printf: Remove unused 'bprintf'
[drm/drm-misc.git] / net / bluetooth / rfcomm / sock.c
blob40766f8119ed9c88f52b604885cbd07339ef0ae2
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
25 * RFCOMM sockets.
27 #include <linux/compat.h>
28 #include <linux/export.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched/signal.h>
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/l2cap.h>
35 #include <net/bluetooth/rfcomm.h>
37 static const struct proto_ops rfcomm_sock_ops;
39 static struct bt_sock_list rfcomm_sk_list = {
40 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
43 static void rfcomm_sock_close(struct sock *sk);
44 static void rfcomm_sock_kill(struct sock *sk);
46 /* ---- DLC callbacks ----
48 * called under rfcomm_dlc_lock()
50 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
52 struct sock *sk = d->owner;
53 if (!sk)
54 return;
56 atomic_add(skb->len, &sk->sk_rmem_alloc);
57 skb_queue_tail(&sk->sk_receive_queue, skb);
58 sk->sk_data_ready(sk);
60 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
61 rfcomm_dlc_throttle(d);
64 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
66 struct sock *sk = d->owner, *parent;
68 if (!sk)
69 return;
71 BT_DBG("dlc %p state %ld err %d", d, d->state, err);
73 lock_sock(sk);
75 if (err)
76 sk->sk_err = err;
78 sk->sk_state = d->state;
80 parent = bt_sk(sk)->parent;
81 if (parent) {
82 if (d->state == BT_CLOSED) {
83 sock_set_flag(sk, SOCK_ZAPPED);
84 bt_accept_unlink(sk);
86 parent->sk_data_ready(parent);
87 } else {
88 if (d->state == BT_CONNECTED)
89 rfcomm_session_getaddr(d->session,
90 &rfcomm_pi(sk)->src, NULL);
91 sk->sk_state_change(sk);
94 release_sock(sk);
96 if (parent && sock_flag(sk, SOCK_ZAPPED)) {
97 /* We have to drop DLC lock here, otherwise
98 * rfcomm_sock_destruct() will dead lock. */
99 rfcomm_dlc_unlock(d);
100 rfcomm_sock_kill(sk);
101 rfcomm_dlc_lock(d);
105 /* ---- Socket functions ---- */
106 static struct sock *__rfcomm_get_listen_sock_by_addr(u8 channel, bdaddr_t *src)
108 struct sock *sk = NULL;
110 sk_for_each(sk, &rfcomm_sk_list.head) {
111 if (rfcomm_pi(sk)->channel != channel)
112 continue;
114 if (bacmp(&rfcomm_pi(sk)->src, src))
115 continue;
117 if (sk->sk_state == BT_BOUND || sk->sk_state == BT_LISTEN)
118 break;
121 return sk ? sk : NULL;
124 /* Find socket with channel and source bdaddr.
125 * Returns closest match.
127 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
129 struct sock *sk = NULL, *sk1 = NULL;
131 read_lock(&rfcomm_sk_list.lock);
133 sk_for_each(sk, &rfcomm_sk_list.head) {
134 if (state && sk->sk_state != state)
135 continue;
137 if (rfcomm_pi(sk)->channel == channel) {
138 /* Exact match. */
139 if (!bacmp(&rfcomm_pi(sk)->src, src))
140 break;
142 /* Closest match */
143 if (!bacmp(&rfcomm_pi(sk)->src, BDADDR_ANY))
144 sk1 = sk;
148 read_unlock(&rfcomm_sk_list.lock);
150 return sk ? sk : sk1;
153 static void rfcomm_sock_destruct(struct sock *sk)
155 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
157 BT_DBG("sk %p dlc %p", sk, d);
159 skb_queue_purge(&sk->sk_receive_queue);
160 skb_queue_purge(&sk->sk_write_queue);
162 rfcomm_dlc_lock(d);
163 rfcomm_pi(sk)->dlc = NULL;
165 /* Detach DLC if it's owned by this socket */
166 if (d->owner == sk)
167 d->owner = NULL;
168 rfcomm_dlc_unlock(d);
170 rfcomm_dlc_put(d);
173 static void rfcomm_sock_cleanup_listen(struct sock *parent)
175 struct sock *sk;
177 BT_DBG("parent %p", parent);
179 /* Close not yet accepted dlcs */
180 while ((sk = bt_accept_dequeue(parent, NULL))) {
181 rfcomm_sock_close(sk);
182 rfcomm_sock_kill(sk);
185 parent->sk_state = BT_CLOSED;
186 sock_set_flag(parent, SOCK_ZAPPED);
189 /* Kill socket (only if zapped and orphan)
190 * Must be called on unlocked socket.
192 static void rfcomm_sock_kill(struct sock *sk)
194 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
195 return;
197 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, refcount_read(&sk->sk_refcnt));
199 /* Kill poor orphan */
200 bt_sock_unlink(&rfcomm_sk_list, sk);
201 sock_set_flag(sk, SOCK_DEAD);
202 sock_put(sk);
205 static void __rfcomm_sock_close(struct sock *sk)
207 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
209 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
211 switch (sk->sk_state) {
212 case BT_LISTEN:
213 rfcomm_sock_cleanup_listen(sk);
214 break;
216 case BT_CONNECT:
217 case BT_CONNECT2:
218 case BT_CONFIG:
219 case BT_CONNECTED:
220 rfcomm_dlc_close(d, 0);
221 fallthrough;
223 default:
224 sock_set_flag(sk, SOCK_ZAPPED);
225 break;
229 /* Close socket.
230 * Must be called on unlocked socket.
232 static void rfcomm_sock_close(struct sock *sk)
234 lock_sock(sk);
235 __rfcomm_sock_close(sk);
236 release_sock(sk);
239 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
241 struct rfcomm_pinfo *pi = rfcomm_pi(sk);
243 BT_DBG("sk %p", sk);
245 if (parent) {
246 sk->sk_type = parent->sk_type;
247 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP,
248 &bt_sk(parent)->flags);
250 pi->sec_level = rfcomm_pi(parent)->sec_level;
251 pi->role_switch = rfcomm_pi(parent)->role_switch;
253 security_sk_clone(parent, sk);
254 } else {
255 pi->dlc->defer_setup = 0;
257 pi->sec_level = BT_SECURITY_LOW;
258 pi->role_switch = 0;
261 pi->dlc->sec_level = pi->sec_level;
262 pi->dlc->role_switch = pi->role_switch;
265 static struct proto rfcomm_proto = {
266 .name = "RFCOMM",
267 .owner = THIS_MODULE,
268 .obj_size = sizeof(struct rfcomm_pinfo)
271 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock,
272 int proto, gfp_t prio, int kern)
274 struct rfcomm_dlc *d;
275 struct sock *sk;
277 d = rfcomm_dlc_alloc(prio);
278 if (!d)
279 return NULL;
281 sk = bt_sock_alloc(net, sock, &rfcomm_proto, proto, prio, kern);
282 if (!sk) {
283 rfcomm_dlc_free(d);
284 return NULL;
287 d->data_ready = rfcomm_sk_data_ready;
288 d->state_change = rfcomm_sk_state_change;
290 rfcomm_pi(sk)->dlc = d;
291 d->owner = sk;
293 sk->sk_destruct = rfcomm_sock_destruct;
294 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
296 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
297 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
299 bt_sock_link(&rfcomm_sk_list, sk);
301 BT_DBG("sk %p", sk);
302 return sk;
305 static int rfcomm_sock_create(struct net *net, struct socket *sock,
306 int protocol, int kern)
308 struct sock *sk;
310 BT_DBG("sock %p", sock);
312 sock->state = SS_UNCONNECTED;
314 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
315 return -ESOCKTNOSUPPORT;
317 sock->ops = &rfcomm_sock_ops;
319 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern);
320 if (!sk)
321 return -ENOMEM;
323 rfcomm_sock_init(sk, NULL);
324 return 0;
327 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
329 struct sockaddr_rc sa;
330 struct sock *sk = sock->sk;
331 int len, err = 0;
333 if (!addr || addr_len < offsetofend(struct sockaddr, sa_family) ||
334 addr->sa_family != AF_BLUETOOTH)
335 return -EINVAL;
337 memset(&sa, 0, sizeof(sa));
338 len = min_t(unsigned int, sizeof(sa), addr_len);
339 memcpy(&sa, addr, len);
341 BT_DBG("sk %p %pMR", sk, &sa.rc_bdaddr);
343 lock_sock(sk);
345 if (sk->sk_state != BT_OPEN) {
346 err = -EBADFD;
347 goto done;
350 if (sk->sk_type != SOCK_STREAM) {
351 err = -EINVAL;
352 goto done;
355 write_lock(&rfcomm_sk_list.lock);
357 if (sa.rc_channel &&
358 __rfcomm_get_listen_sock_by_addr(sa.rc_channel, &sa.rc_bdaddr)) {
359 err = -EADDRINUSE;
360 } else {
361 /* Save source address */
362 bacpy(&rfcomm_pi(sk)->src, &sa.rc_bdaddr);
363 rfcomm_pi(sk)->channel = sa.rc_channel;
364 sk->sk_state = BT_BOUND;
367 write_unlock(&rfcomm_sk_list.lock);
369 done:
370 release_sock(sk);
371 return err;
374 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
376 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
377 struct sock *sk = sock->sk;
378 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
379 int err = 0;
381 BT_DBG("sk %p", sk);
383 if (alen < sizeof(struct sockaddr_rc) ||
384 addr->sa_family != AF_BLUETOOTH)
385 return -EINVAL;
387 sock_hold(sk);
388 lock_sock(sk);
390 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
391 err = -EBADFD;
392 goto done;
395 if (sk->sk_type != SOCK_STREAM) {
396 err = -EINVAL;
397 goto done;
400 sk->sk_state = BT_CONNECT;
401 bacpy(&rfcomm_pi(sk)->dst, &sa->rc_bdaddr);
402 rfcomm_pi(sk)->channel = sa->rc_channel;
404 d->sec_level = rfcomm_pi(sk)->sec_level;
405 d->role_switch = rfcomm_pi(sk)->role_switch;
407 /* Drop sock lock to avoid potential deadlock with the RFCOMM lock */
408 release_sock(sk);
409 err = rfcomm_dlc_open(d, &rfcomm_pi(sk)->src, &sa->rc_bdaddr,
410 sa->rc_channel);
411 lock_sock(sk);
412 if (!err && !sock_flag(sk, SOCK_ZAPPED))
413 err = bt_sock_wait_state(sk, BT_CONNECTED,
414 sock_sndtimeo(sk, flags & O_NONBLOCK));
416 done:
417 release_sock(sk);
418 sock_put(sk);
419 return err;
422 static int rfcomm_sock_listen(struct socket *sock, int backlog)
424 struct sock *sk = sock->sk;
425 int err = 0;
427 BT_DBG("sk %p backlog %d", sk, backlog);
429 lock_sock(sk);
431 if (sk->sk_state != BT_BOUND) {
432 err = -EBADFD;
433 goto done;
436 if (sk->sk_type != SOCK_STREAM) {
437 err = -EINVAL;
438 goto done;
441 if (!rfcomm_pi(sk)->channel) {
442 bdaddr_t *src = &rfcomm_pi(sk)->src;
443 u8 channel;
445 err = -EINVAL;
447 write_lock(&rfcomm_sk_list.lock);
449 for (channel = 1; channel < 31; channel++)
450 if (!__rfcomm_get_listen_sock_by_addr(channel, src)) {
451 rfcomm_pi(sk)->channel = channel;
452 err = 0;
453 break;
456 write_unlock(&rfcomm_sk_list.lock);
458 if (err < 0)
459 goto done;
462 sk->sk_max_ack_backlog = backlog;
463 sk->sk_ack_backlog = 0;
464 sk->sk_state = BT_LISTEN;
466 done:
467 release_sock(sk);
468 return err;
471 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock,
472 struct proto_accept_arg *arg)
474 DEFINE_WAIT_FUNC(wait, woken_wake_function);
475 struct sock *sk = sock->sk, *nsk;
476 long timeo;
477 int err = 0;
479 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
481 if (sk->sk_type != SOCK_STREAM) {
482 err = -EINVAL;
483 goto done;
486 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
488 BT_DBG("sk %p timeo %ld", sk, timeo);
490 /* Wait for an incoming connection. (wake-one). */
491 add_wait_queue_exclusive(sk_sleep(sk), &wait);
492 while (1) {
493 if (sk->sk_state != BT_LISTEN) {
494 err = -EBADFD;
495 break;
498 nsk = bt_accept_dequeue(sk, newsock);
499 if (nsk)
500 break;
502 if (!timeo) {
503 err = -EAGAIN;
504 break;
507 if (signal_pending(current)) {
508 err = sock_intr_errno(timeo);
509 break;
512 release_sock(sk);
514 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
516 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
518 remove_wait_queue(sk_sleep(sk), &wait);
520 if (err)
521 goto done;
523 newsock->state = SS_CONNECTED;
525 BT_DBG("new socket %p", nsk);
527 done:
528 release_sock(sk);
529 return err;
532 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int peer)
534 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
535 struct sock *sk = sock->sk;
537 BT_DBG("sock %p, sk %p", sock, sk);
539 if (peer && sk->sk_state != BT_CONNECTED &&
540 sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2)
541 return -ENOTCONN;
543 memset(sa, 0, sizeof(*sa));
544 sa->rc_family = AF_BLUETOOTH;
545 sa->rc_channel = rfcomm_pi(sk)->channel;
546 if (peer)
547 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->dst);
548 else
549 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->src);
551 return sizeof(struct sockaddr_rc);
554 static int rfcomm_sock_sendmsg(struct socket *sock, struct msghdr *msg,
555 size_t len)
557 struct sock *sk = sock->sk;
558 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
559 struct sk_buff *skb;
560 int sent;
562 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
563 return -ENOTCONN;
565 if (msg->msg_flags & MSG_OOB)
566 return -EOPNOTSUPP;
568 if (sk->sk_shutdown & SEND_SHUTDOWN)
569 return -EPIPE;
571 BT_DBG("sock %p, sk %p", sock, sk);
573 lock_sock(sk);
575 sent = bt_sock_wait_ready(sk, msg->msg_flags);
577 release_sock(sk);
579 if (sent)
580 return sent;
582 skb = bt_skb_sendmmsg(sk, msg, len, d->mtu, RFCOMM_SKB_HEAD_RESERVE,
583 RFCOMM_SKB_TAIL_RESERVE);
584 if (IS_ERR(skb))
585 return PTR_ERR(skb);
587 sent = rfcomm_dlc_send(d, skb);
588 if (sent < 0)
589 kfree_skb(skb);
591 return sent;
594 static int rfcomm_sock_recvmsg(struct socket *sock, struct msghdr *msg,
595 size_t size, int flags)
597 struct sock *sk = sock->sk;
598 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
599 int len;
601 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
602 rfcomm_dlc_accept(d);
603 return 0;
606 len = bt_sock_stream_recvmsg(sock, msg, size, flags);
608 lock_sock(sk);
609 if (!(flags & MSG_PEEK) && len > 0)
610 atomic_sub(len, &sk->sk_rmem_alloc);
612 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
613 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
614 release_sock(sk);
616 return len;
619 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname,
620 sockptr_t optval, unsigned int optlen)
622 struct sock *sk = sock->sk;
623 int err = 0;
624 u32 opt;
626 BT_DBG("sk %p", sk);
628 lock_sock(sk);
630 switch (optname) {
631 case RFCOMM_LM:
632 if (bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen)) {
633 err = -EFAULT;
634 break;
637 if (opt & RFCOMM_LM_FIPS) {
638 err = -EINVAL;
639 break;
642 if (opt & RFCOMM_LM_AUTH)
643 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
644 if (opt & RFCOMM_LM_ENCRYPT)
645 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
646 if (opt & RFCOMM_LM_SECURE)
647 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
649 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
650 break;
652 default:
653 err = -ENOPROTOOPT;
654 break;
657 release_sock(sk);
658 return err;
661 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname,
662 sockptr_t optval, unsigned int optlen)
664 struct sock *sk = sock->sk;
665 struct bt_security sec;
666 int err = 0;
667 u32 opt;
669 BT_DBG("sk %p", sk);
671 if (level == SOL_RFCOMM)
672 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
674 if (level != SOL_BLUETOOTH)
675 return -ENOPROTOOPT;
677 lock_sock(sk);
679 switch (optname) {
680 case BT_SECURITY:
681 if (sk->sk_type != SOCK_STREAM) {
682 err = -EINVAL;
683 break;
686 sec.level = BT_SECURITY_LOW;
688 err = bt_copy_from_sockptr(&sec, sizeof(sec), optval, optlen);
689 if (err)
690 break;
692 if (sec.level > BT_SECURITY_HIGH) {
693 err = -EINVAL;
694 break;
697 rfcomm_pi(sk)->sec_level = sec.level;
698 break;
700 case BT_DEFER_SETUP:
701 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
702 err = -EINVAL;
703 break;
706 err = bt_copy_from_sockptr(&opt, sizeof(opt), optval, optlen);
707 if (err)
708 break;
710 if (opt)
711 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
712 else
713 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
715 break;
717 default:
718 err = -ENOPROTOOPT;
719 break;
722 release_sock(sk);
723 return err;
726 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
728 struct sock *sk = sock->sk;
729 struct sock *l2cap_sk;
730 struct l2cap_conn *conn;
731 struct rfcomm_conninfo cinfo;
732 int err = 0;
733 size_t len;
734 u32 opt;
736 BT_DBG("sk %p", sk);
738 if (get_user(len, optlen))
739 return -EFAULT;
741 lock_sock(sk);
743 switch (optname) {
744 case RFCOMM_LM:
745 switch (rfcomm_pi(sk)->sec_level) {
746 case BT_SECURITY_LOW:
747 opt = RFCOMM_LM_AUTH;
748 break;
749 case BT_SECURITY_MEDIUM:
750 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
751 break;
752 case BT_SECURITY_HIGH:
753 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
754 RFCOMM_LM_SECURE;
755 break;
756 case BT_SECURITY_FIPS:
757 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
758 RFCOMM_LM_SECURE | RFCOMM_LM_FIPS;
759 break;
760 default:
761 opt = 0;
762 break;
765 if (rfcomm_pi(sk)->role_switch)
766 opt |= RFCOMM_LM_MASTER;
768 if (put_user(opt, (u32 __user *) optval))
769 err = -EFAULT;
771 break;
773 case RFCOMM_CONNINFO:
774 if (sk->sk_state != BT_CONNECTED &&
775 !rfcomm_pi(sk)->dlc->defer_setup) {
776 err = -ENOTCONN;
777 break;
780 l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk;
781 conn = l2cap_pi(l2cap_sk)->chan->conn;
783 memset(&cinfo, 0, sizeof(cinfo));
784 cinfo.hci_handle = conn->hcon->handle;
785 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
787 len = min(len, sizeof(cinfo));
788 if (copy_to_user(optval, (char *) &cinfo, len))
789 err = -EFAULT;
791 break;
793 default:
794 err = -ENOPROTOOPT;
795 break;
798 release_sock(sk);
799 return err;
802 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
804 struct sock *sk = sock->sk;
805 struct bt_security sec;
806 int err = 0;
807 size_t len;
809 BT_DBG("sk %p", sk);
811 if (level == SOL_RFCOMM)
812 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
814 if (level != SOL_BLUETOOTH)
815 return -ENOPROTOOPT;
817 if (get_user(len, optlen))
818 return -EFAULT;
820 lock_sock(sk);
822 switch (optname) {
823 case BT_SECURITY:
824 if (sk->sk_type != SOCK_STREAM) {
825 err = -EINVAL;
826 break;
829 sec.level = rfcomm_pi(sk)->sec_level;
830 sec.key_size = 0;
832 len = min(len, sizeof(sec));
833 if (copy_to_user(optval, (char *) &sec, len))
834 err = -EFAULT;
836 break;
838 case BT_DEFER_SETUP:
839 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
840 err = -EINVAL;
841 break;
844 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
845 (u32 __user *) optval))
846 err = -EFAULT;
848 break;
850 default:
851 err = -ENOPROTOOPT;
852 break;
855 release_sock(sk);
856 return err;
859 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
861 struct sock *sk __maybe_unused = sock->sk;
862 int err;
864 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
866 err = bt_sock_ioctl(sock, cmd, arg);
868 if (err == -ENOIOCTLCMD) {
869 #ifdef CONFIG_BT_RFCOMM_TTY
870 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
871 #else
872 err = -EOPNOTSUPP;
873 #endif
876 return err;
879 #ifdef CONFIG_COMPAT
880 static int rfcomm_sock_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
882 return rfcomm_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
884 #endif
886 static int rfcomm_sock_shutdown(struct socket *sock, int how)
888 struct sock *sk = sock->sk;
889 int err = 0;
891 BT_DBG("sock %p, sk %p", sock, sk);
893 if (!sk)
894 return 0;
896 lock_sock(sk);
897 if (!sk->sk_shutdown) {
898 sk->sk_shutdown = SHUTDOWN_MASK;
900 release_sock(sk);
901 __rfcomm_sock_close(sk);
902 lock_sock(sk);
904 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime &&
905 !(current->flags & PF_EXITING))
906 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
908 release_sock(sk);
909 return err;
912 static int rfcomm_sock_release(struct socket *sock)
914 struct sock *sk = sock->sk;
915 int err;
917 BT_DBG("sock %p, sk %p", sock, sk);
919 if (!sk)
920 return 0;
922 err = rfcomm_sock_shutdown(sock, 2);
924 sock_orphan(sk);
925 rfcomm_sock_kill(sk);
926 return err;
929 /* ---- RFCOMM core layer callbacks ----
931 * called under rfcomm_lock()
933 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
935 struct sock *sk, *parent;
936 bdaddr_t src, dst;
937 int result = 0;
939 BT_DBG("session %p channel %d", s, channel);
941 rfcomm_session_getaddr(s, &src, &dst);
943 /* Check if we have socket listening on channel */
944 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
945 if (!parent)
946 return 0;
948 lock_sock(parent);
950 /* Check for backlog size */
951 if (sk_acceptq_is_full(parent)) {
952 BT_DBG("backlog full %d", parent->sk_ack_backlog);
953 goto done;
956 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC, 0);
957 if (!sk)
958 goto done;
960 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM);
962 rfcomm_sock_init(sk, parent);
963 bacpy(&rfcomm_pi(sk)->src, &src);
964 bacpy(&rfcomm_pi(sk)->dst, &dst);
965 rfcomm_pi(sk)->channel = channel;
967 sk->sk_state = BT_CONFIG;
968 bt_accept_enqueue(parent, sk, true);
970 /* Accept connection and return socket DLC */
971 *d = rfcomm_pi(sk)->dlc;
972 result = 1;
974 done:
975 release_sock(parent);
977 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags))
978 parent->sk_state_change(parent);
980 return result;
983 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
985 struct sock *sk;
987 read_lock(&rfcomm_sk_list.lock);
989 sk_for_each(sk, &rfcomm_sk_list.head) {
990 seq_printf(f, "%pMR %pMR %d %d\n",
991 &rfcomm_pi(sk)->src, &rfcomm_pi(sk)->dst,
992 sk->sk_state, rfcomm_pi(sk)->channel);
995 read_unlock(&rfcomm_sk_list.lock);
997 return 0;
1000 DEFINE_SHOW_ATTRIBUTE(rfcomm_sock_debugfs);
1002 static struct dentry *rfcomm_sock_debugfs;
1004 static const struct proto_ops rfcomm_sock_ops = {
1005 .family = PF_BLUETOOTH,
1006 .owner = THIS_MODULE,
1007 .release = rfcomm_sock_release,
1008 .bind = rfcomm_sock_bind,
1009 .connect = rfcomm_sock_connect,
1010 .listen = rfcomm_sock_listen,
1011 .accept = rfcomm_sock_accept,
1012 .getname = rfcomm_sock_getname,
1013 .sendmsg = rfcomm_sock_sendmsg,
1014 .recvmsg = rfcomm_sock_recvmsg,
1015 .shutdown = rfcomm_sock_shutdown,
1016 .setsockopt = rfcomm_sock_setsockopt,
1017 .getsockopt = rfcomm_sock_getsockopt,
1018 .ioctl = rfcomm_sock_ioctl,
1019 .gettstamp = sock_gettstamp,
1020 .poll = bt_sock_poll,
1021 .socketpair = sock_no_socketpair,
1022 .mmap = sock_no_mmap,
1023 #ifdef CONFIG_COMPAT
1024 .compat_ioctl = rfcomm_sock_compat_ioctl,
1025 #endif
1028 static const struct net_proto_family rfcomm_sock_family_ops = {
1029 .family = PF_BLUETOOTH,
1030 .owner = THIS_MODULE,
1031 .create = rfcomm_sock_create
1034 int __init rfcomm_init_sockets(void)
1036 int err;
1038 BUILD_BUG_ON(sizeof(struct sockaddr_rc) > sizeof(struct sockaddr));
1040 err = proto_register(&rfcomm_proto, 0);
1041 if (err < 0)
1042 return err;
1044 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1045 if (err < 0) {
1046 BT_ERR("RFCOMM socket layer registration failed");
1047 goto error;
1050 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL);
1051 if (err < 0) {
1052 BT_ERR("Failed to create RFCOMM proc file");
1053 bt_sock_unregister(BTPROTO_RFCOMM);
1054 goto error;
1057 BT_INFO("RFCOMM socket layer initialized");
1059 if (IS_ERR_OR_NULL(bt_debugfs))
1060 return 0;
1062 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1063 bt_debugfs, NULL,
1064 &rfcomm_sock_debugfs_fops);
1066 return 0;
1068 error:
1069 proto_unregister(&rfcomm_proto);
1070 return err;
1073 void __exit rfcomm_cleanup_sockets(void)
1075 bt_procfs_cleanup(&init_net, "rfcomm");
1077 debugfs_remove(rfcomm_sock_debugfs);
1079 bt_sock_unregister(BTPROTO_RFCOMM);
1081 proto_unregister(&rfcomm_proto);