printf: Remove unused 'bprintf'
[drm/drm-misc.git] / mm / compaction.c
bloba2b16b08cbbff70c1decefb357c5523d8483fbac
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
29 #ifdef CONFIG_COMPACTION
31 * Fragmentation score check interval for proactive compaction purposes.
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
35 static inline void count_compact_event(enum vm_event_item item)
37 count_vm_event(item);
40 static inline void count_compact_events(enum vm_event_item item, long delta)
42 count_vm_events(item, delta);
46 * order == -1 is expected when compacting proactively via
47 * 1. /proc/sys/vm/compact_memory
48 * 2. /sys/devices/system/node/nodex/compact
49 * 3. /proc/sys/vm/compaction_proactiveness
51 static inline bool is_via_compact_memory(int order)
53 return order == -1;
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
67 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
68 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
71 * Page order with-respect-to which proactive compaction
72 * calculates external fragmentation, which is used as
73 * the "fragmentation score" of a node/zone.
75 #if defined CONFIG_TRANSPARENT_HUGEPAGE
76 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
77 #elif defined CONFIG_HUGETLBFS
78 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
79 #else
80 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
81 #endif
83 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
85 post_alloc_hook(page, order, __GFP_MOVABLE);
86 return page;
88 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90 static unsigned long release_free_list(struct list_head *freepages)
92 int order;
93 unsigned long high_pfn = 0;
95 for (order = 0; order < NR_PAGE_ORDERS; order++) {
96 struct page *page, *next;
98 list_for_each_entry_safe(page, next, &freepages[order], lru) {
99 unsigned long pfn = page_to_pfn(page);
101 list_del(&page->lru);
103 * Convert free pages into post allocation pages, so
104 * that we can free them via __free_page.
106 mark_allocated(page, order, __GFP_MOVABLE);
107 __free_pages(page, order);
108 if (pfn > high_pfn)
109 high_pfn = pfn;
112 return high_pfn;
115 #ifdef CONFIG_COMPACTION
116 bool PageMovable(struct page *page)
118 const struct movable_operations *mops;
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 if (!__PageMovable(page))
122 return false;
124 mops = page_movable_ops(page);
125 if (mops)
126 return true;
128 return false;
131 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
133 VM_BUG_ON_PAGE(!PageLocked(page), page);
134 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
135 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
137 EXPORT_SYMBOL(__SetPageMovable);
139 void __ClearPageMovable(struct page *page)
141 VM_BUG_ON_PAGE(!PageMovable(page), page);
143 * This page still has the type of a movable page, but it's
144 * actually not movable any more.
146 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
148 EXPORT_SYMBOL(__ClearPageMovable);
150 /* Do not skip compaction more than 64 times */
151 #define COMPACT_MAX_DEFER_SHIFT 6
154 * Compaction is deferred when compaction fails to result in a page
155 * allocation success. 1 << compact_defer_shift, compactions are skipped up
156 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 static void defer_compaction(struct zone *zone, int order)
160 zone->compact_considered = 0;
161 zone->compact_defer_shift++;
163 if (order < zone->compact_order_failed)
164 zone->compact_order_failed = order;
166 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
167 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169 trace_mm_compaction_defer_compaction(zone, order);
172 /* Returns true if compaction should be skipped this time */
173 static bool compaction_deferred(struct zone *zone, int order)
175 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177 if (order < zone->compact_order_failed)
178 return false;
180 /* Avoid possible overflow */
181 if (++zone->compact_considered >= defer_limit) {
182 zone->compact_considered = defer_limit;
183 return false;
186 trace_mm_compaction_deferred(zone, order);
188 return true;
192 * Update defer tracking counters after successful compaction of given order,
193 * which means an allocation either succeeded (alloc_success == true) or is
194 * expected to succeed.
196 void compaction_defer_reset(struct zone *zone, int order,
197 bool alloc_success)
199 if (alloc_success) {
200 zone->compact_considered = 0;
201 zone->compact_defer_shift = 0;
203 if (order >= zone->compact_order_failed)
204 zone->compact_order_failed = order + 1;
206 trace_mm_compaction_defer_reset(zone, order);
209 /* Returns true if restarting compaction after many failures */
210 static bool compaction_restarting(struct zone *zone, int order)
212 if (order < zone->compact_order_failed)
213 return false;
215 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
216 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 /* Returns true if the pageblock should be scanned for pages to isolate. */
220 static inline bool isolation_suitable(struct compact_control *cc,
221 struct page *page)
223 if (cc->ignore_skip_hint)
224 return true;
226 return !get_pageblock_skip(page);
229 static void reset_cached_positions(struct zone *zone)
231 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
232 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
233 zone->compact_cached_free_pfn =
234 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 #ifdef CONFIG_SPARSEMEM
239 * If the PFN falls into an offline section, return the start PFN of the
240 * next online section. If the PFN falls into an online section or if
241 * there is no next online section, return 0.
243 static unsigned long skip_offline_sections(unsigned long start_pfn)
245 unsigned long start_nr = pfn_to_section_nr(start_pfn);
247 if (online_section_nr(start_nr))
248 return 0;
250 while (++start_nr <= __highest_present_section_nr) {
251 if (online_section_nr(start_nr))
252 return section_nr_to_pfn(start_nr);
255 return 0;
259 * If the PFN falls into an offline section, return the end PFN of the
260 * next online section in reverse. If the PFN falls into an online section
261 * or if there is no next online section in reverse, return 0.
263 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
265 unsigned long start_nr = pfn_to_section_nr(start_pfn);
267 if (!start_nr || online_section_nr(start_nr))
268 return 0;
270 while (start_nr-- > 0) {
271 if (online_section_nr(start_nr))
272 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
275 return 0;
277 #else
278 static unsigned long skip_offline_sections(unsigned long start_pfn)
280 return 0;
283 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
285 return 0;
287 #endif
290 * Compound pages of >= pageblock_order should consistently be skipped until
291 * released. It is always pointless to compact pages of such order (if they are
292 * migratable), and the pageblocks they occupy cannot contain any free pages.
294 static bool pageblock_skip_persistent(struct page *page)
296 if (!PageCompound(page))
297 return false;
299 page = compound_head(page);
301 if (compound_order(page) >= pageblock_order)
302 return true;
304 return false;
307 static bool
308 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
309 bool check_target)
311 struct page *page = pfn_to_online_page(pfn);
312 struct page *block_page;
313 struct page *end_page;
314 unsigned long block_pfn;
316 if (!page)
317 return false;
318 if (zone != page_zone(page))
319 return false;
320 if (pageblock_skip_persistent(page))
321 return false;
324 * If skip is already cleared do no further checking once the
325 * restart points have been set.
327 if (check_source && check_target && !get_pageblock_skip(page))
328 return true;
331 * If clearing skip for the target scanner, do not select a
332 * non-movable pageblock as the starting point.
334 if (!check_source && check_target &&
335 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
336 return false;
338 /* Ensure the start of the pageblock or zone is online and valid */
339 block_pfn = pageblock_start_pfn(pfn);
340 block_pfn = max(block_pfn, zone->zone_start_pfn);
341 block_page = pfn_to_online_page(block_pfn);
342 if (block_page) {
343 page = block_page;
344 pfn = block_pfn;
347 /* Ensure the end of the pageblock or zone is online and valid */
348 block_pfn = pageblock_end_pfn(pfn) - 1;
349 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
350 end_page = pfn_to_online_page(block_pfn);
351 if (!end_page)
352 return false;
355 * Only clear the hint if a sample indicates there is either a
356 * free page or an LRU page in the block. One or other condition
357 * is necessary for the block to be a migration source/target.
359 do {
360 if (check_source && PageLRU(page)) {
361 clear_pageblock_skip(page);
362 return true;
365 if (check_target && PageBuddy(page)) {
366 clear_pageblock_skip(page);
367 return true;
370 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
371 } while (page <= end_page);
373 return false;
377 * This function is called to clear all cached information on pageblocks that
378 * should be skipped for page isolation when the migrate and free page scanner
379 * meet.
381 static void __reset_isolation_suitable(struct zone *zone)
383 unsigned long migrate_pfn = zone->zone_start_pfn;
384 unsigned long free_pfn = zone_end_pfn(zone) - 1;
385 unsigned long reset_migrate = free_pfn;
386 unsigned long reset_free = migrate_pfn;
387 bool source_set = false;
388 bool free_set = false;
390 /* Only flush if a full compaction finished recently */
391 if (!zone->compact_blockskip_flush)
392 return;
394 zone->compact_blockskip_flush = false;
397 * Walk the zone and update pageblock skip information. Source looks
398 * for PageLRU while target looks for PageBuddy. When the scanner
399 * is found, both PageBuddy and PageLRU are checked as the pageblock
400 * is suitable as both source and target.
402 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
403 free_pfn -= pageblock_nr_pages) {
404 cond_resched();
406 /* Update the migrate PFN */
407 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
408 migrate_pfn < reset_migrate) {
409 source_set = true;
410 reset_migrate = migrate_pfn;
411 zone->compact_init_migrate_pfn = reset_migrate;
412 zone->compact_cached_migrate_pfn[0] = reset_migrate;
413 zone->compact_cached_migrate_pfn[1] = reset_migrate;
416 /* Update the free PFN */
417 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
418 free_pfn > reset_free) {
419 free_set = true;
420 reset_free = free_pfn;
421 zone->compact_init_free_pfn = reset_free;
422 zone->compact_cached_free_pfn = reset_free;
426 /* Leave no distance if no suitable block was reset */
427 if (reset_migrate >= reset_free) {
428 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
429 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
430 zone->compact_cached_free_pfn = free_pfn;
434 void reset_isolation_suitable(pg_data_t *pgdat)
436 int zoneid;
438 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
439 struct zone *zone = &pgdat->node_zones[zoneid];
440 if (!populated_zone(zone))
441 continue;
443 __reset_isolation_suitable(zone);
448 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
449 * locks are not required for read/writers. Returns true if it was already set.
451 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
453 bool skip;
455 /* Do not update if skip hint is being ignored */
456 if (cc->ignore_skip_hint)
457 return false;
459 skip = get_pageblock_skip(page);
460 if (!skip && !cc->no_set_skip_hint)
461 set_pageblock_skip(page);
463 return skip;
466 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
468 struct zone *zone = cc->zone;
470 /* Set for isolation rather than compaction */
471 if (cc->no_set_skip_hint)
472 return;
474 pfn = pageblock_end_pfn(pfn);
476 /* Update where async and sync compaction should restart */
477 if (pfn > zone->compact_cached_migrate_pfn[0])
478 zone->compact_cached_migrate_pfn[0] = pfn;
479 if (cc->mode != MIGRATE_ASYNC &&
480 pfn > zone->compact_cached_migrate_pfn[1])
481 zone->compact_cached_migrate_pfn[1] = pfn;
485 * If no pages were isolated then mark this pageblock to be skipped in the
486 * future. The information is later cleared by __reset_isolation_suitable().
488 static void update_pageblock_skip(struct compact_control *cc,
489 struct page *page, unsigned long pfn)
491 struct zone *zone = cc->zone;
493 if (cc->no_set_skip_hint)
494 return;
496 set_pageblock_skip(page);
498 if (pfn < zone->compact_cached_free_pfn)
499 zone->compact_cached_free_pfn = pfn;
501 #else
502 static inline bool isolation_suitable(struct compact_control *cc,
503 struct page *page)
505 return true;
508 static inline bool pageblock_skip_persistent(struct page *page)
510 return false;
513 static inline void update_pageblock_skip(struct compact_control *cc,
514 struct page *page, unsigned long pfn)
518 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
522 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
524 return false;
526 #endif /* CONFIG_COMPACTION */
529 * Compaction requires the taking of some coarse locks that are potentially
530 * very heavily contended. For async compaction, trylock and record if the
531 * lock is contended. The lock will still be acquired but compaction will
532 * abort when the current block is finished regardless of success rate.
533 * Sync compaction acquires the lock.
535 * Always returns true which makes it easier to track lock state in callers.
537 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
538 struct compact_control *cc)
539 __acquires(lock)
541 /* Track if the lock is contended in async mode */
542 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
543 if (spin_trylock_irqsave(lock, *flags))
544 return true;
546 cc->contended = true;
549 spin_lock_irqsave(lock, *flags);
550 return true;
554 * Compaction requires the taking of some coarse locks that are potentially
555 * very heavily contended. The lock should be periodically unlocked to avoid
556 * having disabled IRQs for a long time, even when there is nobody waiting on
557 * the lock. It might also be that allowing the IRQs will result in
558 * need_resched() becoming true. If scheduling is needed, compaction schedules.
559 * Either compaction type will also abort if a fatal signal is pending.
560 * In either case if the lock was locked, it is dropped and not regained.
562 * Returns true if compaction should abort due to fatal signal pending.
563 * Returns false when compaction can continue.
565 static bool compact_unlock_should_abort(spinlock_t *lock,
566 unsigned long flags, bool *locked, struct compact_control *cc)
568 if (*locked) {
569 spin_unlock_irqrestore(lock, flags);
570 *locked = false;
573 if (fatal_signal_pending(current)) {
574 cc->contended = true;
575 return true;
578 cond_resched();
580 return false;
584 * Isolate free pages onto a private freelist. If @strict is true, will abort
585 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
586 * (even though it may still end up isolating some pages).
588 static unsigned long isolate_freepages_block(struct compact_control *cc,
589 unsigned long *start_pfn,
590 unsigned long end_pfn,
591 struct list_head *freelist,
592 unsigned int stride,
593 bool strict)
595 int nr_scanned = 0, total_isolated = 0;
596 struct page *page;
597 unsigned long flags = 0;
598 bool locked = false;
599 unsigned long blockpfn = *start_pfn;
600 unsigned int order;
602 /* Strict mode is for isolation, speed is secondary */
603 if (strict)
604 stride = 1;
606 page = pfn_to_page(blockpfn);
608 /* Isolate free pages. */
609 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
610 int isolated;
613 * Periodically drop the lock (if held) regardless of its
614 * contention, to give chance to IRQs. Abort if fatal signal
615 * pending.
617 if (!(blockpfn % COMPACT_CLUSTER_MAX)
618 && compact_unlock_should_abort(&cc->zone->lock, flags,
619 &locked, cc))
620 break;
622 nr_scanned++;
625 * For compound pages such as THP and hugetlbfs, we can save
626 * potentially a lot of iterations if we skip them at once.
627 * The check is racy, but we can consider only valid values
628 * and the only danger is skipping too much.
630 if (PageCompound(page)) {
631 const unsigned int order = compound_order(page);
633 if (blockpfn + (1UL << order) <= end_pfn) {
634 blockpfn += (1UL << order) - 1;
635 page += (1UL << order) - 1;
636 nr_scanned += (1UL << order) - 1;
639 goto isolate_fail;
642 if (!PageBuddy(page))
643 goto isolate_fail;
645 /* If we already hold the lock, we can skip some rechecking. */
646 if (!locked) {
647 locked = compact_lock_irqsave(&cc->zone->lock,
648 &flags, cc);
650 /* Recheck this is a buddy page under lock */
651 if (!PageBuddy(page))
652 goto isolate_fail;
655 /* Found a free page, will break it into order-0 pages */
656 order = buddy_order(page);
657 isolated = __isolate_free_page(page, order);
658 if (!isolated)
659 break;
660 set_page_private(page, order);
662 nr_scanned += isolated - 1;
663 total_isolated += isolated;
664 cc->nr_freepages += isolated;
665 list_add_tail(&page->lru, &freelist[order]);
667 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
668 blockpfn += isolated;
669 break;
671 /* Advance to the end of split page */
672 blockpfn += isolated - 1;
673 page += isolated - 1;
674 continue;
676 isolate_fail:
677 if (strict)
678 break;
682 if (locked)
683 spin_unlock_irqrestore(&cc->zone->lock, flags);
686 * Be careful to not go outside of the pageblock.
688 if (unlikely(blockpfn > end_pfn))
689 blockpfn = end_pfn;
691 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
692 nr_scanned, total_isolated);
694 /* Record how far we have got within the block */
695 *start_pfn = blockpfn;
698 * If strict isolation is requested by CMA then check that all the
699 * pages requested were isolated. If there were any failures, 0 is
700 * returned and CMA will fail.
702 if (strict && blockpfn < end_pfn)
703 total_isolated = 0;
705 cc->total_free_scanned += nr_scanned;
706 if (total_isolated)
707 count_compact_events(COMPACTISOLATED, total_isolated);
708 return total_isolated;
712 * isolate_freepages_range() - isolate free pages.
713 * @cc: Compaction control structure.
714 * @start_pfn: The first PFN to start isolating.
715 * @end_pfn: The one-past-last PFN.
717 * Non-free pages, invalid PFNs, or zone boundaries within the
718 * [start_pfn, end_pfn) range are considered errors, cause function to
719 * undo its actions and return zero. cc->freepages[] are empty.
721 * Otherwise, function returns one-past-the-last PFN of isolated page
722 * (which may be greater then end_pfn if end fell in a middle of
723 * a free page). cc->freepages[] contain free pages isolated.
725 unsigned long
726 isolate_freepages_range(struct compact_control *cc,
727 unsigned long start_pfn, unsigned long end_pfn)
729 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
730 int order;
732 for (order = 0; order < NR_PAGE_ORDERS; order++)
733 INIT_LIST_HEAD(&cc->freepages[order]);
735 pfn = start_pfn;
736 block_start_pfn = pageblock_start_pfn(pfn);
737 if (block_start_pfn < cc->zone->zone_start_pfn)
738 block_start_pfn = cc->zone->zone_start_pfn;
739 block_end_pfn = pageblock_end_pfn(pfn);
741 for (; pfn < end_pfn; pfn += isolated,
742 block_start_pfn = block_end_pfn,
743 block_end_pfn += pageblock_nr_pages) {
744 /* Protect pfn from changing by isolate_freepages_block */
745 unsigned long isolate_start_pfn = pfn;
748 * pfn could pass the block_end_pfn if isolated freepage
749 * is more than pageblock order. In this case, we adjust
750 * scanning range to right one.
752 if (pfn >= block_end_pfn) {
753 block_start_pfn = pageblock_start_pfn(pfn);
754 block_end_pfn = pageblock_end_pfn(pfn);
757 block_end_pfn = min(block_end_pfn, end_pfn);
759 if (!pageblock_pfn_to_page(block_start_pfn,
760 block_end_pfn, cc->zone))
761 break;
763 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
764 block_end_pfn, cc->freepages, 0, true);
767 * In strict mode, isolate_freepages_block() returns 0 if
768 * there are any holes in the block (ie. invalid PFNs or
769 * non-free pages).
771 if (!isolated)
772 break;
775 * If we managed to isolate pages, it is always (1 << n) *
776 * pageblock_nr_pages for some non-negative n. (Max order
777 * page may span two pageblocks).
781 if (pfn < end_pfn) {
782 /* Loop terminated early, cleanup. */
783 release_free_list(cc->freepages);
784 return 0;
787 /* We don't use freelists for anything. */
788 return pfn;
791 /* Similar to reclaim, but different enough that they don't share logic */
792 static bool too_many_isolated(struct compact_control *cc)
794 pg_data_t *pgdat = cc->zone->zone_pgdat;
795 bool too_many;
797 unsigned long active, inactive, isolated;
799 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
800 node_page_state(pgdat, NR_INACTIVE_ANON);
801 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
802 node_page_state(pgdat, NR_ACTIVE_ANON);
803 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
804 node_page_state(pgdat, NR_ISOLATED_ANON);
807 * Allow GFP_NOFS to isolate past the limit set for regular
808 * compaction runs. This prevents an ABBA deadlock when other
809 * compactors have already isolated to the limit, but are
810 * blocked on filesystem locks held by the GFP_NOFS thread.
812 if (cc->gfp_mask & __GFP_FS) {
813 inactive >>= 3;
814 active >>= 3;
817 too_many = isolated > (inactive + active) / 2;
818 if (!too_many)
819 wake_throttle_isolated(pgdat);
821 return too_many;
825 * skip_isolation_on_order() - determine when to skip folio isolation based on
826 * folio order and compaction target order
827 * @order: to-be-isolated folio order
828 * @target_order: compaction target order
830 * This avoids unnecessary folio isolations during compaction.
832 static bool skip_isolation_on_order(int order, int target_order)
835 * Unless we are performing global compaction (i.e.,
836 * is_via_compact_memory), skip any folios that are larger than the
837 * target order: we wouldn't be here if we'd have a free folio with
838 * the desired target_order, so migrating this folio would likely fail
839 * later.
841 if (!is_via_compact_memory(target_order) && order >= target_order)
842 return true;
844 * We limit memory compaction to pageblocks and won't try
845 * creating free blocks of memory that are larger than that.
847 return order >= pageblock_order;
851 * isolate_migratepages_block() - isolate all migrate-able pages within
852 * a single pageblock
853 * @cc: Compaction control structure.
854 * @low_pfn: The first PFN to isolate
855 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
856 * @mode: Isolation mode to be used.
858 * Isolate all pages that can be migrated from the range specified by
859 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
860 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
861 * -ENOMEM in case we could not allocate a page, or 0.
862 * cc->migrate_pfn will contain the next pfn to scan.
864 * The pages are isolated on cc->migratepages list (not required to be empty),
865 * and cc->nr_migratepages is updated accordingly.
867 static int
868 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
869 unsigned long end_pfn, isolate_mode_t mode)
871 pg_data_t *pgdat = cc->zone->zone_pgdat;
872 unsigned long nr_scanned = 0, nr_isolated = 0;
873 struct lruvec *lruvec;
874 unsigned long flags = 0;
875 struct lruvec *locked = NULL;
876 struct folio *folio = NULL;
877 struct page *page = NULL, *valid_page = NULL;
878 struct address_space *mapping;
879 unsigned long start_pfn = low_pfn;
880 bool skip_on_failure = false;
881 unsigned long next_skip_pfn = 0;
882 bool skip_updated = false;
883 int ret = 0;
885 cc->migrate_pfn = low_pfn;
888 * Ensure that there are not too many pages isolated from the LRU
889 * list by either parallel reclaimers or compaction. If there are,
890 * delay for some time until fewer pages are isolated
892 while (unlikely(too_many_isolated(cc))) {
893 /* stop isolation if there are still pages not migrated */
894 if (cc->nr_migratepages)
895 return -EAGAIN;
897 /* async migration should just abort */
898 if (cc->mode == MIGRATE_ASYNC)
899 return -EAGAIN;
901 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
903 if (fatal_signal_pending(current))
904 return -EINTR;
907 cond_resched();
909 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
910 skip_on_failure = true;
911 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
914 /* Time to isolate some pages for migration */
915 for (; low_pfn < end_pfn; low_pfn++) {
916 bool is_dirty, is_unevictable;
918 if (skip_on_failure && low_pfn >= next_skip_pfn) {
920 * We have isolated all migration candidates in the
921 * previous order-aligned block, and did not skip it due
922 * to failure. We should migrate the pages now and
923 * hopefully succeed compaction.
925 if (nr_isolated)
926 break;
929 * We failed to isolate in the previous order-aligned
930 * block. Set the new boundary to the end of the
931 * current block. Note we can't simply increase
932 * next_skip_pfn by 1 << order, as low_pfn might have
933 * been incremented by a higher number due to skipping
934 * a compound or a high-order buddy page in the
935 * previous loop iteration.
937 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
941 * Periodically drop the lock (if held) regardless of its
942 * contention, to give chance to IRQs. Abort completely if
943 * a fatal signal is pending.
945 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
946 if (locked) {
947 unlock_page_lruvec_irqrestore(locked, flags);
948 locked = NULL;
951 if (fatal_signal_pending(current)) {
952 cc->contended = true;
953 ret = -EINTR;
955 goto fatal_pending;
958 cond_resched();
961 nr_scanned++;
963 page = pfn_to_page(low_pfn);
966 * Check if the pageblock has already been marked skipped.
967 * Only the first PFN is checked as the caller isolates
968 * COMPACT_CLUSTER_MAX at a time so the second call must
969 * not falsely conclude that the block should be skipped.
971 if (!valid_page && (pageblock_aligned(low_pfn) ||
972 low_pfn == cc->zone->zone_start_pfn)) {
973 if (!isolation_suitable(cc, page)) {
974 low_pfn = end_pfn;
975 folio = NULL;
976 goto isolate_abort;
978 valid_page = page;
981 if (PageHuge(page)) {
983 * skip hugetlbfs if we are not compacting for pages
984 * bigger than its order. THPs and other compound pages
985 * are handled below.
987 if (!cc->alloc_contig) {
988 const unsigned int order = compound_order(page);
990 if (order <= MAX_PAGE_ORDER) {
991 low_pfn += (1UL << order) - 1;
992 nr_scanned += (1UL << order) - 1;
994 goto isolate_fail;
996 /* for alloc_contig case */
997 if (locked) {
998 unlock_page_lruvec_irqrestore(locked, flags);
999 locked = NULL;
1002 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1005 * Fail isolation in case isolate_or_dissolve_huge_page()
1006 * reports an error. In case of -ENOMEM, abort right away.
1008 if (ret < 0) {
1009 /* Do not report -EBUSY down the chain */
1010 if (ret == -EBUSY)
1011 ret = 0;
1012 low_pfn += compound_nr(page) - 1;
1013 nr_scanned += compound_nr(page) - 1;
1014 goto isolate_fail;
1017 if (PageHuge(page)) {
1019 * Hugepage was successfully isolated and placed
1020 * on the cc->migratepages list.
1022 folio = page_folio(page);
1023 low_pfn += folio_nr_pages(folio) - 1;
1024 goto isolate_success_no_list;
1028 * Ok, the hugepage was dissolved. Now these pages are
1029 * Buddy and cannot be re-allocated because they are
1030 * isolated. Fall-through as the check below handles
1031 * Buddy pages.
1036 * Skip if free. We read page order here without zone lock
1037 * which is generally unsafe, but the race window is small and
1038 * the worst thing that can happen is that we skip some
1039 * potential isolation targets.
1041 if (PageBuddy(page)) {
1042 unsigned long freepage_order = buddy_order_unsafe(page);
1045 * Without lock, we cannot be sure that what we got is
1046 * a valid page order. Consider only values in the
1047 * valid order range to prevent low_pfn overflow.
1049 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1050 low_pfn += (1UL << freepage_order) - 1;
1051 nr_scanned += (1UL << freepage_order) - 1;
1053 continue;
1057 * Regardless of being on LRU, compound pages such as THP
1058 * (hugetlbfs is handled above) are not to be compacted unless
1059 * we are attempting an allocation larger than the compound
1060 * page size. We can potentially save a lot of iterations if we
1061 * skip them at once. The check is racy, but we can consider
1062 * only valid values and the only danger is skipping too much.
1064 if (PageCompound(page) && !cc->alloc_contig) {
1065 const unsigned int order = compound_order(page);
1067 /* Skip based on page order and compaction target order. */
1068 if (skip_isolation_on_order(order, cc->order)) {
1069 if (order <= MAX_PAGE_ORDER) {
1070 low_pfn += (1UL << order) - 1;
1071 nr_scanned += (1UL << order) - 1;
1073 goto isolate_fail;
1078 * Check may be lockless but that's ok as we recheck later.
1079 * It's possible to migrate LRU and non-lru movable pages.
1080 * Skip any other type of page
1082 if (!PageLRU(page)) {
1084 * __PageMovable can return false positive so we need
1085 * to verify it under page_lock.
1087 if (unlikely(__PageMovable(page)) &&
1088 !PageIsolated(page)) {
1089 if (locked) {
1090 unlock_page_lruvec_irqrestore(locked, flags);
1091 locked = NULL;
1094 if (isolate_movable_page(page, mode)) {
1095 folio = page_folio(page);
1096 goto isolate_success;
1100 goto isolate_fail;
1104 * Be careful not to clear PageLRU until after we're
1105 * sure the page is not being freed elsewhere -- the
1106 * page release code relies on it.
1108 folio = folio_get_nontail_page(page);
1109 if (unlikely(!folio))
1110 goto isolate_fail;
1113 * Migration will fail if an anonymous page is pinned in memory,
1114 * so avoid taking lru_lock and isolating it unnecessarily in an
1115 * admittedly racy check.
1117 mapping = folio_mapping(folio);
1118 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1119 goto isolate_fail_put;
1122 * Only allow to migrate anonymous pages in GFP_NOFS context
1123 * because those do not depend on fs locks.
1125 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1126 goto isolate_fail_put;
1128 /* Only take pages on LRU: a check now makes later tests safe */
1129 if (!folio_test_lru(folio))
1130 goto isolate_fail_put;
1132 is_unevictable = folio_test_unevictable(folio);
1134 /* Compaction might skip unevictable pages but CMA takes them */
1135 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1136 goto isolate_fail_put;
1139 * To minimise LRU disruption, the caller can indicate with
1140 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1141 * it will be able to migrate without blocking - clean pages
1142 * for the most part. PageWriteback would require blocking.
1144 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1145 goto isolate_fail_put;
1147 is_dirty = folio_test_dirty(folio);
1149 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1150 (mapping && is_unevictable)) {
1151 bool migrate_dirty = true;
1152 bool is_inaccessible;
1155 * Only folios without mappings or that have
1156 * a ->migrate_folio callback are possible to migrate
1157 * without blocking.
1159 * Folios from inaccessible mappings are not migratable.
1161 * However, we can be racing with truncation, which can
1162 * free the mapping that we need to check. Truncation
1163 * holds the folio lock until after the folio is removed
1164 * from the page so holding it ourselves is sufficient.
1166 * To avoid locking the folio just to check inaccessible,
1167 * assume every inaccessible folio is also unevictable,
1168 * which is a cheaper test. If our assumption goes
1169 * wrong, it's not a correctness bug, just potentially
1170 * wasted cycles.
1172 if (!folio_trylock(folio))
1173 goto isolate_fail_put;
1175 mapping = folio_mapping(folio);
1176 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1177 migrate_dirty = !mapping ||
1178 mapping->a_ops->migrate_folio;
1180 is_inaccessible = mapping && mapping_inaccessible(mapping);
1181 folio_unlock(folio);
1182 if (!migrate_dirty || is_inaccessible)
1183 goto isolate_fail_put;
1186 /* Try isolate the folio */
1187 if (!folio_test_clear_lru(folio))
1188 goto isolate_fail_put;
1190 lruvec = folio_lruvec(folio);
1192 /* If we already hold the lock, we can skip some rechecking */
1193 if (lruvec != locked) {
1194 if (locked)
1195 unlock_page_lruvec_irqrestore(locked, flags);
1197 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1198 locked = lruvec;
1200 lruvec_memcg_debug(lruvec, folio);
1203 * Try get exclusive access under lock. If marked for
1204 * skip, the scan is aborted unless the current context
1205 * is a rescan to reach the end of the pageblock.
1207 if (!skip_updated && valid_page) {
1208 skip_updated = true;
1209 if (test_and_set_skip(cc, valid_page) &&
1210 !cc->finish_pageblock) {
1211 low_pfn = end_pfn;
1212 goto isolate_abort;
1217 * Check LRU folio order under the lock
1219 if (unlikely(skip_isolation_on_order(folio_order(folio),
1220 cc->order) &&
1221 !cc->alloc_contig)) {
1222 low_pfn += folio_nr_pages(folio) - 1;
1223 nr_scanned += folio_nr_pages(folio) - 1;
1224 folio_set_lru(folio);
1225 goto isolate_fail_put;
1229 /* The folio is taken off the LRU */
1230 if (folio_test_large(folio))
1231 low_pfn += folio_nr_pages(folio) - 1;
1233 /* Successfully isolated */
1234 lruvec_del_folio(lruvec, folio);
1235 node_stat_mod_folio(folio,
1236 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1237 folio_nr_pages(folio));
1239 isolate_success:
1240 list_add(&folio->lru, &cc->migratepages);
1241 isolate_success_no_list:
1242 cc->nr_migratepages += folio_nr_pages(folio);
1243 nr_isolated += folio_nr_pages(folio);
1244 nr_scanned += folio_nr_pages(folio) - 1;
1247 * Avoid isolating too much unless this block is being
1248 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1249 * or a lock is contended. For contention, isolate quickly to
1250 * potentially remove one source of contention.
1252 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1253 !cc->finish_pageblock && !cc->contended) {
1254 ++low_pfn;
1255 break;
1258 continue;
1260 isolate_fail_put:
1261 /* Avoid potential deadlock in freeing page under lru_lock */
1262 if (locked) {
1263 unlock_page_lruvec_irqrestore(locked, flags);
1264 locked = NULL;
1266 folio_put(folio);
1268 isolate_fail:
1269 if (!skip_on_failure && ret != -ENOMEM)
1270 continue;
1273 * We have isolated some pages, but then failed. Release them
1274 * instead of migrating, as we cannot form the cc->order buddy
1275 * page anyway.
1277 if (nr_isolated) {
1278 if (locked) {
1279 unlock_page_lruvec_irqrestore(locked, flags);
1280 locked = NULL;
1282 putback_movable_pages(&cc->migratepages);
1283 cc->nr_migratepages = 0;
1284 nr_isolated = 0;
1287 if (low_pfn < next_skip_pfn) {
1288 low_pfn = next_skip_pfn - 1;
1290 * The check near the loop beginning would have updated
1291 * next_skip_pfn too, but this is a bit simpler.
1293 next_skip_pfn += 1UL << cc->order;
1296 if (ret == -ENOMEM)
1297 break;
1301 * The PageBuddy() check could have potentially brought us outside
1302 * the range to be scanned.
1304 if (unlikely(low_pfn > end_pfn))
1305 low_pfn = end_pfn;
1307 folio = NULL;
1309 isolate_abort:
1310 if (locked)
1311 unlock_page_lruvec_irqrestore(locked, flags);
1312 if (folio) {
1313 folio_set_lru(folio);
1314 folio_put(folio);
1318 * Update the cached scanner pfn once the pageblock has been scanned.
1319 * Pages will either be migrated in which case there is no point
1320 * scanning in the near future or migration failed in which case the
1321 * failure reason may persist. The block is marked for skipping if
1322 * there were no pages isolated in the block or if the block is
1323 * rescanned twice in a row.
1325 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1326 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1327 set_pageblock_skip(valid_page);
1328 update_cached_migrate(cc, low_pfn);
1331 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1332 nr_scanned, nr_isolated);
1334 fatal_pending:
1335 cc->total_migrate_scanned += nr_scanned;
1336 if (nr_isolated)
1337 count_compact_events(COMPACTISOLATED, nr_isolated);
1339 cc->migrate_pfn = low_pfn;
1341 return ret;
1345 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1346 * @cc: Compaction control structure.
1347 * @start_pfn: The first PFN to start isolating.
1348 * @end_pfn: The one-past-last PFN.
1350 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1351 * in case we could not allocate a page, or 0.
1354 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1355 unsigned long end_pfn)
1357 unsigned long pfn, block_start_pfn, block_end_pfn;
1358 int ret = 0;
1360 /* Scan block by block. First and last block may be incomplete */
1361 pfn = start_pfn;
1362 block_start_pfn = pageblock_start_pfn(pfn);
1363 if (block_start_pfn < cc->zone->zone_start_pfn)
1364 block_start_pfn = cc->zone->zone_start_pfn;
1365 block_end_pfn = pageblock_end_pfn(pfn);
1367 for (; pfn < end_pfn; pfn = block_end_pfn,
1368 block_start_pfn = block_end_pfn,
1369 block_end_pfn += pageblock_nr_pages) {
1371 block_end_pfn = min(block_end_pfn, end_pfn);
1373 if (!pageblock_pfn_to_page(block_start_pfn,
1374 block_end_pfn, cc->zone))
1375 continue;
1377 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1378 ISOLATE_UNEVICTABLE);
1380 if (ret)
1381 break;
1383 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1384 break;
1387 return ret;
1390 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1391 #ifdef CONFIG_COMPACTION
1393 static bool suitable_migration_source(struct compact_control *cc,
1394 struct page *page)
1396 int block_mt;
1398 if (pageblock_skip_persistent(page))
1399 return false;
1401 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1402 return true;
1404 block_mt = get_pageblock_migratetype(page);
1406 if (cc->migratetype == MIGRATE_MOVABLE)
1407 return is_migrate_movable(block_mt);
1408 else
1409 return block_mt == cc->migratetype;
1412 /* Returns true if the page is within a block suitable for migration to */
1413 static bool suitable_migration_target(struct compact_control *cc,
1414 struct page *page)
1416 /* If the page is a large free page, then disallow migration */
1417 if (PageBuddy(page)) {
1418 int order = cc->order > 0 ? cc->order : pageblock_order;
1421 * We are checking page_order without zone->lock taken. But
1422 * the only small danger is that we skip a potentially suitable
1423 * pageblock, so it's not worth to check order for valid range.
1425 if (buddy_order_unsafe(page) >= order)
1426 return false;
1429 if (cc->ignore_block_suitable)
1430 return true;
1432 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1433 if (is_migrate_movable(get_pageblock_migratetype(page)))
1434 return true;
1436 /* Otherwise skip the block */
1437 return false;
1440 static inline unsigned int
1441 freelist_scan_limit(struct compact_control *cc)
1443 unsigned short shift = BITS_PER_LONG - 1;
1445 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1449 * Test whether the free scanner has reached the same or lower pageblock than
1450 * the migration scanner, and compaction should thus terminate.
1452 static inline bool compact_scanners_met(struct compact_control *cc)
1454 return (cc->free_pfn >> pageblock_order)
1455 <= (cc->migrate_pfn >> pageblock_order);
1459 * Used when scanning for a suitable migration target which scans freelists
1460 * in reverse. Reorders the list such as the unscanned pages are scanned
1461 * first on the next iteration of the free scanner
1463 static void
1464 move_freelist_head(struct list_head *freelist, struct page *freepage)
1466 LIST_HEAD(sublist);
1468 if (!list_is_first(&freepage->buddy_list, freelist)) {
1469 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1470 list_splice_tail(&sublist, freelist);
1475 * Similar to move_freelist_head except used by the migration scanner
1476 * when scanning forward. It's possible for these list operations to
1477 * move against each other if they search the free list exactly in
1478 * lockstep.
1480 static void
1481 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1483 LIST_HEAD(sublist);
1485 if (!list_is_last(&freepage->buddy_list, freelist)) {
1486 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1487 list_splice_tail(&sublist, freelist);
1491 static void
1492 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1494 unsigned long start_pfn, end_pfn;
1495 struct page *page;
1497 /* Do not search around if there are enough pages already */
1498 if (cc->nr_freepages >= cc->nr_migratepages)
1499 return;
1501 /* Minimise scanning during async compaction */
1502 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1503 return;
1505 /* Pageblock boundaries */
1506 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1507 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1509 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1510 if (!page)
1511 return;
1513 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1515 /* Skip this pageblock in the future as it's full or nearly full */
1516 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1517 set_pageblock_skip(page);
1520 /* Search orders in round-robin fashion */
1521 static int next_search_order(struct compact_control *cc, int order)
1523 order--;
1524 if (order < 0)
1525 order = cc->order - 1;
1527 /* Search wrapped around? */
1528 if (order == cc->search_order) {
1529 cc->search_order--;
1530 if (cc->search_order < 0)
1531 cc->search_order = cc->order - 1;
1532 return -1;
1535 return order;
1538 static void fast_isolate_freepages(struct compact_control *cc)
1540 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1541 unsigned int nr_scanned = 0, total_isolated = 0;
1542 unsigned long low_pfn, min_pfn, highest = 0;
1543 unsigned long nr_isolated = 0;
1544 unsigned long distance;
1545 struct page *page = NULL;
1546 bool scan_start = false;
1547 int order;
1549 /* Full compaction passes in a negative order */
1550 if (cc->order <= 0)
1551 return;
1554 * If starting the scan, use a deeper search and use the highest
1555 * PFN found if a suitable one is not found.
1557 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1558 limit = pageblock_nr_pages >> 1;
1559 scan_start = true;
1563 * Preferred point is in the top quarter of the scan space but take
1564 * a pfn from the top half if the search is problematic.
1566 distance = (cc->free_pfn - cc->migrate_pfn);
1567 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1568 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1570 if (WARN_ON_ONCE(min_pfn > low_pfn))
1571 low_pfn = min_pfn;
1574 * Search starts from the last successful isolation order or the next
1575 * order to search after a previous failure
1577 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1579 for (order = cc->search_order;
1580 !page && order >= 0;
1581 order = next_search_order(cc, order)) {
1582 struct free_area *area = &cc->zone->free_area[order];
1583 struct list_head *freelist;
1584 struct page *freepage;
1585 unsigned long flags;
1586 unsigned int order_scanned = 0;
1587 unsigned long high_pfn = 0;
1589 if (!area->nr_free)
1590 continue;
1592 spin_lock_irqsave(&cc->zone->lock, flags);
1593 freelist = &area->free_list[MIGRATE_MOVABLE];
1594 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1595 unsigned long pfn;
1597 order_scanned++;
1598 nr_scanned++;
1599 pfn = page_to_pfn(freepage);
1601 if (pfn >= highest)
1602 highest = max(pageblock_start_pfn(pfn),
1603 cc->zone->zone_start_pfn);
1605 if (pfn >= low_pfn) {
1606 cc->fast_search_fail = 0;
1607 cc->search_order = order;
1608 page = freepage;
1609 break;
1612 if (pfn >= min_pfn && pfn > high_pfn) {
1613 high_pfn = pfn;
1615 /* Shorten the scan if a candidate is found */
1616 limit >>= 1;
1619 if (order_scanned >= limit)
1620 break;
1623 /* Use a maximum candidate pfn if a preferred one was not found */
1624 if (!page && high_pfn) {
1625 page = pfn_to_page(high_pfn);
1627 /* Update freepage for the list reorder below */
1628 freepage = page;
1631 /* Reorder to so a future search skips recent pages */
1632 move_freelist_head(freelist, freepage);
1634 /* Isolate the page if available */
1635 if (page) {
1636 if (__isolate_free_page(page, order)) {
1637 set_page_private(page, order);
1638 nr_isolated = 1 << order;
1639 nr_scanned += nr_isolated - 1;
1640 total_isolated += nr_isolated;
1641 cc->nr_freepages += nr_isolated;
1642 list_add_tail(&page->lru, &cc->freepages[order]);
1643 count_compact_events(COMPACTISOLATED, nr_isolated);
1644 } else {
1645 /* If isolation fails, abort the search */
1646 order = cc->search_order + 1;
1647 page = NULL;
1651 spin_unlock_irqrestore(&cc->zone->lock, flags);
1653 /* Skip fast search if enough freepages isolated */
1654 if (cc->nr_freepages >= cc->nr_migratepages)
1655 break;
1658 * Smaller scan on next order so the total scan is related
1659 * to freelist_scan_limit.
1661 if (order_scanned >= limit)
1662 limit = max(1U, limit >> 1);
1665 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1666 nr_scanned, total_isolated);
1668 if (!page) {
1669 cc->fast_search_fail++;
1670 if (scan_start) {
1672 * Use the highest PFN found above min. If one was
1673 * not found, be pessimistic for direct compaction
1674 * and use the min mark.
1676 if (highest >= min_pfn) {
1677 page = pfn_to_page(highest);
1678 cc->free_pfn = highest;
1679 } else {
1680 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1681 page = pageblock_pfn_to_page(min_pfn,
1682 min(pageblock_end_pfn(min_pfn),
1683 zone_end_pfn(cc->zone)),
1684 cc->zone);
1685 if (page && !suitable_migration_target(cc, page))
1686 page = NULL;
1688 cc->free_pfn = min_pfn;
1694 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1695 highest -= pageblock_nr_pages;
1696 cc->zone->compact_cached_free_pfn = highest;
1699 cc->total_free_scanned += nr_scanned;
1700 if (!page)
1701 return;
1703 low_pfn = page_to_pfn(page);
1704 fast_isolate_around(cc, low_pfn);
1708 * Based on information in the current compact_control, find blocks
1709 * suitable for isolating free pages from and then isolate them.
1711 static void isolate_freepages(struct compact_control *cc)
1713 struct zone *zone = cc->zone;
1714 struct page *page;
1715 unsigned long block_start_pfn; /* start of current pageblock */
1716 unsigned long isolate_start_pfn; /* exact pfn we start at */
1717 unsigned long block_end_pfn; /* end of current pageblock */
1718 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1719 unsigned int stride;
1721 /* Try a small search of the free lists for a candidate */
1722 fast_isolate_freepages(cc);
1723 if (cc->nr_freepages)
1724 return;
1727 * Initialise the free scanner. The starting point is where we last
1728 * successfully isolated from, zone-cached value, or the end of the
1729 * zone when isolating for the first time. For looping we also need
1730 * this pfn aligned down to the pageblock boundary, because we do
1731 * block_start_pfn -= pageblock_nr_pages in the for loop.
1732 * For ending point, take care when isolating in last pageblock of a
1733 * zone which ends in the middle of a pageblock.
1734 * The low boundary is the end of the pageblock the migration scanner
1735 * is using.
1737 isolate_start_pfn = cc->free_pfn;
1738 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1739 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1740 zone_end_pfn(zone));
1741 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1742 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1745 * Isolate free pages until enough are available to migrate the
1746 * pages on cc->migratepages. We stop searching if the migrate
1747 * and free page scanners meet or enough free pages are isolated.
1749 for (; block_start_pfn >= low_pfn;
1750 block_end_pfn = block_start_pfn,
1751 block_start_pfn -= pageblock_nr_pages,
1752 isolate_start_pfn = block_start_pfn) {
1753 unsigned long nr_isolated;
1756 * This can iterate a massively long zone without finding any
1757 * suitable migration targets, so periodically check resched.
1759 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1760 cond_resched();
1762 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1763 zone);
1764 if (!page) {
1765 unsigned long next_pfn;
1767 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1768 if (next_pfn)
1769 block_start_pfn = max(next_pfn, low_pfn);
1771 continue;
1774 /* Check the block is suitable for migration */
1775 if (!suitable_migration_target(cc, page))
1776 continue;
1778 /* If isolation recently failed, do not retry */
1779 if (!isolation_suitable(cc, page))
1780 continue;
1782 /* Found a block suitable for isolating free pages from. */
1783 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1784 block_end_pfn, cc->freepages, stride, false);
1786 /* Update the skip hint if the full pageblock was scanned */
1787 if (isolate_start_pfn == block_end_pfn)
1788 update_pageblock_skip(cc, page, block_start_pfn -
1789 pageblock_nr_pages);
1791 /* Are enough freepages isolated? */
1792 if (cc->nr_freepages >= cc->nr_migratepages) {
1793 if (isolate_start_pfn >= block_end_pfn) {
1795 * Restart at previous pageblock if more
1796 * freepages can be isolated next time.
1798 isolate_start_pfn =
1799 block_start_pfn - pageblock_nr_pages;
1801 break;
1802 } else if (isolate_start_pfn < block_end_pfn) {
1804 * If isolation failed early, do not continue
1805 * needlessly.
1807 break;
1810 /* Adjust stride depending on isolation */
1811 if (nr_isolated) {
1812 stride = 1;
1813 continue;
1815 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1819 * Record where the free scanner will restart next time. Either we
1820 * broke from the loop and set isolate_start_pfn based on the last
1821 * call to isolate_freepages_block(), or we met the migration scanner
1822 * and the loop terminated due to isolate_start_pfn < low_pfn
1824 cc->free_pfn = isolate_start_pfn;
1828 * This is a migrate-callback that "allocates" freepages by taking pages
1829 * from the isolated freelists in the block we are migrating to.
1831 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1833 struct compact_control *cc = (struct compact_control *)data;
1834 struct folio *dst;
1835 int order = folio_order(src);
1836 bool has_isolated_pages = false;
1837 int start_order;
1838 struct page *freepage;
1839 unsigned long size;
1841 again:
1842 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1843 if (!list_empty(&cc->freepages[start_order]))
1844 break;
1846 /* no free pages in the list */
1847 if (start_order == NR_PAGE_ORDERS) {
1848 if (has_isolated_pages)
1849 return NULL;
1850 isolate_freepages(cc);
1851 has_isolated_pages = true;
1852 goto again;
1855 freepage = list_first_entry(&cc->freepages[start_order], struct page,
1856 lru);
1857 size = 1 << start_order;
1859 list_del(&freepage->lru);
1861 while (start_order > order) {
1862 start_order--;
1863 size >>= 1;
1865 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1866 set_page_private(&freepage[size], start_order);
1868 dst = (struct folio *)freepage;
1870 post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1871 if (order)
1872 prep_compound_page(&dst->page, order);
1873 cc->nr_freepages -= 1 << order;
1874 cc->nr_migratepages -= 1 << order;
1875 return page_rmappable_folio(&dst->page);
1878 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1880 return alloc_hooks(compaction_alloc_noprof(src, data));
1884 * This is a migrate-callback that "frees" freepages back to the isolated
1885 * freelist. All pages on the freelist are from the same zone, so there is no
1886 * special handling needed for NUMA.
1888 static void compaction_free(struct folio *dst, unsigned long data)
1890 struct compact_control *cc = (struct compact_control *)data;
1891 int order = folio_order(dst);
1892 struct page *page = &dst->page;
1894 if (folio_put_testzero(dst)) {
1895 free_pages_prepare(page, order);
1896 list_add(&dst->lru, &cc->freepages[order]);
1897 cc->nr_freepages += 1 << order;
1899 cc->nr_migratepages += 1 << order;
1901 * someone else has referenced the page, we cannot take it back to our
1902 * free list.
1906 /* possible outcome of isolate_migratepages */
1907 typedef enum {
1908 ISOLATE_ABORT, /* Abort compaction now */
1909 ISOLATE_NONE, /* No pages isolated, continue scanning */
1910 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1911 } isolate_migrate_t;
1914 * Allow userspace to control policy on scanning the unevictable LRU for
1915 * compactable pages.
1917 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1919 * Tunable for proactive compaction. It determines how
1920 * aggressively the kernel should compact memory in the
1921 * background. It takes values in the range [0, 100].
1923 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1924 static int sysctl_extfrag_threshold = 500;
1925 static int __read_mostly sysctl_compact_memory;
1927 static inline void
1928 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1930 if (cc->fast_start_pfn == ULONG_MAX)
1931 return;
1933 if (!cc->fast_start_pfn)
1934 cc->fast_start_pfn = pfn;
1936 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1939 static inline unsigned long
1940 reinit_migrate_pfn(struct compact_control *cc)
1942 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1943 return cc->migrate_pfn;
1945 cc->migrate_pfn = cc->fast_start_pfn;
1946 cc->fast_start_pfn = ULONG_MAX;
1948 return cc->migrate_pfn;
1952 * Briefly search the free lists for a migration source that already has
1953 * some free pages to reduce the number of pages that need migration
1954 * before a pageblock is free.
1956 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1958 unsigned int limit = freelist_scan_limit(cc);
1959 unsigned int nr_scanned = 0;
1960 unsigned long distance;
1961 unsigned long pfn = cc->migrate_pfn;
1962 unsigned long high_pfn;
1963 int order;
1964 bool found_block = false;
1966 /* Skip hints are relied on to avoid repeats on the fast search */
1967 if (cc->ignore_skip_hint)
1968 return pfn;
1971 * If the pageblock should be finished then do not select a different
1972 * pageblock.
1974 if (cc->finish_pageblock)
1975 return pfn;
1978 * If the migrate_pfn is not at the start of a zone or the start
1979 * of a pageblock then assume this is a continuation of a previous
1980 * scan restarted due to COMPACT_CLUSTER_MAX.
1982 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1983 return pfn;
1986 * For smaller orders, just linearly scan as the number of pages
1987 * to migrate should be relatively small and does not necessarily
1988 * justify freeing up a large block for a small allocation.
1990 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1991 return pfn;
1994 * Only allow kcompactd and direct requests for movable pages to
1995 * quickly clear out a MOVABLE pageblock for allocation. This
1996 * reduces the risk that a large movable pageblock is freed for
1997 * an unmovable/reclaimable small allocation.
1999 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2000 return pfn;
2003 * When starting the migration scanner, pick any pageblock within the
2004 * first half of the search space. Otherwise try and pick a pageblock
2005 * within the first eighth to reduce the chances that a migration
2006 * target later becomes a source.
2008 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2009 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2010 distance >>= 2;
2011 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2013 for (order = cc->order - 1;
2014 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2015 order--) {
2016 struct free_area *area = &cc->zone->free_area[order];
2017 struct list_head *freelist;
2018 unsigned long flags;
2019 struct page *freepage;
2021 if (!area->nr_free)
2022 continue;
2024 spin_lock_irqsave(&cc->zone->lock, flags);
2025 freelist = &area->free_list[MIGRATE_MOVABLE];
2026 list_for_each_entry(freepage, freelist, buddy_list) {
2027 unsigned long free_pfn;
2029 if (nr_scanned++ >= limit) {
2030 move_freelist_tail(freelist, freepage);
2031 break;
2034 free_pfn = page_to_pfn(freepage);
2035 if (free_pfn < high_pfn) {
2037 * Avoid if skipped recently. Ideally it would
2038 * move to the tail but even safe iteration of
2039 * the list assumes an entry is deleted, not
2040 * reordered.
2042 if (get_pageblock_skip(freepage))
2043 continue;
2045 /* Reorder to so a future search skips recent pages */
2046 move_freelist_tail(freelist, freepage);
2048 update_fast_start_pfn(cc, free_pfn);
2049 pfn = pageblock_start_pfn(free_pfn);
2050 if (pfn < cc->zone->zone_start_pfn)
2051 pfn = cc->zone->zone_start_pfn;
2052 cc->fast_search_fail = 0;
2053 found_block = true;
2054 break;
2057 spin_unlock_irqrestore(&cc->zone->lock, flags);
2060 cc->total_migrate_scanned += nr_scanned;
2063 * If fast scanning failed then use a cached entry for a page block
2064 * that had free pages as the basis for starting a linear scan.
2066 if (!found_block) {
2067 cc->fast_search_fail++;
2068 pfn = reinit_migrate_pfn(cc);
2070 return pfn;
2074 * Isolate all pages that can be migrated from the first suitable block,
2075 * starting at the block pointed to by the migrate scanner pfn within
2076 * compact_control.
2078 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2080 unsigned long block_start_pfn;
2081 unsigned long block_end_pfn;
2082 unsigned long low_pfn;
2083 struct page *page;
2084 const isolate_mode_t isolate_mode =
2085 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2086 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2087 bool fast_find_block;
2090 * Start at where we last stopped, or beginning of the zone as
2091 * initialized by compact_zone(). The first failure will use
2092 * the lowest PFN as the starting point for linear scanning.
2094 low_pfn = fast_find_migrateblock(cc);
2095 block_start_pfn = pageblock_start_pfn(low_pfn);
2096 if (block_start_pfn < cc->zone->zone_start_pfn)
2097 block_start_pfn = cc->zone->zone_start_pfn;
2100 * fast_find_migrateblock() has already ensured the pageblock is not
2101 * set with a skipped flag, so to avoid the isolation_suitable check
2102 * below again, check whether the fast search was successful.
2104 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2106 /* Only scan within a pageblock boundary */
2107 block_end_pfn = pageblock_end_pfn(low_pfn);
2110 * Iterate over whole pageblocks until we find the first suitable.
2111 * Do not cross the free scanner.
2113 for (; block_end_pfn <= cc->free_pfn;
2114 fast_find_block = false,
2115 cc->migrate_pfn = low_pfn = block_end_pfn,
2116 block_start_pfn = block_end_pfn,
2117 block_end_pfn += pageblock_nr_pages) {
2120 * This can potentially iterate a massively long zone with
2121 * many pageblocks unsuitable, so periodically check if we
2122 * need to schedule.
2124 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2125 cond_resched();
2127 page = pageblock_pfn_to_page(block_start_pfn,
2128 block_end_pfn, cc->zone);
2129 if (!page) {
2130 unsigned long next_pfn;
2132 next_pfn = skip_offline_sections(block_start_pfn);
2133 if (next_pfn)
2134 block_end_pfn = min(next_pfn, cc->free_pfn);
2135 continue;
2139 * If isolation recently failed, do not retry. Only check the
2140 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2141 * to be visited multiple times. Assume skip was checked
2142 * before making it "skip" so other compaction instances do
2143 * not scan the same block.
2145 if ((pageblock_aligned(low_pfn) ||
2146 low_pfn == cc->zone->zone_start_pfn) &&
2147 !fast_find_block && !isolation_suitable(cc, page))
2148 continue;
2151 * For async direct compaction, only scan the pageblocks of the
2152 * same migratetype without huge pages. Async direct compaction
2153 * is optimistic to see if the minimum amount of work satisfies
2154 * the allocation. The cached PFN is updated as it's possible
2155 * that all remaining blocks between source and target are
2156 * unsuitable and the compaction scanners fail to meet.
2158 if (!suitable_migration_source(cc, page)) {
2159 update_cached_migrate(cc, block_end_pfn);
2160 continue;
2163 /* Perform the isolation */
2164 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2165 isolate_mode))
2166 return ISOLATE_ABORT;
2169 * Either we isolated something and proceed with migration. Or
2170 * we failed and compact_zone should decide if we should
2171 * continue or not.
2173 break;
2176 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2180 * Determine whether kswapd is (or recently was!) running on this node.
2182 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2183 * zero it.
2185 static bool kswapd_is_running(pg_data_t *pgdat)
2187 bool running;
2189 pgdat_kswapd_lock(pgdat);
2190 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2191 pgdat_kswapd_unlock(pgdat);
2193 return running;
2197 * A zone's fragmentation score is the external fragmentation wrt to the
2198 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2200 static unsigned int fragmentation_score_zone(struct zone *zone)
2202 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2206 * A weighted zone's fragmentation score is the external fragmentation
2207 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2208 * returns a value in the range [0, 100].
2210 * The scaling factor ensures that proactive compaction focuses on larger
2211 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2212 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2213 * and thus never exceeds the high threshold for proactive compaction.
2215 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2217 unsigned long score;
2219 score = zone->present_pages * fragmentation_score_zone(zone);
2220 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2224 * The per-node proactive (background) compaction process is started by its
2225 * corresponding kcompactd thread when the node's fragmentation score
2226 * exceeds the high threshold. The compaction process remains active till
2227 * the node's score falls below the low threshold, or one of the back-off
2228 * conditions is met.
2230 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2232 unsigned int score = 0;
2233 int zoneid;
2235 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2236 struct zone *zone;
2238 zone = &pgdat->node_zones[zoneid];
2239 if (!populated_zone(zone))
2240 continue;
2241 score += fragmentation_score_zone_weighted(zone);
2244 return score;
2247 static unsigned int fragmentation_score_wmark(bool low)
2249 unsigned int wmark_low;
2252 * Cap the low watermark to avoid excessive compaction
2253 * activity in case a user sets the proactiveness tunable
2254 * close to 100 (maximum).
2256 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2257 return low ? wmark_low : min(wmark_low + 10, 100U);
2260 static bool should_proactive_compact_node(pg_data_t *pgdat)
2262 int wmark_high;
2264 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2265 return false;
2267 wmark_high = fragmentation_score_wmark(false);
2268 return fragmentation_score_node(pgdat) > wmark_high;
2271 static enum compact_result __compact_finished(struct compact_control *cc)
2273 unsigned int order;
2274 const int migratetype = cc->migratetype;
2275 int ret;
2277 /* Compaction run completes if the migrate and free scanner meet */
2278 if (compact_scanners_met(cc)) {
2279 /* Let the next compaction start anew. */
2280 reset_cached_positions(cc->zone);
2283 * Mark that the PG_migrate_skip information should be cleared
2284 * by kswapd when it goes to sleep. kcompactd does not set the
2285 * flag itself as the decision to be clear should be directly
2286 * based on an allocation request.
2288 if (cc->direct_compaction)
2289 cc->zone->compact_blockskip_flush = true;
2291 if (cc->whole_zone)
2292 return COMPACT_COMPLETE;
2293 else
2294 return COMPACT_PARTIAL_SKIPPED;
2297 if (cc->proactive_compaction) {
2298 int score, wmark_low;
2299 pg_data_t *pgdat;
2301 pgdat = cc->zone->zone_pgdat;
2302 if (kswapd_is_running(pgdat))
2303 return COMPACT_PARTIAL_SKIPPED;
2305 score = fragmentation_score_zone(cc->zone);
2306 wmark_low = fragmentation_score_wmark(true);
2308 if (score > wmark_low)
2309 ret = COMPACT_CONTINUE;
2310 else
2311 ret = COMPACT_SUCCESS;
2313 goto out;
2316 if (is_via_compact_memory(cc->order))
2317 return COMPACT_CONTINUE;
2320 * Always finish scanning a pageblock to reduce the possibility of
2321 * fallbacks in the future. This is particularly important when
2322 * migration source is unmovable/reclaimable but it's not worth
2323 * special casing.
2325 if (!pageblock_aligned(cc->migrate_pfn))
2326 return COMPACT_CONTINUE;
2328 /* Direct compactor: Is a suitable page free? */
2329 ret = COMPACT_NO_SUITABLE_PAGE;
2330 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2331 struct free_area *area = &cc->zone->free_area[order];
2332 bool can_steal;
2334 /* Job done if page is free of the right migratetype */
2335 if (!free_area_empty(area, migratetype))
2336 return COMPACT_SUCCESS;
2338 #ifdef CONFIG_CMA
2339 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2340 if (migratetype == MIGRATE_MOVABLE &&
2341 !free_area_empty(area, MIGRATE_CMA))
2342 return COMPACT_SUCCESS;
2343 #endif
2345 * Job done if allocation would steal freepages from
2346 * other migratetype buddy lists.
2348 if (find_suitable_fallback(area, order, migratetype,
2349 true, &can_steal) != -1)
2351 * Movable pages are OK in any pageblock. If we are
2352 * stealing for a non-movable allocation, make sure
2353 * we finish compacting the current pageblock first
2354 * (which is assured by the above migrate_pfn align
2355 * check) so it is as free as possible and we won't
2356 * have to steal another one soon.
2358 return COMPACT_SUCCESS;
2361 out:
2362 if (cc->contended || fatal_signal_pending(current))
2363 ret = COMPACT_CONTENDED;
2365 return ret;
2368 static enum compact_result compact_finished(struct compact_control *cc)
2370 int ret;
2372 ret = __compact_finished(cc);
2373 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2374 if (ret == COMPACT_NO_SUITABLE_PAGE)
2375 ret = COMPACT_CONTINUE;
2377 return ret;
2380 static bool __compaction_suitable(struct zone *zone, int order,
2381 int highest_zoneidx,
2382 unsigned long wmark_target)
2384 unsigned long watermark;
2386 * Watermarks for order-0 must be met for compaction to be able to
2387 * isolate free pages for migration targets. This means that the
2388 * watermark and alloc_flags have to match, or be more pessimistic than
2389 * the check in __isolate_free_page(). We don't use the direct
2390 * compactor's alloc_flags, as they are not relevant for freepage
2391 * isolation. We however do use the direct compactor's highest_zoneidx
2392 * to skip over zones where lowmem reserves would prevent allocation
2393 * even if compaction succeeds.
2394 * For costly orders, we require low watermark instead of min for
2395 * compaction to proceed to increase its chances.
2396 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2397 * suitable migration targets
2399 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2400 low_wmark_pages(zone) : min_wmark_pages(zone);
2401 watermark += compact_gap(order);
2402 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2403 ALLOC_CMA, wmark_target);
2407 * compaction_suitable: Is this suitable to run compaction on this zone now?
2409 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2411 enum compact_result compact_result;
2412 bool suitable;
2414 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2415 zone_page_state(zone, NR_FREE_PAGES));
2417 * fragmentation index determines if allocation failures are due to
2418 * low memory or external fragmentation
2420 * index of -1000 would imply allocations might succeed depending on
2421 * watermarks, but we already failed the high-order watermark check
2422 * index towards 0 implies failure is due to lack of memory
2423 * index towards 1000 implies failure is due to fragmentation
2425 * Only compact if a failure would be due to fragmentation. Also
2426 * ignore fragindex for non-costly orders where the alternative to
2427 * a successful reclaim/compaction is OOM. Fragindex and the
2428 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2429 * excessive compaction for costly orders, but it should not be at the
2430 * expense of system stability.
2432 if (suitable) {
2433 compact_result = COMPACT_CONTINUE;
2434 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2435 int fragindex = fragmentation_index(zone, order);
2437 if (fragindex >= 0 &&
2438 fragindex <= sysctl_extfrag_threshold) {
2439 suitable = false;
2440 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2443 } else {
2444 compact_result = COMPACT_SKIPPED;
2447 trace_mm_compaction_suitable(zone, order, compact_result);
2449 return suitable;
2452 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2453 int alloc_flags)
2455 struct zone *zone;
2456 struct zoneref *z;
2459 * Make sure at least one zone would pass __compaction_suitable if we continue
2460 * retrying the reclaim.
2462 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2463 ac->highest_zoneidx, ac->nodemask) {
2464 unsigned long available;
2467 * Do not consider all the reclaimable memory because we do not
2468 * want to trash just for a single high order allocation which
2469 * is even not guaranteed to appear even if __compaction_suitable
2470 * is happy about the watermark check.
2472 available = zone_reclaimable_pages(zone) / order;
2473 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2474 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2475 available))
2476 return true;
2479 return false;
2483 * Should we do compaction for target allocation order.
2484 * Return COMPACT_SUCCESS if allocation for target order can be already
2485 * satisfied
2486 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2487 * Return COMPACT_CONTINUE if compaction for target order should be ran
2489 static enum compact_result
2490 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2491 int highest_zoneidx, unsigned int alloc_flags)
2493 unsigned long watermark;
2495 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2496 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2497 alloc_flags))
2498 return COMPACT_SUCCESS;
2500 if (!compaction_suitable(zone, order, highest_zoneidx))
2501 return COMPACT_SKIPPED;
2503 return COMPACT_CONTINUE;
2506 static enum compact_result
2507 compact_zone(struct compact_control *cc, struct capture_control *capc)
2509 enum compact_result ret;
2510 unsigned long start_pfn = cc->zone->zone_start_pfn;
2511 unsigned long end_pfn = zone_end_pfn(cc->zone);
2512 unsigned long last_migrated_pfn;
2513 const bool sync = cc->mode != MIGRATE_ASYNC;
2514 bool update_cached;
2515 unsigned int nr_succeeded = 0, nr_migratepages;
2516 int order;
2519 * These counters track activities during zone compaction. Initialize
2520 * them before compacting a new zone.
2522 cc->total_migrate_scanned = 0;
2523 cc->total_free_scanned = 0;
2524 cc->nr_migratepages = 0;
2525 cc->nr_freepages = 0;
2526 for (order = 0; order < NR_PAGE_ORDERS; order++)
2527 INIT_LIST_HEAD(&cc->freepages[order]);
2528 INIT_LIST_HEAD(&cc->migratepages);
2530 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2532 if (!is_via_compact_memory(cc->order)) {
2533 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2534 cc->highest_zoneidx,
2535 cc->alloc_flags);
2536 if (ret != COMPACT_CONTINUE)
2537 return ret;
2541 * Clear pageblock skip if there were failures recently and compaction
2542 * is about to be retried after being deferred.
2544 if (compaction_restarting(cc->zone, cc->order))
2545 __reset_isolation_suitable(cc->zone);
2548 * Setup to move all movable pages to the end of the zone. Used cached
2549 * information on where the scanners should start (unless we explicitly
2550 * want to compact the whole zone), but check that it is initialised
2551 * by ensuring the values are within zone boundaries.
2553 cc->fast_start_pfn = 0;
2554 if (cc->whole_zone) {
2555 cc->migrate_pfn = start_pfn;
2556 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2557 } else {
2558 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2559 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2560 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2561 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2562 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2564 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2565 cc->migrate_pfn = start_pfn;
2566 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2567 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2570 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2571 cc->whole_zone = true;
2574 last_migrated_pfn = 0;
2577 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2578 * the basis that some migrations will fail in ASYNC mode. However,
2579 * if the cached PFNs match and pageblocks are skipped due to having
2580 * no isolation candidates, then the sync state does not matter.
2581 * Until a pageblock with isolation candidates is found, keep the
2582 * cached PFNs in sync to avoid revisiting the same blocks.
2584 update_cached = !sync &&
2585 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2587 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2589 /* lru_add_drain_all could be expensive with involving other CPUs */
2590 lru_add_drain();
2592 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2593 int err;
2594 unsigned long iteration_start_pfn = cc->migrate_pfn;
2597 * Avoid multiple rescans of the same pageblock which can
2598 * happen if a page cannot be isolated (dirty/writeback in
2599 * async mode) or if the migrated pages are being allocated
2600 * before the pageblock is cleared. The first rescan will
2601 * capture the entire pageblock for migration. If it fails,
2602 * it'll be marked skip and scanning will proceed as normal.
2604 cc->finish_pageblock = false;
2605 if (pageblock_start_pfn(last_migrated_pfn) ==
2606 pageblock_start_pfn(iteration_start_pfn)) {
2607 cc->finish_pageblock = true;
2610 rescan:
2611 switch (isolate_migratepages(cc)) {
2612 case ISOLATE_ABORT:
2613 ret = COMPACT_CONTENDED;
2614 putback_movable_pages(&cc->migratepages);
2615 cc->nr_migratepages = 0;
2616 goto out;
2617 case ISOLATE_NONE:
2618 if (update_cached) {
2619 cc->zone->compact_cached_migrate_pfn[1] =
2620 cc->zone->compact_cached_migrate_pfn[0];
2624 * We haven't isolated and migrated anything, but
2625 * there might still be unflushed migrations from
2626 * previous cc->order aligned block.
2628 goto check_drain;
2629 case ISOLATE_SUCCESS:
2630 update_cached = false;
2631 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2632 pageblock_start_pfn(cc->migrate_pfn - 1));
2636 * Record the number of pages to migrate since the
2637 * compaction_alloc/free() will update cc->nr_migratepages
2638 * properly.
2640 nr_migratepages = cc->nr_migratepages;
2641 err = migrate_pages(&cc->migratepages, compaction_alloc,
2642 compaction_free, (unsigned long)cc, cc->mode,
2643 MR_COMPACTION, &nr_succeeded);
2645 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2647 /* All pages were either migrated or will be released */
2648 cc->nr_migratepages = 0;
2649 if (err) {
2650 putback_movable_pages(&cc->migratepages);
2652 * migrate_pages() may return -ENOMEM when scanners meet
2653 * and we want compact_finished() to detect it
2655 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2656 ret = COMPACT_CONTENDED;
2657 goto out;
2660 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2661 * within the pageblock_order-aligned block and
2662 * fast_find_migrateblock may be used then scan the
2663 * remainder of the pageblock. This will mark the
2664 * pageblock "skip" to avoid rescanning in the near
2665 * future. This will isolate more pages than necessary
2666 * for the request but avoid loops due to
2667 * fast_find_migrateblock revisiting blocks that were
2668 * recently partially scanned.
2670 if (!pageblock_aligned(cc->migrate_pfn) &&
2671 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2672 (cc->mode < MIGRATE_SYNC)) {
2673 cc->finish_pageblock = true;
2676 * Draining pcplists does not help THP if
2677 * any page failed to migrate. Even after
2678 * drain, the pageblock will not be free.
2680 if (cc->order == COMPACTION_HPAGE_ORDER)
2681 last_migrated_pfn = 0;
2683 goto rescan;
2687 /* Stop if a page has been captured */
2688 if (capc && capc->page) {
2689 ret = COMPACT_SUCCESS;
2690 break;
2693 check_drain:
2695 * Has the migration scanner moved away from the previous
2696 * cc->order aligned block where we migrated from? If yes,
2697 * flush the pages that were freed, so that they can merge and
2698 * compact_finished() can detect immediately if allocation
2699 * would succeed.
2701 if (cc->order > 0 && last_migrated_pfn) {
2702 unsigned long current_block_start =
2703 block_start_pfn(cc->migrate_pfn, cc->order);
2705 if (last_migrated_pfn < current_block_start) {
2706 lru_add_drain_cpu_zone(cc->zone);
2707 /* No more flushing until we migrate again */
2708 last_migrated_pfn = 0;
2713 out:
2715 * Release free pages and update where the free scanner should restart,
2716 * so we don't leave any returned pages behind in the next attempt.
2718 if (cc->nr_freepages > 0) {
2719 unsigned long free_pfn = release_free_list(cc->freepages);
2721 cc->nr_freepages = 0;
2722 VM_BUG_ON(free_pfn == 0);
2723 /* The cached pfn is always the first in a pageblock */
2724 free_pfn = pageblock_start_pfn(free_pfn);
2726 * Only go back, not forward. The cached pfn might have been
2727 * already reset to zone end in compact_finished()
2729 if (free_pfn > cc->zone->compact_cached_free_pfn)
2730 cc->zone->compact_cached_free_pfn = free_pfn;
2733 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2734 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2736 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2738 VM_BUG_ON(!list_empty(&cc->migratepages));
2740 return ret;
2743 static enum compact_result compact_zone_order(struct zone *zone, int order,
2744 gfp_t gfp_mask, enum compact_priority prio,
2745 unsigned int alloc_flags, int highest_zoneidx,
2746 struct page **capture)
2748 enum compact_result ret;
2749 struct compact_control cc = {
2750 .order = order,
2751 .search_order = order,
2752 .gfp_mask = gfp_mask,
2753 .zone = zone,
2754 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2755 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2756 .alloc_flags = alloc_flags,
2757 .highest_zoneidx = highest_zoneidx,
2758 .direct_compaction = true,
2759 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2760 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2761 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2763 struct capture_control capc = {
2764 .cc = &cc,
2765 .page = NULL,
2769 * Make sure the structs are really initialized before we expose the
2770 * capture control, in case we are interrupted and the interrupt handler
2771 * frees a page.
2773 barrier();
2774 WRITE_ONCE(current->capture_control, &capc);
2776 ret = compact_zone(&cc, &capc);
2779 * Make sure we hide capture control first before we read the captured
2780 * page pointer, otherwise an interrupt could free and capture a page
2781 * and we would leak it.
2783 WRITE_ONCE(current->capture_control, NULL);
2784 *capture = READ_ONCE(capc.page);
2786 * Technically, it is also possible that compaction is skipped but
2787 * the page is still captured out of luck(IRQ came and freed the page).
2788 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2789 * the COMPACT[STALL|FAIL] when compaction is skipped.
2791 if (*capture)
2792 ret = COMPACT_SUCCESS;
2794 return ret;
2798 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2799 * @gfp_mask: The GFP mask of the current allocation
2800 * @order: The order of the current allocation
2801 * @alloc_flags: The allocation flags of the current allocation
2802 * @ac: The context of current allocation
2803 * @prio: Determines how hard direct compaction should try to succeed
2804 * @capture: Pointer to free page created by compaction will be stored here
2806 * This is the main entry point for direct page compaction.
2808 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2809 unsigned int alloc_flags, const struct alloc_context *ac,
2810 enum compact_priority prio, struct page **capture)
2812 struct zoneref *z;
2813 struct zone *zone;
2814 enum compact_result rc = COMPACT_SKIPPED;
2816 if (!gfp_compaction_allowed(gfp_mask))
2817 return COMPACT_SKIPPED;
2819 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2821 /* Compact each zone in the list */
2822 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2823 ac->highest_zoneidx, ac->nodemask) {
2824 enum compact_result status;
2826 if (cpusets_enabled() &&
2827 (alloc_flags & ALLOC_CPUSET) &&
2828 !__cpuset_zone_allowed(zone, gfp_mask))
2829 continue;
2831 if (prio > MIN_COMPACT_PRIORITY
2832 && compaction_deferred(zone, order)) {
2833 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2834 continue;
2837 status = compact_zone_order(zone, order, gfp_mask, prio,
2838 alloc_flags, ac->highest_zoneidx, capture);
2839 rc = max(status, rc);
2841 /* The allocation should succeed, stop compacting */
2842 if (status == COMPACT_SUCCESS) {
2844 * We think the allocation will succeed in this zone,
2845 * but it is not certain, hence the false. The caller
2846 * will repeat this with true if allocation indeed
2847 * succeeds in this zone.
2849 compaction_defer_reset(zone, order, false);
2851 break;
2854 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2855 status == COMPACT_PARTIAL_SKIPPED))
2857 * We think that allocation won't succeed in this zone
2858 * so we defer compaction there. If it ends up
2859 * succeeding after all, it will be reset.
2861 defer_compaction(zone, order);
2864 * We might have stopped compacting due to need_resched() in
2865 * async compaction, or due to a fatal signal detected. In that
2866 * case do not try further zones
2868 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2869 || fatal_signal_pending(current))
2870 break;
2873 return rc;
2877 * compact_node() - compact all zones within a node
2878 * @pgdat: The node page data
2879 * @proactive: Whether the compaction is proactive
2881 * For proactive compaction, compact till each zone's fragmentation score
2882 * reaches within proactive compaction thresholds (as determined by the
2883 * proactiveness tunable), it is possible that the function returns before
2884 * reaching score targets due to various back-off conditions, such as,
2885 * contention on per-node or per-zone locks.
2887 static int compact_node(pg_data_t *pgdat, bool proactive)
2889 int zoneid;
2890 struct zone *zone;
2891 struct compact_control cc = {
2892 .order = -1,
2893 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2894 .ignore_skip_hint = true,
2895 .whole_zone = true,
2896 .gfp_mask = GFP_KERNEL,
2897 .proactive_compaction = proactive,
2900 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2901 zone = &pgdat->node_zones[zoneid];
2902 if (!populated_zone(zone))
2903 continue;
2905 if (fatal_signal_pending(current))
2906 return -EINTR;
2908 cc.zone = zone;
2910 compact_zone(&cc, NULL);
2912 if (proactive) {
2913 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2914 cc.total_migrate_scanned);
2915 count_compact_events(KCOMPACTD_FREE_SCANNED,
2916 cc.total_free_scanned);
2920 return 0;
2923 /* Compact all zones of all nodes in the system */
2924 static int compact_nodes(void)
2926 int ret, nid;
2928 /* Flush pending updates to the LRU lists */
2929 lru_add_drain_all();
2931 for_each_online_node(nid) {
2932 ret = compact_node(NODE_DATA(nid), false);
2933 if (ret)
2934 return ret;
2937 return 0;
2940 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2941 void *buffer, size_t *length, loff_t *ppos)
2943 int rc, nid;
2945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2946 if (rc)
2947 return rc;
2949 if (write && sysctl_compaction_proactiveness) {
2950 for_each_online_node(nid) {
2951 pg_data_t *pgdat = NODE_DATA(nid);
2953 if (pgdat->proactive_compact_trigger)
2954 continue;
2956 pgdat->proactive_compact_trigger = true;
2957 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2958 pgdat->nr_zones - 1);
2959 wake_up_interruptible(&pgdat->kcompactd_wait);
2963 return 0;
2967 * This is the entry point for compacting all nodes via
2968 * /proc/sys/vm/compact_memory
2970 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2971 void *buffer, size_t *length, loff_t *ppos)
2973 int ret;
2975 ret = proc_dointvec(table, write, buffer, length, ppos);
2976 if (ret)
2977 return ret;
2979 if (sysctl_compact_memory != 1)
2980 return -EINVAL;
2982 if (write)
2983 ret = compact_nodes();
2985 return ret;
2988 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2989 static ssize_t compact_store(struct device *dev,
2990 struct device_attribute *attr,
2991 const char *buf, size_t count)
2993 int nid = dev->id;
2995 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2996 /* Flush pending updates to the LRU lists */
2997 lru_add_drain_all();
2999 compact_node(NODE_DATA(nid), false);
3002 return count;
3004 static DEVICE_ATTR_WO(compact);
3006 int compaction_register_node(struct node *node)
3008 return device_create_file(&node->dev, &dev_attr_compact);
3011 void compaction_unregister_node(struct node *node)
3013 device_remove_file(&node->dev, &dev_attr_compact);
3015 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3017 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3019 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3020 pgdat->proactive_compact_trigger;
3023 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3025 int zoneid;
3026 struct zone *zone;
3027 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3028 enum compact_result ret;
3030 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3031 zone = &pgdat->node_zones[zoneid];
3033 if (!populated_zone(zone))
3034 continue;
3036 ret = compaction_suit_allocation_order(zone,
3037 pgdat->kcompactd_max_order,
3038 highest_zoneidx, ALLOC_WMARK_MIN);
3039 if (ret == COMPACT_CONTINUE)
3040 return true;
3043 return false;
3046 static void kcompactd_do_work(pg_data_t *pgdat)
3049 * With no special task, compact all zones so that a page of requested
3050 * order is allocatable.
3052 int zoneid;
3053 struct zone *zone;
3054 struct compact_control cc = {
3055 .order = pgdat->kcompactd_max_order,
3056 .search_order = pgdat->kcompactd_max_order,
3057 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3058 .mode = MIGRATE_SYNC_LIGHT,
3059 .ignore_skip_hint = false,
3060 .gfp_mask = GFP_KERNEL,
3062 enum compact_result ret;
3064 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3065 cc.highest_zoneidx);
3066 count_compact_event(KCOMPACTD_WAKE);
3068 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3069 int status;
3071 zone = &pgdat->node_zones[zoneid];
3072 if (!populated_zone(zone))
3073 continue;
3075 if (compaction_deferred(zone, cc.order))
3076 continue;
3078 ret = compaction_suit_allocation_order(zone,
3079 cc.order, zoneid, ALLOC_WMARK_MIN);
3080 if (ret != COMPACT_CONTINUE)
3081 continue;
3083 if (kthread_should_stop())
3084 return;
3086 cc.zone = zone;
3087 status = compact_zone(&cc, NULL);
3089 if (status == COMPACT_SUCCESS) {
3090 compaction_defer_reset(zone, cc.order, false);
3091 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3093 * Buddy pages may become stranded on pcps that could
3094 * otherwise coalesce on the zone's free area for
3095 * order >= cc.order. This is ratelimited by the
3096 * upcoming deferral.
3098 drain_all_pages(zone);
3101 * We use sync migration mode here, so we defer like
3102 * sync direct compaction does.
3104 defer_compaction(zone, cc.order);
3107 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3108 cc.total_migrate_scanned);
3109 count_compact_events(KCOMPACTD_FREE_SCANNED,
3110 cc.total_free_scanned);
3114 * Regardless of success, we are done until woken up next. But remember
3115 * the requested order/highest_zoneidx in case it was higher/tighter
3116 * than our current ones
3118 if (pgdat->kcompactd_max_order <= cc.order)
3119 pgdat->kcompactd_max_order = 0;
3120 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3121 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3124 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3126 if (!order)
3127 return;
3129 if (pgdat->kcompactd_max_order < order)
3130 pgdat->kcompactd_max_order = order;
3132 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3133 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3136 * Pairs with implicit barrier in wait_event_freezable()
3137 * such that wakeups are not missed.
3139 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3140 return;
3142 if (!kcompactd_node_suitable(pgdat))
3143 return;
3145 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3146 highest_zoneidx);
3147 wake_up_interruptible(&pgdat->kcompactd_wait);
3151 * The background compaction daemon, started as a kernel thread
3152 * from the init process.
3154 static int kcompactd(void *p)
3156 pg_data_t *pgdat = (pg_data_t *)p;
3157 struct task_struct *tsk = current;
3158 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3159 long timeout = default_timeout;
3161 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3163 if (!cpumask_empty(cpumask))
3164 set_cpus_allowed_ptr(tsk, cpumask);
3166 set_freezable();
3168 pgdat->kcompactd_max_order = 0;
3169 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3171 while (!kthread_should_stop()) {
3172 unsigned long pflags;
3175 * Avoid the unnecessary wakeup for proactive compaction
3176 * when it is disabled.
3178 if (!sysctl_compaction_proactiveness)
3179 timeout = MAX_SCHEDULE_TIMEOUT;
3180 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3181 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3182 kcompactd_work_requested(pgdat), timeout) &&
3183 !pgdat->proactive_compact_trigger) {
3185 psi_memstall_enter(&pflags);
3186 kcompactd_do_work(pgdat);
3187 psi_memstall_leave(&pflags);
3189 * Reset the timeout value. The defer timeout from
3190 * proactive compaction is lost here but that is fine
3191 * as the condition of the zone changing substantionally
3192 * then carrying on with the previous defer interval is
3193 * not useful.
3195 timeout = default_timeout;
3196 continue;
3200 * Start the proactive work with default timeout. Based
3201 * on the fragmentation score, this timeout is updated.
3203 timeout = default_timeout;
3204 if (should_proactive_compact_node(pgdat)) {
3205 unsigned int prev_score, score;
3207 prev_score = fragmentation_score_node(pgdat);
3208 compact_node(pgdat, true);
3209 score = fragmentation_score_node(pgdat);
3211 * Defer proactive compaction if the fragmentation
3212 * score did not go down i.e. no progress made.
3214 if (unlikely(score >= prev_score))
3215 timeout =
3216 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3218 if (unlikely(pgdat->proactive_compact_trigger))
3219 pgdat->proactive_compact_trigger = false;
3222 return 0;
3226 * This kcompactd start function will be called by init and node-hot-add.
3227 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3229 void __meminit kcompactd_run(int nid)
3231 pg_data_t *pgdat = NODE_DATA(nid);
3233 if (pgdat->kcompactd)
3234 return;
3236 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3237 if (IS_ERR(pgdat->kcompactd)) {
3238 pr_err("Failed to start kcompactd on node %d\n", nid);
3239 pgdat->kcompactd = NULL;
3244 * Called by memory hotplug when all memory in a node is offlined. Caller must
3245 * be holding mem_hotplug_begin/done().
3247 void __meminit kcompactd_stop(int nid)
3249 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3251 if (kcompactd) {
3252 kthread_stop(kcompactd);
3253 NODE_DATA(nid)->kcompactd = NULL;
3258 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3259 * not required for correctness. So if the last cpu in a node goes
3260 * away, we get changed to run anywhere: as the first one comes back,
3261 * restore their cpu bindings.
3263 static int kcompactd_cpu_online(unsigned int cpu)
3265 int nid;
3267 for_each_node_state(nid, N_MEMORY) {
3268 pg_data_t *pgdat = NODE_DATA(nid);
3269 const struct cpumask *mask;
3271 mask = cpumask_of_node(pgdat->node_id);
3273 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3274 /* One of our CPUs online: restore mask */
3275 if (pgdat->kcompactd)
3276 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3278 return 0;
3281 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3282 int write, void *buffer, size_t *lenp, loff_t *ppos)
3284 int ret, old;
3286 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3287 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3289 old = *(int *)table->data;
3290 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3291 if (ret)
3292 return ret;
3293 if (old != *(int *)table->data)
3294 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3295 table->procname, current->comm,
3296 task_pid_nr(current));
3297 return ret;
3300 static struct ctl_table vm_compaction[] = {
3302 .procname = "compact_memory",
3303 .data = &sysctl_compact_memory,
3304 .maxlen = sizeof(int),
3305 .mode = 0200,
3306 .proc_handler = sysctl_compaction_handler,
3309 .procname = "compaction_proactiveness",
3310 .data = &sysctl_compaction_proactiveness,
3311 .maxlen = sizeof(sysctl_compaction_proactiveness),
3312 .mode = 0644,
3313 .proc_handler = compaction_proactiveness_sysctl_handler,
3314 .extra1 = SYSCTL_ZERO,
3315 .extra2 = SYSCTL_ONE_HUNDRED,
3318 .procname = "extfrag_threshold",
3319 .data = &sysctl_extfrag_threshold,
3320 .maxlen = sizeof(int),
3321 .mode = 0644,
3322 .proc_handler = proc_dointvec_minmax,
3323 .extra1 = SYSCTL_ZERO,
3324 .extra2 = SYSCTL_ONE_THOUSAND,
3327 .procname = "compact_unevictable_allowed",
3328 .data = &sysctl_compact_unevictable_allowed,
3329 .maxlen = sizeof(int),
3330 .mode = 0644,
3331 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3332 .extra1 = SYSCTL_ZERO,
3333 .extra2 = SYSCTL_ONE,
3337 static int __init kcompactd_init(void)
3339 int nid;
3340 int ret;
3342 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3343 "mm/compaction:online",
3344 kcompactd_cpu_online, NULL);
3345 if (ret < 0) {
3346 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3347 return ret;
3350 for_each_node_state(nid, N_MEMORY)
3351 kcompactd_run(nid);
3352 register_sysctl_init("vm", vm_compaction);
3353 return 0;
3355 subsys_initcall(kcompactd_init)
3357 #endif /* CONFIG_COMPACTION */