1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
29 bool __kasan_check_read(const volatile void *p
, unsigned int size
)
31 return kasan_check_range((void *)p
, size
, false, _RET_IP_
);
33 EXPORT_SYMBOL(__kasan_check_read
);
35 bool __kasan_check_write(const volatile void *p
, unsigned int size
)
37 return kasan_check_range((void *)p
, size
, true, _RET_IP_
);
39 EXPORT_SYMBOL(__kasan_check_write
);
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
43 * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44 * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45 * for the sites they want to instrument.
47 * If we have a compiler that can instrument meminstrinsics, never override
48 * these, so that non-instrumented files can safely consider them as builtins.
51 void *memset(void *addr
, int c
, size_t len
)
53 if (!kasan_check_range(addr
, len
, true, _RET_IP_
))
56 return __memset(addr
, c
, len
);
59 #ifdef __HAVE_ARCH_MEMMOVE
61 void *memmove(void *dest
, const void *src
, size_t len
)
63 if (!kasan_check_range(src
, len
, false, _RET_IP_
) ||
64 !kasan_check_range(dest
, len
, true, _RET_IP_
))
67 return __memmove(dest
, src
, len
);
72 void *memcpy(void *dest
, const void *src
, size_t len
)
74 if (!kasan_check_range(src
, len
, false, _RET_IP_
) ||
75 !kasan_check_range(dest
, len
, true, _RET_IP_
))
78 return __memcpy(dest
, src
, len
);
82 void *__asan_memset(void *addr
, int c
, ssize_t len
)
84 if (!kasan_check_range(addr
, len
, true, _RET_IP_
))
87 return __memset(addr
, c
, len
);
89 EXPORT_SYMBOL(__asan_memset
);
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest
, const void *src
, ssize_t len
)
94 if (!kasan_check_range(src
, len
, false, _RET_IP_
) ||
95 !kasan_check_range(dest
, len
, true, _RET_IP_
))
98 return __memmove(dest
, src
, len
);
100 EXPORT_SYMBOL(__asan_memmove
);
103 void *__asan_memcpy(void *dest
, const void *src
, ssize_t len
)
105 if (!kasan_check_range(src
, len
, false, _RET_IP_
) ||
106 !kasan_check_range(dest
, len
, true, _RET_IP_
))
109 return __memcpy(dest
, src
, len
);
111 EXPORT_SYMBOL(__asan_memcpy
);
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr
, int c
, ssize_t len
) __alias(__asan_memset
);
115 EXPORT_SYMBOL(__hwasan_memset
);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest
, const void *src
, ssize_t len
) __alias(__asan_memmove
);
118 EXPORT_SYMBOL(__hwasan_memmove
);
120 void *__hwasan_memcpy(void *dest
, const void *src
, ssize_t len
) __alias(__asan_memcpy
);
121 EXPORT_SYMBOL(__hwasan_memcpy
);
124 void kasan_poison(const void *addr
, size_t size
, u8 value
, bool init
)
126 void *shadow_start
, *shadow_end
;
128 if (!kasan_arch_is_ready())
132 * Perform shadow offset calculation based on untagged address, as
133 * some of the callers (e.g. kasan_poison_new_object) pass tagged
134 * addresses to this function.
136 addr
= kasan_reset_tag(addr
);
138 if (WARN_ON((unsigned long)addr
& KASAN_GRANULE_MASK
))
140 if (WARN_ON(size
& KASAN_GRANULE_MASK
))
143 shadow_start
= kasan_mem_to_shadow(addr
);
144 shadow_end
= kasan_mem_to_shadow(addr
+ size
);
146 __memset(shadow_start
, value
, shadow_end
- shadow_start
);
148 EXPORT_SYMBOL_GPL(kasan_poison
);
150 #ifdef CONFIG_KASAN_GENERIC
151 void kasan_poison_last_granule(const void *addr
, size_t size
)
153 if (!kasan_arch_is_ready())
156 if (size
& KASAN_GRANULE_MASK
) {
157 u8
*shadow
= (u8
*)kasan_mem_to_shadow(addr
+ size
);
158 *shadow
= size
& KASAN_GRANULE_MASK
;
163 void kasan_unpoison(const void *addr
, size_t size
, bool init
)
165 u8 tag
= get_tag(addr
);
168 * Perform shadow offset calculation based on untagged address, as
169 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170 * addresses to this function.
172 addr
= kasan_reset_tag(addr
);
174 if (WARN_ON((unsigned long)addr
& KASAN_GRANULE_MASK
))
177 /* Unpoison all granules that cover the object. */
178 kasan_poison(addr
, round_up(size
, KASAN_GRANULE_SIZE
), tag
, false);
180 /* Partially poison the last granule for the generic mode. */
181 if (IS_ENABLED(CONFIG_KASAN_GENERIC
))
182 kasan_poison_last_granule(addr
, size
);
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 static bool shadow_mapped(unsigned long addr
)
188 pgd_t
*pgd
= pgd_offset_k(addr
);
196 p4d
= p4d_offset(pgd
, addr
);
199 pud
= pud_offset(p4d
, addr
);
204 pmd
= pmd_offset(pud
, addr
);
209 pte
= pte_offset_kernel(pmd
, addr
);
210 return !pte_none(ptep_get(pte
));
213 static int __meminit
kasan_mem_notifier(struct notifier_block
*nb
,
214 unsigned long action
, void *data
)
216 struct memory_notify
*mem_data
= data
;
217 unsigned long nr_shadow_pages
, start_kaddr
, shadow_start
;
218 unsigned long shadow_end
, shadow_size
;
220 nr_shadow_pages
= mem_data
->nr_pages
>> KASAN_SHADOW_SCALE_SHIFT
;
221 start_kaddr
= (unsigned long)pfn_to_kaddr(mem_data
->start_pfn
);
222 shadow_start
= (unsigned long)kasan_mem_to_shadow((void *)start_kaddr
);
223 shadow_size
= nr_shadow_pages
<< PAGE_SHIFT
;
224 shadow_end
= shadow_start
+ shadow_size
;
226 if (WARN_ON(mem_data
->nr_pages
% KASAN_GRANULE_SIZE
) ||
227 WARN_ON(start_kaddr
% KASAN_MEMORY_PER_SHADOW_PAGE
))
231 case MEM_GOING_ONLINE
: {
235 * If shadow is mapped already than it must have been mapped
236 * during the boot. This could happen if we onlining previously
239 if (shadow_mapped(shadow_start
))
242 ret
= __vmalloc_node_range(shadow_size
, PAGE_SIZE
, shadow_start
,
243 shadow_end
, GFP_KERNEL
,
244 PAGE_KERNEL
, VM_NO_GUARD
,
245 pfn_to_nid(mem_data
->start_pfn
),
246 __builtin_return_address(0));
250 kmemleak_ignore(ret
);
253 case MEM_CANCEL_ONLINE
:
255 struct vm_struct
*vm
;
258 * shadow_start was either mapped during boot by kasan_init()
259 * or during memory online by __vmalloc_node_range().
260 * In the latter case we can use vfree() to free shadow.
261 * Non-NULL result of the find_vm_area() will tell us if
262 * that was the second case.
264 * Currently it's not possible to free shadow mapped
265 * during boot by kasan_init(). It's because the code
266 * to do that hasn't been written yet. So we'll just
269 vm
= find_vm_area((void *)shadow_start
);
271 vfree((void *)shadow_start
);
278 static int __init
kasan_memhotplug_init(void)
280 hotplug_memory_notifier(kasan_mem_notifier
, DEFAULT_CALLBACK_PRI
);
285 core_initcall(kasan_memhotplug_init
);
288 #ifdef CONFIG_KASAN_VMALLOC
290 void __init __weak
kasan_populate_early_vm_area_shadow(void *start
,
295 static int kasan_populate_vmalloc_pte(pte_t
*ptep
, unsigned long addr
,
301 if (likely(!pte_none(ptep_get(ptep
))))
304 page
= __get_free_page(GFP_KERNEL
);
308 __memset((void *)page
, KASAN_VMALLOC_INVALID
, PAGE_SIZE
);
309 pte
= pfn_pte(PFN_DOWN(__pa(page
)), PAGE_KERNEL
);
311 spin_lock(&init_mm
.page_table_lock
);
312 if (likely(pte_none(ptep_get(ptep
)))) {
313 set_pte_at(&init_mm
, addr
, ptep
, pte
);
316 spin_unlock(&init_mm
.page_table_lock
);
322 int kasan_populate_vmalloc(unsigned long addr
, unsigned long size
)
324 unsigned long shadow_start
, shadow_end
;
327 if (!kasan_arch_is_ready())
330 if (!is_vmalloc_or_module_addr((void *)addr
))
333 shadow_start
= (unsigned long)kasan_mem_to_shadow((void *)addr
);
334 shadow_end
= (unsigned long)kasan_mem_to_shadow((void *)addr
+ size
);
337 * User Mode Linux maps enough shadow memory for all of virtual memory
338 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
340 * The remaining CONFIG_UML checks in this file exist for the same
343 if (IS_ENABLED(CONFIG_UML
)) {
344 __memset((void *)shadow_start
, KASAN_VMALLOC_INVALID
, shadow_end
- shadow_start
);
348 shadow_start
= PAGE_ALIGN_DOWN(shadow_start
);
349 shadow_end
= PAGE_ALIGN(shadow_end
);
351 ret
= apply_to_page_range(&init_mm
, shadow_start
,
352 shadow_end
- shadow_start
,
353 kasan_populate_vmalloc_pte
, NULL
);
357 flush_cache_vmap(shadow_start
, shadow_end
);
360 * We need to be careful about inter-cpu effects here. Consider:
363 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
366 * With compiler instrumentation, that ends up looking like this:
369 * // vmalloc() allocates memory
370 * // let a = area->addr
371 * // we reach kasan_populate_vmalloc
372 * // and call kasan_unpoison:
373 * STORE shadow(a), unpoison_val
375 * STORE shadow(a+99), unpoison_val x = LOAD p
376 * // rest of vmalloc process <data dependency>
377 * STORE p, a LOAD shadow(x+99)
379 * If there is no barrier between the end of unpoisoning the shadow
380 * and the store of the result to p, the stores could be committed
381 * in a different order by CPU#0, and CPU#1 could erroneously observe
382 * poison in the shadow.
384 * We need some sort of barrier between the stores.
386 * In the vmalloc() case, this is provided by a smp_wmb() in
387 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
388 * get_vm_area() and friends, the caller gets shadow allocated but
389 * doesn't have any pages mapped into the virtual address space that
390 * has been reserved. Mapping those pages in will involve taking and
391 * releasing a page-table lock, which will provide the barrier.
397 static int kasan_depopulate_vmalloc_pte(pte_t
*ptep
, unsigned long addr
,
402 page
= (unsigned long)__va(pte_pfn(ptep_get(ptep
)) << PAGE_SHIFT
);
404 spin_lock(&init_mm
.page_table_lock
);
406 if (likely(!pte_none(ptep_get(ptep
)))) {
407 pte_clear(&init_mm
, addr
, ptep
);
410 spin_unlock(&init_mm
.page_table_lock
);
416 * Release the backing for the vmalloc region [start, end), which
417 * lies within the free region [free_region_start, free_region_end).
419 * This can be run lazily, long after the region was freed. It runs
420 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
423 * How does this work?
424 * -------------------
426 * We have a region that is page aligned, labeled as A.
427 * That might not map onto the shadow in a way that is page-aligned:
431 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
432 * -------- -------- -------- -------- --------
435 * \-------\|/------/ |/---------------/
437 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
440 * First we align the start upwards and the end downwards, so that the
441 * shadow of the region aligns with shadow page boundaries. In the
442 * example, this gives us the shadow page (2). This is the shadow entirely
443 * covered by this allocation.
445 * Then we have the tricky bits. We want to know if we can free the
446 * partially covered shadow pages - (1) and (3) in the example. For this,
447 * we are given the start and end of the free region that contains this
448 * allocation. Extending our previous example, we could have:
450 * free_region_start free_region_end
453 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
454 * -------- -------- -------- -------- --------
457 * \-------\|/------/ |/---------------/
459 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
462 * Once again, we align the start of the free region up, and the end of
463 * the free region down so that the shadow is page aligned. So we can free
464 * page (1) - we know no allocation currently uses anything in that page,
465 * because all of it is in the vmalloc free region. But we cannot free
466 * page (3), because we can't be sure that the rest of it is unused.
468 * We only consider pages that contain part of the original region for
469 * freeing: we don't try to free other pages from the free region or we'd
470 * end up trying to free huge chunks of virtual address space.
475 * How do we know that we're not freeing a page that is simultaneously
476 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
478 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
479 * at the same time. While we run under free_vmap_area_lock, the population
482 * free_vmap_area_lock instead operates to ensure that the larger range
483 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
484 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
485 * no space identified as free will become used while we are running. This
486 * means that so long as we are careful with alignment and only free shadow
487 * pages entirely covered by the free region, we will not run in to any
488 * trouble - any simultaneous allocations will be for disjoint regions.
490 void kasan_release_vmalloc(unsigned long start
, unsigned long end
,
491 unsigned long free_region_start
,
492 unsigned long free_region_end
,
495 void *shadow_start
, *shadow_end
;
496 unsigned long region_start
, region_end
;
499 if (!kasan_arch_is_ready())
502 region_start
= ALIGN(start
, KASAN_MEMORY_PER_SHADOW_PAGE
);
503 region_end
= ALIGN_DOWN(end
, KASAN_MEMORY_PER_SHADOW_PAGE
);
505 free_region_start
= ALIGN(free_region_start
, KASAN_MEMORY_PER_SHADOW_PAGE
);
507 if (start
!= region_start
&&
508 free_region_start
< region_start
)
509 region_start
-= KASAN_MEMORY_PER_SHADOW_PAGE
;
511 free_region_end
= ALIGN_DOWN(free_region_end
, KASAN_MEMORY_PER_SHADOW_PAGE
);
513 if (end
!= region_end
&&
514 free_region_end
> region_end
)
515 region_end
+= KASAN_MEMORY_PER_SHADOW_PAGE
;
517 shadow_start
= kasan_mem_to_shadow((void *)region_start
);
518 shadow_end
= kasan_mem_to_shadow((void *)region_end
);
520 if (shadow_end
> shadow_start
) {
521 size
= shadow_end
- shadow_start
;
522 if (IS_ENABLED(CONFIG_UML
)) {
523 __memset(shadow_start
, KASAN_SHADOW_INIT
, shadow_end
- shadow_start
);
528 if (flags
& KASAN_VMALLOC_PAGE_RANGE
)
529 apply_to_existing_page_range(&init_mm
,
530 (unsigned long)shadow_start
,
531 size
, kasan_depopulate_vmalloc_pte
,
534 if (flags
& KASAN_VMALLOC_TLB_FLUSH
)
535 flush_tlb_kernel_range((unsigned long)shadow_start
,
536 (unsigned long)shadow_end
);
540 void *__kasan_unpoison_vmalloc(const void *start
, unsigned long size
,
541 kasan_vmalloc_flags_t flags
)
544 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
545 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
546 * Software KASAN modes can't optimize zeroing memory by combining it
547 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
550 if (!kasan_arch_is_ready())
551 return (void *)start
;
553 if (!is_vmalloc_or_module_addr(start
))
554 return (void *)start
;
557 * Don't tag executable memory with the tag-based mode.
558 * The kernel doesn't tolerate having the PC register tagged.
560 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS
) &&
561 !(flags
& KASAN_VMALLOC_PROT_NORMAL
))
562 return (void *)start
;
564 start
= set_tag(start
, kasan_random_tag());
565 kasan_unpoison(start
, size
, false);
566 return (void *)start
;
570 * Poison the shadow for a vmalloc region. Called as part of the
571 * freeing process at the time the region is freed.
573 void __kasan_poison_vmalloc(const void *start
, unsigned long size
)
575 if (!kasan_arch_is_ready())
578 if (!is_vmalloc_or_module_addr(start
))
581 size
= round_up(size
, KASAN_GRANULE_SIZE
);
582 kasan_poison(start
, size
, KASAN_VMALLOC_INVALID
, false);
585 #else /* CONFIG_KASAN_VMALLOC */
587 int kasan_alloc_module_shadow(void *addr
, size_t size
, gfp_t gfp_mask
)
592 unsigned long shadow_start
;
594 shadow_start
= (unsigned long)kasan_mem_to_shadow(addr
);
595 scaled_size
= (size
+ KASAN_GRANULE_SIZE
- 1) >>
596 KASAN_SHADOW_SCALE_SHIFT
;
597 shadow_size
= round_up(scaled_size
, PAGE_SIZE
);
599 if (WARN_ON(!PAGE_ALIGNED(shadow_start
)))
602 if (IS_ENABLED(CONFIG_UML
)) {
603 __memset((void *)shadow_start
, KASAN_SHADOW_INIT
, shadow_size
);
607 ret
= __vmalloc_node_range(shadow_size
, 1, shadow_start
,
608 shadow_start
+ shadow_size
,
610 PAGE_KERNEL
, VM_NO_GUARD
, NUMA_NO_NODE
,
611 __builtin_return_address(0));
614 struct vm_struct
*vm
= find_vm_area(addr
);
615 __memset(ret
, KASAN_SHADOW_INIT
, shadow_size
);
616 vm
->flags
|= VM_KASAN
;
617 kmemleak_ignore(ret
);
619 if (vm
->flags
& VM_DEFER_KMEMLEAK
)
620 kmemleak_vmalloc(vm
, size
, gfp_mask
);
628 void kasan_free_module_shadow(const struct vm_struct
*vm
)
630 if (IS_ENABLED(CONFIG_UML
))
633 if (vm
->flags
& VM_KASAN
)
634 vfree(kasan_mem_to_shadow(vm
->addr
));