value
4807 * @sigsetsize: size of sigset_t type
4809 SYSCALL_DEFINE2(rt_sigsuspend
, sigset_t __user
*, unewset
, size_t, sigsetsize
)
4813 /* XXX: Don't preclude handling different sized sigset_t's. */
4814 if (sigsetsize
!= sizeof(sigset_t
))
4817 if (copy_from_user(&newset
, unewset
, sizeof(newset
)))
4819 return sigsuspend(&newset
);
4822 #ifdef CONFIG_COMPAT
4823 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend
, compat_sigset_t __user
*, unewset
, compat_size_t
, sigsetsize
)
4827 /* XXX: Don't preclude handling different sized sigset_t's. */
4828 if (sigsetsize
!= sizeof(sigset_t
))
4831 if (get_compat_sigset(&newset
, unewset
))
4833 return sigsuspend(&newset
);
4837 #ifdef CONFIG_OLD_SIGSUSPEND
4838 SYSCALL_DEFINE1(sigsuspend
, old_sigset_t
, mask
)
4841 siginitset(&blocked
, mask
);
4842 return sigsuspend(&blocked
);
4845 #ifdef CONFIG_OLD_SIGSUSPEND3
4846 SYSCALL_DEFINE3(sigsuspend
, int, unused1
, int, unused2
, old_sigset_t
, mask
)
4849 siginitset(&blocked
, mask
);
4850 return sigsuspend(&blocked
);
4854 __weak
const char *arch_vma_name(struct vm_area_struct
*vma
)
4859 static inline void siginfo_buildtime_checks(void)
4861 BUILD_BUG_ON(sizeof(struct siginfo
) != SI_MAX_SIZE
);
4863 /* Verify the offsets in the two siginfos match */
4864 #define CHECK_OFFSET(field) \
4865 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4868 CHECK_OFFSET(si_pid
);
4869 CHECK_OFFSET(si_uid
);
4872 CHECK_OFFSET(si_tid
);
4873 CHECK_OFFSET(si_overrun
);
4874 CHECK_OFFSET(si_value
);
4877 CHECK_OFFSET(si_pid
);
4878 CHECK_OFFSET(si_uid
);
4879 CHECK_OFFSET(si_value
);
4882 CHECK_OFFSET(si_pid
);
4883 CHECK_OFFSET(si_uid
);
4884 CHECK_OFFSET(si_status
);
4885 CHECK_OFFSET(si_utime
);
4886 CHECK_OFFSET(si_stime
);
4889 CHECK_OFFSET(si_addr
);
4890 CHECK_OFFSET(si_trapno
);
4891 CHECK_OFFSET(si_addr_lsb
);
4892 CHECK_OFFSET(si_lower
);
4893 CHECK_OFFSET(si_upper
);
4894 CHECK_OFFSET(si_pkey
);
4895 CHECK_OFFSET(si_perf_data
);
4896 CHECK_OFFSET(si_perf_type
);
4897 CHECK_OFFSET(si_perf_flags
);
4900 CHECK_OFFSET(si_band
);
4901 CHECK_OFFSET(si_fd
);
4904 CHECK_OFFSET(si_call_addr
);
4905 CHECK_OFFSET(si_syscall
);
4906 CHECK_OFFSET(si_arch
);
4910 BUILD_BUG_ON(offsetof(struct siginfo
, si_pid
) !=
4911 offsetof(struct siginfo
, si_addr
));
4912 if (sizeof(int) == sizeof(void __user
*)) {
4913 BUILD_BUG_ON(sizeof_field(struct siginfo
, si_pid
) !=
4914 sizeof(void __user
*));
4916 BUILD_BUG_ON((sizeof_field(struct siginfo
, si_pid
) +
4917 sizeof_field(struct siginfo
, si_uid
)) !=
4918 sizeof(void __user
*));
4919 BUILD_BUG_ON(offsetofend(struct siginfo
, si_pid
) !=
4920 offsetof(struct siginfo
, si_uid
));
4922 #ifdef CONFIG_COMPAT
4923 BUILD_BUG_ON(offsetof(struct compat_siginfo
, si_pid
) !=
4924 offsetof(struct compat_siginfo
, si_addr
));
4925 BUILD_BUG_ON(sizeof_field(struct compat_siginfo
, si_pid
) !=
4926 sizeof(compat_uptr_t
));
4927 BUILD_BUG_ON(sizeof_field(struct compat_siginfo
, si_pid
) !=
4928 sizeof_field(struct siginfo
, si_pid
));
4932 #if defined(CONFIG_SYSCTL)
4933 static struct ctl_table signal_debug_table
[] = {
4934 #ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4936 .procname
= "exception-trace",
4937 .data
= &show_unhandled_signals
,
4938 .maxlen
= sizeof(int),
4940 .proc_handler
= proc_dointvec
4945 static int __init
init_signal_sysctls(void)
4947 register_sysctl_init("debug", signal_debug_table
);
4950 early_initcall(init_signal_sysctls
);
4951 #endif /* CONFIG_SYSCTL */
4953 void __init
signals_init(void)
4955 siginfo_buildtime_checks();
4957 sigqueue_cachep
= KMEM_CACHE(sigqueue
, SLAB_PANIC
| SLAB_ACCOUNT
);
4960 #ifdef CONFIG_KGDB_KDB
4961 #include <linux/kdb.h>
4963 * kdb_send_sig - Allows kdb to send signals without exposing
4964 * signal internals. This function checks if the required locks are
4965 * available before calling the main signal code, to avoid kdb
4968 void kdb_send_sig(struct task_struct
*t
, int sig
)
4970 static struct task_struct
*kdb_prev_t
;
4972 if (!spin_trylock(&t
->sighand
->siglock
)) {
4973 kdb_printf("Can't do kill command now.\n"
4974 "The sigmask lock is held somewhere else in "
4975 "kernel, try again later\n");
4978 new_t
= kdb_prev_t
!= t
;
4980 if (!task_is_running(t
) && new_t
) {
4981 spin_unlock(&t
->sighand
->siglock
);
4982 kdb_printf("Process is not RUNNING, sending a signal from "
4983 "kdb risks deadlock\n"
4984 "on the run queue locks. "
4985 "The signal has _not_ been sent.\n"
4986 "Reissue the kill command if you want to risk "
4990 ret
= send_signal_locked(sig
, SEND_SIG_PRIV
, t
, PIDTYPE_PID
);
4991 spin_unlock(&t
->sighand
->siglock
);
4993 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4996 kdb_printf("Signal %d is sent to process %d.\n", sig
, t
->pid
);
4998 #endif /* CONFIG_KGDB_KDB */