1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readability.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/inet_ecn.h>
79 #include <net/lwtunnel.h>
80 #include <net/inet_dscp.h>
81 #include <linux/bpf-cgroup.h>
82 #include <linux/igmp.h>
83 #include <linux/netfilter_ipv4.h>
84 #include <linux/netfilter_bridge.h>
85 #include <linux/netlink.h>
86 #include <linux/tcp.h>
89 ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
91 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*));
93 /* Generate a checksum for an outgoing IP datagram. */
94 void ip_send_check(struct iphdr
*iph
)
97 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
99 EXPORT_SYMBOL(ip_send_check
);
101 int __ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
103 struct iphdr
*iph
= ip_hdr(skb
);
105 IP_INC_STATS(net
, IPSTATS_MIB_OUTREQUESTS
);
107 iph_set_totlen(iph
, skb
->len
);
110 /* if egress device is enslaved to an L3 master device pass the
111 * skb to its handler for processing
113 skb
= l3mdev_ip_out(sk
, skb
);
117 skb
->protocol
= htons(ETH_P_IP
);
119 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
,
120 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
124 int ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
128 err
= __ip_local_out(net
, sk
, skb
);
129 if (likely(err
== 1))
130 err
= dst_output(net
, sk
, skb
);
134 EXPORT_SYMBOL_GPL(ip_local_out
);
136 static inline int ip_select_ttl(const struct inet_sock
*inet
,
137 const struct dst_entry
*dst
)
139 int ttl
= READ_ONCE(inet
->uc_ttl
);
142 ttl
= ip4_dst_hoplimit(dst
);
147 * Add an ip header to a skbuff and send it out.
150 int ip_build_and_send_pkt(struct sk_buff
*skb
, const struct sock
*sk
,
151 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
,
154 const struct inet_sock
*inet
= inet_sk(sk
);
155 struct rtable
*rt
= skb_rtable(skb
);
156 struct net
*net
= sock_net(sk
);
159 /* Build the IP header. */
160 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
161 skb_reset_network_header(skb
);
166 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
167 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
169 iph
->protocol
= sk
->sk_protocol
;
170 /* Do not bother generating IPID for small packets (eg SYNACK) */
171 if (skb
->len
<= IPV4_MIN_MTU
|| ip_dont_fragment(sk
, &rt
->dst
)) {
172 iph
->frag_off
= htons(IP_DF
);
176 /* TCP packets here are SYNACK with fat IPv4/TCP options.
177 * Avoid using the hashed IP ident generator.
179 if (sk
->sk_protocol
== IPPROTO_TCP
)
180 iph
->id
= (__force __be16
)get_random_u16();
182 __ip_select_ident(net
, iph
, 1);
185 if (opt
&& opt
->opt
.optlen
) {
186 iph
->ihl
+= opt
->opt
.optlen
>>2;
187 ip_options_build(skb
, &opt
->opt
, daddr
, rt
);
190 skb
->priority
= READ_ONCE(sk
->sk_priority
);
192 skb
->mark
= READ_ONCE(sk
->sk_mark
);
195 return ip_local_out(net
, skb
->sk
, skb
);
197 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
199 static int ip_finish_output2(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
201 struct dst_entry
*dst
= skb_dst(skb
);
202 struct rtable
*rt
= dst_rtable(dst
);
203 struct net_device
*dev
= dst
->dev
;
204 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
205 struct neighbour
*neigh
;
206 bool is_v6gw
= false;
208 if (rt
->rt_type
== RTN_MULTICAST
) {
209 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTMCAST
, skb
->len
);
210 } else if (rt
->rt_type
== RTN_BROADCAST
)
211 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUTBCAST
, skb
->len
);
213 /* OUTOCTETS should be counted after fragment */
214 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
216 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
217 skb
= skb_expand_head(skb
, hh_len
);
222 if (lwtunnel_xmit_redirect(dst
->lwtstate
)) {
223 int res
= lwtunnel_xmit(skb
);
225 if (res
!= LWTUNNEL_XMIT_CONTINUE
)
230 neigh
= ip_neigh_for_gw(rt
, skb
, &is_v6gw
);
231 if (!IS_ERR(neigh
)) {
234 sock_confirm_neigh(skb
, neigh
);
235 /* if crossing protocols, can not use the cached header */
236 res
= neigh_output(neigh
, skb
, is_v6gw
);
242 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
244 kfree_skb_reason(skb
, SKB_DROP_REASON_NEIGH_CREATEFAIL
);
245 return PTR_ERR(neigh
);
248 static int ip_finish_output_gso(struct net
*net
, struct sock
*sk
,
249 struct sk_buff
*skb
, unsigned int mtu
)
251 struct sk_buff
*segs
, *nskb
;
252 netdev_features_t features
;
255 /* common case: seglen is <= mtu
257 if (skb_gso_validate_network_len(skb
, mtu
))
258 return ip_finish_output2(net
, sk
, skb
);
260 /* Slowpath - GSO segment length exceeds the egress MTU.
262 * This can happen in several cases:
263 * - Forwarding of a TCP GRO skb, when DF flag is not set.
264 * - Forwarding of an skb that arrived on a virtualization interface
265 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
267 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
268 * interface with a smaller MTU.
269 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
270 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
273 features
= netif_skb_features(skb
);
274 BUILD_BUG_ON(sizeof(*IPCB(skb
)) > SKB_GSO_CB_OFFSET
);
275 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
276 if (IS_ERR_OR_NULL(segs
)) {
283 skb_list_walk_safe(segs
, segs
, nskb
) {
286 skb_mark_not_on_list(segs
);
287 err
= ip_fragment(net
, sk
, segs
, mtu
, ip_finish_output2
);
296 static int __ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
301 /* Policy lookup after SNAT yielded a new policy */
302 if (skb_dst(skb
)->xfrm
) {
303 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
304 return dst_output(net
, sk
, skb
);
307 mtu
= ip_skb_dst_mtu(sk
, skb
);
309 return ip_finish_output_gso(net
, sk
, skb
, mtu
);
311 if (skb
->len
> mtu
|| IPCB(skb
)->frag_max_size
)
312 return ip_fragment(net
, sk
, skb
, mtu
, ip_finish_output2
);
314 return ip_finish_output2(net
, sk
, skb
);
317 static int ip_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
321 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
323 case NET_XMIT_SUCCESS
:
324 return __ip_finish_output(net
, sk
, skb
);
326 return __ip_finish_output(net
, sk
, skb
) ? : ret
;
328 kfree_skb_reason(skb
, SKB_DROP_REASON_BPF_CGROUP_EGRESS
);
333 static int ip_mc_finish_output(struct net
*net
, struct sock
*sk
,
336 struct rtable
*new_rt
;
340 ret
= BPF_CGROUP_RUN_PROG_INET_EGRESS(sk
, skb
);
345 case NET_XMIT_SUCCESS
:
348 kfree_skb_reason(skb
, SKB_DROP_REASON_BPF_CGROUP_EGRESS
);
352 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
353 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
354 * see ipv4_pktinfo_prepare().
356 new_rt
= rt_dst_clone(net
->loopback_dev
, skb_rtable(skb
));
360 skb_dst_set(skb
, &new_rt
->dst
);
363 err
= dev_loopback_xmit(net
, sk
, skb
);
364 return (do_cn
&& err
) ? ret
: err
;
367 int ip_mc_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
369 struct rtable
*rt
= skb_rtable(skb
);
370 struct net_device
*dev
= rt
->dst
.dev
;
373 * If the indicated interface is up and running, send the packet.
376 skb
->protocol
= htons(ETH_P_IP
);
379 * Multicasts are looped back for other local users
382 if (rt
->rt_flags
&RTCF_MULTICAST
) {
384 #ifdef CONFIG_IP_MROUTE
385 /* Small optimization: do not loopback not local frames,
386 which returned after forwarding; they will be dropped
387 by ip_mr_input in any case.
388 Note, that local frames are looped back to be delivered
391 This check is duplicated in ip_mr_input at the moment.
394 ((rt
->rt_flags
& RTCF_LOCAL
) ||
395 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
398 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
400 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
401 net
, sk
, newskb
, NULL
, newskb
->dev
,
402 ip_mc_finish_output
);
405 /* Multicasts with ttl 0 must not go beyond the host */
407 if (ip_hdr(skb
)->ttl
== 0) {
413 if (rt
->rt_flags
&RTCF_BROADCAST
) {
414 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
416 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
417 net
, sk
, newskb
, NULL
, newskb
->dev
,
418 ip_mc_finish_output
);
421 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
422 net
, sk
, skb
, NULL
, skb
->dev
,
424 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
427 int ip_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
429 struct net_device
*dev
= skb_dst(skb
)->dev
, *indev
= skb
->dev
;
432 skb
->protocol
= htons(ETH_P_IP
);
434 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
435 net
, sk
, skb
, indev
, dev
,
437 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
439 EXPORT_SYMBOL(ip_output
);
442 * copy saddr and daddr, possibly using 64bit load/stores
444 * iph->saddr = fl4->saddr;
445 * iph->daddr = fl4->daddr;
447 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
449 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
450 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
452 iph
->saddr
= fl4
->saddr
;
453 iph
->daddr
= fl4
->daddr
;
456 /* Note: skb->sk can be different from sk, in case of tunnels */
457 int __ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
,
460 struct inet_sock
*inet
= inet_sk(sk
);
461 struct net
*net
= sock_net(sk
);
462 struct ip_options_rcu
*inet_opt
;
468 /* Skip all of this if the packet is already routed,
469 * f.e. by something like SCTP.
472 inet_opt
= rcu_dereference(inet
->inet_opt
);
474 rt
= skb_rtable(skb
);
478 /* Make sure we can route this packet. */
479 rt
= dst_rtable(__sk_dst_check(sk
, 0));
483 /* Use correct destination address if we have options. */
484 daddr
= inet
->inet_daddr
;
485 if (inet_opt
&& inet_opt
->opt
.srr
)
486 daddr
= inet_opt
->opt
.faddr
;
488 /* If this fails, retransmit mechanism of transport layer will
489 * keep trying until route appears or the connection times
492 rt
= ip_route_output_ports(net
, fl4
, sk
,
493 daddr
, inet
->inet_saddr
,
497 tos
& INET_DSCP_MASK
,
498 sk
->sk_bound_dev_if
);
501 sk_setup_caps(sk
, &rt
->dst
);
503 skb_dst_set_noref(skb
, &rt
->dst
);
506 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
509 /* OK, we know where to send it, allocate and build IP header. */
510 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
511 skb_reset_network_header(skb
);
513 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (tos
& 0xff));
514 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->ignore_df
)
515 iph
->frag_off
= htons(IP_DF
);
518 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
519 iph
->protocol
= sk
->sk_protocol
;
520 ip_copy_addrs(iph
, fl4
);
522 /* Transport layer set skb->h.foo itself. */
524 if (inet_opt
&& inet_opt
->opt
.optlen
) {
525 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
526 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
);
529 ip_select_ident_segs(net
, skb
, sk
,
530 skb_shinfo(skb
)->gso_segs
?: 1);
532 /* TODO : should we use skb->sk here instead of sk ? */
533 skb
->priority
= READ_ONCE(sk
->sk_priority
);
534 skb
->mark
= READ_ONCE(sk
->sk_mark
);
536 res
= ip_local_out(net
, sk
, skb
);
542 IP_INC_STATS(net
, IPSTATS_MIB_OUTNOROUTES
);
543 kfree_skb_reason(skb
, SKB_DROP_REASON_IP_OUTNOROUTES
);
544 return -EHOSTUNREACH
;
546 EXPORT_SYMBOL(__ip_queue_xmit
);
548 int ip_queue_xmit(struct sock
*sk
, struct sk_buff
*skb
, struct flowi
*fl
)
550 return __ip_queue_xmit(sk
, skb
, fl
, READ_ONCE(inet_sk(sk
)->tos
));
552 EXPORT_SYMBOL(ip_queue_xmit
);
554 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
556 to
->pkt_type
= from
->pkt_type
;
557 to
->priority
= from
->priority
;
558 to
->protocol
= from
->protocol
;
559 to
->skb_iif
= from
->skb_iif
;
561 skb_dst_copy(to
, from
);
563 to
->mark
= from
->mark
;
565 skb_copy_hash(to
, from
);
567 #ifdef CONFIG_NET_SCHED
568 to
->tc_index
= from
->tc_index
;
571 skb_ext_copy(to
, from
);
572 #if IS_ENABLED(CONFIG_IP_VS)
573 to
->ipvs_property
= from
->ipvs_property
;
575 skb_copy_secmark(to
, from
);
578 static int ip_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
580 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
582 struct iphdr
*iph
= ip_hdr(skb
);
584 if ((iph
->frag_off
& htons(IP_DF
)) == 0)
585 return ip_do_fragment(net
, sk
, skb
, output
);
587 if (unlikely(!skb
->ignore_df
||
588 (IPCB(skb
)->frag_max_size
&&
589 IPCB(skb
)->frag_max_size
> mtu
))) {
590 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
591 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
597 return ip_do_fragment(net
, sk
, skb
, output
);
600 void ip_fraglist_init(struct sk_buff
*skb
, struct iphdr
*iph
,
601 unsigned int hlen
, struct ip_fraglist_iter
*iter
)
603 unsigned int first_len
= skb_pagelen(skb
);
605 iter
->frag
= skb_shinfo(skb
)->frag_list
;
606 skb_frag_list_init(skb
);
612 skb
->data_len
= first_len
- skb_headlen(skb
);
613 skb
->len
= first_len
;
614 iph
->tot_len
= htons(first_len
);
615 iph
->frag_off
= htons(IP_MF
);
618 EXPORT_SYMBOL(ip_fraglist_init
);
620 void ip_fraglist_prepare(struct sk_buff
*skb
, struct ip_fraglist_iter
*iter
)
622 unsigned int hlen
= iter
->hlen
;
623 struct iphdr
*iph
= iter
->iph
;
624 struct sk_buff
*frag
;
627 frag
->ip_summed
= CHECKSUM_NONE
;
628 skb_reset_transport_header(frag
);
629 __skb_push(frag
, hlen
);
630 skb_reset_network_header(frag
);
631 memcpy(skb_network_header(frag
), iph
, hlen
);
632 iter
->iph
= ip_hdr(frag
);
634 iph
->tot_len
= htons(frag
->len
);
635 ip_copy_metadata(frag
, skb
);
636 iter
->offset
+= skb
->len
- hlen
;
637 iph
->frag_off
= htons(iter
->offset
>> 3);
639 iph
->frag_off
|= htons(IP_MF
);
640 /* Ready, complete checksum */
643 EXPORT_SYMBOL(ip_fraglist_prepare
);
645 void ip_frag_init(struct sk_buff
*skb
, unsigned int hlen
,
646 unsigned int ll_rs
, unsigned int mtu
, bool DF
,
647 struct ip_frag_state
*state
)
649 struct iphdr
*iph
= ip_hdr(skb
);
653 state
->ll_rs
= ll_rs
;
656 state
->left
= skb
->len
- hlen
; /* Space per frame */
657 state
->ptr
= hlen
; /* Where to start from */
659 state
->offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
660 state
->not_last_frag
= iph
->frag_off
& htons(IP_MF
);
662 EXPORT_SYMBOL(ip_frag_init
);
664 static void ip_frag_ipcb(struct sk_buff
*from
, struct sk_buff
*to
,
667 /* Copy the flags to each fragment. */
668 IPCB(to
)->flags
= IPCB(from
)->flags
;
670 /* ANK: dirty, but effective trick. Upgrade options only if
671 * the segment to be fragmented was THE FIRST (otherwise,
672 * options are already fixed) and make it ONCE
673 * on the initial skb, so that all the following fragments
674 * will inherit fixed options.
677 ip_options_fragment(from
);
680 struct sk_buff
*ip_frag_next(struct sk_buff
*skb
, struct ip_frag_state
*state
)
682 unsigned int len
= state
->left
;
683 struct sk_buff
*skb2
;
686 /* IF: it doesn't fit, use 'mtu' - the data space left */
687 if (len
> state
->mtu
)
689 /* IF: we are not sending up to and including the packet end
690 then align the next start on an eight byte boundary */
691 if (len
< state
->left
) {
695 /* Allocate buffer */
696 skb2
= alloc_skb(len
+ state
->hlen
+ state
->ll_rs
, GFP_ATOMIC
);
698 return ERR_PTR(-ENOMEM
);
701 * Set up data on packet
704 ip_copy_metadata(skb2
, skb
);
705 skb_reserve(skb2
, state
->ll_rs
);
706 skb_put(skb2
, len
+ state
->hlen
);
707 skb_reset_network_header(skb2
);
708 skb2
->transport_header
= skb2
->network_header
+ state
->hlen
;
711 * Charge the memory for the fragment to any owner
716 skb_set_owner_w(skb2
, skb
->sk
);
719 * Copy the packet header into the new buffer.
722 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), state
->hlen
);
725 * Copy a block of the IP datagram.
727 if (skb_copy_bits(skb
, state
->ptr
, skb_transport_header(skb2
), len
))
732 * Fill in the new header fields.
735 iph
->frag_off
= htons((state
->offset
>> 3));
737 iph
->frag_off
|= htons(IP_DF
);
740 * Added AC : If we are fragmenting a fragment that's not the
741 * last fragment then keep MF on each bit
743 if (state
->left
> 0 || state
->not_last_frag
)
744 iph
->frag_off
|= htons(IP_MF
);
746 state
->offset
+= len
;
748 iph
->tot_len
= htons(len
+ state
->hlen
);
754 EXPORT_SYMBOL(ip_frag_next
);
757 * This IP datagram is too large to be sent in one piece. Break it up into
758 * smaller pieces (each of size equal to IP header plus
759 * a block of the data of the original IP data part) that will yet fit in a
760 * single device frame, and queue such a frame for sending.
763 int ip_do_fragment(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
,
764 int (*output
)(struct net
*, struct sock
*, struct sk_buff
*))
767 struct sk_buff
*skb2
;
768 u8 tstamp_type
= skb
->tstamp_type
;
769 struct rtable
*rt
= skb_rtable(skb
);
770 unsigned int mtu
, hlen
, ll_rs
;
771 struct ip_fraglist_iter iter
;
772 ktime_t tstamp
= skb
->tstamp
;
773 struct ip_frag_state state
;
776 /* for offloaded checksums cleanup checksum before fragmentation */
777 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
778 (err
= skb_checksum_help(skb
)))
782 * Point into the IP datagram header.
787 mtu
= ip_skb_dst_mtu(sk
, skb
);
788 if (IPCB(skb
)->frag_max_size
&& IPCB(skb
)->frag_max_size
< mtu
)
789 mtu
= IPCB(skb
)->frag_max_size
;
792 * Setup starting values.
796 mtu
= mtu
- hlen
; /* Size of data space */
797 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
798 ll_rs
= LL_RESERVED_SPACE(rt
->dst
.dev
);
800 /* When frag_list is given, use it. First, check its validity:
801 * some transformers could create wrong frag_list or break existing
802 * one, it is not prohibited. In this case fall back to copying.
804 * LATER: this step can be merged to real generation of fragments,
805 * we can switch to copy when see the first bad fragment.
807 if (skb_has_frag_list(skb
)) {
808 struct sk_buff
*frag
, *frag2
;
809 unsigned int first_len
= skb_pagelen(skb
);
811 if (first_len
- hlen
> mtu
||
812 ((first_len
- hlen
) & 7) ||
813 ip_is_fragment(iph
) ||
815 skb_headroom(skb
) < ll_rs
)
818 skb_walk_frags(skb
, frag
) {
819 /* Correct geometry. */
820 if (frag
->len
> mtu
||
821 ((frag
->len
& 7) && frag
->next
) ||
822 skb_headroom(frag
) < hlen
+ ll_rs
)
823 goto slow_path_clean
;
825 /* Partially cloned skb? */
826 if (skb_shared(frag
))
827 goto slow_path_clean
;
832 frag
->destructor
= sock_wfree
;
834 skb
->truesize
-= frag
->truesize
;
837 /* Everything is OK. Generate! */
838 ip_fraglist_init(skb
, iph
, hlen
, &iter
);
841 /* Prepare header of the next frame,
842 * before previous one went down. */
844 bool first_frag
= (iter
.offset
== 0);
846 IPCB(iter
.frag
)->flags
= IPCB(skb
)->flags
;
847 ip_fraglist_prepare(skb
, &iter
);
848 if (first_frag
&& IPCB(skb
)->opt
.optlen
) {
849 /* ipcb->opt is not populated for frags
850 * coming from __ip_make_skb(),
851 * ip_options_fragment() needs optlen
853 IPCB(iter
.frag
)->opt
.optlen
=
854 IPCB(skb
)->opt
.optlen
;
855 ip_options_fragment(iter
.frag
);
856 ip_send_check(iter
.iph
);
860 skb_set_delivery_time(skb
, tstamp
, tstamp_type
);
861 err
= output(net
, sk
, skb
);
864 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
865 if (err
|| !iter
.frag
)
868 skb
= ip_fraglist_next(&iter
);
872 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
876 kfree_skb_list(iter
.frag
);
878 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
882 skb_walk_frags(skb
, frag2
) {
886 frag2
->destructor
= NULL
;
887 skb
->truesize
+= frag2
->truesize
;
893 * Fragment the datagram.
896 ip_frag_init(skb
, hlen
, ll_rs
, mtu
, IPCB(skb
)->flags
& IPSKB_FRAG_PMTU
,
900 * Keep copying data until we run out.
903 while (state
.left
> 0) {
904 bool first_frag
= (state
.offset
== 0);
906 skb2
= ip_frag_next(skb
, &state
);
911 ip_frag_ipcb(skb
, skb2
, first_frag
);
914 * Put this fragment into the sending queue.
916 skb_set_delivery_time(skb2
, tstamp
, tstamp_type
);
917 err
= output(net
, sk
, skb2
);
921 IP_INC_STATS(net
, IPSTATS_MIB_FRAGCREATES
);
924 IP_INC_STATS(net
, IPSTATS_MIB_FRAGOKS
);
929 IP_INC_STATS(net
, IPSTATS_MIB_FRAGFAILS
);
932 EXPORT_SYMBOL(ip_do_fragment
);
935 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
937 struct msghdr
*msg
= from
;
939 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
940 if (!copy_from_iter_full(to
, len
, &msg
->msg_iter
))
944 if (!csum_and_copy_from_iter_full(to
, len
, &csum
, &msg
->msg_iter
))
946 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
950 EXPORT_SYMBOL(ip_generic_getfrag
);
952 static int __ip_append_data(struct sock
*sk
,
954 struct sk_buff_head
*queue
,
955 struct inet_cork
*cork
,
956 struct page_frag
*pfrag
,
957 int getfrag(void *from
, char *to
, int offset
,
958 int len
, int odd
, struct sk_buff
*skb
),
959 void *from
, int length
, int transhdrlen
,
962 struct inet_sock
*inet
= inet_sk(sk
);
963 struct ubuf_info
*uarg
= NULL
;
965 struct ip_options
*opt
= cork
->opt
;
973 unsigned int maxfraglen
, fragheaderlen
, maxnonfragsize
;
974 int csummode
= CHECKSUM_NONE
;
975 struct rtable
*rt
= dst_rtable(cork
->dst
);
976 bool paged
, hold_tskey
= false, extra_uref
= false;
977 unsigned int wmem_alloc_delta
= 0;
980 skb
= skb_peek_tail(queue
);
982 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
983 mtu
= cork
->gso_size
? IP_MAX_MTU
: cork
->fragsize
;
984 paged
= !!cork
->gso_size
;
986 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
988 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
989 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
990 maxnonfragsize
= ip_sk_ignore_df(sk
) ? IP_MAX_MTU
: mtu
;
992 if (cork
->length
+ length
> maxnonfragsize
- fragheaderlen
) {
993 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
994 mtu
- (opt
? opt
->optlen
: 0));
999 * transhdrlen > 0 means that this is the first fragment and we wish
1000 * it won't be fragmented in the future.
1003 length
+ fragheaderlen
<= mtu
&&
1004 rt
->dst
.dev
->features
& (NETIF_F_HW_CSUM
| NETIF_F_IP_CSUM
) &&
1005 (!(flags
& MSG_MORE
) || cork
->gso_size
) &&
1006 (!exthdrlen
|| (rt
->dst
.dev
->features
& NETIF_F_HW_ESP_TX_CSUM
)))
1007 csummode
= CHECKSUM_PARTIAL
;
1009 if ((flags
& MSG_ZEROCOPY
) && length
) {
1010 struct msghdr
*msg
= from
;
1012 if (getfrag
== ip_generic_getfrag
&& msg
->msg_ubuf
) {
1013 if (skb_zcopy(skb
) && msg
->msg_ubuf
!= skb_zcopy(skb
))
1016 /* Leave uarg NULL if can't zerocopy, callers should
1017 * be able to handle it.
1019 if ((rt
->dst
.dev
->features
& NETIF_F_SG
) &&
1020 csummode
== CHECKSUM_PARTIAL
) {
1023 uarg
= msg
->msg_ubuf
;
1025 } else if (sock_flag(sk
, SOCK_ZEROCOPY
)) {
1026 uarg
= msg_zerocopy_realloc(sk
, length
, skb_zcopy(skb
));
1029 extra_uref
= !skb_zcopy(skb
); /* only ref on new uarg */
1030 if (rt
->dst
.dev
->features
& NETIF_F_SG
&&
1031 csummode
== CHECKSUM_PARTIAL
) {
1035 uarg_to_msgzc(uarg
)->zerocopy
= 0;
1036 skb_zcopy_set(skb
, uarg
, &extra_uref
);
1039 } else if ((flags
& MSG_SPLICE_PAGES
) && length
) {
1040 if (inet_test_bit(HDRINCL
, sk
))
1042 if (rt
->dst
.dev
->features
& NETIF_F_SG
&&
1043 getfrag
== ip_generic_getfrag
)
1044 /* We need an empty buffer to attach stuff to */
1047 flags
&= ~MSG_SPLICE_PAGES
;
1050 cork
->length
+= length
;
1052 if (cork
->tx_flags
& SKBTX_ANY_TSTAMP
&&
1053 READ_ONCE(sk
->sk_tsflags
) & SOF_TIMESTAMPING_OPT_ID
) {
1054 if (cork
->flags
& IPCORK_TS_OPT_ID
) {
1055 tskey
= cork
->ts_opt_id
;
1057 tskey
= atomic_inc_return(&sk
->sk_tskey
) - 1;
1062 /* So, what's going on in the loop below?
1064 * We use calculated fragment length to generate chained skb,
1065 * each of segments is IP fragment ready for sending to network after
1066 * adding appropriate IP header.
1072 while (length
> 0) {
1073 /* Check if the remaining data fits into current packet. */
1074 copy
= mtu
- skb
->len
;
1076 copy
= maxfraglen
- skb
->len
;
1079 unsigned int datalen
;
1080 unsigned int fraglen
;
1081 unsigned int fraggap
;
1082 unsigned int alloclen
, alloc_extra
;
1083 unsigned int pagedlen
;
1084 struct sk_buff
*skb_prev
;
1088 fraggap
= skb_prev
->len
- maxfraglen
;
1093 * If remaining data exceeds the mtu,
1094 * we know we need more fragment(s).
1096 datalen
= length
+ fraggap
;
1097 if (datalen
> mtu
- fragheaderlen
)
1098 datalen
= maxfraglen
- fragheaderlen
;
1099 fraglen
= datalen
+ fragheaderlen
;
1102 alloc_extra
= hh_len
+ 15;
1103 alloc_extra
+= exthdrlen
;
1105 /* The last fragment gets additional space at tail.
1106 * Note, with MSG_MORE we overallocate on fragments,
1107 * because we have no idea what fragment will be
1110 if (datalen
== length
+ fraggap
)
1111 alloc_extra
+= rt
->dst
.trailer_len
;
1113 if ((flags
& MSG_MORE
) &&
1114 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
1117 (fraglen
+ alloc_extra
< SKB_MAX_ALLOC
||
1118 !(rt
->dst
.dev
->features
& NETIF_F_SG
)))
1121 alloclen
= fragheaderlen
+ transhdrlen
;
1122 pagedlen
= datalen
- transhdrlen
;
1125 alloclen
+= alloc_extra
;
1128 skb
= sock_alloc_send_skb(sk
, alloclen
,
1129 (flags
& MSG_DONTWAIT
), &err
);
1132 if (refcount_read(&sk
->sk_wmem_alloc
) + wmem_alloc_delta
<=
1134 skb
= alloc_skb(alloclen
,
1143 * Fill in the control structures
1145 skb
->ip_summed
= csummode
;
1147 skb_reserve(skb
, hh_len
);
1150 * Find where to start putting bytes.
1152 data
= skb_put(skb
, fraglen
+ exthdrlen
- pagedlen
);
1153 skb_set_network_header(skb
, exthdrlen
);
1154 skb
->transport_header
= (skb
->network_header
+
1156 data
+= fragheaderlen
+ exthdrlen
;
1159 skb
->csum
= skb_copy_and_csum_bits(
1160 skb_prev
, maxfraglen
,
1161 data
+ transhdrlen
, fraggap
);
1162 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1165 pskb_trim_unique(skb_prev
, maxfraglen
);
1168 copy
= datalen
- transhdrlen
- fraggap
- pagedlen
;
1169 /* [!] NOTE: copy will be negative if pagedlen>0
1170 * because then the equation reduces to -fraggap.
1172 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1176 } else if (flags
& MSG_SPLICE_PAGES
) {
1181 length
-= copy
+ transhdrlen
;
1184 csummode
= CHECKSUM_NONE
;
1186 /* only the initial fragment is time stamped */
1187 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
1189 skb_shinfo(skb
)->tskey
= tskey
;
1191 skb_zcopy_set(skb
, uarg
, &extra_uref
);
1193 if ((flags
& MSG_CONFIRM
) && !skb_prev
)
1194 skb_set_dst_pending_confirm(skb
, 1);
1197 * Put the packet on the pending queue.
1199 if (!skb
->destructor
) {
1200 skb
->destructor
= sock_wfree
;
1202 wmem_alloc_delta
+= skb
->truesize
;
1204 __skb_queue_tail(queue
, skb
);
1211 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
) &&
1212 skb_tailroom(skb
) >= copy
) {
1216 if (getfrag(from
, skb_put(skb
, copy
),
1217 offset
, copy
, off
, skb
) < 0) {
1218 __skb_trim(skb
, off
);
1222 } else if (flags
& MSG_SPLICE_PAGES
) {
1223 struct msghdr
*msg
= from
;
1226 if (WARN_ON_ONCE(copy
> msg
->msg_iter
.count
))
1229 err
= skb_splice_from_iter(skb
, &msg
->msg_iter
, copy
,
1234 wmem_alloc_delta
+= copy
;
1236 int i
= skb_shinfo(skb
)->nr_frags
;
1239 if (!sk_page_frag_refill(sk
, pfrag
))
1242 skb_zcopy_downgrade_managed(skb
);
1243 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1246 if (i
== MAX_SKB_FRAGS
)
1249 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1251 skb_shinfo(skb
)->nr_frags
= ++i
;
1252 get_page(pfrag
->page
);
1254 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1256 page_address(pfrag
->page
) + pfrag
->offset
,
1257 offset
, copy
, skb
->len
, skb
) < 0)
1260 pfrag
->offset
+= copy
;
1261 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1262 skb_len_add(skb
, copy
);
1263 wmem_alloc_delta
+= copy
;
1265 err
= skb_zerocopy_iter_dgram(skb
, from
, copy
);
1273 if (wmem_alloc_delta
)
1274 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1280 net_zcopy_put_abort(uarg
, extra_uref
);
1281 cork
->length
-= length
;
1282 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1283 refcount_add(wmem_alloc_delta
, &sk
->sk_wmem_alloc
);
1285 atomic_dec(&sk
->sk_tskey
);
1289 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1290 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1292 struct ip_options_rcu
*opt
;
1299 cork
->fragsize
= ip_sk_use_pmtu(sk
) ?
1300 dst_mtu(&rt
->dst
) : READ_ONCE(rt
->dst
.dev
->mtu
);
1302 if (!inetdev_valid_mtu(cork
->fragsize
))
1303 return -ENETUNREACH
;
1306 * setup for corking.
1311 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1313 if (unlikely(!cork
->opt
))
1316 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1317 cork
->flags
|= IPCORK_OPT
;
1318 cork
->addr
= ipc
->addr
;
1321 cork
->gso_size
= ipc
->gso_size
;
1323 cork
->dst
= &rt
->dst
;
1324 /* We stole this route, caller should not release it. */
1328 cork
->ttl
= ipc
->ttl
;
1329 cork
->tos
= ipc
->tos
;
1330 cork
->mark
= ipc
->sockc
.mark
;
1331 cork
->priority
= ipc
->priority
;
1332 cork
->transmit_time
= ipc
->sockc
.transmit_time
;
1334 sock_tx_timestamp(sk
, &ipc
->sockc
, &cork
->tx_flags
);
1335 if (ipc
->sockc
.tsflags
& SOCKCM_FLAG_TS_OPT_ID
) {
1336 cork
->flags
|= IPCORK_TS_OPT_ID
;
1337 cork
->ts_opt_id
= ipc
->sockc
.ts_opt_id
;
1344 * ip_append_data() can make one large IP datagram from many pieces of
1345 * data. Each piece will be held on the socket until
1346 * ip_push_pending_frames() is called. Each piece can be a page or
1349 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1350 * this interface potentially.
1352 * LATER: length must be adjusted by pad at tail, when it is required.
1354 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1355 int getfrag(void *from
, char *to
, int offset
, int len
,
1356 int odd
, struct sk_buff
*skb
),
1357 void *from
, int length
, int transhdrlen
,
1358 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1361 struct inet_sock
*inet
= inet_sk(sk
);
1364 if (flags
&MSG_PROBE
)
1367 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1368 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1375 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1376 sk_page_frag(sk
), getfrag
,
1377 from
, length
, transhdrlen
, flags
);
1380 static void ip_cork_release(struct inet_cork
*cork
)
1382 cork
->flags
&= ~IPCORK_OPT
;
1385 dst_release(cork
->dst
);
1390 * Combined all pending IP fragments on the socket as one IP datagram
1391 * and push them out.
1393 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1395 struct sk_buff_head
*queue
,
1396 struct inet_cork
*cork
)
1398 struct sk_buff
*skb
, *tmp_skb
;
1399 struct sk_buff
**tail_skb
;
1400 struct inet_sock
*inet
= inet_sk(sk
);
1401 struct net
*net
= sock_net(sk
);
1402 struct ip_options
*opt
= NULL
;
1403 struct rtable
*rt
= dst_rtable(cork
->dst
);
1408 skb
= __skb_dequeue(queue
);
1411 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1413 /* move skb->data to ip header from ext header */
1414 if (skb
->data
< skb_network_header(skb
))
1415 __skb_pull(skb
, skb_network_offset(skb
));
1416 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1417 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1418 *tail_skb
= tmp_skb
;
1419 tail_skb
= &(tmp_skb
->next
);
1420 skb
->len
+= tmp_skb
->len
;
1421 skb
->data_len
+= tmp_skb
->len
;
1422 skb
->truesize
+= tmp_skb
->truesize
;
1423 tmp_skb
->destructor
= NULL
;
1427 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1428 * to fragment the frame generated here. No matter, what transforms
1429 * how transforms change size of the packet, it will come out.
1431 skb
->ignore_df
= ip_sk_ignore_df(sk
);
1433 /* DF bit is set when we want to see DF on outgoing frames.
1434 * If ignore_df is set too, we still allow to fragment this frame
1436 pmtudisc
= READ_ONCE(inet
->pmtudisc
);
1437 if (pmtudisc
== IP_PMTUDISC_DO
||
1438 pmtudisc
== IP_PMTUDISC_PROBE
||
1439 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1440 ip_dont_fragment(sk
, &rt
->dst
)))
1443 if (cork
->flags
& IPCORK_OPT
)
1448 else if (rt
->rt_type
== RTN_MULTICAST
)
1449 ttl
= READ_ONCE(inet
->mc_ttl
);
1451 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1456 iph
->tos
= (cork
->tos
!= -1) ? cork
->tos
: READ_ONCE(inet
->tos
);
1459 iph
->protocol
= sk
->sk_protocol
;
1460 ip_copy_addrs(iph
, fl4
);
1461 ip_select_ident(net
, skb
, sk
);
1464 iph
->ihl
+= opt
->optlen
>> 2;
1465 ip_options_build(skb
, opt
, cork
->addr
, rt
);
1468 skb
->priority
= (cork
->tos
!= -1) ? cork
->priority
: READ_ONCE(sk
->sk_priority
);
1469 skb
->mark
= cork
->mark
;
1471 skb_set_delivery_time(skb
, cork
->transmit_time
, SKB_CLOCK_MONOTONIC
);
1473 skb_set_delivery_type_by_clockid(skb
, cork
->transmit_time
, sk
->sk_clockid
);
1475 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1479 skb_dst_set(skb
, &rt
->dst
);
1481 if (iph
->protocol
== IPPROTO_ICMP
) {
1484 /* For such sockets, transhdrlen is zero when do ip_append_data(),
1485 * so icmphdr does not in skb linear region and can not get icmp_type
1486 * by icmp_hdr(skb)->type.
1488 if (sk
->sk_type
== SOCK_RAW
&&
1489 !(fl4
->flowi4_flags
& FLOWI_FLAG_KNOWN_NH
))
1490 icmp_type
= fl4
->fl4_icmp_type
;
1492 icmp_type
= icmp_hdr(skb
)->type
;
1493 icmp_out_count(net
, icmp_type
);
1496 ip_cork_release(cork
);
1501 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1505 err
= ip_local_out(net
, skb
->sk
, skb
);
1508 err
= net_xmit_errno(err
);
1510 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1516 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1518 struct sk_buff
*skb
;
1520 skb
= ip_finish_skb(sk
, fl4
);
1524 /* Netfilter gets whole the not fragmented skb. */
1525 return ip_send_skb(sock_net(sk
), skb
);
1529 * Throw away all pending data on the socket.
1531 static void __ip_flush_pending_frames(struct sock
*sk
,
1532 struct sk_buff_head
*queue
,
1533 struct inet_cork
*cork
)
1535 struct sk_buff
*skb
;
1537 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1540 ip_cork_release(cork
);
1543 void ip_flush_pending_frames(struct sock
*sk
)
1545 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1548 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1550 int getfrag(void *from
, char *to
, int offset
,
1551 int len
, int odd
, struct sk_buff
*skb
),
1552 void *from
, int length
, int transhdrlen
,
1553 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1554 struct inet_cork
*cork
, unsigned int flags
)
1556 struct sk_buff_head queue
;
1559 if (flags
& MSG_PROBE
)
1562 __skb_queue_head_init(&queue
);
1567 err
= ip_setup_cork(sk
, cork
, ipc
, rtp
);
1569 return ERR_PTR(err
);
1571 err
= __ip_append_data(sk
, fl4
, &queue
, cork
,
1572 ¤t
->task_frag
, getfrag
,
1573 from
, length
, transhdrlen
, flags
);
1575 __ip_flush_pending_frames(sk
, &queue
, cork
);
1576 return ERR_PTR(err
);
1579 return __ip_make_skb(sk
, fl4
, &queue
, cork
);
1583 * Fetch data from kernel space and fill in checksum if needed.
1585 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1586 int len
, int odd
, struct sk_buff
*skb
)
1590 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
);
1591 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1596 * Generic function to send a packet as reply to another packet.
1597 * Used to send some TCP resets/acks so far.
1599 void ip_send_unicast_reply(struct sock
*sk
, const struct sock
*orig_sk
,
1600 struct sk_buff
*skb
,
1601 const struct ip_options
*sopt
,
1602 __be32 daddr
, __be32 saddr
,
1603 const struct ip_reply_arg
*arg
,
1604 unsigned int len
, u64 transmit_time
, u32 txhash
)
1606 struct ip_options_data replyopts
;
1607 struct ipcm_cookie ipc
;
1609 struct rtable
*rt
= skb_rtable(skb
);
1610 struct net
*net
= sock_net(sk
);
1611 struct sk_buff
*nskb
;
1615 if (__ip_options_echo(net
, &replyopts
.opt
.opt
, skb
, sopt
))
1620 ipc
.sockc
.transmit_time
= transmit_time
;
1622 if (replyopts
.opt
.opt
.optlen
) {
1623 ipc
.opt
= &replyopts
.opt
;
1625 if (replyopts
.opt
.opt
.srr
)
1626 daddr
= replyopts
.opt
.opt
.faddr
;
1629 oif
= arg
->bound_dev_if
;
1630 if (!oif
&& netif_index_is_l3_master(net
, skb
->skb_iif
))
1633 flowi4_init_output(&fl4
, oif
,
1634 IP4_REPLY_MARK(net
, skb
->mark
) ?: sk
->sk_mark
,
1635 arg
->tos
& INET_DSCP_MASK
,
1636 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1637 ip_reply_arg_flowi_flags(arg
),
1639 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
,
1641 security_skb_classify_flow(skb
, flowi4_to_flowi_common(&fl4
));
1642 rt
= ip_route_output_flow(net
, &fl4
, sk
);
1646 inet_sk(sk
)->tos
= arg
->tos
& ~INET_ECN_MASK
;
1648 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1649 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1650 sk
->sk_sndbuf
= READ_ONCE(sysctl_wmem_default
);
1651 ipc
.sockc
.mark
= fl4
.flowi4_mark
;
1652 err
= ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
,
1653 len
, 0, &ipc
, &rt
, MSG_DONTWAIT
);
1654 if (unlikely(err
)) {
1655 ip_flush_pending_frames(sk
);
1659 nskb
= skb_peek(&sk
->sk_write_queue
);
1661 if (arg
->csumoffset
>= 0)
1662 *((__sum16
*)skb_transport_header(nskb
) +
1663 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1665 nskb
->ip_summed
= CHECKSUM_NONE
;
1667 skb_set_owner_edemux(nskb
, (struct sock
*)orig_sk
);
1669 nskb
->tstamp_type
= SKB_CLOCK_MONOTONIC
;
1671 skb_set_hash(nskb
, txhash
, PKT_HASH_TYPE_L4
);
1672 ip_push_pending_frames(sk
, &fl4
);
1678 void __init
ip_init(void)
1683 #if defined(CONFIG_IP_MULTICAST)