1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
85 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114 #define REXMIT_NONE 0 /* no loss recovery to do */
115 #define REXMIT_LOST 1 /* retransmit packets marked lost */
116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled
, HZ
);
121 void clean_acked_data_enable(struct inet_connection_sock
*icsk
,
122 void (*cad
)(struct sock
*sk
, u32 ack_seq
))
124 icsk
->icsk_clean_acked
= cad
;
125 static_branch_deferred_inc(&clean_acked_data_enabled
);
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable
);
129 void clean_acked_data_disable(struct inet_connection_sock
*icsk
)
131 static_branch_slow_dec_deferred(&clean_acked_data_enabled
);
132 icsk
->icsk_clean_acked
= NULL
;
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable
);
136 void clean_acked_data_flush(void)
138 static_key_deferred_flush(&clean_acked_data_enabled
);
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush
);
143 #ifdef CONFIG_CGROUP_BPF
144 static void bpf_skops_parse_hdr(struct sock
*sk
, struct sk_buff
*skb
)
146 bool unknown_opt
= tcp_sk(sk
)->rx_opt
.saw_unknown
&&
147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
),
148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG
);
149 bool parse_all_opt
= BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk
),
150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG
);
151 struct bpf_sock_ops_kern sock_ops
;
153 if (likely(!unknown_opt
&& !parse_all_opt
))
156 /* The skb will be handled in the
157 * bpf_skops_established() or
158 * bpf_skops_write_hdr_opt().
160 switch (sk
->sk_state
) {
167 sock_owned_by_me(sk
);
169 memset(&sock_ops
, 0, offsetof(struct bpf_sock_ops_kern
, temp
));
170 sock_ops
.op
= BPF_SOCK_OPS_PARSE_HDR_OPT_CB
;
171 sock_ops
.is_fullsock
= 1;
173 bpf_skops_init_skb(&sock_ops
, skb
, tcp_hdrlen(skb
));
175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops
);
178 static void bpf_skops_established(struct sock
*sk
, int bpf_op
,
181 struct bpf_sock_ops_kern sock_ops
;
183 sock_owned_by_me(sk
);
185 memset(&sock_ops
, 0, offsetof(struct bpf_sock_ops_kern
, temp
));
186 sock_ops
.op
= bpf_op
;
187 sock_ops
.is_fullsock
= 1;
189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 bpf_skops_init_skb(&sock_ops
, skb
, tcp_hdrlen(skb
));
193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops
);
196 static void bpf_skops_parse_hdr(struct sock
*sk
, struct sk_buff
*skb
)
200 static void bpf_skops_established(struct sock
*sk
, int bpf_op
,
206 static __cold
void tcp_gro_dev_warn(const struct sock
*sk
, const struct sk_buff
*skb
,
209 struct net_device
*dev
;
212 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
213 if (!dev
|| len
>= READ_ONCE(dev
->mtu
))
214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 dev
? dev
->name
: "Unknown driver");
219 /* Adapt the MSS value used to make delayed ack decision to the
222 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
224 struct inet_connection_sock
*icsk
= inet_csk(sk
);
225 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
228 icsk
->icsk_ack
.last_seg_size
= 0;
230 /* skb->len may jitter because of SACKs, even if peer
231 * sends good full-sized frames.
233 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
234 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
235 /* Note: divides are still a bit expensive.
236 * For the moment, only adjust scaling_ratio
237 * when we update icsk_ack.rcv_mss.
239 if (unlikely(len
!= icsk
->icsk_ack
.rcv_mss
)) {
240 u64 val
= (u64
)skb
->len
<< TCP_RMEM_TO_WIN_SCALE
;
241 u8 old_ratio
= tcp_sk(sk
)->scaling_ratio
;
243 do_div(val
, skb
->truesize
);
244 tcp_sk(sk
)->scaling_ratio
= val
? val
: 1;
246 if (old_ratio
!= tcp_sk(sk
)->scaling_ratio
)
247 WRITE_ONCE(tcp_sk(sk
)->window_clamp
,
248 tcp_win_from_space(sk
, sk
->sk_rcvbuf
));
250 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
252 /* Account for possibly-removed options */
253 DO_ONCE_LITE_IF(len
> icsk
->icsk_ack
.rcv_mss
+ MAX_TCP_OPTION_SPACE
,
254 tcp_gro_dev_warn
, sk
, skb
, len
);
255 /* If the skb has a len of exactly 1*MSS and has the PSH bit
256 * set then it is likely the end of an application write. So
257 * more data may not be arriving soon, and yet the data sender
258 * may be waiting for an ACK if cwnd-bound or using TX zero
259 * copy. So we set ICSK_ACK_PUSHED here so that
260 * tcp_cleanup_rbuf() will send an ACK immediately if the app
261 * reads all of the data and is not ping-pong. If len > MSS
262 * then this logic does not matter (and does not hurt) because
263 * tcp_cleanup_rbuf() will always ACK immediately if the app
264 * reads data and there is more than an MSS of unACKed data.
266 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_PSH
)
267 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
269 /* Otherwise, we make more careful check taking into account,
270 * that SACKs block is variable.
272 * "len" is invariant segment length, including TCP header.
274 len
+= skb
->data
- skb_transport_header(skb
);
275 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
276 /* If PSH is not set, packet should be
277 * full sized, provided peer TCP is not badly broken.
278 * This observation (if it is correct 8)) allows
279 * to handle super-low mtu links fairly.
281 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
282 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
283 /* Subtract also invariant (if peer is RFC compliant),
284 * tcp header plus fixed timestamp option length.
285 * Resulting "len" is MSS free of SACK jitter.
287 len
-= tcp_sk(sk
)->tcp_header_len
;
288 icsk
->icsk_ack
.last_seg_size
= len
;
290 icsk
->icsk_ack
.rcv_mss
= len
;
294 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
295 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
296 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
300 static void tcp_incr_quickack(struct sock
*sk
, unsigned int max_quickacks
)
302 struct inet_connection_sock
*icsk
= inet_csk(sk
);
303 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
307 quickacks
= min(quickacks
, max_quickacks
);
308 if (quickacks
> icsk
->icsk_ack
.quick
)
309 icsk
->icsk_ack
.quick
= quickacks
;
312 static void tcp_enter_quickack_mode(struct sock
*sk
, unsigned int max_quickacks
)
314 struct inet_connection_sock
*icsk
= inet_csk(sk
);
316 tcp_incr_quickack(sk
, max_quickacks
);
317 inet_csk_exit_pingpong_mode(sk
);
318 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
321 /* Send ACKs quickly, if "quick" count is not exhausted
322 * and the session is not interactive.
325 static bool tcp_in_quickack_mode(struct sock
*sk
)
327 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
328 const struct dst_entry
*dst
= __sk_dst_get(sk
);
330 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
331 (icsk
->icsk_ack
.quick
&& !inet_csk_in_pingpong_mode(sk
));
334 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
336 if (tp
->ecn_flags
& TCP_ECN_OK
)
337 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
340 static void tcp_ecn_accept_cwr(struct sock
*sk
, const struct sk_buff
*skb
)
342 if (tcp_hdr(skb
)->cwr
) {
343 tcp_sk(sk
)->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
345 /* If the sender is telling us it has entered CWR, then its
346 * cwnd may be very low (even just 1 packet), so we should ACK
349 if (TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
)
350 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
354 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
356 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
359 static void __tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
361 struct tcp_sock
*tp
= tcp_sk(sk
);
363 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
364 case INET_ECN_NOT_ECT
:
365 /* Funny extension: if ECT is not set on a segment,
366 * and we already seen ECT on a previous segment,
367 * it is probably a retransmit.
369 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
370 tcp_enter_quickack_mode(sk
, 2);
373 if (tcp_ca_needs_ecn(sk
))
374 tcp_ca_event(sk
, CA_EVENT_ECN_IS_CE
);
376 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
377 /* Better not delay acks, sender can have a very low cwnd */
378 tcp_enter_quickack_mode(sk
, 2);
379 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
381 tp
->ecn_flags
|= TCP_ECN_SEEN
;
384 if (tcp_ca_needs_ecn(sk
))
385 tcp_ca_event(sk
, CA_EVENT_ECN_NO_CE
);
386 tp
->ecn_flags
|= TCP_ECN_SEEN
;
391 static void tcp_ecn_check_ce(struct sock
*sk
, const struct sk_buff
*skb
)
393 if (tcp_sk(sk
)->ecn_flags
& TCP_ECN_OK
)
394 __tcp_ecn_check_ce(sk
, skb
);
397 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
399 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
400 tp
->ecn_flags
&= ~TCP_ECN_OK
;
403 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
405 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
406 tp
->ecn_flags
&= ~TCP_ECN_OK
;
409 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
411 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
416 /* Buffer size and advertised window tuning.
418 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
421 static void tcp_sndbuf_expand(struct sock
*sk
)
423 const struct tcp_sock
*tp
= tcp_sk(sk
);
424 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
428 /* Worst case is non GSO/TSO : each frame consumes one skb
429 * and skb->head is kmalloced using power of two area of memory
431 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
433 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
435 per_mss
= roundup_pow_of_two(per_mss
) +
436 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
438 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tcp_snd_cwnd(tp
));
439 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
441 /* Fast Recovery (RFC 5681 3.2) :
442 * Cubic needs 1.7 factor, rounded to 2 to include
443 * extra cushion (application might react slowly to EPOLLOUT)
445 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
446 sndmem
*= nr_segs
* per_mss
;
448 if (sk
->sk_sndbuf
< sndmem
)
449 WRITE_ONCE(sk
->sk_sndbuf
,
450 min(sndmem
, READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2])));
453 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455 * All tcp_full_space() is split to two parts: "network" buffer, allocated
456 * forward and advertised in receiver window (tp->rcv_wnd) and
457 * "application buffer", required to isolate scheduling/application
458 * latencies from network.
459 * window_clamp is maximal advertised window. It can be less than
460 * tcp_full_space(), in this case tcp_full_space() - window_clamp
461 * is reserved for "application" buffer. The less window_clamp is
462 * the smoother our behaviour from viewpoint of network, but the lower
463 * throughput and the higher sensitivity of the connection to losses. 8)
465 * rcv_ssthresh is more strict window_clamp used at "slow start"
466 * phase to predict further behaviour of this connection.
467 * It is used for two goals:
468 * - to enforce header prediction at sender, even when application
469 * requires some significant "application buffer". It is check #1.
470 * - to prevent pruning of receive queue because of misprediction
471 * of receiver window. Check #2.
473 * The scheme does not work when sender sends good segments opening
474 * window and then starts to feed us spaghetti. But it should work
475 * in common situations. Otherwise, we have to rely on queue collapsing.
478 /* Slow part of check#2. */
479 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
,
480 unsigned int skbtruesize
)
482 const struct tcp_sock
*tp
= tcp_sk(sk
);
484 int truesize
= tcp_win_from_space(sk
, skbtruesize
) >> 1;
485 int window
= tcp_win_from_space(sk
, READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2])) >> 1;
487 while (tp
->rcv_ssthresh
<= window
) {
488 if (truesize
<= skb
->len
)
489 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
497 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
498 * can play nice with us, as sk_buff and skb->head might be either
499 * freed or shared with up to MAX_SKB_FRAGS segments.
500 * Only give a boost to drivers using page frag(s) to hold the frame(s),
501 * and if no payload was pulled in skb->head before reaching us.
503 static u32
truesize_adjust(bool adjust
, const struct sk_buff
*skb
)
505 u32 truesize
= skb
->truesize
;
507 if (adjust
&& !skb_headlen(skb
)) {
508 truesize
-= SKB_TRUESIZE(skb_end_offset(skb
));
509 /* paranoid check, some drivers might be buggy */
510 if (unlikely((int)truesize
< (int)skb
->len
))
511 truesize
= skb
->truesize
;
516 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
,
519 struct tcp_sock
*tp
= tcp_sk(sk
);
522 room
= min_t(int, tp
->window_clamp
, tcp_space(sk
)) - tp
->rcv_ssthresh
;
528 if (!tcp_under_memory_pressure(sk
)) {
529 unsigned int truesize
= truesize_adjust(adjust
, skb
);
532 /* Check #2. Increase window, if skb with such overhead
533 * will fit to rcvbuf in future.
535 if (tcp_win_from_space(sk
, truesize
) <= skb
->len
)
536 incr
= 2 * tp
->advmss
;
538 incr
= __tcp_grow_window(sk
, skb
, truesize
);
541 incr
= max_t(int, incr
, 2 * skb
->len
);
542 tp
->rcv_ssthresh
+= min(room
, incr
);
543 inet_csk(sk
)->icsk_ack
.quick
|= 1;
547 * Adjust rcv_ssthresh according to reserved mem
549 tcp_adjust_rcv_ssthresh(sk
);
553 /* 3. Try to fixup all. It is made immediately after connection enters
556 static void tcp_init_buffer_space(struct sock
*sk
)
558 int tcp_app_win
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_app_win
);
559 struct tcp_sock
*tp
= tcp_sk(sk
);
562 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
563 tcp_sndbuf_expand(sk
);
565 tcp_mstamp_refresh(tp
);
566 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
567 tp
->rcvq_space
.seq
= tp
->copied_seq
;
569 maxwin
= tcp_full_space(sk
);
571 if (tp
->window_clamp
>= maxwin
) {
572 WRITE_ONCE(tp
->window_clamp
, maxwin
);
574 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
575 WRITE_ONCE(tp
->window_clamp
,
576 max(maxwin
- (maxwin
>> tcp_app_win
),
580 /* Force reservation of one segment. */
582 tp
->window_clamp
> 2 * tp
->advmss
&&
583 tp
->window_clamp
+ tp
->advmss
> maxwin
)
584 WRITE_ONCE(tp
->window_clamp
,
585 max(2 * tp
->advmss
, maxwin
- tp
->advmss
));
587 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
588 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
589 tp
->rcvq_space
.space
= min3(tp
->rcv_ssthresh
, tp
->rcv_wnd
,
590 (u32
)TCP_INIT_CWND
* tp
->advmss
);
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
594 static void tcp_clamp_window(struct sock
*sk
)
596 struct tcp_sock
*tp
= tcp_sk(sk
);
597 struct inet_connection_sock
*icsk
= inet_csk(sk
);
598 struct net
*net
= sock_net(sk
);
601 icsk
->icsk_ack
.quick
= 0;
602 rmem2
= READ_ONCE(net
->ipv4
.sysctl_tcp_rmem
[2]);
604 if (sk
->sk_rcvbuf
< rmem2
&&
605 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
606 !tcp_under_memory_pressure(sk
) &&
607 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
608 WRITE_ONCE(sk
->sk_rcvbuf
,
609 min(atomic_read(&sk
->sk_rmem_alloc
), rmem2
));
611 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
612 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
615 /* Initialize RCV_MSS value.
616 * RCV_MSS is an our guess about MSS used by the peer.
617 * We haven't any direct information about the MSS.
618 * It's better to underestimate the RCV_MSS rather than overestimate.
619 * Overestimations make us ACKing less frequently than needed.
620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
622 void tcp_initialize_rcv_mss(struct sock
*sk
)
624 const struct tcp_sock
*tp
= tcp_sk(sk
);
625 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
627 hint
= min(hint
, tp
->rcv_wnd
/ 2);
628 hint
= min(hint
, TCP_MSS_DEFAULT
);
629 hint
= max(hint
, TCP_MIN_MSS
);
631 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
635 /* Receiver "autotuning" code.
637 * The algorithm for RTT estimation w/o timestamps is based on
638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639 * <https://public.lanl.gov/radiant/pubs.html#DRS>
641 * More detail on this code can be found at
642 * <http://staff.psc.edu/jheffner/>,
643 * though this reference is out of date. A new paper
646 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
648 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
651 if (new_sample
!= 0) {
652 /* If we sample in larger samples in the non-timestamp
653 * case, we could grossly overestimate the RTT especially
654 * with chatty applications or bulk transfer apps which
655 * are stalled on filesystem I/O.
657 * Also, since we are only going for a minimum in the
658 * non-timestamp case, we do not smooth things out
659 * else with timestamps disabled convergence takes too
663 m
-= (new_sample
>> 3);
671 /* No previous measure. */
675 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
678 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
682 if (tp
->rcv_rtt_est
.time
== 0)
684 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
686 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
689 tcp_rcv_rtt_update(tp
, delta_us
, 1);
692 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
693 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
696 static s32
tcp_rtt_tsopt_us(const struct tcp_sock
*tp
)
700 delta
= tcp_time_stamp_ts(tp
) - tp
->rx_opt
.rcv_tsecr
;
704 if (likely(delta
< INT_MAX
/ (USEC_PER_SEC
/ TCP_TS_HZ
))) {
707 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
713 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
714 const struct sk_buff
*skb
)
716 struct tcp_sock
*tp
= tcp_sk(sk
);
718 if (tp
->rx_opt
.rcv_tsecr
== tp
->rcv_rtt_last_tsecr
)
720 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
722 if (TCP_SKB_CB(skb
)->end_seq
-
723 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
) {
724 s32 delta
= tcp_rtt_tsopt_us(tp
);
727 tcp_rcv_rtt_update(tp
, delta
, 0);
732 * This function should be called every time data is copied to user space.
733 * It calculates the appropriate TCP receive buffer space.
735 void tcp_rcv_space_adjust(struct sock
*sk
)
737 struct tcp_sock
*tp
= tcp_sk(sk
);
741 trace_tcp_rcv_space_adjust(sk
);
743 tcp_mstamp_refresh(tp
);
744 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
745 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
748 /* Number of bytes copied to user in last RTT */
749 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
750 if (copied
<= tp
->rcvq_space
.space
)
754 * copied = bytes received in previous RTT, our base window
755 * To cope with packet losses, we need a 2x factor
756 * To cope with slow start, and sender growing its cwin by 100 %
757 * every RTT, we need a 4x factor, because the ACK we are sending
758 * now is for the next RTT, not the current one :
759 * <prev RTT . ><current RTT .. ><next RTT .... >
762 if (READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
) &&
763 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
767 /* minimal window to cope with packet losses, assuming
768 * steady state. Add some cushion because of small variations.
770 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
772 /* Accommodate for sender rate increase (eg. slow start) */
773 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
774 do_div(grow
, tp
->rcvq_space
.space
);
775 rcvwin
+= (grow
<< 1);
777 rcvbuf
= min_t(u64
, tcp_space_from_win(sk
, rcvwin
),
778 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]));
779 if (rcvbuf
> sk
->sk_rcvbuf
) {
780 WRITE_ONCE(sk
->sk_rcvbuf
, rcvbuf
);
782 /* Make the window clamp follow along. */
783 WRITE_ONCE(tp
->window_clamp
,
784 tcp_win_from_space(sk
, rcvbuf
));
787 tp
->rcvq_space
.space
= copied
;
790 tp
->rcvq_space
.seq
= tp
->copied_seq
;
791 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
794 static void tcp_save_lrcv_flowlabel(struct sock
*sk
, const struct sk_buff
*skb
)
796 #if IS_ENABLED(CONFIG_IPV6)
797 struct inet_connection_sock
*icsk
= inet_csk(sk
);
799 if (skb
->protocol
== htons(ETH_P_IPV6
))
800 icsk
->icsk_ack
.lrcv_flowlabel
= ntohl(ip6_flowlabel(ipv6_hdr(skb
)));
804 /* There is something which you must keep in mind when you analyze the
805 * behavior of the tp->ato delayed ack timeout interval. When a
806 * connection starts up, we want to ack as quickly as possible. The
807 * problem is that "good" TCP's do slow start at the beginning of data
808 * transmission. The means that until we send the first few ACK's the
809 * sender will sit on his end and only queue most of his data, because
810 * he can only send snd_cwnd unacked packets at any given time. For
811 * each ACK we send, he increments snd_cwnd and transmits more of his
814 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
816 struct tcp_sock
*tp
= tcp_sk(sk
);
817 struct inet_connection_sock
*icsk
= inet_csk(sk
);
820 inet_csk_schedule_ack(sk
);
822 tcp_measure_rcv_mss(sk
, skb
);
824 tcp_rcv_rtt_measure(tp
);
828 if (!icsk
->icsk_ack
.ato
) {
829 /* The _first_ data packet received, initialize
830 * delayed ACK engine.
832 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
833 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
835 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
837 if (m
<= TCP_ATO_MIN
/ 2) {
838 /* The fastest case is the first. */
839 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
840 } else if (m
< icsk
->icsk_ack
.ato
) {
841 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
842 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
843 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
844 } else if (m
> icsk
->icsk_rto
) {
845 /* Too long gap. Apparently sender failed to
846 * restart window, so that we send ACKs quickly.
848 tcp_incr_quickack(sk
, TCP_MAX_QUICKACKS
);
851 icsk
->icsk_ack
.lrcvtime
= now
;
852 tcp_save_lrcv_flowlabel(sk
, skb
);
854 tcp_ecn_check_ce(sk
, skb
);
857 tcp_grow_window(sk
, skb
, true);
860 /* Called to compute a smoothed rtt estimate. The data fed to this
861 * routine either comes from timestamps, or from segments that were
862 * known _not_ to have been retransmitted [see Karn/Partridge
863 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
864 * piece by Van Jacobson.
865 * NOTE: the next three routines used to be one big routine.
866 * To save cycles in the RFC 1323 implementation it was better to break
867 * it up into three procedures. -- erics
869 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
871 struct tcp_sock
*tp
= tcp_sk(sk
);
872 long m
= mrtt_us
; /* RTT */
873 u32 srtt
= tp
->srtt_us
;
875 /* The following amusing code comes from Jacobson's
876 * article in SIGCOMM '88. Note that rtt and mdev
877 * are scaled versions of rtt and mean deviation.
878 * This is designed to be as fast as possible
879 * m stands for "measurement".
881 * On a 1990 paper the rto value is changed to:
882 * RTO = rtt + 4 * mdev
884 * Funny. This algorithm seems to be very broken.
885 * These formulae increase RTO, when it should be decreased, increase
886 * too slowly, when it should be increased quickly, decrease too quickly
887 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
888 * does not matter how to _calculate_ it. Seems, it was trap
889 * that VJ failed to avoid. 8)
892 m
-= (srtt
>> 3); /* m is now error in rtt est */
893 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
895 m
= -m
; /* m is now abs(error) */
896 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
897 /* This is similar to one of Eifel findings.
898 * Eifel blocks mdev updates when rtt decreases.
899 * This solution is a bit different: we use finer gain
900 * for mdev in this case (alpha*beta).
901 * Like Eifel it also prevents growth of rto,
902 * but also it limits too fast rto decreases,
903 * happening in pure Eifel.
908 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
910 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
911 if (tp
->mdev_us
> tp
->mdev_max_us
) {
912 tp
->mdev_max_us
= tp
->mdev_us
;
913 if (tp
->mdev_max_us
> tp
->rttvar_us
)
914 tp
->rttvar_us
= tp
->mdev_max_us
;
916 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
917 if (tp
->mdev_max_us
< tp
->rttvar_us
)
918 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
919 tp
->rtt_seq
= tp
->snd_nxt
;
920 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
922 tcp_bpf_rtt(sk
, mrtt_us
, srtt
);
925 /* no previous measure. */
926 srtt
= m
<< 3; /* take the measured time to be rtt */
927 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
928 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
929 tp
->mdev_max_us
= tp
->rttvar_us
;
930 tp
->rtt_seq
= tp
->snd_nxt
;
932 tcp_bpf_rtt(sk
, mrtt_us
, srtt
);
934 tp
->srtt_us
= max(1U, srtt
);
937 static void tcp_update_pacing_rate(struct sock
*sk
)
939 const struct tcp_sock
*tp
= tcp_sk(sk
);
942 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
943 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
945 /* current rate is (cwnd * mss) / srtt
946 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
947 * In Congestion Avoidance phase, set it to 120 % the current rate.
949 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
950 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
951 * end of slow start and should slow down.
953 if (tcp_snd_cwnd(tp
) < tp
->snd_ssthresh
/ 2)
954 rate
*= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
);
956 rate
*= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
);
958 rate
*= max(tcp_snd_cwnd(tp
), tp
->packets_out
);
960 if (likely(tp
->srtt_us
))
961 do_div(rate
, tp
->srtt_us
);
963 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
964 * without any lock. We want to make sure compiler wont store
965 * intermediate values in this location.
967 WRITE_ONCE(sk
->sk_pacing_rate
,
968 min_t(u64
, rate
, READ_ONCE(sk
->sk_max_pacing_rate
)));
971 /* Calculate rto without backoff. This is the second half of Van Jacobson's
972 * routine referred to above.
974 static void tcp_set_rto(struct sock
*sk
)
976 const struct tcp_sock
*tp
= tcp_sk(sk
);
977 /* Old crap is replaced with new one. 8)
980 * 1. If rtt variance happened to be less 50msec, it is hallucination.
981 * It cannot be less due to utterly erratic ACK generation made
982 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
983 * to do with delayed acks, because at cwnd>2 true delack timeout
984 * is invisible. Actually, Linux-2.4 also generates erratic
985 * ACKs in some circumstances.
987 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
989 /* 2. Fixups made earlier cannot be right.
990 * If we do not estimate RTO correctly without them,
991 * all the algo is pure shit and should be replaced
992 * with correct one. It is exactly, which we pretend to do.
995 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
996 * guarantees that rto is higher.
1001 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
1003 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
1006 cwnd
= TCP_INIT_CWND
;
1007 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
1010 struct tcp_sacktag_state
{
1011 /* Timestamps for earliest and latest never-retransmitted segment
1012 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1013 * but congestion control should still get an accurate delay signal.
1020 unsigned int mss_now
;
1021 struct rate_sample
*rate
;
1024 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1025 * and spurious retransmission information if this DSACK is unlikely caused by
1027 * - DSACKed sequence range is larger than maximum receiver's window.
1028 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1030 static u32
tcp_dsack_seen(struct tcp_sock
*tp
, u32 start_seq
,
1031 u32 end_seq
, struct tcp_sacktag_state
*state
)
1033 u32 seq_len
, dup_segs
= 1;
1035 if (!before(start_seq
, end_seq
))
1038 seq_len
= end_seq
- start_seq
;
1039 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1040 if (seq_len
> tp
->max_window
)
1042 if (seq_len
> tp
->mss_cache
)
1043 dup_segs
= DIV_ROUND_UP(seq_len
, tp
->mss_cache
);
1044 else if (tp
->tlp_high_seq
&& tp
->tlp_high_seq
== end_seq
)
1045 state
->flag
|= FLAG_DSACK_TLP
;
1047 tp
->dsack_dups
+= dup_segs
;
1048 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1049 if (tp
->dsack_dups
> tp
->total_retrans
)
1052 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
1053 /* We increase the RACK ordering window in rounds where we receive
1054 * DSACKs that may have been due to reordering causing RACK to trigger
1055 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1056 * without having seen reordering, or that match TLP probes (TLP
1057 * is timer-driven, not triggered by RACK).
1059 if (tp
->reord_seen
&& !(state
->flag
& FLAG_DSACK_TLP
))
1060 tp
->rack
.dsack_seen
= 1;
1062 state
->flag
|= FLAG_DSACKING_ACK
;
1063 /* A spurious retransmission is delivered */
1064 state
->sack_delivered
+= dup_segs
;
1069 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1070 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1071 * distance is approximated in full-mss packet distance ("reordering").
1073 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
1076 struct tcp_sock
*tp
= tcp_sk(sk
);
1077 const u32 mss
= tp
->mss_cache
;
1080 fack
= tcp_highest_sack_seq(tp
);
1081 if (!before(low_seq
, fack
))
1084 metric
= fack
- low_seq
;
1085 if ((metric
> tp
->reordering
* mss
) && mss
) {
1086 #if FASTRETRANS_DEBUG > 1
1087 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1088 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
1092 tp
->undo_marker
? tp
->undo_retrans
: 0);
1094 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
1095 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
));
1098 /* This exciting event is worth to be remembered. 8) */
1100 NET_INC_STATS(sock_net(sk
),
1101 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
1104 /* This must be called before lost_out or retrans_out are updated
1105 * on a new loss, because we want to know if all skbs previously
1106 * known to be lost have already been retransmitted, indicating
1107 * that this newly lost skb is our next skb to retransmit.
1109 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
1111 if ((!tp
->retransmit_skb_hint
&& tp
->retrans_out
>= tp
->lost_out
) ||
1112 (tp
->retransmit_skb_hint
&&
1113 before(TCP_SKB_CB(skb
)->seq
,
1114 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
)))
1115 tp
->retransmit_skb_hint
= skb
;
1118 /* Sum the number of packets on the wire we have marked as lost, and
1119 * notify the congestion control module that the given skb was marked lost.
1121 static void tcp_notify_skb_loss_event(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
1123 tp
->lost
+= tcp_skb_pcount(skb
);
1126 void tcp_mark_skb_lost(struct sock
*sk
, struct sk_buff
*skb
)
1128 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
1129 struct tcp_sock
*tp
= tcp_sk(sk
);
1131 if (sacked
& TCPCB_SACKED_ACKED
)
1134 tcp_verify_retransmit_hint(tp
, skb
);
1135 if (sacked
& TCPCB_LOST
) {
1136 if (sacked
& TCPCB_SACKED_RETRANS
) {
1137 /* Account for retransmits that are lost again */
1138 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1139 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1140 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
,
1141 tcp_skb_pcount(skb
));
1142 tcp_notify_skb_loss_event(tp
, skb
);
1145 tp
->lost_out
+= tcp_skb_pcount(skb
);
1146 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1147 tcp_notify_skb_loss_event(tp
, skb
);
1151 /* Updates the delivered and delivered_ce counts */
1152 static void tcp_count_delivered(struct tcp_sock
*tp
, u32 delivered
,
1155 tp
->delivered
+= delivered
;
1157 tp
->delivered_ce
+= delivered
;
1160 /* This procedure tags the retransmission queue when SACKs arrive.
1162 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1163 * Packets in queue with these bits set are counted in variables
1164 * sacked_out, retrans_out and lost_out, correspondingly.
1166 * Valid combinations are:
1167 * Tag InFlight Description
1168 * 0 1 - orig segment is in flight.
1169 * S 0 - nothing flies, orig reached receiver.
1170 * L 0 - nothing flies, orig lost by net.
1171 * R 2 - both orig and retransmit are in flight.
1172 * L|R 1 - orig is lost, retransmit is in flight.
1173 * S|R 1 - orig reached receiver, retrans is still in flight.
1174 * (L|S|R is logically valid, it could occur when L|R is sacked,
1175 * but it is equivalent to plain S and code short-circuits it to S.
1176 * L|S is logically invalid, it would mean -1 packet in flight 8))
1178 * These 6 states form finite state machine, controlled by the following events:
1179 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1180 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1181 * 3. Loss detection event of two flavors:
1182 * A. Scoreboard estimator decided the packet is lost.
1183 * A'. Reno "three dupacks" marks head of queue lost.
1184 * B. SACK arrives sacking SND.NXT at the moment, when the
1185 * segment was retransmitted.
1186 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1188 * It is pleasant to note, that state diagram turns out to be commutative,
1189 * so that we are allowed not to be bothered by order of our actions,
1190 * when multiple events arrive simultaneously. (see the function below).
1192 * Reordering detection.
1193 * --------------------
1194 * Reordering metric is maximal distance, which a packet can be displaced
1195 * in packet stream. With SACKs we can estimate it:
1197 * 1. SACK fills old hole and the corresponding segment was not
1198 * ever retransmitted -> reordering. Alas, we cannot use it
1199 * when segment was retransmitted.
1200 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1201 * for retransmitted and already SACKed segment -> reordering..
1202 * Both of these heuristics are not used in Loss state, when we cannot
1203 * account for retransmits accurately.
1205 * SACK block validation.
1206 * ----------------------
1208 * SACK block range validation checks that the received SACK block fits to
1209 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1210 * Note that SND.UNA is not included to the range though being valid because
1211 * it means that the receiver is rather inconsistent with itself reporting
1212 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1213 * perfectly valid, however, in light of RFC2018 which explicitly states
1214 * that "SACK block MUST reflect the newest segment. Even if the newest
1215 * segment is going to be discarded ...", not that it looks very clever
1216 * in case of head skb. Due to potentional receiver driven attacks, we
1217 * choose to avoid immediate execution of a walk in write queue due to
1218 * reneging and defer head skb's loss recovery to standard loss recovery
1219 * procedure that will eventually trigger (nothing forbids us doing this).
1221 * Implements also blockage to start_seq wrap-around. Problem lies in the
1222 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1223 * there's no guarantee that it will be before snd_nxt (n). The problem
1224 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1227 * <- outs wnd -> <- wrapzone ->
1228 * u e n u_w e_w s n_w
1230 * |<------------+------+----- TCP seqno space --------------+---------->|
1231 * ...-- <2^31 ->| |<--------...
1232 * ...---- >2^31 ------>| |<--------...
1234 * Current code wouldn't be vulnerable but it's better still to discard such
1235 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1236 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1237 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1238 * equal to the ideal case (infinite seqno space without wrap caused issues).
1240 * With D-SACK the lower bound is extended to cover sequence space below
1241 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1242 * again, D-SACK block must not to go across snd_una (for the same reason as
1243 * for the normal SACK blocks, explained above). But there all simplicity
1244 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1245 * fully below undo_marker they do not affect behavior in anyway and can
1246 * therefore be safely ignored. In rare cases (which are more or less
1247 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1248 * fragmentation and packet reordering past skb's retransmission. To consider
1249 * them correctly, the acceptable range must be extended even more though
1250 * the exact amount is rather hard to quantify. However, tp->max_window can
1251 * be used as an exaggerated estimate.
1253 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1254 u32 start_seq
, u32 end_seq
)
1256 /* Too far in future, or reversed (interpretation is ambiguous) */
1257 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1260 /* Nasty start_seq wrap-around check (see comments above) */
1261 if (!before(start_seq
, tp
->snd_nxt
))
1264 /* In outstanding window? ...This is valid exit for D-SACKs too.
1265 * start_seq == snd_una is non-sensical (see comments above)
1267 if (after(start_seq
, tp
->snd_una
))
1270 if (!is_dsack
|| !tp
->undo_marker
)
1273 /* ...Then it's D-SACK, and must reside below snd_una completely */
1274 if (after(end_seq
, tp
->snd_una
))
1277 if (!before(start_seq
, tp
->undo_marker
))
1281 if (!after(end_seq
, tp
->undo_marker
))
1284 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1285 * start_seq < undo_marker and end_seq >= undo_marker.
1287 return !before(start_seq
, end_seq
- tp
->max_window
);
1290 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1291 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1292 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1294 struct tcp_sock
*tp
= tcp_sk(sk
);
1295 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1296 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1299 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1300 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1301 } else if (num_sacks
> 1) {
1302 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1303 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1305 if (after(end_seq_0
, end_seq_1
) || before(start_seq_0
, start_seq_1
))
1307 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKOFORECV
);
1312 dup_segs
= tcp_dsack_seen(tp
, start_seq_0
, end_seq_0
, state
);
1313 if (!dup_segs
) { /* Skip dubious DSACK */
1314 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS
);
1318 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECVSEGS
, dup_segs
);
1320 /* D-SACK for already forgotten data... Do dumb counting. */
1321 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1322 !after(end_seq_0
, prior_snd_una
) &&
1323 after(end_seq_0
, tp
->undo_marker
))
1324 tp
->undo_retrans
= max_t(int, 0, tp
->undo_retrans
- dup_segs
);
1329 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1330 * the incoming SACK may not exactly match but we can find smaller MSS
1331 * aligned portion of it that matches. Therefore we might need to fragment
1332 * which may fail and creates some hassle (caller must handle error case
1335 * FIXME: this could be merged to shift decision code
1337 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1338 u32 start_seq
, u32 end_seq
)
1342 unsigned int pkt_len
;
1345 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1346 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1348 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1349 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1350 mss
= tcp_skb_mss(skb
);
1351 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1354 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1358 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1363 /* Round if necessary so that SACKs cover only full MSSes
1364 * and/or the remaining small portion (if present)
1366 if (pkt_len
> mss
) {
1367 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1368 if (!in_sack
&& new_len
< pkt_len
)
1373 if (pkt_len
>= skb
->len
&& !in_sack
)
1376 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1377 pkt_len
, mss
, GFP_ATOMIC
);
1385 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1386 static u8
tcp_sacktag_one(struct sock
*sk
,
1387 struct tcp_sacktag_state
*state
, u8 sacked
,
1388 u32 start_seq
, u32 end_seq
,
1389 int dup_sack
, int pcount
,
1392 struct tcp_sock
*tp
= tcp_sk(sk
);
1394 /* Account D-SACK for retransmitted packet. */
1395 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1396 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1397 after(end_seq
, tp
->undo_marker
))
1398 tp
->undo_retrans
= max_t(int, 0, tp
->undo_retrans
- pcount
);
1399 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1400 before(start_seq
, state
->reord
))
1401 state
->reord
= start_seq
;
1404 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1405 if (!after(end_seq
, tp
->snd_una
))
1408 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1409 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1411 if (sacked
& TCPCB_SACKED_RETRANS
) {
1412 /* If the segment is not tagged as lost,
1413 * we do not clear RETRANS, believing
1414 * that retransmission is still in flight.
1416 if (sacked
& TCPCB_LOST
) {
1417 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1418 tp
->lost_out
-= pcount
;
1419 tp
->retrans_out
-= pcount
;
1422 if (!(sacked
& TCPCB_RETRANS
)) {
1423 /* New sack for not retransmitted frame,
1424 * which was in hole. It is reordering.
1426 if (before(start_seq
,
1427 tcp_highest_sack_seq(tp
)) &&
1428 before(start_seq
, state
->reord
))
1429 state
->reord
= start_seq
;
1431 if (!after(end_seq
, tp
->high_seq
))
1432 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1433 if (state
->first_sackt
== 0)
1434 state
->first_sackt
= xmit_time
;
1435 state
->last_sackt
= xmit_time
;
1438 if (sacked
& TCPCB_LOST
) {
1439 sacked
&= ~TCPCB_LOST
;
1440 tp
->lost_out
-= pcount
;
1444 sacked
|= TCPCB_SACKED_ACKED
;
1445 state
->flag
|= FLAG_DATA_SACKED
;
1446 tp
->sacked_out
+= pcount
;
1447 /* Out-of-order packets delivered */
1448 state
->sack_delivered
+= pcount
;
1450 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1451 if (tp
->lost_skb_hint
&&
1452 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1453 tp
->lost_cnt_hint
+= pcount
;
1456 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1457 * frames and clear it. undo_retrans is decreased above, L|R frames
1458 * are accounted above as well.
1460 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1461 sacked
&= ~TCPCB_SACKED_RETRANS
;
1462 tp
->retrans_out
-= pcount
;
1468 /* Shift newly-SACKed bytes from this skb to the immediately previous
1469 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1471 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1472 struct sk_buff
*skb
,
1473 struct tcp_sacktag_state
*state
,
1474 unsigned int pcount
, int shifted
, int mss
,
1477 struct tcp_sock
*tp
= tcp_sk(sk
);
1478 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1479 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1483 /* Adjust counters and hints for the newly sacked sequence
1484 * range but discard the return value since prev is already
1485 * marked. We must tag the range first because the seq
1486 * advancement below implicitly advances
1487 * tcp_highest_sack_seq() when skb is highest_sack.
1489 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1490 start_seq
, end_seq
, dup_sack
, pcount
,
1491 tcp_skb_timestamp_us(skb
));
1492 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1494 if (skb
== tp
->lost_skb_hint
)
1495 tp
->lost_cnt_hint
+= pcount
;
1497 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1498 TCP_SKB_CB(skb
)->seq
+= shifted
;
1500 tcp_skb_pcount_add(prev
, pcount
);
1501 WARN_ON_ONCE(tcp_skb_pcount(skb
) < pcount
);
1502 tcp_skb_pcount_add(skb
, -pcount
);
1504 /* When we're adding to gso_segs == 1, gso_size will be zero,
1505 * in theory this shouldn't be necessary but as long as DSACK
1506 * code can come after this skb later on it's better to keep
1507 * setting gso_size to something.
1509 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1510 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1512 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1513 if (tcp_skb_pcount(skb
) <= 1)
1514 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1516 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1517 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1520 BUG_ON(!tcp_skb_pcount(skb
));
1521 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1525 /* Whole SKB was eaten :-) */
1527 if (skb
== tp
->retransmit_skb_hint
)
1528 tp
->retransmit_skb_hint
= prev
;
1529 if (skb
== tp
->lost_skb_hint
) {
1530 tp
->lost_skb_hint
= prev
;
1531 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1534 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1535 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1536 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1537 TCP_SKB_CB(prev
)->end_seq
++;
1539 if (skb
== tcp_highest_sack(sk
))
1540 tcp_advance_highest_sack(sk
, skb
);
1542 tcp_skb_collapse_tstamp(prev
, skb
);
1543 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1544 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1546 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1548 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1553 /* I wish gso_size would have a bit more sane initialization than
1554 * something-or-zero which complicates things
1556 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1558 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1561 /* Shifting pages past head area doesn't work */
1562 static int skb_can_shift(const struct sk_buff
*skb
)
1564 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1567 int tcp_skb_shift(struct sk_buff
*to
, struct sk_buff
*from
,
1568 int pcount
, int shiftlen
)
1570 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1571 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1572 * to make sure not storing more than 65535 * 8 bytes per skb,
1573 * even if current MSS is bigger.
1575 if (unlikely(to
->len
+ shiftlen
>= 65535 * TCP_MIN_GSO_SIZE
))
1577 if (unlikely(tcp_skb_pcount(to
) + pcount
> 65535))
1579 return skb_shift(to
, from
, shiftlen
);
1582 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1585 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1586 struct tcp_sacktag_state
*state
,
1587 u32 start_seq
, u32 end_seq
,
1590 struct tcp_sock
*tp
= tcp_sk(sk
);
1591 struct sk_buff
*prev
;
1597 /* Normally R but no L won't result in plain S */
1599 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1601 if (!skb_can_shift(skb
))
1603 /* This frame is about to be dropped (was ACKed). */
1604 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1607 /* Can only happen with delayed DSACK + discard craziness */
1608 prev
= skb_rb_prev(skb
);
1612 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1615 if (!tcp_skb_can_collapse(prev
, skb
))
1618 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1619 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1623 pcount
= tcp_skb_pcount(skb
);
1624 mss
= tcp_skb_seglen(skb
);
1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 * drop this restriction as unnecessary
1629 if (mss
!= tcp_skb_seglen(prev
))
1632 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1634 /* CHECKME: This is non-MSS split case only?, this will
1635 * cause skipped skbs due to advancing loop btw, original
1636 * has that feature too
1638 if (tcp_skb_pcount(skb
) <= 1)
1641 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1643 /* TODO: head merge to next could be attempted here
1644 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1645 * though it might not be worth of the additional hassle
1647 * ...we can probably just fallback to what was done
1648 * previously. We could try merging non-SACKed ones
1649 * as well but it probably isn't going to buy off
1650 * because later SACKs might again split them, and
1651 * it would make skb timestamp tracking considerably
1657 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1659 BUG_ON(len
> skb
->len
);
1661 /* MSS boundaries should be honoured or else pcount will
1662 * severely break even though it makes things bit trickier.
1663 * Optimize common case to avoid most of the divides
1665 mss
= tcp_skb_mss(skb
);
1667 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1668 * drop this restriction as unnecessary
1670 if (mss
!= tcp_skb_seglen(prev
))
1675 } else if (len
< mss
) {
1683 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1684 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1687 if (!tcp_skb_shift(prev
, skb
, pcount
, len
))
1689 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1692 /* Hole filled allows collapsing with the next as well, this is very
1693 * useful when hole on every nth skb pattern happens
1695 skb
= skb_rb_next(prev
);
1699 if (!skb_can_shift(skb
) ||
1700 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1701 (mss
!= tcp_skb_seglen(skb
)))
1704 if (!tcp_skb_can_collapse(prev
, skb
))
1707 pcount
= tcp_skb_pcount(skb
);
1708 if (tcp_skb_shift(prev
, skb
, pcount
, len
))
1709 tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
,
1719 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1723 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1724 struct tcp_sack_block
*next_dup
,
1725 struct tcp_sacktag_state
*state
,
1726 u32 start_seq
, u32 end_seq
,
1729 struct tcp_sock
*tp
= tcp_sk(sk
);
1730 struct sk_buff
*tmp
;
1732 skb_rbtree_walk_from(skb
) {
1734 bool dup_sack
= dup_sack_in
;
1736 /* queue is in-order => we can short-circuit the walk early */
1737 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1741 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1742 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1743 next_dup
->start_seq
,
1749 /* skb reference here is a bit tricky to get right, since
1750 * shifting can eat and free both this skb and the next,
1751 * so not even _safe variant of the loop is enough.
1754 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1755 start_seq
, end_seq
, dup_sack
);
1764 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1770 if (unlikely(in_sack
< 0))
1774 TCP_SKB_CB(skb
)->sacked
=
1777 TCP_SKB_CB(skb
)->sacked
,
1778 TCP_SKB_CB(skb
)->seq
,
1779 TCP_SKB_CB(skb
)->end_seq
,
1781 tcp_skb_pcount(skb
),
1782 tcp_skb_timestamp_us(skb
));
1783 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1784 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1785 list_del_init(&skb
->tcp_tsorted_anchor
);
1787 if (!before(TCP_SKB_CB(skb
)->seq
,
1788 tcp_highest_sack_seq(tp
)))
1789 tcp_advance_highest_sack(sk
, skb
);
1795 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
, u32 seq
)
1797 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1798 struct sk_buff
*skb
;
1802 skb
= rb_to_skb(parent
);
1803 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1804 p
= &parent
->rb_left
;
1807 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1808 p
= &parent
->rb_right
;
1816 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1819 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1822 return tcp_sacktag_bsearch(sk
, skip_to_seq
);
1825 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1827 struct tcp_sack_block
*next_dup
,
1828 struct tcp_sacktag_state
*state
,
1834 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1835 skb
= tcp_sacktag_skip(skb
, sk
, next_dup
->start_seq
);
1836 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1837 next_dup
->start_seq
, next_dup
->end_seq
,
1844 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1846 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1850 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1851 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1853 struct tcp_sock
*tp
= tcp_sk(sk
);
1854 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1855 TCP_SKB_CB(ack_skb
)->sacked
);
1856 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1857 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1858 struct tcp_sack_block
*cache
;
1859 struct sk_buff
*skb
;
1860 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1862 bool found_dup_sack
= false;
1864 int first_sack_index
;
1867 state
->reord
= tp
->snd_nxt
;
1869 if (!tp
->sacked_out
)
1870 tcp_highest_sack_reset(sk
);
1872 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1873 num_sacks
, prior_snd_una
, state
);
1875 /* Eliminate too old ACKs, but take into
1876 * account more or less fresh ones, they can
1877 * contain valid SACK info.
1879 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1882 if (!tp
->packets_out
)
1886 first_sack_index
= 0;
1887 for (i
= 0; i
< num_sacks
; i
++) {
1888 bool dup_sack
= !i
&& found_dup_sack
;
1890 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1891 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1893 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1894 sp
[used_sacks
].start_seq
,
1895 sp
[used_sacks
].end_seq
)) {
1899 if (!tp
->undo_marker
)
1900 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1902 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1904 /* Don't count olds caused by ACK reordering */
1905 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1906 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1908 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1911 NET_INC_STATS(sock_net(sk
), mib_idx
);
1913 first_sack_index
= -1;
1917 /* Ignore very old stuff early */
1918 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
)) {
1920 first_sack_index
= -1;
1927 /* order SACK blocks to allow in order walk of the retrans queue */
1928 for (i
= used_sacks
- 1; i
> 0; i
--) {
1929 for (j
= 0; j
< i
; j
++) {
1930 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1931 swap(sp
[j
], sp
[j
+ 1]);
1933 /* Track where the first SACK block goes to */
1934 if (j
== first_sack_index
)
1935 first_sack_index
= j
+ 1;
1940 state
->mss_now
= tcp_current_mss(sk
);
1944 if (!tp
->sacked_out
) {
1945 /* It's already past, so skip checking against it */
1946 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1948 cache
= tp
->recv_sack_cache
;
1949 /* Skip empty blocks in at head of the cache */
1950 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1955 while (i
< used_sacks
) {
1956 u32 start_seq
= sp
[i
].start_seq
;
1957 u32 end_seq
= sp
[i
].end_seq
;
1958 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1959 struct tcp_sack_block
*next_dup
= NULL
;
1961 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1962 next_dup
= &sp
[i
+ 1];
1964 /* Skip too early cached blocks */
1965 while (tcp_sack_cache_ok(tp
, cache
) &&
1966 !before(start_seq
, cache
->end_seq
))
1969 /* Can skip some work by looking recv_sack_cache? */
1970 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1971 after(end_seq
, cache
->start_seq
)) {
1974 if (before(start_seq
, cache
->start_seq
)) {
1975 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
1976 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1983 /* Rest of the block already fully processed? */
1984 if (!after(end_seq
, cache
->end_seq
))
1987 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1991 /* ...tail remains todo... */
1992 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1993 /* ...but better entrypoint exists! */
1994 skb
= tcp_highest_sack(sk
);
2001 skb
= tcp_sacktag_skip(skb
, sk
, cache
->end_seq
);
2002 /* Check overlap against next cached too (past this one already) */
2007 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
2008 skb
= tcp_highest_sack(sk
);
2012 skb
= tcp_sacktag_skip(skb
, sk
, start_seq
);
2015 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
2016 start_seq
, end_seq
, dup_sack
);
2022 /* Clear the head of the cache sack blocks so we can skip it next time */
2023 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
2024 tp
->recv_sack_cache
[i
].start_seq
= 0;
2025 tp
->recv_sack_cache
[i
].end_seq
= 0;
2027 for (j
= 0; j
< used_sacks
; j
++)
2028 tp
->recv_sack_cache
[i
++] = sp
[j
];
2030 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
2031 tcp_check_sack_reordering(sk
, state
->reord
, 0);
2033 tcp_verify_left_out(tp
);
2036 #if FASTRETRANS_DEBUG > 0
2037 WARN_ON((int)tp
->sacked_out
< 0);
2038 WARN_ON((int)tp
->lost_out
< 0);
2039 WARN_ON((int)tp
->retrans_out
< 0);
2040 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
2045 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2046 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2048 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
2052 holes
= max(tp
->lost_out
, 1U);
2053 holes
= min(holes
, tp
->packets_out
);
2055 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
2056 tp
->sacked_out
= tp
->packets_out
- holes
;
2062 /* If we receive more dupacks than we expected counting segments
2063 * in assumption of absent reordering, interpret this as reordering.
2064 * The only another reason could be bug in receiver TCP.
2066 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
2068 struct tcp_sock
*tp
= tcp_sk(sk
);
2070 if (!tcp_limit_reno_sacked(tp
))
2073 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
2074 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
));
2076 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
2079 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2081 static void tcp_add_reno_sack(struct sock
*sk
, int num_dupack
, bool ece_ack
)
2084 struct tcp_sock
*tp
= tcp_sk(sk
);
2085 u32 prior_sacked
= tp
->sacked_out
;
2088 tp
->sacked_out
+= num_dupack
;
2089 tcp_check_reno_reordering(sk
, 0);
2090 delivered
= tp
->sacked_out
- prior_sacked
;
2092 tcp_count_delivered(tp
, delivered
, ece_ack
);
2093 tcp_verify_left_out(tp
);
2097 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2099 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
, bool ece_ack
)
2101 struct tcp_sock
*tp
= tcp_sk(sk
);
2104 /* One ACK acked hole. The rest eat duplicate ACKs. */
2105 tcp_count_delivered(tp
, max_t(int, acked
- tp
->sacked_out
, 1),
2107 if (acked
- 1 >= tp
->sacked_out
)
2110 tp
->sacked_out
-= acked
- 1;
2112 tcp_check_reno_reordering(sk
, acked
);
2113 tcp_verify_left_out(tp
);
2116 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
2121 void tcp_clear_retrans(struct tcp_sock
*tp
)
2123 tp
->retrans_out
= 0;
2125 tp
->undo_marker
= 0;
2126 tp
->undo_retrans
= -1;
2130 tp
->total_rto_recoveries
= 0;
2131 tp
->total_rto_time
= 0;
2134 static inline void tcp_init_undo(struct tcp_sock
*tp
)
2136 tp
->undo_marker
= tp
->snd_una
;
2138 /* Retransmission still in flight may cause DSACKs later. */
2139 /* First, account for regular retransmits in flight: */
2140 tp
->undo_retrans
= tp
->retrans_out
;
2141 /* Next, account for TLP retransmits in flight: */
2142 if (tp
->tlp_high_seq
&& tp
->tlp_retrans
)
2144 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2145 if (!tp
->undo_retrans
)
2146 tp
->undo_retrans
= -1;
2149 static bool tcp_is_rack(const struct sock
*sk
)
2151 return READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_recovery
) &
2152 TCP_RACK_LOSS_DETECTION
;
2155 /* If we detect SACK reneging, forget all SACK information
2156 * and reset tags completely, otherwise preserve SACKs. If receiver
2157 * dropped its ofo queue, we will know this due to reneging detection.
2159 static void tcp_timeout_mark_lost(struct sock
*sk
)
2161 struct tcp_sock
*tp
= tcp_sk(sk
);
2162 struct sk_buff
*skb
, *head
;
2163 bool is_reneg
; /* is receiver reneging on SACKs? */
2165 head
= tcp_rtx_queue_head(sk
);
2166 is_reneg
= head
&& (TCP_SKB_CB(head
)->sacked
& TCPCB_SACKED_ACKED
);
2168 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
2170 /* Mark SACK reneging until we recover from this loss event. */
2171 tp
->is_sack_reneg
= 1;
2172 } else if (tcp_is_reno(tp
)) {
2173 tcp_reset_reno_sack(tp
);
2177 skb_rbtree_walk_from(skb
) {
2179 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
2180 else if (tcp_is_rack(sk
) && skb
!= head
&&
2181 tcp_rack_skb_timeout(tp
, skb
, 0) > 0)
2182 continue; /* Don't mark recently sent ones lost yet */
2183 tcp_mark_skb_lost(sk
, skb
);
2185 tcp_verify_left_out(tp
);
2186 tcp_clear_all_retrans_hints(tp
);
2189 /* Enter Loss state. */
2190 void tcp_enter_loss(struct sock
*sk
)
2192 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2193 struct tcp_sock
*tp
= tcp_sk(sk
);
2194 struct net
*net
= sock_net(sk
);
2195 bool new_recovery
= icsk
->icsk_ca_state
< TCP_CA_Recovery
;
2198 tcp_timeout_mark_lost(sk
);
2200 /* Reduce ssthresh if it has not yet been made inside this window. */
2201 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
2202 !after(tp
->high_seq
, tp
->snd_una
) ||
2203 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
2204 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2205 tp
->prior_cwnd
= tcp_snd_cwnd(tp
);
2206 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
2207 tcp_ca_event(sk
, CA_EVENT_LOSS
);
2210 tcp_snd_cwnd_set(tp
, tcp_packets_in_flight(tp
) + 1);
2211 tp
->snd_cwnd_cnt
= 0;
2212 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2214 /* Timeout in disordered state after receiving substantial DUPACKs
2215 * suggests that the degree of reordering is over-estimated.
2217 reordering
= READ_ONCE(net
->ipv4
.sysctl_tcp_reordering
);
2218 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
2219 tp
->sacked_out
>= reordering
)
2220 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
2223 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2224 tp
->high_seq
= tp
->snd_nxt
;
2225 tp
->tlp_high_seq
= 0;
2226 tcp_ecn_queue_cwr(tp
);
2228 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2229 * loss recovery is underway except recurring timeout(s) on
2230 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2232 tp
->frto
= READ_ONCE(net
->ipv4
.sysctl_tcp_frto
) &&
2233 (new_recovery
|| icsk
->icsk_retransmits
) &&
2234 !inet_csk(sk
)->icsk_mtup
.probe_size
;
2237 /* If ACK arrived pointing to a remembered SACK, it means that our
2238 * remembered SACKs do not reflect real state of receiver i.e.
2239 * receiver _host_ is heavily congested (or buggy).
2241 * To avoid big spurious retransmission bursts due to transient SACK
2242 * scoreboard oddities that look like reneging, we give the receiver a
2243 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2244 * restore sanity to the SACK scoreboard. If the apparent reneging
2245 * persists until this RTO then we'll clear the SACK scoreboard.
2247 static bool tcp_check_sack_reneging(struct sock
*sk
, int *ack_flag
)
2249 if (*ack_flag
& FLAG_SACK_RENEGING
&&
2250 *ack_flag
& FLAG_SND_UNA_ADVANCED
) {
2251 struct tcp_sock
*tp
= tcp_sk(sk
);
2252 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
2253 msecs_to_jiffies(10));
2255 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2256 delay
, TCP_RTO_MAX
);
2257 *ack_flag
&= ~FLAG_SET_XMIT_TIMER
;
2263 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2264 * counter when SACK is enabled (without SACK, sacked_out is used for
2267 * With reordering, holes may still be in flight, so RFC3517 recovery
2268 * uses pure sacked_out (total number of SACKed segments) even though
2269 * it violates the RFC that uses duplicate ACKs, often these are equal
2270 * but when e.g. out-of-window ACKs or packet duplication occurs,
2271 * they differ. Since neither occurs due to loss, TCP should really
2274 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2276 return tp
->sacked_out
+ 1;
2279 /* Linux NewReno/SACK/ECN state machine.
2280 * --------------------------------------
2282 * "Open" Normal state, no dubious events, fast path.
2283 * "Disorder" In all the respects it is "Open",
2284 * but requires a bit more attention. It is entered when
2285 * we see some SACKs or dupacks. It is split of "Open"
2286 * mainly to move some processing from fast path to slow one.
2287 * "CWR" CWND was reduced due to some Congestion Notification event.
2288 * It can be ECN, ICMP source quench, local device congestion.
2289 * "Recovery" CWND was reduced, we are fast-retransmitting.
2290 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2292 * tcp_fastretrans_alert() is entered:
2293 * - each incoming ACK, if state is not "Open"
2294 * - when arrived ACK is unusual, namely:
2299 * Counting packets in flight is pretty simple.
2301 * in_flight = packets_out - left_out + retrans_out
2303 * packets_out is SND.NXT-SND.UNA counted in packets.
2305 * retrans_out is number of retransmitted segments.
2307 * left_out is number of segments left network, but not ACKed yet.
2309 * left_out = sacked_out + lost_out
2311 * sacked_out: Packets, which arrived to receiver out of order
2312 * and hence not ACKed. With SACKs this number is simply
2313 * amount of SACKed data. Even without SACKs
2314 * it is easy to give pretty reliable estimate of this number,
2315 * counting duplicate ACKs.
2317 * lost_out: Packets lost by network. TCP has no explicit
2318 * "loss notification" feedback from network (for now).
2319 * It means that this number can be only _guessed_.
2320 * Actually, it is the heuristics to predict lossage that
2321 * distinguishes different algorithms.
2323 * F.e. after RTO, when all the queue is considered as lost,
2324 * lost_out = packets_out and in_flight = retrans_out.
2326 * Essentially, we have now a few algorithms detecting
2329 * If the receiver supports SACK:
2331 * RFC6675/3517: It is the conventional algorithm. A packet is
2332 * considered lost if the number of higher sequence packets
2333 * SACKed is greater than or equal the DUPACK thoreshold
2334 * (reordering). This is implemented in tcp_mark_head_lost and
2335 * tcp_update_scoreboard.
2337 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2338 * (2017-) that checks timing instead of counting DUPACKs.
2339 * Essentially a packet is considered lost if it's not S/ACKed
2340 * after RTT + reordering_window, where both metrics are
2341 * dynamically measured and adjusted. This is implemented in
2342 * tcp_rack_mark_lost.
2344 * If the receiver does not support SACK:
2346 * NewReno (RFC6582): in Recovery we assume that one segment
2347 * is lost (classic Reno). While we are in Recovery and
2348 * a partial ACK arrives, we assume that one more packet
2349 * is lost (NewReno). This heuristics are the same in NewReno
2352 * Really tricky (and requiring careful tuning) part of algorithm
2353 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2354 * The first determines the moment _when_ we should reduce CWND and,
2355 * hence, slow down forward transmission. In fact, it determines the moment
2356 * when we decide that hole is caused by loss, rather than by a reorder.
2358 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2359 * holes, caused by lost packets.
2361 * And the most logically complicated part of algorithm is undo
2362 * heuristics. We detect false retransmits due to both too early
2363 * fast retransmit (reordering) and underestimated RTO, analyzing
2364 * timestamps and D-SACKs. When we detect that some segments were
2365 * retransmitted by mistake and CWND reduction was wrong, we undo
2366 * window reduction and abort recovery phase. This logic is hidden
2367 * inside several functions named tcp_try_undo_<something>.
2370 /* This function decides, when we should leave Disordered state
2371 * and enter Recovery phase, reducing congestion window.
2373 * Main question: may we further continue forward transmission
2374 * with the same cwnd?
2376 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2378 struct tcp_sock
*tp
= tcp_sk(sk
);
2380 /* Trick#1: The loss is proven. */
2384 /* Not-A-Trick#2 : Classic rule... */
2385 if (!tcp_is_rack(sk
) && tcp_dupack_heuristics(tp
) > tp
->reordering
)
2391 /* Detect loss in event "A" above by marking head of queue up as lost.
2392 * For RFC3517 SACK, a segment is considered lost if it
2393 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2394 * the maximum SACKed segments to pass before reaching this limit.
2396 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2398 struct tcp_sock
*tp
= tcp_sk(sk
);
2399 struct sk_buff
*skb
;
2401 /* Use SACK to deduce losses of new sequences sent during recovery */
2402 const u32 loss_high
= tp
->snd_nxt
;
2404 WARN_ON(packets
> tp
->packets_out
);
2405 skb
= tp
->lost_skb_hint
;
2407 /* Head already handled? */
2408 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2410 cnt
= tp
->lost_cnt_hint
;
2412 skb
= tcp_rtx_queue_head(sk
);
2416 skb_rbtree_walk_from(skb
) {
2417 /* TODO: do this better */
2418 /* this is not the most efficient way to do this... */
2419 tp
->lost_skb_hint
= skb
;
2420 tp
->lost_cnt_hint
= cnt
;
2422 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2425 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2426 cnt
+= tcp_skb_pcount(skb
);
2431 if (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
))
2432 tcp_mark_skb_lost(sk
, skb
);
2437 tcp_verify_left_out(tp
);
2440 /* Account newly detected lost packet(s) */
2442 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2444 struct tcp_sock
*tp
= tcp_sk(sk
);
2446 if (tcp_is_sack(tp
)) {
2447 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2448 if (sacked_upto
>= 0)
2449 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2450 else if (fast_rexmit
)
2451 tcp_mark_head_lost(sk
, 1, 1);
2455 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2457 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2458 before(tp
->rx_opt
.rcv_tsecr
, when
);
2461 /* skb is spurious retransmitted if the returned timestamp echo
2462 * reply is prior to the skb transmission time
2464 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2465 const struct sk_buff
*skb
)
2467 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2468 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp_ts(tp
->tcp_usec_ts
, skb
));
2471 /* Nothing was retransmitted or returned timestamp is less
2472 * than timestamp of the first retransmission.
2474 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2476 const struct sock
*sk
= (const struct sock
*)tp
;
2478 if (tp
->retrans_stamp
&&
2479 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
))
2480 return true; /* got echoed TS before first retransmission */
2482 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2483 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2484 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2485 * retrans_stamp even if we had retransmitted the SYN.
2487 if (!tp
->retrans_stamp
&& /* no record of a retransmit/SYN? */
2488 sk
->sk_state
!= TCP_SYN_SENT
) /* not the FLAG_SYN_ACKED case? */
2489 return true; /* nothing was retransmitted */
2494 /* Undo procedures. */
2496 /* We can clear retrans_stamp when there are no retransmissions in the
2497 * window. It would seem that it is trivially available for us in
2498 * tp->retrans_out, however, that kind of assumptions doesn't consider
2499 * what will happen if errors occur when sending retransmission for the
2500 * second time. ...It could the that such segment has only
2501 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2502 * the head skb is enough except for some reneging corner cases that
2503 * are not worth the effort.
2505 * Main reason for all this complexity is the fact that connection dying
2506 * time now depends on the validity of the retrans_stamp, in particular,
2507 * that successive retransmissions of a segment must not advance
2508 * retrans_stamp under any conditions.
2510 static bool tcp_any_retrans_done(const struct sock
*sk
)
2512 const struct tcp_sock
*tp
= tcp_sk(sk
);
2513 struct sk_buff
*skb
;
2515 if (tp
->retrans_out
)
2518 skb
= tcp_rtx_queue_head(sk
);
2519 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2525 /* If loss recovery is finished and there are no retransmits out in the
2526 * network, then we clear retrans_stamp so that upon the next loss recovery
2527 * retransmits_timed_out() and timestamp-undo are using the correct value.
2529 static void tcp_retrans_stamp_cleanup(struct sock
*sk
)
2531 if (!tcp_any_retrans_done(sk
))
2532 tcp_sk(sk
)->retrans_stamp
= 0;
2535 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2537 #if FASTRETRANS_DEBUG > 1
2538 struct tcp_sock
*tp
= tcp_sk(sk
);
2539 struct inet_sock
*inet
= inet_sk(sk
);
2541 if (sk
->sk_family
== AF_INET
) {
2542 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2544 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2545 tcp_snd_cwnd(tp
), tcp_left_out(tp
),
2546 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2549 #if IS_ENABLED(CONFIG_IPV6)
2550 else if (sk
->sk_family
== AF_INET6
) {
2551 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2553 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2554 tcp_snd_cwnd(tp
), tcp_left_out(tp
),
2555 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2562 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2564 struct tcp_sock
*tp
= tcp_sk(sk
);
2567 struct sk_buff
*skb
;
2569 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2570 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2573 tcp_clear_all_retrans_hints(tp
);
2576 if (tp
->prior_ssthresh
) {
2577 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2579 tcp_snd_cwnd_set(tp
, icsk
->icsk_ca_ops
->undo_cwnd(sk
));
2581 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2582 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2583 tcp_ecn_withdraw_cwr(tp
);
2586 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2587 tp
->undo_marker
= 0;
2588 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2591 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2593 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2596 static bool tcp_is_non_sack_preventing_reopen(struct sock
*sk
)
2598 struct tcp_sock
*tp
= tcp_sk(sk
);
2600 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2601 /* Hold old state until something *above* high_seq
2602 * is ACKed. For Reno it is MUST to prevent false
2603 * fast retransmits (RFC2582). SACK TCP is safe. */
2604 if (!tcp_any_retrans_done(sk
))
2605 tp
->retrans_stamp
= 0;
2611 /* People celebrate: "We love our President!" */
2612 static bool tcp_try_undo_recovery(struct sock
*sk
)
2614 struct tcp_sock
*tp
= tcp_sk(sk
);
2616 if (tcp_may_undo(tp
)) {
2619 /* Happy end! We did not retransmit anything
2620 * or our original transmission succeeded.
2622 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2623 tcp_undo_cwnd_reduction(sk
, false);
2624 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2625 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2627 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2629 NET_INC_STATS(sock_net(sk
), mib_idx
);
2630 } else if (tp
->rack
.reo_wnd_persist
) {
2631 tp
->rack
.reo_wnd_persist
--;
2633 if (tcp_is_non_sack_preventing_reopen(sk
))
2635 tcp_set_ca_state(sk
, TCP_CA_Open
);
2636 tp
->is_sack_reneg
= 0;
2640 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2641 static bool tcp_try_undo_dsack(struct sock
*sk
)
2643 struct tcp_sock
*tp
= tcp_sk(sk
);
2645 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2646 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2647 tp
->rack
.reo_wnd_persist
+ 1);
2648 DBGUNDO(sk
, "D-SACK");
2649 tcp_undo_cwnd_reduction(sk
, false);
2650 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2656 /* Undo during loss recovery after partial ACK or using F-RTO. */
2657 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2659 struct tcp_sock
*tp
= tcp_sk(sk
);
2661 if (frto_undo
|| tcp_may_undo(tp
)) {
2662 tcp_undo_cwnd_reduction(sk
, true);
2664 DBGUNDO(sk
, "partial loss");
2665 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2667 NET_INC_STATS(sock_net(sk
),
2668 LINUX_MIB_TCPSPURIOUSRTOS
);
2669 inet_csk(sk
)->icsk_retransmits
= 0;
2670 if (tcp_is_non_sack_preventing_reopen(sk
))
2672 if (frto_undo
|| tcp_is_sack(tp
)) {
2673 tcp_set_ca_state(sk
, TCP_CA_Open
);
2674 tp
->is_sack_reneg
= 0;
2681 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2682 * It computes the number of packets to send (sndcnt) based on packets newly
2684 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2685 * cwnd reductions across a full RTT.
2686 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2687 * But when SND_UNA is acked without further losses,
2688 * slow starts cwnd up to ssthresh to speed up the recovery.
2690 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2692 struct tcp_sock
*tp
= tcp_sk(sk
);
2694 tp
->high_seq
= tp
->snd_nxt
;
2695 tp
->tlp_high_seq
= 0;
2696 tp
->snd_cwnd_cnt
= 0;
2697 tp
->prior_cwnd
= tcp_snd_cwnd(tp
);
2698 tp
->prr_delivered
= 0;
2700 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2701 tcp_ecn_queue_cwr(tp
);
2704 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int newly_lost
, int flag
)
2706 struct tcp_sock
*tp
= tcp_sk(sk
);
2708 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2710 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2713 tp
->prr_delivered
+= newly_acked_sacked
;
2715 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2717 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2719 sndcnt
= max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2720 newly_acked_sacked
);
2721 if (flag
& FLAG_SND_UNA_ADVANCED
&& !newly_lost
)
2723 sndcnt
= min(delta
, sndcnt
);
2725 /* Force a fast retransmit upon entering fast recovery */
2726 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2727 tcp_snd_cwnd_set(tp
, tcp_packets_in_flight(tp
) + sndcnt
);
2730 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2732 struct tcp_sock
*tp
= tcp_sk(sk
);
2734 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2737 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2738 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2739 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2740 tcp_snd_cwnd_set(tp
, tp
->snd_ssthresh
);
2741 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2743 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2746 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2747 void tcp_enter_cwr(struct sock
*sk
)
2749 struct tcp_sock
*tp
= tcp_sk(sk
);
2751 tp
->prior_ssthresh
= 0;
2752 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2753 tp
->undo_marker
= 0;
2754 tcp_init_cwnd_reduction(sk
);
2755 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2758 EXPORT_SYMBOL(tcp_enter_cwr
);
2760 static void tcp_try_keep_open(struct sock
*sk
)
2762 struct tcp_sock
*tp
= tcp_sk(sk
);
2763 int state
= TCP_CA_Open
;
2765 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2766 state
= TCP_CA_Disorder
;
2768 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2769 tcp_set_ca_state(sk
, state
);
2770 tp
->high_seq
= tp
->snd_nxt
;
2774 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2776 struct tcp_sock
*tp
= tcp_sk(sk
);
2778 tcp_verify_left_out(tp
);
2780 if (!tcp_any_retrans_done(sk
))
2781 tp
->retrans_stamp
= 0;
2783 if (flag
& FLAG_ECE
)
2786 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2787 tcp_try_keep_open(sk
);
2791 static void tcp_mtup_probe_failed(struct sock
*sk
)
2793 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2795 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2796 icsk
->icsk_mtup
.probe_size
= 0;
2797 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2800 static void tcp_mtup_probe_success(struct sock
*sk
)
2802 struct tcp_sock
*tp
= tcp_sk(sk
);
2803 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2806 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2808 val
= (u64
)tcp_snd_cwnd(tp
) * tcp_mss_to_mtu(sk
, tp
->mss_cache
);
2809 do_div(val
, icsk
->icsk_mtup
.probe_size
);
2810 DEBUG_NET_WARN_ON_ONCE((u32
)val
!= val
);
2811 tcp_snd_cwnd_set(tp
, max_t(u32
, 1U, val
));
2813 tp
->snd_cwnd_cnt
= 0;
2814 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2815 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2817 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2818 icsk
->icsk_mtup
.probe_size
= 0;
2819 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2820 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2823 /* Sometimes we deduce that packets have been dropped due to reasons other than
2824 * congestion, like path MTU reductions or failed client TFO attempts. In these
2825 * cases we call this function to retransmit as many packets as cwnd allows,
2826 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2827 * non-zero value (and may do so in a later calling context due to TSQ), we
2828 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2829 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2830 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2833 static void tcp_non_congestion_loss_retransmit(struct sock
*sk
)
2835 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2836 struct tcp_sock
*tp
= tcp_sk(sk
);
2838 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2839 tp
->high_seq
= tp
->snd_nxt
;
2840 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2841 tp
->prior_ssthresh
= 0;
2842 tp
->undo_marker
= 0;
2843 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2845 tcp_xmit_retransmit_queue(sk
);
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849 * tcp_timer. This is used for path mtu discovery.
2850 * The socket is already locked here.
2852 void tcp_simple_retransmit(struct sock
*sk
)
2854 struct tcp_sock
*tp
= tcp_sk(sk
);
2855 struct sk_buff
*skb
;
2858 /* A fastopen SYN request is stored as two separate packets within
2859 * the retransmit queue, this is done by tcp_send_syn_data().
2860 * As a result simply checking the MSS of the frames in the queue
2861 * will not work for the SYN packet.
2863 * Us being here is an indication of a path MTU issue so we can
2864 * assume that the fastopen SYN was lost and just mark all the
2865 * frames in the retransmit queue as lost. We will use an MSS of
2866 * -1 to mark all frames as lost, otherwise compute the current MSS.
2868 if (tp
->syn_data
&& sk
->sk_state
== TCP_SYN_SENT
)
2871 mss
= tcp_current_mss(sk
);
2873 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2874 if (tcp_skb_seglen(skb
) > mss
)
2875 tcp_mark_skb_lost(sk
, skb
);
2878 tcp_clear_retrans_hints_partial(tp
);
2883 if (tcp_is_reno(tp
))
2884 tcp_limit_reno_sacked(tp
);
2886 tcp_verify_left_out(tp
);
2888 /* Don't muck with the congestion window here.
2889 * Reason is that we do not increase amount of _data_
2890 * in network, but units changed and effective
2891 * cwnd/ssthresh really reduced now.
2893 tcp_non_congestion_loss_retransmit(sk
);
2895 EXPORT_SYMBOL(tcp_simple_retransmit
);
2897 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2899 struct tcp_sock
*tp
= tcp_sk(sk
);
2902 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2903 tcp_retrans_stamp_cleanup(sk
);
2905 if (tcp_is_reno(tp
))
2906 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2908 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2910 NET_INC_STATS(sock_net(sk
), mib_idx
);
2912 tp
->prior_ssthresh
= 0;
2915 if (!tcp_in_cwnd_reduction(sk
)) {
2917 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2918 tcp_init_cwnd_reduction(sk
);
2920 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2923 static void tcp_update_rto_time(struct tcp_sock
*tp
)
2925 if (tp
->rto_stamp
) {
2926 tp
->total_rto_time
+= tcp_time_stamp_ms(tp
) - tp
->rto_stamp
;
2931 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2932 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2934 static void tcp_process_loss(struct sock
*sk
, int flag
, int num_dupack
,
2937 struct tcp_sock
*tp
= tcp_sk(sk
);
2938 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2940 if ((flag
& FLAG_SND_UNA_ADVANCED
|| rcu_access_pointer(tp
->fastopen_rsk
)) &&
2941 tcp_try_undo_loss(sk
, false))
2944 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2945 /* Step 3.b. A timeout is spurious if not all data are
2946 * lost, i.e., never-retransmitted data are (s)acked.
2948 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2949 tcp_try_undo_loss(sk
, true))
2952 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2953 if (flag
& FLAG_DATA_SACKED
|| num_dupack
)
2954 tp
->frto
= 0; /* Step 3.a. loss was real */
2955 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2956 tp
->high_seq
= tp
->snd_nxt
;
2957 /* Step 2.b. Try send new data (but deferred until cwnd
2958 * is updated in tcp_ack()). Otherwise fall back to
2959 * the conventional recovery.
2961 if (!tcp_write_queue_empty(sk
) &&
2962 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2963 *rexmit
= REXMIT_NEW
;
2971 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2972 tcp_try_undo_recovery(sk
);
2975 if (tcp_is_reno(tp
)) {
2976 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2977 * delivered. Lower inflight to clock out (re)transmissions.
2979 if (after(tp
->snd_nxt
, tp
->high_seq
) && num_dupack
)
2980 tcp_add_reno_sack(sk
, num_dupack
, flag
& FLAG_ECE
);
2981 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2982 tcp_reset_reno_sack(tp
);
2984 *rexmit
= REXMIT_LOST
;
2987 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2989 struct tcp_sock
*tp
= tcp_sk(sk
);
2991 return after(tcp_highest_sack_seq(tp
),
2992 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2995 /* Undo during fast recovery after partial ACK. */
2996 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
,
2999 struct tcp_sock
*tp
= tcp_sk(sk
);
3001 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
3002 /* Plain luck! Hole if filled with delayed
3003 * packet, rather than with a retransmit. Check reordering.
3005 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
3007 /* We are getting evidence that the reordering degree is higher
3008 * than we realized. If there are no retransmits out then we
3009 * can undo. Otherwise we clock out new packets but do not
3010 * mark more packets lost or retransmit more.
3012 if (tp
->retrans_out
)
3015 if (!tcp_any_retrans_done(sk
))
3016 tp
->retrans_stamp
= 0;
3018 DBGUNDO(sk
, "partial recovery");
3019 tcp_undo_cwnd_reduction(sk
, true);
3020 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
3021 tcp_try_keep_open(sk
);
3023 /* Partial ACK arrived. Force fast retransmit. */
3024 *do_lost
= tcp_force_fast_retransmit(sk
);
3029 static void tcp_identify_packet_loss(struct sock
*sk
, int *ack_flag
)
3031 struct tcp_sock
*tp
= tcp_sk(sk
);
3033 if (tcp_rtx_queue_empty(sk
))
3036 if (unlikely(tcp_is_reno(tp
))) {
3037 tcp_newreno_mark_lost(sk
, *ack_flag
& FLAG_SND_UNA_ADVANCED
);
3038 } else if (tcp_is_rack(sk
)) {
3039 u32 prior_retrans
= tp
->retrans_out
;
3041 if (tcp_rack_mark_lost(sk
))
3042 *ack_flag
&= ~FLAG_SET_XMIT_TIMER
;
3043 if (prior_retrans
> tp
->retrans_out
)
3044 *ack_flag
|= FLAG_LOST_RETRANS
;
3048 /* Process an event, which can update packets-in-flight not trivially.
3049 * Main goal of this function is to calculate new estimate for left_out,
3050 * taking into account both packets sitting in receiver's buffer and
3051 * packets lost by network.
3053 * Besides that it updates the congestion state when packet loss or ECN
3054 * is detected. But it does not reduce the cwnd, it is done by the
3055 * congestion control later.
3057 * It does _not_ decide what to send, it is made in function
3058 * tcp_xmit_retransmit_queue().
3060 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
3061 int num_dupack
, int *ack_flag
, int *rexmit
)
3063 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3064 struct tcp_sock
*tp
= tcp_sk(sk
);
3065 int fast_rexmit
= 0, flag
= *ack_flag
;
3066 bool ece_ack
= flag
& FLAG_ECE
;
3067 bool do_lost
= num_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
3068 tcp_force_fast_retransmit(sk
));
3070 if (!tp
->packets_out
&& tp
->sacked_out
)
3073 /* Now state machine starts.
3074 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3076 tp
->prior_ssthresh
= 0;
3078 /* B. In all the states check for reneging SACKs. */
3079 if (tcp_check_sack_reneging(sk
, ack_flag
))
3082 /* C. Check consistency of the current state. */
3083 tcp_verify_left_out(tp
);
3085 /* D. Check state exit conditions. State can be terminated
3086 * when high_seq is ACKed. */
3087 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
3088 WARN_ON(tp
->retrans_out
!= 0 && !tp
->syn_data
);
3089 tp
->retrans_stamp
= 0;
3090 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
3091 switch (icsk
->icsk_ca_state
) {
3093 /* CWR is to be held something *above* high_seq
3094 * is ACKed for CWR bit to reach receiver. */
3095 if (tp
->snd_una
!= tp
->high_seq
) {
3096 tcp_end_cwnd_reduction(sk
);
3097 tcp_set_ca_state(sk
, TCP_CA_Open
);
3101 case TCP_CA_Recovery
:
3102 if (tcp_is_reno(tp
))
3103 tcp_reset_reno_sack(tp
);
3104 if (tcp_try_undo_recovery(sk
))
3106 tcp_end_cwnd_reduction(sk
);
3111 /* E. Process state. */
3112 switch (icsk
->icsk_ca_state
) {
3113 case TCP_CA_Recovery
:
3114 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
3115 if (tcp_is_reno(tp
))
3116 tcp_add_reno_sack(sk
, num_dupack
, ece_ack
);
3117 } else if (tcp_try_undo_partial(sk
, prior_snd_una
, &do_lost
))
3120 if (tcp_try_undo_dsack(sk
))
3121 tcp_try_to_open(sk
, flag
);
3123 tcp_identify_packet_loss(sk
, ack_flag
);
3124 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
) {
3125 if (!tcp_time_to_recover(sk
, flag
))
3127 /* Undo reverts the recovery state. If loss is evident,
3128 * starts a new recovery (e.g. reordering then loss);
3130 tcp_enter_recovery(sk
, ece_ack
);
3134 tcp_process_loss(sk
, flag
, num_dupack
, rexmit
);
3135 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
3136 tcp_update_rto_time(tp
);
3137 tcp_identify_packet_loss(sk
, ack_flag
);
3138 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
3139 (*ack_flag
& FLAG_LOST_RETRANS
)))
3141 /* Change state if cwnd is undone or retransmits are lost */
3144 if (tcp_is_reno(tp
)) {
3145 if (flag
& FLAG_SND_UNA_ADVANCED
)
3146 tcp_reset_reno_sack(tp
);
3147 tcp_add_reno_sack(sk
, num_dupack
, ece_ack
);
3150 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
3151 tcp_try_undo_dsack(sk
);
3153 tcp_identify_packet_loss(sk
, ack_flag
);
3154 if (!tcp_time_to_recover(sk
, flag
)) {
3155 tcp_try_to_open(sk
, flag
);
3159 /* MTU probe failure: don't reduce cwnd */
3160 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
3161 icsk
->icsk_mtup
.probe_size
&&
3162 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
3163 tcp_mtup_probe_failed(sk
);
3164 /* Restores the reduction we did in tcp_mtup_probe() */
3165 tcp_snd_cwnd_set(tp
, tcp_snd_cwnd(tp
) + 1);
3166 tcp_simple_retransmit(sk
);
3170 /* Otherwise enter Recovery state */
3171 tcp_enter_recovery(sk
, ece_ack
);
3175 if (!tcp_is_rack(sk
) && do_lost
)
3176 tcp_update_scoreboard(sk
, fast_rexmit
);
3177 *rexmit
= REXMIT_LOST
;
3180 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
3182 u32 wlen
= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
) * HZ
;
3183 struct tcp_sock
*tp
= tcp_sk(sk
);
3185 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
3186 /* If the remote keeps returning delayed ACKs, eventually
3187 * the min filter would pick it up and overestimate the
3188 * prop. delay when it expires. Skip suspected delayed ACKs.
3192 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
3193 rtt_us
? : jiffies_to_usecs(1));
3196 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
3197 long seq_rtt_us
, long sack_rtt_us
,
3198 long ca_rtt_us
, struct rate_sample
*rs
)
3200 const struct tcp_sock
*tp
= tcp_sk(sk
);
3202 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3203 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3204 * Karn's algorithm forbids taking RTT if some retransmitted data
3205 * is acked (RFC6298).
3208 seq_rtt_us
= sack_rtt_us
;
3210 /* RTTM Rule: A TSecr value received in a segment is used to
3211 * update the averaged RTT measurement only if the segment
3212 * acknowledges some new data, i.e., only if it advances the
3213 * left edge of the send window.
3214 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3216 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&&
3217 tp
->rx_opt
.rcv_tsecr
&& flag
& FLAG_ACKED
)
3218 seq_rtt_us
= ca_rtt_us
= tcp_rtt_tsopt_us(tp
);
3220 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
3224 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3225 * always taken together with ACK, SACK, or TS-opts. Any negative
3226 * values will be skipped with the seq_rtt_us < 0 check above.
3228 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
3229 tcp_rtt_estimator(sk
, seq_rtt_us
);
3232 /* RFC6298: only reset backoff on valid RTT measurement. */
3233 inet_csk(sk
)->icsk_backoff
= 0;
3237 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3238 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
3240 struct rate_sample rs
;
3243 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
3244 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
3246 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
3250 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
3252 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3254 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
3255 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
3258 /* Restart timer after forward progress on connection.
3259 * RFC2988 recommends to restart timer to now+rto.
3261 void tcp_rearm_rto(struct sock
*sk
)
3263 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3264 struct tcp_sock
*tp
= tcp_sk(sk
);
3266 /* If the retrans timer is currently being used by Fast Open
3267 * for SYN-ACK retrans purpose, stay put.
3269 if (rcu_access_pointer(tp
->fastopen_rsk
))
3272 if (!tp
->packets_out
) {
3273 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
3275 u32 rto
= inet_csk(sk
)->icsk_rto
;
3276 /* Offset the time elapsed after installing regular RTO */
3277 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
3278 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
3279 s64 delta_us
= tcp_rto_delta_us(sk
);
3280 /* delta_us may not be positive if the socket is locked
3281 * when the retrans timer fires and is rescheduled.
3283 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
3285 tcp_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
3290 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3291 static void tcp_set_xmit_timer(struct sock
*sk
)
3293 if (!tcp_schedule_loss_probe(sk
, true))
3297 /* If we get here, the whole TSO packet has not been acked. */
3298 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
3300 struct tcp_sock
*tp
= tcp_sk(sk
);
3303 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
3305 packets_acked
= tcp_skb_pcount(skb
);
3306 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
3308 packets_acked
-= tcp_skb_pcount(skb
);
3310 if (packets_acked
) {
3311 BUG_ON(tcp_skb_pcount(skb
) == 0);
3312 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
3315 return packets_acked
;
3318 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3319 const struct sk_buff
*ack_skb
, u32 prior_snd_una
)
3321 const struct skb_shared_info
*shinfo
;
3323 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3324 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3327 shinfo
= skb_shinfo(skb
);
3328 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3329 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3330 tcp_skb_tsorted_save(skb
) {
3331 __skb_tstamp_tx(skb
, ack_skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3332 } tcp_skb_tsorted_restore(skb
);
3336 /* Remove acknowledged frames from the retransmission queue. If our packet
3337 * is before the ack sequence we can discard it as it's confirmed to have
3338 * arrived at the other end.
3340 static int tcp_clean_rtx_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
3341 u32 prior_fack
, u32 prior_snd_una
,
3342 struct tcp_sacktag_state
*sack
, bool ece_ack
)
3344 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3345 u64 first_ackt
, last_ackt
;
3346 struct tcp_sock
*tp
= tcp_sk(sk
);
3347 u32 prior_sacked
= tp
->sacked_out
;
3348 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3349 struct sk_buff
*skb
, *next
;
3350 bool fully_acked
= true;
3351 long sack_rtt_us
= -1L;
3352 long seq_rtt_us
= -1L;
3353 long ca_rtt_us
= -1L;
3360 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3361 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3362 const u32 start_seq
= scb
->seq
;
3363 u8 sacked
= scb
->sacked
;
3366 /* Determine how many packets and what bytes were acked, tso and else */
3367 if (after(scb
->end_seq
, tp
->snd_una
)) {
3368 if (tcp_skb_pcount(skb
) == 1 ||
3369 !after(tp
->snd_una
, scb
->seq
))
3372 acked_pcount
= tcp_tso_acked(sk
, skb
);
3375 fully_acked
= false;
3377 acked_pcount
= tcp_skb_pcount(skb
);
3380 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3381 if (sacked
& TCPCB_SACKED_RETRANS
)
3382 tp
->retrans_out
-= acked_pcount
;
3383 flag
|= FLAG_RETRANS_DATA_ACKED
;
3384 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3385 last_ackt
= tcp_skb_timestamp_us(skb
);
3386 WARN_ON_ONCE(last_ackt
== 0);
3388 first_ackt
= last_ackt
;
3390 if (before(start_seq
, reord
))
3392 if (!after(scb
->end_seq
, tp
->high_seq
))
3393 flag
|= FLAG_ORIG_SACK_ACKED
;
3396 if (sacked
& TCPCB_SACKED_ACKED
) {
3397 tp
->sacked_out
-= acked_pcount
;
3398 } else if (tcp_is_sack(tp
)) {
3399 tcp_count_delivered(tp
, acked_pcount
, ece_ack
);
3400 if (!tcp_skb_spurious_retrans(tp
, skb
))
3401 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3402 tcp_skb_timestamp_us(skb
));
3404 if (sacked
& TCPCB_LOST
)
3405 tp
->lost_out
-= acked_pcount
;
3407 tp
->packets_out
-= acked_pcount
;
3408 pkts_acked
+= acked_pcount
;
3409 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3411 /* Initial outgoing SYN's get put onto the write_queue
3412 * just like anything else we transmit. It is not
3413 * true data, and if we misinform our callers that
3414 * this ACK acks real data, we will erroneously exit
3415 * connection startup slow start one packet too
3416 * quickly. This is severely frowned upon behavior.
3418 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3419 flag
|= FLAG_DATA_ACKED
;
3421 flag
|= FLAG_SYN_ACKED
;
3422 tp
->retrans_stamp
= 0;
3428 tcp_ack_tstamp(sk
, skb
, ack_skb
, prior_snd_una
);
3430 next
= skb_rb_next(skb
);
3431 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3432 tp
->retransmit_skb_hint
= NULL
;
3433 if (unlikely(skb
== tp
->lost_skb_hint
))
3434 tp
->lost_skb_hint
= NULL
;
3435 tcp_highest_sack_replace(sk
, skb
, next
);
3436 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3440 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3442 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3443 tp
->snd_up
= tp
->snd_una
;
3446 tcp_ack_tstamp(sk
, skb
, ack_skb
, prior_snd_una
);
3447 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
3448 flag
|= FLAG_SACK_RENEGING
;
3451 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3452 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3453 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3455 if (pkts_acked
== 1 && fully_acked
&& !prior_sacked
&&
3456 (tp
->snd_una
- prior_snd_una
) < tp
->mss_cache
&&
3457 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3458 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3459 /* Conservatively mark a delayed ACK. It's typically
3460 * from a lone runt packet over the round trip to
3461 * a receiver w/o out-of-order or CE events.
3463 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3466 if (sack
->first_sackt
) {
3467 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3468 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3470 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3471 ca_rtt_us
, sack
->rate
);
3473 if (flag
& FLAG_ACKED
) {
3474 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3475 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3476 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3477 tcp_mtup_probe_success(sk
);
3480 if (tcp_is_reno(tp
)) {
3481 tcp_remove_reno_sacks(sk
, pkts_acked
, ece_ack
);
3483 /* If any of the cumulatively ACKed segments was
3484 * retransmitted, non-SACK case cannot confirm that
3485 * progress was due to original transmission due to
3486 * lack of TCPCB_SACKED_ACKED bits even if some of
3487 * the packets may have been never retransmitted.
3489 if (flag
& FLAG_RETRANS_DATA_ACKED
)
3490 flag
&= ~FLAG_ORIG_SACK_ACKED
;
3494 /* Non-retransmitted hole got filled? That's reordering */
3495 if (before(reord
, prior_fack
))
3496 tcp_check_sack_reordering(sk
, reord
, 0);
3498 delta
= prior_sacked
- tp
->sacked_out
;
3499 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3501 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3502 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
,
3503 tcp_skb_timestamp_us(skb
))) {
3504 /* Do not re-arm RTO if the sack RTT is measured from data sent
3505 * after when the head was last (re)transmitted. Otherwise the
3506 * timeout may continue to extend in loss recovery.
3508 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3511 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3512 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3513 .rtt_us
= sack
->rate
->rtt_us
};
3515 sample
.in_flight
= tp
->mss_cache
*
3516 (tp
->delivered
- sack
->rate
->prior_delivered
);
3517 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3520 #if FASTRETRANS_DEBUG > 0
3521 WARN_ON((int)tp
->sacked_out
< 0);
3522 WARN_ON((int)tp
->lost_out
< 0);
3523 WARN_ON((int)tp
->retrans_out
< 0);
3524 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3525 icsk
= inet_csk(sk
);
3527 pr_debug("Leak l=%u %d\n",
3528 tp
->lost_out
, icsk
->icsk_ca_state
);
3531 if (tp
->sacked_out
) {
3532 pr_debug("Leak s=%u %d\n",
3533 tp
->sacked_out
, icsk
->icsk_ca_state
);
3536 if (tp
->retrans_out
) {
3537 pr_debug("Leak r=%u %d\n",
3538 tp
->retrans_out
, icsk
->icsk_ca_state
);
3539 tp
->retrans_out
= 0;
3546 static void tcp_ack_probe(struct sock
*sk
)
3548 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3549 struct sk_buff
*head
= tcp_send_head(sk
);
3550 const struct tcp_sock
*tp
= tcp_sk(sk
);
3552 /* Was it a usable window open? */
3555 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3556 icsk
->icsk_backoff
= 0;
3557 icsk
->icsk_probes_tstamp
= 0;
3558 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3559 /* Socket must be waked up by subsequent tcp_data_snd_check().
3560 * This function is not for random using!
3563 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3565 when
= tcp_clamp_probe0_to_user_timeout(sk
, when
);
3566 tcp_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
, when
, TCP_RTO_MAX
);
3570 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3572 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3573 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3576 /* Decide wheather to run the increase function of congestion control. */
3577 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3579 /* If reordering is high then always grow cwnd whenever data is
3580 * delivered regardless of its ordering. Otherwise stay conservative
3581 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3582 * new SACK or ECE mark may first advance cwnd here and later reduce
3583 * cwnd in tcp_fastretrans_alert() based on more states.
3585 if (tcp_sk(sk
)->reordering
>
3586 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_reordering
))
3587 return flag
& FLAG_FORWARD_PROGRESS
;
3589 return flag
& FLAG_DATA_ACKED
;
3592 /* The "ultimate" congestion control function that aims to replace the rigid
3593 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3594 * It's called toward the end of processing an ACK with precise rate
3595 * information. All transmission or retransmission are delayed afterwards.
3597 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3598 int flag
, const struct rate_sample
*rs
)
3600 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3602 if (icsk
->icsk_ca_ops
->cong_control
) {
3603 icsk
->icsk_ca_ops
->cong_control(sk
, ack
, flag
, rs
);
3607 if (tcp_in_cwnd_reduction(sk
)) {
3608 /* Reduce cwnd if state mandates */
3609 tcp_cwnd_reduction(sk
, acked_sacked
, rs
->losses
, flag
);
3610 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3611 /* Advance cwnd if state allows */
3612 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3614 tcp_update_pacing_rate(sk
);
3617 /* Check that window update is acceptable.
3618 * The function assumes that snd_una<=ack<=snd_next.
3620 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3621 const u32 ack
, const u32 ack_seq
,
3624 return after(ack
, tp
->snd_una
) ||
3625 after(ack_seq
, tp
->snd_wl1
) ||
3626 (ack_seq
== tp
->snd_wl1
&& (nwin
> tp
->snd_wnd
|| !nwin
));
3629 static void tcp_snd_sne_update(struct tcp_sock
*tp
, u32 ack
)
3631 #ifdef CONFIG_TCP_AO
3632 struct tcp_ao_info
*ao
;
3634 if (!static_branch_unlikely(&tcp_ao_needed
.key
))
3637 ao
= rcu_dereference_protected(tp
->ao_info
,
3638 lockdep_sock_is_held((struct sock
*)tp
));
3639 if (ao
&& ack
< tp
->snd_una
) {
3641 trace_tcp_ao_snd_sne_update((struct sock
*)tp
, ao
->snd_sne
);
3646 /* If we update tp->snd_una, also update tp->bytes_acked */
3647 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3649 u32 delta
= ack
- tp
->snd_una
;
3651 sock_owned_by_me((struct sock
*)tp
);
3652 tp
->bytes_acked
+= delta
;
3653 tcp_snd_sne_update(tp
, ack
);
3657 static void tcp_rcv_sne_update(struct tcp_sock
*tp
, u32 seq
)
3659 #ifdef CONFIG_TCP_AO
3660 struct tcp_ao_info
*ao
;
3662 if (!static_branch_unlikely(&tcp_ao_needed
.key
))
3665 ao
= rcu_dereference_protected(tp
->ao_info
,
3666 lockdep_sock_is_held((struct sock
*)tp
));
3667 if (ao
&& seq
< tp
->rcv_nxt
) {
3669 trace_tcp_ao_rcv_sne_update((struct sock
*)tp
, ao
->rcv_sne
);
3674 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3675 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3677 u32 delta
= seq
- tp
->rcv_nxt
;
3679 sock_owned_by_me((struct sock
*)tp
);
3680 tp
->bytes_received
+= delta
;
3681 tcp_rcv_sne_update(tp
, seq
);
3682 WRITE_ONCE(tp
->rcv_nxt
, seq
);
3685 /* Update our send window.
3687 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3688 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3690 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3693 struct tcp_sock
*tp
= tcp_sk(sk
);
3695 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3697 if (likely(!tcp_hdr(skb
)->syn
))
3698 nwin
<<= tp
->rx_opt
.snd_wscale
;
3700 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3701 flag
|= FLAG_WIN_UPDATE
;
3702 tcp_update_wl(tp
, ack_seq
);
3704 if (tp
->snd_wnd
!= nwin
) {
3707 /* Note, it is the only place, where
3708 * fast path is recovered for sending TCP.
3711 tcp_fast_path_check(sk
);
3713 if (!tcp_write_queue_empty(sk
))
3714 tcp_slow_start_after_idle_check(sk
);
3716 if (nwin
> tp
->max_window
) {
3717 tp
->max_window
= nwin
;
3718 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3723 tcp_snd_una_update(tp
, ack
);
3728 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3729 u32
*last_oow_ack_time
)
3731 /* Paired with the WRITE_ONCE() in this function. */
3732 u32 val
= READ_ONCE(*last_oow_ack_time
);
3735 s32 elapsed
= (s32
)(tcp_jiffies32
- val
);
3738 elapsed
< READ_ONCE(net
->ipv4
.sysctl_tcp_invalid_ratelimit
)) {
3739 NET_INC_STATS(net
, mib_idx
);
3740 return true; /* rate-limited: don't send yet! */
3744 /* Paired with the prior READ_ONCE() and with itself,
3745 * as we might be lockless.
3747 WRITE_ONCE(*last_oow_ack_time
, tcp_jiffies32
);
3749 return false; /* not rate-limited: go ahead, send dupack now! */
3752 /* Return true if we're currently rate-limiting out-of-window ACKs and
3753 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3754 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3755 * attacks that send repeated SYNs or ACKs for the same connection. To
3756 * do this, we do not send a duplicate SYNACK or ACK if the remote
3757 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3759 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3760 int mib_idx
, u32
*last_oow_ack_time
)
3762 /* Data packets without SYNs are not likely part of an ACK loop. */
3763 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3767 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3770 /* RFC 5961 7 [ACK Throttling] */
3771 static void tcp_send_challenge_ack(struct sock
*sk
)
3773 struct tcp_sock
*tp
= tcp_sk(sk
);
3774 struct net
*net
= sock_net(sk
);
3775 u32 count
, now
, ack_limit
;
3777 /* First check our per-socket dupack rate limit. */
3778 if (__tcp_oow_rate_limited(net
,
3779 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3780 &tp
->last_oow_ack_time
))
3783 ack_limit
= READ_ONCE(net
->ipv4
.sysctl_tcp_challenge_ack_limit
);
3784 if (ack_limit
== INT_MAX
)
3787 /* Then check host-wide RFC 5961 rate limit. */
3789 if (now
!= READ_ONCE(net
->ipv4
.tcp_challenge_timestamp
)) {
3790 u32 half
= (ack_limit
+ 1) >> 1;
3792 WRITE_ONCE(net
->ipv4
.tcp_challenge_timestamp
, now
);
3793 WRITE_ONCE(net
->ipv4
.tcp_challenge_count
,
3794 get_random_u32_inclusive(half
, ack_limit
+ half
- 1));
3796 count
= READ_ONCE(net
->ipv4
.tcp_challenge_count
);
3798 WRITE_ONCE(net
->ipv4
.tcp_challenge_count
, count
- 1);
3800 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3805 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3807 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3808 tp
->rx_opt
.ts_recent_stamp
= ktime_get_seconds();
3811 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3813 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3814 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3815 * extra check below makes sure this can only happen
3816 * for pure ACK frames. -DaveM
3818 * Not only, also it occurs for expired timestamps.
3821 if (tcp_paws_check(&tp
->rx_opt
, 0))
3822 tcp_store_ts_recent(tp
);
3826 /* This routine deals with acks during a TLP episode and ends an episode by
3827 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3829 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3831 struct tcp_sock
*tp
= tcp_sk(sk
);
3833 if (before(ack
, tp
->tlp_high_seq
))
3836 if (!tp
->tlp_retrans
) {
3837 /* TLP of new data has been acknowledged */
3838 tp
->tlp_high_seq
= 0;
3839 } else if (flag
& FLAG_DSACK_TLP
) {
3840 /* This DSACK means original and TLP probe arrived; no loss */
3841 tp
->tlp_high_seq
= 0;
3842 } else if (after(ack
, tp
->tlp_high_seq
)) {
3843 /* ACK advances: there was a loss, so reduce cwnd. Reset
3844 * tlp_high_seq in tcp_init_cwnd_reduction()
3846 tcp_init_cwnd_reduction(sk
);
3847 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3848 tcp_end_cwnd_reduction(sk
);
3849 tcp_try_keep_open(sk
);
3850 NET_INC_STATS(sock_net(sk
),
3851 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3852 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3853 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3854 /* Pure dupack: original and TLP probe arrived; no loss */
3855 tp
->tlp_high_seq
= 0;
3859 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3861 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3863 if (icsk
->icsk_ca_ops
->in_ack_event
)
3864 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3867 /* Congestion control has updated the cwnd already. So if we're in
3868 * loss recovery then now we do any new sends (for FRTO) or
3869 * retransmits (for CA_Loss or CA_recovery) that make sense.
3871 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3873 struct tcp_sock
*tp
= tcp_sk(sk
);
3875 if (rexmit
== REXMIT_NONE
|| sk
->sk_state
== TCP_SYN_SENT
)
3878 if (unlikely(rexmit
== REXMIT_NEW
)) {
3879 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3881 if (after(tp
->snd_nxt
, tp
->high_seq
))
3885 tcp_xmit_retransmit_queue(sk
);
3888 /* Returns the number of packets newly acked or sacked by the current ACK */
3889 static u32
tcp_newly_delivered(struct sock
*sk
, u32 prior_delivered
, int flag
)
3891 const struct net
*net
= sock_net(sk
);
3892 struct tcp_sock
*tp
= tcp_sk(sk
);
3895 delivered
= tp
->delivered
- prior_delivered
;
3896 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVERED
, delivered
);
3897 if (flag
& FLAG_ECE
)
3898 NET_ADD_STATS(net
, LINUX_MIB_TCPDELIVEREDCE
, delivered
);
3903 /* This routine deals with incoming acks, but not outgoing ones. */
3904 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3906 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3907 struct tcp_sock
*tp
= tcp_sk(sk
);
3908 struct tcp_sacktag_state sack_state
;
3909 struct rate_sample rs
= { .prior_delivered
= 0 };
3910 u32 prior_snd_una
= tp
->snd_una
;
3911 bool is_sack_reneg
= tp
->is_sack_reneg
;
3912 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3913 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3915 int prior_packets
= tp
->packets_out
;
3916 u32 delivered
= tp
->delivered
;
3917 u32 lost
= tp
->lost
;
3918 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3921 sack_state
.first_sackt
= 0;
3922 sack_state
.rate
= &rs
;
3923 sack_state
.sack_delivered
= 0;
3925 /* We very likely will need to access rtx queue. */
3926 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3928 /* If the ack is older than previous acks
3929 * then we can probably ignore it.
3931 if (before(ack
, prior_snd_una
)) {
3934 /* do not accept ACK for bytes we never sent. */
3935 max_window
= min_t(u64
, tp
->max_window
, tp
->bytes_acked
);
3936 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3937 if (before(ack
, prior_snd_una
- max_window
)) {
3938 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3939 tcp_send_challenge_ack(sk
);
3940 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK
;
3945 /* If the ack includes data we haven't sent yet, discard
3946 * this segment (RFC793 Section 3.9).
3948 if (after(ack
, tp
->snd_nxt
))
3949 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA
;
3951 if (after(ack
, prior_snd_una
)) {
3952 flag
|= FLAG_SND_UNA_ADVANCED
;
3953 icsk
->icsk_retransmits
= 0;
3955 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3956 if (static_branch_unlikely(&clean_acked_data_enabled
.key
))
3957 if (icsk
->icsk_clean_acked
)
3958 icsk
->icsk_clean_acked(sk
, ack
);
3962 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3963 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3965 /* ts_recent update must be made after we are sure that the packet
3968 if (flag
& FLAG_UPDATE_TS_RECENT
)
3969 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3971 if ((flag
& (FLAG_SLOWPATH
| FLAG_SND_UNA_ADVANCED
)) ==
3972 FLAG_SND_UNA_ADVANCED
) {
3973 /* Window is constant, pure forward advance.
3974 * No more checks are required.
3975 * Note, we use the fact that SND.UNA>=SND.WL2.
3977 tcp_update_wl(tp
, ack_seq
);
3978 tcp_snd_una_update(tp
, ack
);
3979 flag
|= FLAG_WIN_UPDATE
;
3981 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3983 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3985 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3987 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3990 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3992 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3994 if (TCP_SKB_CB(skb
)->sacked
)
3995 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3998 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
4000 ack_ev_flags
|= CA_ACK_ECE
;
4003 if (sack_state
.sack_delivered
)
4004 tcp_count_delivered(tp
, sack_state
.sack_delivered
,
4007 if (flag
& FLAG_WIN_UPDATE
)
4008 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
4010 tcp_in_ack_event(sk
, ack_ev_flags
);
4013 /* This is a deviation from RFC3168 since it states that:
4014 * "When the TCP data sender is ready to set the CWR bit after reducing
4015 * the congestion window, it SHOULD set the CWR bit only on the first
4016 * new data packet that it transmits."
4017 * We accept CWR on pure ACKs to be more robust
4018 * with widely-deployed TCP implementations that do this.
4020 tcp_ecn_accept_cwr(sk
, skb
);
4022 /* We passed data and got it acked, remove any soft error
4023 * log. Something worked...
4025 WRITE_ONCE(sk
->sk_err_soft
, 0);
4026 icsk
->icsk_probes_out
= 0;
4027 tp
->rcv_tstamp
= tcp_jiffies32
;
4031 /* See if we can take anything off of the retransmit queue. */
4032 flag
|= tcp_clean_rtx_queue(sk
, skb
, prior_fack
, prior_snd_una
,
4033 &sack_state
, flag
& FLAG_ECE
);
4035 tcp_rack_update_reo_wnd(sk
, &rs
);
4037 if (tp
->tlp_high_seq
)
4038 tcp_process_tlp_ack(sk
, ack
, flag
);
4040 if (tcp_ack_is_dubious(sk
, flag
)) {
4041 if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
4042 FLAG_NOT_DUP
| FLAG_DSACKING_ACK
))) {
4044 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4045 if (!(flag
& FLAG_DATA
))
4046 num_dupack
= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
4048 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
4052 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4053 if (flag
& FLAG_SET_XMIT_TIMER
)
4054 tcp_set_xmit_timer(sk
);
4056 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
4059 delivered
= tcp_newly_delivered(sk
, delivered
, flag
);
4060 lost
= tp
->lost
- lost
; /* freshly marked lost */
4061 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
4062 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
4063 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
4064 tcp_xmit_recovery(sk
, rexmit
);
4068 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4069 if (flag
& FLAG_DSACKING_ACK
) {
4070 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
4072 tcp_newly_delivered(sk
, delivered
, flag
);
4074 /* If this ack opens up a zero window, clear backoff. It was
4075 * being used to time the probes, and is probably far higher than
4076 * it needs to be for normal retransmission.
4080 if (tp
->tlp_high_seq
)
4081 tcp_process_tlp_ack(sk
, ack
, flag
);
4085 /* If data was SACKed, tag it and see if we should send more data.
4086 * If data was DSACKed, see if we can undo a cwnd reduction.
4088 if (TCP_SKB_CB(skb
)->sacked
) {
4089 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
4091 tcp_fastretrans_alert(sk
, prior_snd_una
, num_dupack
, &flag
,
4093 tcp_newly_delivered(sk
, delivered
, flag
);
4094 tcp_xmit_recovery(sk
, rexmit
);
4100 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
4101 bool syn
, struct tcp_fastopen_cookie
*foc
,
4104 /* Valid only in SYN or SYN-ACK with an even length. */
4105 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
4108 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
4109 len
<= TCP_FASTOPEN_COOKIE_MAX
)
4110 memcpy(foc
->val
, cookie
, len
);
4117 static bool smc_parse_options(const struct tcphdr
*th
,
4118 struct tcp_options_received
*opt_rx
,
4119 const unsigned char *ptr
,
4122 #if IS_ENABLED(CONFIG_SMC)
4123 if (static_branch_unlikely(&tcp_have_smc
)) {
4124 if (th
->syn
&& !(opsize
& 1) &&
4125 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
4126 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
) {
4135 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4138 u16
tcp_parse_mss_option(const struct tcphdr
*th
, u16 user_mss
)
4140 const unsigned char *ptr
= (const unsigned char *)(th
+ 1);
4141 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
4144 while (length
> 0) {
4145 int opcode
= *ptr
++;
4151 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
4158 if (opsize
< 2) /* "silly options" */
4160 if (opsize
> length
)
4161 return mss
; /* fail on partial options */
4162 if (opcode
== TCPOPT_MSS
&& opsize
== TCPOLEN_MSS
) {
4163 u16 in_mss
= get_unaligned_be16(ptr
);
4166 if (user_mss
&& user_mss
< in_mss
)
4177 EXPORT_SYMBOL_GPL(tcp_parse_mss_option
);
4179 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4180 * But, this can also be called on packets in the established flow when
4181 * the fast version below fails.
4183 void tcp_parse_options(const struct net
*net
,
4184 const struct sk_buff
*skb
,
4185 struct tcp_options_received
*opt_rx
, int estab
,
4186 struct tcp_fastopen_cookie
*foc
)
4188 const unsigned char *ptr
;
4189 const struct tcphdr
*th
= tcp_hdr(skb
);
4190 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
4192 ptr
= (const unsigned char *)(th
+ 1);
4193 opt_rx
->saw_tstamp
= 0;
4194 opt_rx
->saw_unknown
= 0;
4196 while (length
> 0) {
4197 int opcode
= *ptr
++;
4203 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
4210 if (opsize
< 2) /* "silly options" */
4212 if (opsize
> length
)
4213 return; /* don't parse partial options */
4216 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
4217 u16 in_mss
= get_unaligned_be16(ptr
);
4219 if (opt_rx
->user_mss
&&
4220 opt_rx
->user_mss
< in_mss
)
4221 in_mss
= opt_rx
->user_mss
;
4222 opt_rx
->mss_clamp
= in_mss
;
4227 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
4228 !estab
&& READ_ONCE(net
->ipv4
.sysctl_tcp_window_scaling
)) {
4229 __u8 snd_wscale
= *(__u8
*)ptr
;
4230 opt_rx
->wscale_ok
= 1;
4231 if (snd_wscale
> TCP_MAX_WSCALE
) {
4232 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4236 snd_wscale
= TCP_MAX_WSCALE
;
4238 opt_rx
->snd_wscale
= snd_wscale
;
4241 case TCPOPT_TIMESTAMP
:
4242 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
4243 ((estab
&& opt_rx
->tstamp_ok
) ||
4244 (!estab
&& READ_ONCE(net
->ipv4
.sysctl_tcp_timestamps
)))) {
4245 opt_rx
->saw_tstamp
= 1;
4246 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
4247 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
4250 case TCPOPT_SACK_PERM
:
4251 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
4252 !estab
&& READ_ONCE(net
->ipv4
.sysctl_tcp_sack
)) {
4253 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
4254 tcp_sack_reset(opt_rx
);
4259 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
4260 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
4262 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
4265 #ifdef CONFIG_TCP_MD5SIG
4267 /* The MD5 Hash has already been
4268 * checked (see tcp_v{4,6}_rcv()).
4272 #ifdef CONFIG_TCP_AO
4274 /* TCP AO has already been checked
4275 * (see tcp_inbound_ao_hash()).
4279 case TCPOPT_FASTOPEN
:
4280 tcp_parse_fastopen_option(
4281 opsize
- TCPOLEN_FASTOPEN_BASE
,
4282 ptr
, th
->syn
, foc
, false);
4286 /* Fast Open option shares code 254 using a
4287 * 16 bits magic number.
4289 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
4290 get_unaligned_be16(ptr
) ==
4291 TCPOPT_FASTOPEN_MAGIC
) {
4292 tcp_parse_fastopen_option(opsize
-
4293 TCPOLEN_EXP_FASTOPEN_BASE
,
4294 ptr
+ 2, th
->syn
, foc
, true);
4298 if (smc_parse_options(th
, opt_rx
, ptr
, opsize
))
4301 opt_rx
->saw_unknown
= 1;
4305 opt_rx
->saw_unknown
= 1;
4312 EXPORT_SYMBOL(tcp_parse_options
);
4314 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
4316 const __be32
*ptr
= (const __be32
*)(th
+ 1);
4318 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
4319 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
4320 tp
->rx_opt
.saw_tstamp
= 1;
4322 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
4325 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
4327 tp
->rx_opt
.rcv_tsecr
= 0;
4333 /* Fast parse options. This hopes to only see timestamps.
4334 * If it is wrong it falls back on tcp_parse_options().
4336 static bool tcp_fast_parse_options(const struct net
*net
,
4337 const struct sk_buff
*skb
,
4338 const struct tcphdr
*th
, struct tcp_sock
*tp
)
4340 /* In the spirit of fast parsing, compare doff directly to constant
4341 * values. Because equality is used, short doff can be ignored here.
4343 if (th
->doff
== (sizeof(*th
) / 4)) {
4344 tp
->rx_opt
.saw_tstamp
= 0;
4346 } else if (tp
->rx_opt
.tstamp_ok
&&
4347 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
4348 if (tcp_parse_aligned_timestamp(tp
, th
))
4352 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
4353 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
4354 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
4359 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4361 * Parse Signature options
4363 int tcp_do_parse_auth_options(const struct tcphdr
*th
,
4364 const u8
**md5_hash
, const u8
**ao_hash
)
4366 int length
= (th
->doff
<< 2) - sizeof(*th
);
4367 const u8
*ptr
= (const u8
*)(th
+ 1);
4368 unsigned int minlen
= TCPOLEN_MD5SIG
;
4370 if (IS_ENABLED(CONFIG_TCP_AO
))
4371 minlen
= sizeof(struct tcp_ao_hdr
) + 1;
4376 /* If not enough data remaining, we can short cut */
4377 while (length
>= minlen
) {
4378 int opcode
= *ptr
++;
4389 if (opsize
< 2 || opsize
> length
)
4391 if (opcode
== TCPOPT_MD5SIG
) {
4392 if (opsize
!= TCPOLEN_MD5SIG
)
4394 if (unlikely(*md5_hash
|| *ao_hash
))
4397 } else if (opcode
== TCPOPT_AO
) {
4398 if (opsize
<= sizeof(struct tcp_ao_hdr
))
4400 if (unlikely(*md5_hash
|| *ao_hash
))
4410 EXPORT_SYMBOL(tcp_do_parse_auth_options
);
4413 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4415 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4416 * it can pass through stack. So, the following predicate verifies that
4417 * this segment is not used for anything but congestion avoidance or
4418 * fast retransmit. Moreover, we even are able to eliminate most of such
4419 * second order effects, if we apply some small "replay" window (~RTO)
4420 * to timestamp space.
4422 * All these measures still do not guarantee that we reject wrapped ACKs
4423 * on networks with high bandwidth, when sequence space is recycled fastly,
4424 * but it guarantees that such events will be very rare and do not affect
4425 * connection seriously. This doesn't look nice, but alas, PAWS is really
4428 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4429 * states that events when retransmit arrives after original data are rare.
4430 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4431 * the biggest problem on large power networks even with minor reordering.
4432 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4433 * up to bandwidth of 18Gigabit/sec. 8) ]
4436 /* Estimates max number of increments of remote peer TSval in
4437 * a replay window (based on our current RTO estimation).
4439 static u32
tcp_tsval_replay(const struct sock
*sk
)
4441 /* If we use usec TS resolution,
4442 * then expect the remote peer to use the same resolution.
4444 if (tcp_sk(sk
)->tcp_usec_ts
)
4445 return inet_csk(sk
)->icsk_rto
* (USEC_PER_SEC
/ HZ
);
4447 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4448 * We know that some OS (including old linux) can use 1200 Hz.
4450 return inet_csk(sk
)->icsk_rto
* 1200 / HZ
;
4453 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
4455 const struct tcp_sock
*tp
= tcp_sk(sk
);
4456 const struct tcphdr
*th
= tcp_hdr(skb
);
4457 u32 seq
= TCP_SKB_CB(skb
)->seq
;
4458 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
4460 return /* 1. Pure ACK with correct sequence number. */
4461 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
4463 /* 2. ... and duplicate ACK. */
4464 ack
== tp
->snd_una
&&
4466 /* 3. ... and does not update window. */
4467 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
4469 /* 4. ... and sits in replay window. */
4470 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <=
4471 tcp_tsval_replay(sk
);
4474 static inline bool tcp_paws_discard(const struct sock
*sk
,
4475 const struct sk_buff
*skb
)
4477 const struct tcp_sock
*tp
= tcp_sk(sk
);
4479 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
4480 !tcp_disordered_ack(sk
, skb
);
4483 /* Check segment sequence number for validity.
4485 * Segment controls are considered valid, if the segment
4486 * fits to the window after truncation to the window. Acceptability
4487 * of data (and SYN, FIN, of course) is checked separately.
4488 * See tcp_data_queue(), for example.
4490 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4491 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4492 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4493 * (borrowed from freebsd)
4496 static enum skb_drop_reason
tcp_sequence(const struct tcp_sock
*tp
,
4497 u32 seq
, u32 end_seq
)
4499 if (before(end_seq
, tp
->rcv_wup
))
4500 return SKB_DROP_REASON_TCP_OLD_SEQUENCE
;
4502 if (after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4503 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE
;
4505 return SKB_NOT_DROPPED_YET
;
4509 void tcp_done_with_error(struct sock
*sk
, int err
)
4511 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4512 WRITE_ONCE(sk
->sk_err
, err
);
4515 tcp_write_queue_purge(sk
);
4518 if (!sock_flag(sk
, SOCK_DEAD
))
4519 sk_error_report(sk
);
4521 EXPORT_SYMBOL(tcp_done_with_error
);
4523 /* When we get a reset we do this. */
4524 void tcp_reset(struct sock
*sk
, struct sk_buff
*skb
)
4528 trace_tcp_receive_reset(sk
);
4530 /* mptcp can't tell us to ignore reset pkts,
4531 * so just ignore the return value of mptcp_incoming_options().
4533 if (sk_is_mptcp(sk
))
4534 mptcp_incoming_options(sk
, skb
);
4536 /* We want the right error as BSD sees it (and indeed as we do). */
4537 switch (sk
->sk_state
) {
4541 case TCP_CLOSE_WAIT
:
4549 tcp_done_with_error(sk
, err
);
4553 * Process the FIN bit. This now behaves as it is supposed to work
4554 * and the FIN takes effect when it is validly part of sequence
4555 * space. Not before when we get holes.
4557 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4558 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4561 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4562 * close and we go into CLOSING (and later onto TIME-WAIT)
4564 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4566 void tcp_fin(struct sock
*sk
)
4568 struct tcp_sock
*tp
= tcp_sk(sk
);
4570 inet_csk_schedule_ack(sk
);
4572 WRITE_ONCE(sk
->sk_shutdown
, sk
->sk_shutdown
| RCV_SHUTDOWN
);
4573 sock_set_flag(sk
, SOCK_DONE
);
4575 switch (sk
->sk_state
) {
4577 case TCP_ESTABLISHED
:
4578 /* Move to CLOSE_WAIT */
4579 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4580 inet_csk_enter_pingpong_mode(sk
);
4583 case TCP_CLOSE_WAIT
:
4585 /* Received a retransmission of the FIN, do
4590 /* RFC793: Remain in the LAST-ACK state. */
4594 /* This case occurs when a simultaneous close
4595 * happens, we must ack the received FIN and
4596 * enter the CLOSING state.
4599 tcp_set_state(sk
, TCP_CLOSING
);
4602 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4604 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4607 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4608 * cases we should never reach this piece of code.
4610 pr_err("%s: Impossible, sk->sk_state=%d\n",
4611 __func__
, sk
->sk_state
);
4615 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4616 * Probably, we should reset in this case. For now drop them.
4618 skb_rbtree_purge(&tp
->out_of_order_queue
);
4619 if (tcp_is_sack(tp
))
4620 tcp_sack_reset(&tp
->rx_opt
);
4622 if (!sock_flag(sk
, SOCK_DEAD
)) {
4623 sk
->sk_state_change(sk
);
4625 /* Do not send POLL_HUP for half duplex close. */
4626 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4627 sk
->sk_state
== TCP_CLOSE
)
4628 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4630 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4634 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4637 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4638 if (before(seq
, sp
->start_seq
))
4639 sp
->start_seq
= seq
;
4640 if (after(end_seq
, sp
->end_seq
))
4641 sp
->end_seq
= end_seq
;
4647 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4649 struct tcp_sock
*tp
= tcp_sk(sk
);
4651 if (tcp_is_sack(tp
) && READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_dsack
)) {
4654 if (before(seq
, tp
->rcv_nxt
))
4655 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4657 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4659 NET_INC_STATS(sock_net(sk
), mib_idx
);
4661 tp
->rx_opt
.dsack
= 1;
4662 tp
->duplicate_sack
[0].start_seq
= seq
;
4663 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4667 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4669 struct tcp_sock
*tp
= tcp_sk(sk
);
4671 if (!tp
->rx_opt
.dsack
)
4672 tcp_dsack_set(sk
, seq
, end_seq
);
4674 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4677 static void tcp_rcv_spurious_retrans(struct sock
*sk
, const struct sk_buff
*skb
)
4679 /* When the ACK path fails or drops most ACKs, the sender would
4680 * timeout and spuriously retransmit the same segment repeatedly.
4681 * If it seems our ACKs are not reaching the other side,
4682 * based on receiving a duplicate data segment with new flowlabel
4683 * (suggesting the sender suffered an RTO), and we are not already
4684 * repathing due to our own RTO, then rehash the socket to repath our
4687 #if IS_ENABLED(CONFIG_IPV6)
4688 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
&&
4689 skb
->protocol
== htons(ETH_P_IPV6
) &&
4690 (tcp_sk(sk
)->inet_conn
.icsk_ack
.lrcv_flowlabel
!=
4691 ntohl(ip6_flowlabel(ipv6_hdr(skb
)))) &&
4692 sk_rethink_txhash(sk
))
4693 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDUPLICATEDATAREHASH
);
4695 /* Save last flowlabel after a spurious retrans. */
4696 tcp_save_lrcv_flowlabel(sk
, skb
);
4700 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4702 struct tcp_sock
*tp
= tcp_sk(sk
);
4704 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4705 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4706 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4707 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
4709 if (tcp_is_sack(tp
) && READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_dsack
)) {
4710 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4712 tcp_rcv_spurious_retrans(sk
, skb
);
4713 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4714 end_seq
= tp
->rcv_nxt
;
4715 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4722 /* These routines update the SACK block as out-of-order packets arrive or
4723 * in-order packets close up the sequence space.
4725 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4728 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4729 struct tcp_sack_block
*swalk
= sp
+ 1;
4731 /* See if the recent change to the first SACK eats into
4732 * or hits the sequence space of other SACK blocks, if so coalesce.
4734 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4735 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4738 /* Zap SWALK, by moving every further SACK up by one slot.
4739 * Decrease num_sacks.
4741 tp
->rx_opt
.num_sacks
--;
4742 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4751 void tcp_sack_compress_send_ack(struct sock
*sk
)
4753 struct tcp_sock
*tp
= tcp_sk(sk
);
4755 if (!tp
->compressed_ack
)
4758 if (hrtimer_try_to_cancel(&tp
->compressed_ack_timer
) == 1)
4761 /* Since we have to send one ack finally,
4762 * substract one from tp->compressed_ack to keep
4763 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4765 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPACKCOMPRESSED
,
4766 tp
->compressed_ack
- 1);
4768 tp
->compressed_ack
= 0;
4772 /* Reasonable amount of sack blocks included in TCP SACK option
4773 * The max is 4, but this becomes 3 if TCP timestamps are there.
4774 * Given that SACK packets might be lost, be conservative and use 2.
4776 #define TCP_SACK_BLOCKS_EXPECTED 2
4778 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4780 struct tcp_sock
*tp
= tcp_sk(sk
);
4781 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4782 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4788 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4789 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4790 if (this_sack
>= TCP_SACK_BLOCKS_EXPECTED
)
4791 tcp_sack_compress_send_ack(sk
);
4792 /* Rotate this_sack to the first one. */
4793 for (; this_sack
> 0; this_sack
--, sp
--)
4794 swap(*sp
, *(sp
- 1));
4796 tcp_sack_maybe_coalesce(tp
);
4801 if (this_sack
>= TCP_SACK_BLOCKS_EXPECTED
)
4802 tcp_sack_compress_send_ack(sk
);
4804 /* Could not find an adjacent existing SACK, build a new one,
4805 * put it at the front, and shift everyone else down. We
4806 * always know there is at least one SACK present already here.
4808 * If the sack array is full, forget about the last one.
4810 if (this_sack
>= TCP_NUM_SACKS
) {
4812 tp
->rx_opt
.num_sacks
--;
4815 for (; this_sack
> 0; this_sack
--, sp
--)
4819 /* Build the new head SACK, and we're done. */
4820 sp
->start_seq
= seq
;
4821 sp
->end_seq
= end_seq
;
4822 tp
->rx_opt
.num_sacks
++;
4825 /* RCV.NXT advances, some SACKs should be eaten. */
4827 static void tcp_sack_remove(struct tcp_sock
*tp
)
4829 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4830 int num_sacks
= tp
->rx_opt
.num_sacks
;
4833 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4834 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4835 tp
->rx_opt
.num_sacks
= 0;
4839 for (this_sack
= 0; this_sack
< num_sacks
;) {
4840 /* Check if the start of the sack is covered by RCV.NXT. */
4841 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4844 /* RCV.NXT must cover all the block! */
4845 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4847 /* Zap this SACK, by moving forward any other SACKS. */
4848 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4849 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4856 tp
->rx_opt
.num_sacks
= num_sacks
;
4860 * tcp_try_coalesce - try to merge skb to prior one
4863 * @from: buffer to add in queue
4864 * @fragstolen: pointer to boolean
4866 * Before queueing skb @from after @to, try to merge them
4867 * to reduce overall memory use and queue lengths, if cost is small.
4868 * Packets in ofo or receive queues can stay a long time.
4869 * Better try to coalesce them right now to avoid future collapses.
4870 * Returns true if caller should free @from instead of queueing it
4872 static bool tcp_try_coalesce(struct sock
*sk
,
4874 struct sk_buff
*from
,
4879 *fragstolen
= false;
4881 /* Its possible this segment overlaps with prior segment in queue */
4882 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4885 if (!tcp_skb_can_collapse_rx(to
, from
))
4888 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4891 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4892 sk_mem_charge(sk
, delta
);
4893 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4894 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4895 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4896 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4898 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4899 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4900 to
->tstamp
= from
->tstamp
;
4901 skb_hwtstamps(to
)->hwtstamp
= skb_hwtstamps(from
)->hwtstamp
;
4907 static bool tcp_ooo_try_coalesce(struct sock
*sk
,
4909 struct sk_buff
*from
,
4912 bool res
= tcp_try_coalesce(sk
, to
, from
, fragstolen
);
4914 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4916 u32 gso_segs
= max_t(u16
, 1, skb_shinfo(to
)->gso_segs
) +
4917 max_t(u16
, 1, skb_shinfo(from
)->gso_segs
);
4919 skb_shinfo(to
)->gso_segs
= min_t(u32
, gso_segs
, 0xFFFF);
4924 noinline_for_tracing
static void
4925 tcp_drop_reason(struct sock
*sk
, struct sk_buff
*skb
, enum skb_drop_reason reason
)
4927 sk_drops_add(sk
, skb
);
4928 sk_skb_reason_drop(sk
, skb
, reason
);
4931 /* This one checks to see if we can put data from the
4932 * out_of_order queue into the receive_queue.
4934 static void tcp_ofo_queue(struct sock
*sk
)
4936 struct tcp_sock
*tp
= tcp_sk(sk
);
4937 __u32 dsack_high
= tp
->rcv_nxt
;
4938 bool fin
, fragstolen
, eaten
;
4939 struct sk_buff
*skb
, *tail
;
4942 p
= rb_first(&tp
->out_of_order_queue
);
4945 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4948 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4949 __u32 dsack
= dsack_high
;
4950 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4951 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4952 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4955 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4957 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4958 tcp_drop_reason(sk
, skb
, SKB_DROP_REASON_TCP_OFO_DROP
);
4962 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4963 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4964 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4965 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4967 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4969 kfree_skb_partial(skb
, fragstolen
);
4971 if (unlikely(fin
)) {
4973 /* tcp_fin() purges tp->out_of_order_queue,
4974 * so we must end this loop right now.
4981 static bool tcp_prune_ofo_queue(struct sock
*sk
, const struct sk_buff
*in_skb
);
4982 static int tcp_prune_queue(struct sock
*sk
, const struct sk_buff
*in_skb
);
4984 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4987 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4988 !sk_rmem_schedule(sk
, skb
, size
)) {
4990 if (tcp_prune_queue(sk
, skb
) < 0)
4993 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4994 if (!tcp_prune_ofo_queue(sk
, skb
))
5001 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
5003 struct tcp_sock
*tp
= tcp_sk(sk
);
5004 struct rb_node
**p
, *parent
;
5005 struct sk_buff
*skb1
;
5009 tcp_save_lrcv_flowlabel(sk
, skb
);
5010 tcp_ecn_check_ce(sk
, skb
);
5012 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
5013 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
5014 sk
->sk_data_ready(sk
);
5015 tcp_drop_reason(sk
, skb
, SKB_DROP_REASON_PROTO_MEM
);
5019 /* Disable header prediction. */
5021 inet_csk_schedule_ack(sk
);
5023 tp
->rcv_ooopack
+= max_t(u16
, 1, skb_shinfo(skb
)->gso_segs
);
5024 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
5025 seq
= TCP_SKB_CB(skb
)->seq
;
5026 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
5028 p
= &tp
->out_of_order_queue
.rb_node
;
5029 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5030 /* Initial out of order segment, build 1 SACK. */
5031 if (tcp_is_sack(tp
)) {
5032 tp
->rx_opt
.num_sacks
= 1;
5033 tp
->selective_acks
[0].start_seq
= seq
;
5034 tp
->selective_acks
[0].end_seq
= end_seq
;
5036 rb_link_node(&skb
->rbnode
, NULL
, p
);
5037 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
5038 tp
->ooo_last_skb
= skb
;
5042 /* In the typical case, we are adding an skb to the end of the list.
5043 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5045 if (tcp_ooo_try_coalesce(sk
, tp
->ooo_last_skb
,
5046 skb
, &fragstolen
)) {
5048 /* For non sack flows, do not grow window to force DUPACK
5049 * and trigger fast retransmit.
5051 if (tcp_is_sack(tp
))
5052 tcp_grow_window(sk
, skb
, true);
5053 kfree_skb_partial(skb
, fragstolen
);
5057 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5058 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
5059 parent
= &tp
->ooo_last_skb
->rbnode
;
5060 p
= &parent
->rb_right
;
5064 /* Find place to insert this segment. Handle overlaps on the way. */
5068 skb1
= rb_to_skb(parent
);
5069 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
5070 p
= &parent
->rb_left
;
5073 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
5074 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
5075 /* All the bits are present. Drop. */
5076 NET_INC_STATS(sock_net(sk
),
5077 LINUX_MIB_TCPOFOMERGE
);
5078 tcp_drop_reason(sk
, skb
,
5079 SKB_DROP_REASON_TCP_OFOMERGE
);
5081 tcp_dsack_set(sk
, seq
, end_seq
);
5084 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
5085 /* Partial overlap. */
5086 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
5088 /* skb's seq == skb1's seq and skb covers skb1.
5089 * Replace skb1 with skb.
5091 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
5092 &tp
->out_of_order_queue
);
5093 tcp_dsack_extend(sk
,
5094 TCP_SKB_CB(skb1
)->seq
,
5095 TCP_SKB_CB(skb1
)->end_seq
);
5096 NET_INC_STATS(sock_net(sk
),
5097 LINUX_MIB_TCPOFOMERGE
);
5098 tcp_drop_reason(sk
, skb1
,
5099 SKB_DROP_REASON_TCP_OFOMERGE
);
5102 } else if (tcp_ooo_try_coalesce(sk
, skb1
,
5103 skb
, &fragstolen
)) {
5106 p
= &parent
->rb_right
;
5109 /* Insert segment into RB tree. */
5110 rb_link_node(&skb
->rbnode
, parent
, p
);
5111 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
5114 /* Remove other segments covered by skb. */
5115 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
5116 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
5118 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
5119 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
5123 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
5124 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
5125 TCP_SKB_CB(skb1
)->end_seq
);
5126 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
5127 tcp_drop_reason(sk
, skb1
, SKB_DROP_REASON_TCP_OFOMERGE
);
5129 /* If there is no skb after us, we are the last_skb ! */
5131 tp
->ooo_last_skb
= skb
;
5134 if (tcp_is_sack(tp
))
5135 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
5138 /* For non sack flows, do not grow window to force DUPACK
5139 * and trigger fast retransmit.
5141 if (tcp_is_sack(tp
))
5142 tcp_grow_window(sk
, skb
, false);
5144 skb_set_owner_r(skb
, sk
);
5148 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
,
5152 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
5155 tcp_try_coalesce(sk
, tail
,
5156 skb
, fragstolen
)) ? 1 : 0;
5157 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
5159 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
5160 skb_set_owner_r(skb
, sk
);
5165 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
5167 struct sk_buff
*skb
;
5175 if (size
> PAGE_SIZE
) {
5176 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
5178 data_len
= npages
<< PAGE_SHIFT
;
5179 size
= data_len
+ (size
& ~PAGE_MASK
);
5181 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
5182 PAGE_ALLOC_COSTLY_ORDER
,
5183 &err
, sk
->sk_allocation
);
5187 skb_put(skb
, size
- data_len
);
5188 skb
->data_len
= data_len
;
5191 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
5192 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
5196 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
5200 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
5201 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
5202 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
5204 if (tcp_queue_rcv(sk
, skb
, &fragstolen
)) {
5205 WARN_ON_ONCE(fragstolen
); /* should not happen */
5217 void tcp_data_ready(struct sock
*sk
)
5219 if (tcp_epollin_ready(sk
, sk
->sk_rcvlowat
) || sock_flag(sk
, SOCK_DONE
))
5220 sk
->sk_data_ready(sk
);
5223 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
5225 struct tcp_sock
*tp
= tcp_sk(sk
);
5226 enum skb_drop_reason reason
;
5230 /* If a subflow has been reset, the packet should not continue
5231 * to be processed, drop the packet.
5233 if (sk_is_mptcp(sk
) && !mptcp_incoming_options(sk
, skb
)) {
5238 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
5243 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
5245 reason
= SKB_DROP_REASON_NOT_SPECIFIED
;
5246 tp
->rx_opt
.dsack
= 0;
5248 /* Queue data for delivery to the user.
5249 * Packets in sequence go to the receive queue.
5250 * Out of sequence packets to the out_of_order_queue.
5252 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
5253 if (tcp_receive_window(tp
) == 0) {
5254 /* Some stacks are known to send bare FIN packets
5255 * in a loop even if we send RWIN 0 in our ACK.
5256 * Accepting this FIN does not hurt memory pressure
5257 * because the FIN flag will simply be merged to the
5258 * receive queue tail skb in most cases.
5261 (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
5264 reason
= SKB_DROP_REASON_TCP_ZEROWINDOW
;
5265 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
5269 /* Ok. In sequence. In window. */
5271 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
)) {
5272 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5273 inet_csk(sk
)->icsk_ack
.pending
|=
5274 (ICSK_ACK_NOMEM
| ICSK_ACK_NOW
);
5275 inet_csk_schedule_ack(sk
);
5276 sk
->sk_data_ready(sk
);
5278 if (skb_queue_len(&sk
->sk_receive_queue
) && skb
->len
) {
5279 reason
= SKB_DROP_REASON_PROTO_MEM
;
5280 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVQDROP
);
5283 sk_forced_mem_schedule(sk
, skb
->truesize
);
5286 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
5288 tcp_event_data_recv(sk
, skb
);
5289 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
5292 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5295 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5296 * gap in queue is filled.
5298 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5299 inet_csk(sk
)->icsk_ack
.pending
|= ICSK_ACK_NOW
;
5302 if (tp
->rx_opt
.num_sacks
)
5303 tcp_sack_remove(tp
);
5305 tcp_fast_path_check(sk
);
5308 kfree_skb_partial(skb
, fragstolen
);
5309 if (!sock_flag(sk
, SOCK_DEAD
))
5314 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
5315 tcp_rcv_spurious_retrans(sk
, skb
);
5316 /* A retransmit, 2nd most common case. Force an immediate ack. */
5317 reason
= SKB_DROP_REASON_TCP_OLD_DATA
;
5318 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
5319 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
5322 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
5323 inet_csk_schedule_ack(sk
);
5325 tcp_drop_reason(sk
, skb
, reason
);
5329 /* Out of window. F.e. zero window probe. */
5330 if (!before(TCP_SKB_CB(skb
)->seq
,
5331 tp
->rcv_nxt
+ tcp_receive_window(tp
))) {
5332 reason
= SKB_DROP_REASON_TCP_OVERWINDOW
;
5336 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
5337 /* Partial packet, seq < rcv_next < end_seq */
5338 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
5340 /* If window is closed, drop tail of packet. But after
5341 * remembering D-SACK for its head made in previous line.
5343 if (!tcp_receive_window(tp
)) {
5344 reason
= SKB_DROP_REASON_TCP_ZEROWINDOW
;
5345 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPZEROWINDOWDROP
);
5351 tcp_data_queue_ofo(sk
, skb
);
5354 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
5357 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
5359 return skb_rb_next(skb
);
5362 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
5363 struct sk_buff_head
*list
,
5364 struct rb_root
*root
)
5366 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
5369 __skb_unlink(skb
, list
);
5371 rb_erase(&skb
->rbnode
, root
);
5374 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
5379 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5380 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
5382 struct rb_node
**p
= &root
->rb_node
;
5383 struct rb_node
*parent
= NULL
;
5384 struct sk_buff
*skb1
;
5388 skb1
= rb_to_skb(parent
);
5389 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
5390 p
= &parent
->rb_left
;
5392 p
= &parent
->rb_right
;
5394 rb_link_node(&skb
->rbnode
, parent
, p
);
5395 rb_insert_color(&skb
->rbnode
, root
);
5398 /* Collapse contiguous sequence of skbs head..tail with
5399 * sequence numbers start..end.
5401 * If tail is NULL, this means until the end of the queue.
5403 * Segments with FIN/SYN are not collapsed (only because this
5407 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
5408 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
5410 struct sk_buff
*skb
= head
, *n
;
5411 struct sk_buff_head tmp
;
5414 /* First, check that queue is collapsible and find
5415 * the point where collapsing can be useful.
5418 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
5419 n
= tcp_skb_next(skb
, list
);
5421 if (!skb_frags_readable(skb
))
5424 /* No new bits? It is possible on ofo queue. */
5425 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
5426 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
5432 /* The first skb to collapse is:
5434 * - bloated or contains data before "start" or
5435 * overlaps to the next one and mptcp allow collapsing.
5437 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
5438 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
5439 before(TCP_SKB_CB(skb
)->seq
, start
))) {
5440 end_of_skbs
= false;
5444 if (n
&& n
!= tail
&& skb_frags_readable(n
) &&
5445 tcp_skb_can_collapse_rx(skb
, n
) &&
5446 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
5447 end_of_skbs
= false;
5452 /* Decided to skip this, advance start seq. */
5453 start
= TCP_SKB_CB(skb
)->end_seq
;
5456 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) ||
5457 !skb_frags_readable(skb
))
5460 __skb_queue_head_init(&tmp
);
5462 while (before(start
, end
)) {
5463 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
5464 struct sk_buff
*nskb
;
5466 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
5470 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
5471 skb_copy_decrypted(nskb
, skb
);
5472 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
5474 __skb_queue_before(list
, skb
, nskb
);
5476 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
5477 skb_set_owner_r(nskb
, sk
);
5478 mptcp_skb_ext_move(nskb
, skb
);
5480 /* Copy data, releasing collapsed skbs. */
5482 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
5483 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
5487 size
= min(copy
, size
);
5488 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
5490 TCP_SKB_CB(nskb
)->end_seq
+= size
;
5494 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
5495 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
5498 !tcp_skb_can_collapse_rx(nskb
, skb
) ||
5499 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) ||
5500 !skb_frags_readable(skb
))
5506 skb_queue_walk_safe(&tmp
, skb
, n
)
5507 tcp_rbtree_insert(root
, skb
);
5510 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5511 * and tcp_collapse() them until all the queue is collapsed.
5513 static void tcp_collapse_ofo_queue(struct sock
*sk
)
5515 struct tcp_sock
*tp
= tcp_sk(sk
);
5516 u32 range_truesize
, sum_tiny
= 0;
5517 struct sk_buff
*skb
, *head
;
5520 skb
= skb_rb_first(&tp
->out_of_order_queue
);
5523 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
5526 start
= TCP_SKB_CB(skb
)->seq
;
5527 end
= TCP_SKB_CB(skb
)->end_seq
;
5528 range_truesize
= skb
->truesize
;
5530 for (head
= skb
;;) {
5531 skb
= skb_rb_next(skb
);
5533 /* Range is terminated when we see a gap or when
5534 * we are at the queue end.
5537 after(TCP_SKB_CB(skb
)->seq
, end
) ||
5538 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
5539 /* Do not attempt collapsing tiny skbs */
5540 if (range_truesize
!= head
->truesize
||
5541 end
- start
>= SKB_WITH_OVERHEAD(PAGE_SIZE
)) {
5542 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
5543 head
, skb
, start
, end
);
5545 sum_tiny
+= range_truesize
;
5546 if (sum_tiny
> sk
->sk_rcvbuf
>> 3)
5552 range_truesize
+= skb
->truesize
;
5553 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
5554 start
= TCP_SKB_CB(skb
)->seq
;
5555 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
5556 end
= TCP_SKB_CB(skb
)->end_seq
;
5561 * Clean the out-of-order queue to make room.
5562 * We drop high sequences packets to :
5563 * 1) Let a chance for holes to be filled.
5564 * This means we do not drop packets from ooo queue if their sequence
5565 * is before incoming packet sequence.
5566 * 2) not add too big latencies if thousands of packets sit there.
5567 * (But if application shrinks SO_RCVBUF, we could still end up
5568 * freeing whole queue here)
5569 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5571 * Return true if queue has shrunk.
5573 static bool tcp_prune_ofo_queue(struct sock
*sk
, const struct sk_buff
*in_skb
)
5575 struct tcp_sock
*tp
= tcp_sk(sk
);
5576 struct rb_node
*node
, *prev
;
5577 bool pruned
= false;
5580 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
5583 goal
= sk
->sk_rcvbuf
>> 3;
5584 node
= &tp
->ooo_last_skb
->rbnode
;
5587 struct sk_buff
*skb
= rb_to_skb(node
);
5589 /* If incoming skb would land last in ofo queue, stop pruning. */
5590 if (after(TCP_SKB_CB(in_skb
)->seq
, TCP_SKB_CB(skb
)->seq
))
5593 prev
= rb_prev(node
);
5594 rb_erase(node
, &tp
->out_of_order_queue
);
5595 goal
-= skb
->truesize
;
5596 tcp_drop_reason(sk
, skb
, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE
);
5597 tp
->ooo_last_skb
= rb_to_skb(prev
);
5598 if (!prev
|| goal
<= 0) {
5599 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
5600 !tcp_under_memory_pressure(sk
))
5602 goal
= sk
->sk_rcvbuf
>> 3;
5608 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
5609 /* Reset SACK state. A conforming SACK implementation will
5610 * do the same at a timeout based retransmit. When a connection
5611 * is in a sad state like this, we care only about integrity
5612 * of the connection not performance.
5614 if (tp
->rx_opt
.sack_ok
)
5615 tcp_sack_reset(&tp
->rx_opt
);
5620 /* Reduce allocated memory if we can, trying to get
5621 * the socket within its memory limits again.
5623 * Return less than zero if we should start dropping frames
5624 * until the socket owning process reads some of the data
5625 * to stabilize the situation.
5627 static int tcp_prune_queue(struct sock
*sk
, const struct sk_buff
*in_skb
)
5629 struct tcp_sock
*tp
= tcp_sk(sk
);
5631 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
5633 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
5634 tcp_clamp_window(sk
);
5635 else if (tcp_under_memory_pressure(sk
))
5636 tcp_adjust_rcv_ssthresh(sk
);
5638 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5641 tcp_collapse_ofo_queue(sk
);
5642 if (!skb_queue_empty(&sk
->sk_receive_queue
))
5643 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
5644 skb_peek(&sk
->sk_receive_queue
),
5646 tp
->copied_seq
, tp
->rcv_nxt
);
5648 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5651 /* Collapsing did not help, destructive actions follow.
5652 * This must not ever occur. */
5654 tcp_prune_ofo_queue(sk
, in_skb
);
5656 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
5659 /* If we are really being abused, tell the caller to silently
5660 * drop receive data on the floor. It will get retransmitted
5661 * and hopefully then we'll have sufficient space.
5663 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
5665 /* Massive buffer overcommit. */
5670 static bool tcp_should_expand_sndbuf(struct sock
*sk
)
5672 const struct tcp_sock
*tp
= tcp_sk(sk
);
5674 /* If the user specified a specific send buffer setting, do
5677 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
5680 /* If we are under global TCP memory pressure, do not expand. */
5681 if (tcp_under_memory_pressure(sk
)) {
5682 int unused_mem
= sk_unused_reserved_mem(sk
);
5684 /* Adjust sndbuf according to reserved mem. But make sure
5685 * it never goes below SOCK_MIN_SNDBUF.
5686 * See sk_stream_moderate_sndbuf() for more details.
5688 if (unused_mem
> SOCK_MIN_SNDBUF
)
5689 WRITE_ONCE(sk
->sk_sndbuf
, unused_mem
);
5694 /* If we are under soft global TCP memory pressure, do not expand. */
5695 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
5698 /* If we filled the congestion window, do not expand. */
5699 if (tcp_packets_in_flight(tp
) >= tcp_snd_cwnd(tp
))
5705 static void tcp_new_space(struct sock
*sk
)
5707 struct tcp_sock
*tp
= tcp_sk(sk
);
5709 if (tcp_should_expand_sndbuf(sk
)) {
5710 tcp_sndbuf_expand(sk
);
5711 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5714 INDIRECT_CALL_1(sk
->sk_write_space
, sk_stream_write_space
, sk
);
5717 /* Caller made space either from:
5718 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5719 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5721 * We might be able to generate EPOLLOUT to the application if:
5722 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5723 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5724 * small enough that tcp_stream_memory_free() decides it
5725 * is time to generate EPOLLOUT.
5727 void tcp_check_space(struct sock
*sk
)
5729 /* pairs with tcp_poll() */
5731 if (sk
->sk_socket
&&
5732 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5734 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5735 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5739 static inline void tcp_data_snd_check(struct sock
*sk
)
5741 tcp_push_pending_frames(sk
);
5742 tcp_check_space(sk
);
5746 * Check if sending an ack is needed.
5748 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5750 struct tcp_sock
*tp
= tcp_sk(sk
);
5751 unsigned long rtt
, delay
;
5753 /* More than one full frame received... */
5754 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5755 /* ... and right edge of window advances far enough.
5756 * (tcp_recvmsg() will send ACK otherwise).
5757 * If application uses SO_RCVLOWAT, we want send ack now if
5758 * we have not received enough bytes to satisfy the condition.
5760 (tp
->rcv_nxt
- tp
->copied_seq
< sk
->sk_rcvlowat
||
5761 __tcp_select_window(sk
) >= tp
->rcv_wnd
)) ||
5762 /* We ACK each frame or... */
5763 tcp_in_quickack_mode(sk
) ||
5764 /* Protocol state mandates a one-time immediate ACK */
5765 inet_csk(sk
)->icsk_ack
.pending
& ICSK_ACK_NOW
) {
5766 /* If we are running from __release_sock() in user context,
5767 * Defer the ack until tcp_release_cb().
5769 if (sock_owned_by_user_nocheck(sk
) &&
5770 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_backlog_ack_defer
)) {
5771 set_bit(TCP_ACK_DEFERRED
, &sk
->sk_tsq_flags
);
5779 if (!ofo_possible
|| RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
5780 tcp_send_delayed_ack(sk
);
5784 if (!tcp_is_sack(tp
) ||
5785 tp
->compressed_ack
>= READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_nr
))
5788 if (tp
->compressed_ack_rcv_nxt
!= tp
->rcv_nxt
) {
5789 tp
->compressed_ack_rcv_nxt
= tp
->rcv_nxt
;
5790 tp
->dup_ack_counter
= 0;
5792 if (tp
->dup_ack_counter
< TCP_FASTRETRANS_THRESH
) {
5793 tp
->dup_ack_counter
++;
5796 tp
->compressed_ack
++;
5797 if (hrtimer_is_queued(&tp
->compressed_ack_timer
))
5800 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5802 rtt
= tp
->rcv_rtt_est
.rtt_us
;
5803 if (tp
->srtt_us
&& tp
->srtt_us
< rtt
)
5806 delay
= min_t(unsigned long,
5807 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_delay_ns
),
5808 rtt
* (NSEC_PER_USEC
>> 3)/20);
5810 hrtimer_start_range_ns(&tp
->compressed_ack_timer
, ns_to_ktime(delay
),
5811 READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_comp_sack_slack_ns
),
5812 HRTIMER_MODE_REL_PINNED_SOFT
);
5815 static inline void tcp_ack_snd_check(struct sock
*sk
)
5817 if (!inet_csk_ack_scheduled(sk
)) {
5818 /* We sent a data segment already. */
5821 __tcp_ack_snd_check(sk
, 1);
5825 * This routine is only called when we have urgent data
5826 * signaled. Its the 'slow' part of tcp_urg. It could be
5827 * moved inline now as tcp_urg is only called from one
5828 * place. We handle URGent data wrong. We have to - as
5829 * BSD still doesn't use the correction from RFC961.
5830 * For 1003.1g we should support a new option TCP_STDURG to permit
5831 * either form (or just set the sysctl tcp_stdurg).
5834 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5836 struct tcp_sock
*tp
= tcp_sk(sk
);
5837 u32 ptr
= ntohs(th
->urg_ptr
);
5839 if (ptr
&& !READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
))
5841 ptr
+= ntohl(th
->seq
);
5843 /* Ignore urgent data that we've already seen and read. */
5844 if (after(tp
->copied_seq
, ptr
))
5847 /* Do not replay urg ptr.
5849 * NOTE: interesting situation not covered by specs.
5850 * Misbehaving sender may send urg ptr, pointing to segment,
5851 * which we already have in ofo queue. We are not able to fetch
5852 * such data and will stay in TCP_URG_NOTYET until will be eaten
5853 * by recvmsg(). Seems, we are not obliged to handle such wicked
5854 * situations. But it is worth to think about possibility of some
5855 * DoSes using some hypothetical application level deadlock.
5857 if (before(ptr
, tp
->rcv_nxt
))
5860 /* Do we already have a newer (or duplicate) urgent pointer? */
5861 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5864 /* Tell the world about our new urgent pointer. */
5867 /* We may be adding urgent data when the last byte read was
5868 * urgent. To do this requires some care. We cannot just ignore
5869 * tp->copied_seq since we would read the last urgent byte again
5870 * as data, nor can we alter copied_seq until this data arrives
5871 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5873 * NOTE. Double Dutch. Rendering to plain English: author of comment
5874 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5875 * and expect that both A and B disappear from stream. This is _wrong_.
5876 * Though this happens in BSD with high probability, this is occasional.
5877 * Any application relying on this is buggy. Note also, that fix "works"
5878 * only in this artificial test. Insert some normal data between A and B and we will
5879 * decline of BSD again. Verdict: it is better to remove to trap
5882 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5883 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5884 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5886 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5887 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5892 WRITE_ONCE(tp
->urg_data
, TCP_URG_NOTYET
);
5893 WRITE_ONCE(tp
->urg_seq
, ptr
);
5895 /* Disable header prediction. */
5899 /* This is the 'fast' part of urgent handling. */
5900 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5902 struct tcp_sock
*tp
= tcp_sk(sk
);
5904 /* Check if we get a new urgent pointer - normally not. */
5905 if (unlikely(th
->urg
))
5906 tcp_check_urg(sk
, th
);
5908 /* Do we wait for any urgent data? - normally not... */
5909 if (unlikely(tp
->urg_data
== TCP_URG_NOTYET
)) {
5910 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5913 /* Is the urgent pointer pointing into this packet? */
5914 if (ptr
< skb
->len
) {
5916 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5918 WRITE_ONCE(tp
->urg_data
, TCP_URG_VALID
| tmp
);
5919 if (!sock_flag(sk
, SOCK_DEAD
))
5920 sk
->sk_data_ready(sk
);
5925 /* Accept RST for rcv_nxt - 1 after a FIN.
5926 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5927 * FIN is sent followed by a RST packet. The RST is sent with the same
5928 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5929 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5930 * ACKs on the closed socket. In addition middleboxes can drop either the
5931 * challenge ACK or a subsequent RST.
5933 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5935 const struct tcp_sock
*tp
= tcp_sk(sk
);
5937 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5938 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5942 /* Does PAWS and seqno based validation of an incoming segment, flags will
5943 * play significant role here.
5945 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5946 const struct tcphdr
*th
, int syn_inerr
)
5948 struct tcp_sock
*tp
= tcp_sk(sk
);
5951 /* RFC1323: H1. Apply PAWS check first. */
5952 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5953 tp
->rx_opt
.saw_tstamp
&&
5954 tcp_paws_discard(sk
, skb
)) {
5956 if (unlikely(th
->syn
))
5958 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5959 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5960 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5961 &tp
->last_oow_ack_time
))
5962 tcp_send_dupack(sk
, skb
);
5963 SKB_DR_SET(reason
, TCP_RFC7323_PAWS
);
5966 /* Reset is accepted even if it did not pass PAWS. */
5969 /* Step 1: check sequence number */
5970 reason
= tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
5972 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5973 * (RST) segments are validated by checking their SEQ-fields."
5974 * And page 69: "If an incoming segment is not acceptable,
5975 * an acknowledgment should be sent in reply (unless the RST
5976 * bit is set, if so drop the segment and return)".
5981 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5982 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5983 &tp
->last_oow_ack_time
))
5984 tcp_send_dupack(sk
, skb
);
5985 } else if (tcp_reset_check(sk
, skb
)) {
5991 /* Step 2: check RST bit */
5993 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5994 * FIN and SACK too if available):
5995 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5996 * the right-most SACK block,
5998 * RESET the connection
6000 * Send a challenge ACK
6002 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
6003 tcp_reset_check(sk
, skb
))
6006 if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
6007 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
6008 int max_sack
= sp
[0].end_seq
;
6011 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
6013 max_sack
= after(sp
[this_sack
].end_seq
,
6015 sp
[this_sack
].end_seq
: max_sack
;
6018 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
6022 /* Disable TFO if RST is out-of-order
6023 * and no data has been received
6024 * for current active TFO socket
6026 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
6027 sk
->sk_state
== TCP_ESTABLISHED
)
6028 tcp_fastopen_active_disable(sk
);
6029 tcp_send_challenge_ack(sk
);
6030 SKB_DR_SET(reason
, TCP_RESET
);
6034 /* step 3: check security and precedence [ignored] */
6036 /* step 4: Check for a SYN
6037 * RFC 5961 4.2 : Send a challenge ack
6040 if (sk
->sk_state
== TCP_SYN_RECV
&& sk
->sk_socket
&& th
->ack
&&
6041 TCP_SKB_CB(skb
)->seq
+ 1 == TCP_SKB_CB(skb
)->end_seq
&&
6042 TCP_SKB_CB(skb
)->seq
+ 1 == tp
->rcv_nxt
&&
6043 TCP_SKB_CB(skb
)->ack_seq
== tp
->snd_nxt
)
6047 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
6048 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
6049 tcp_send_challenge_ack(sk
);
6050 SKB_DR_SET(reason
, TCP_INVALID_SYN
);
6055 bpf_skops_parse_hdr(sk
, skb
);
6060 tcp_drop_reason(sk
, skb
, reason
);
6070 * TCP receive function for the ESTABLISHED state.
6072 * It is split into a fast path and a slow path. The fast path is
6074 * - A zero window was announced from us - zero window probing
6075 * is only handled properly in the slow path.
6076 * - Out of order segments arrived.
6077 * - Urgent data is expected.
6078 * - There is no buffer space left
6079 * - Unexpected TCP flags/window values/header lengths are received
6080 * (detected by checking the TCP header against pred_flags)
6081 * - Data is sent in both directions. Fast path only supports pure senders
6082 * or pure receivers (this means either the sequence number or the ack
6083 * value must stay constant)
6084 * - Unexpected TCP option.
6086 * When these conditions are not satisfied it drops into a standard
6087 * receive procedure patterned after RFC793 to handle all cases.
6088 * The first three cases are guaranteed by proper pred_flags setting,
6089 * the rest is checked inline. Fast processing is turned on in
6090 * tcp_data_queue when everything is OK.
6092 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
)
6094 enum skb_drop_reason reason
= SKB_DROP_REASON_NOT_SPECIFIED
;
6095 const struct tcphdr
*th
= (const struct tcphdr
*)skb
->data
;
6096 struct tcp_sock
*tp
= tcp_sk(sk
);
6097 unsigned int len
= skb
->len
;
6099 /* TCP congestion window tracking */
6100 trace_tcp_probe(sk
, skb
);
6102 tcp_mstamp_refresh(tp
);
6103 if (unlikely(!rcu_access_pointer(sk
->sk_rx_dst
)))
6104 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
6106 * Header prediction.
6107 * The code loosely follows the one in the famous
6108 * "30 instruction TCP receive" Van Jacobson mail.
6110 * Van's trick is to deposit buffers into socket queue
6111 * on a device interrupt, to call tcp_recv function
6112 * on the receive process context and checksum and copy
6113 * the buffer to user space. smart...
6115 * Our current scheme is not silly either but we take the
6116 * extra cost of the net_bh soft interrupt processing...
6117 * We do checksum and copy also but from device to kernel.
6120 tp
->rx_opt
.saw_tstamp
= 0;
6122 /* pred_flags is 0xS?10 << 16 + snd_wnd
6123 * if header_prediction is to be made
6124 * 'S' will always be tp->tcp_header_len >> 2
6125 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6126 * turn it off (when there are holes in the receive
6127 * space for instance)
6128 * PSH flag is ignored.
6131 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
6132 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
6133 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
6134 int tcp_header_len
= tp
->tcp_header_len
;
6136 /* Timestamp header prediction: tcp_header_len
6137 * is automatically equal to th->doff*4 due to pred_flags
6141 /* Check timestamp */
6142 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
6143 /* No? Slow path! */
6144 if (!tcp_parse_aligned_timestamp(tp
, th
))
6147 /* If PAWS failed, check it more carefully in slow path */
6148 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
6151 /* DO NOT update ts_recent here, if checksum fails
6152 * and timestamp was corrupted part, it will result
6153 * in a hung connection since we will drop all
6154 * future packets due to the PAWS test.
6158 if (len
<= tcp_header_len
) {
6159 /* Bulk data transfer: sender */
6160 if (len
== tcp_header_len
) {
6161 /* Predicted packet is in window by definition.
6162 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6163 * Hence, check seq<=rcv_wup reduces to:
6165 if (tcp_header_len
==
6166 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
6167 tp
->rcv_nxt
== tp
->rcv_wup
)
6168 tcp_store_ts_recent(tp
);
6170 /* We know that such packets are checksummed
6173 tcp_ack(sk
, skb
, 0);
6175 tcp_data_snd_check(sk
);
6176 /* When receiving pure ack in fast path, update
6177 * last ts ecr directly instead of calling
6178 * tcp_rcv_rtt_measure_ts()
6180 tp
->rcv_rtt_last_tsecr
= tp
->rx_opt
.rcv_tsecr
;
6182 } else { /* Header too small */
6183 reason
= SKB_DROP_REASON_PKT_TOO_SMALL
;
6184 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
6189 bool fragstolen
= false;
6191 if (tcp_checksum_complete(skb
))
6194 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
6197 /* Predicted packet is in window by definition.
6198 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6199 * Hence, check seq<=rcv_wup reduces to:
6201 if (tcp_header_len
==
6202 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
6203 tp
->rcv_nxt
== tp
->rcv_wup
)
6204 tcp_store_ts_recent(tp
);
6206 tcp_rcv_rtt_measure_ts(sk
, skb
);
6208 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
6210 /* Bulk data transfer: receiver */
6212 __skb_pull(skb
, tcp_header_len
);
6213 eaten
= tcp_queue_rcv(sk
, skb
, &fragstolen
);
6215 tcp_event_data_recv(sk
, skb
);
6217 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
6218 /* Well, only one small jumplet in fast path... */
6219 tcp_ack(sk
, skb
, FLAG_DATA
);
6220 tcp_data_snd_check(sk
);
6221 if (!inet_csk_ack_scheduled(sk
))
6224 tcp_update_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6227 __tcp_ack_snd_check(sk
, 0);
6230 kfree_skb_partial(skb
, fragstolen
);
6237 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
6240 if (!th
->ack
&& !th
->rst
&& !th
->syn
) {
6241 reason
= SKB_DROP_REASON_TCP_FLAGS
;
6246 * Standard slow path.
6249 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
6253 reason
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
);
6254 if ((int)reason
< 0) {
6258 tcp_rcv_rtt_measure_ts(sk
, skb
);
6260 /* Process urgent data. */
6261 tcp_urg(sk
, skb
, th
);
6263 /* step 7: process the segment text */
6264 tcp_data_queue(sk
, skb
);
6266 tcp_data_snd_check(sk
);
6267 tcp_ack_snd_check(sk
);
6271 reason
= SKB_DROP_REASON_TCP_CSUM
;
6272 trace_tcp_bad_csum(skb
);
6273 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
6274 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
6277 tcp_drop_reason(sk
, skb
, reason
);
6279 EXPORT_SYMBOL(tcp_rcv_established
);
6281 void tcp_init_transfer(struct sock
*sk
, int bpf_op
, struct sk_buff
*skb
)
6283 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6284 struct tcp_sock
*tp
= tcp_sk(sk
);
6287 icsk
->icsk_af_ops
->rebuild_header(sk
);
6288 tcp_init_metrics(sk
);
6290 /* Initialize the congestion window to start the transfer.
6291 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6292 * retransmitted. In light of RFC6298 more aggressive 1sec
6293 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6294 * retransmission has occurred.
6296 if (tp
->total_retrans
> 1 && tp
->undo_marker
)
6297 tcp_snd_cwnd_set(tp
, 1);
6299 tcp_snd_cwnd_set(tp
, tcp_init_cwnd(tp
, __sk_dst_get(sk
)));
6300 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
6302 bpf_skops_established(sk
, bpf_op
, skb
);
6303 /* Initialize congestion control unless BPF initialized it already: */
6304 if (!icsk
->icsk_ca_initialized
)
6305 tcp_init_congestion_control(sk
);
6306 tcp_init_buffer_space(sk
);
6309 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
6311 struct tcp_sock
*tp
= tcp_sk(sk
);
6312 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6314 tcp_ao_finish_connect(sk
, skb
);
6315 tcp_set_state(sk
, TCP_ESTABLISHED
);
6316 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
6319 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
6320 security_inet_conn_established(sk
, skb
);
6321 sk_mark_napi_id(sk
, skb
);
6324 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
, skb
);
6326 /* Prevent spurious tcp_cwnd_restart() on first data
6329 tp
->lsndtime
= tcp_jiffies32
;
6331 if (sock_flag(sk
, SOCK_KEEPOPEN
))
6332 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
6334 if (!tp
->rx_opt
.snd_wscale
)
6335 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
6340 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
6341 struct tcp_fastopen_cookie
*cookie
)
6343 struct tcp_sock
*tp
= tcp_sk(sk
);
6344 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
6345 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
6346 bool syn_drop
= false;
6348 if (mss
== tp
->rx_opt
.user_mss
) {
6349 struct tcp_options_received opt
;
6351 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6352 tcp_clear_options(&opt
);
6353 opt
.user_mss
= opt
.mss_clamp
= 0;
6354 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
6355 mss
= opt
.mss_clamp
;
6358 if (!tp
->syn_fastopen
) {
6359 /* Ignore an unsolicited cookie */
6361 } else if (tp
->total_retrans
) {
6362 /* SYN timed out and the SYN-ACK neither has a cookie nor
6363 * acknowledges data. Presumably the remote received only
6364 * the retransmitted (regular) SYNs: either the original
6365 * SYN-data or the corresponding SYN-ACK was dropped.
6367 syn_drop
= (cookie
->len
< 0 && data
);
6368 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
6369 /* We requested a cookie but didn't get it. If we did not use
6370 * the (old) exp opt format then try so next time (try_exp=1).
6371 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6373 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
6376 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
6378 if (data
) { /* Retransmit unacked data in SYN */
6379 if (tp
->total_retrans
)
6380 tp
->fastopen_client_fail
= TFO_SYN_RETRANSMITTED
;
6382 tp
->fastopen_client_fail
= TFO_DATA_NOT_ACKED
;
6383 skb_rbtree_walk_from(data
)
6384 tcp_mark_skb_lost(sk
, data
);
6385 tcp_non_congestion_loss_retransmit(sk
);
6386 NET_INC_STATS(sock_net(sk
),
6387 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
6390 tp
->syn_data_acked
= tp
->syn_data
;
6391 if (tp
->syn_data_acked
) {
6392 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFASTOPENACTIVE
);
6393 /* SYN-data is counted as two separate packets in tcp_ack() */
6394 if (tp
->delivered
> 1)
6398 tcp_fastopen_add_skb(sk
, synack
);
6403 static void smc_check_reset_syn(struct tcp_sock
*tp
)
6405 #if IS_ENABLED(CONFIG_SMC)
6406 if (static_branch_unlikely(&tcp_have_smc
)) {
6407 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
6413 static void tcp_try_undo_spurious_syn(struct sock
*sk
)
6415 struct tcp_sock
*tp
= tcp_sk(sk
);
6418 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6419 * spurious if the ACK's timestamp option echo value matches the
6420 * original SYN timestamp.
6422 syn_stamp
= tp
->retrans_stamp
;
6423 if (tp
->undo_marker
&& syn_stamp
&& tp
->rx_opt
.saw_tstamp
&&
6424 syn_stamp
== tp
->rx_opt
.rcv_tsecr
)
6425 tp
->undo_marker
= 0;
6428 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
6429 const struct tcphdr
*th
)
6431 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6432 struct tcp_sock
*tp
= tcp_sk(sk
);
6433 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6434 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
6438 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
6439 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
6440 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
6444 * "If the state is SYN-SENT then
6445 * first check the ACK bit
6446 * If the ACK bit is set
6447 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6448 * a reset (unless the RST bit is set, if so drop
6449 * the segment and return)"
6451 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
6452 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
6453 /* Previous FIN/ACK or RST/ACK might be ignored. */
6454 if (icsk
->icsk_retransmits
== 0)
6455 inet_csk_reset_xmit_timer(sk
,
6457 TCP_TIMEOUT_MIN
, TCP_RTO_MAX
);
6458 SKB_DR_SET(reason
, TCP_INVALID_ACK_SEQUENCE
);
6459 goto reset_and_undo
;
6462 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
6463 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
6464 tcp_time_stamp_ts(tp
))) {
6465 NET_INC_STATS(sock_net(sk
),
6466 LINUX_MIB_PAWSACTIVEREJECTED
);
6467 SKB_DR_SET(reason
, TCP_RFC7323_PAWS
);
6468 goto reset_and_undo
;
6471 /* Now ACK is acceptable.
6473 * "If the RST bit is set
6474 * If the ACK was acceptable then signal the user "error:
6475 * connection reset", drop the segment, enter CLOSED state,
6476 * delete TCB, and return."
6487 * "fifth, if neither of the SYN or RST bits is set then
6488 * drop the segment and return."
6494 SKB_DR_SET(reason
, TCP_FLAGS
);
6495 goto discard_and_undo
;
6498 * "If the SYN bit is on ...
6499 * are acceptable then ...
6500 * (our SYN has been ACKed), change the connection
6501 * state to ESTABLISHED..."
6504 tcp_ecn_rcv_synack(tp
, th
);
6506 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6507 tcp_try_undo_spurious_syn(sk
);
6508 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
6510 /* Ok.. it's good. Set up sequence numbers and
6511 * move to established.
6513 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
6514 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
6516 /* RFC1323: The window in SYN & SYN/ACK segments is
6519 tp
->snd_wnd
= ntohs(th
->window
);
6521 if (!tp
->rx_opt
.wscale_ok
) {
6522 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
6523 WRITE_ONCE(tp
->window_clamp
,
6524 min(tp
->window_clamp
, 65535U));
6527 if (tp
->rx_opt
.saw_tstamp
) {
6528 tp
->rx_opt
.tstamp_ok
= 1;
6529 tp
->tcp_header_len
=
6530 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
6531 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6532 tcp_store_ts_recent(tp
);
6534 tp
->tcp_header_len
= sizeof(struct tcphdr
);
6537 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6538 tcp_initialize_rcv_mss(sk
);
6540 /* Remember, tcp_poll() does not lock socket!
6541 * Change state from SYN-SENT only after copied_seq
6542 * is initialized. */
6543 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6545 smc_check_reset_syn(tp
);
6549 tcp_finish_connect(sk
, skb
);
6551 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
6552 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
6554 if (!sock_flag(sk
, SOCK_DEAD
)) {
6555 sk
->sk_state_change(sk
);
6556 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6560 if (sk
->sk_write_pending
||
6561 READ_ONCE(icsk
->icsk_accept_queue
.rskq_defer_accept
) ||
6562 inet_csk_in_pingpong_mode(sk
)) {
6563 /* Save one ACK. Data will be ready after
6564 * several ticks, if write_pending is set.
6566 * It may be deleted, but with this feature tcpdumps
6567 * look so _wonderfully_ clever, that I was not able
6568 * to stand against the temptation 8) --ANK
6570 inet_csk_schedule_ack(sk
);
6571 tcp_enter_quickack_mode(sk
, TCP_MAX_QUICKACKS
);
6572 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
6573 TCP_DELACK_MAX
, TCP_RTO_MAX
);
6580 /* No ACK in the segment */
6584 * "If the RST bit is set
6586 * Otherwise (no ACK) drop the segment and return."
6588 SKB_DR_SET(reason
, TCP_RESET
);
6589 goto discard_and_undo
;
6593 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
6594 tcp_paws_reject(&tp
->rx_opt
, 0)) {
6595 SKB_DR_SET(reason
, TCP_RFC7323_PAWS
);
6596 goto discard_and_undo
;
6599 /* We see SYN without ACK. It is attempt of
6600 * simultaneous connect with crossed SYNs.
6601 * Particularly, it can be connect to self.
6603 #ifdef CONFIG_TCP_AO
6604 struct tcp_ao_info
*ao
;
6606 ao
= rcu_dereference_protected(tp
->ao_info
,
6607 lockdep_sock_is_held(sk
));
6609 WRITE_ONCE(ao
->risn
, th
->seq
);
6613 tcp_set_state(sk
, TCP_SYN_RECV
);
6615 if (tp
->rx_opt
.saw_tstamp
) {
6616 tp
->rx_opt
.tstamp_ok
= 1;
6617 tcp_store_ts_recent(tp
);
6618 tp
->tcp_header_len
=
6619 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
6621 tp
->tcp_header_len
= sizeof(struct tcphdr
);
6624 WRITE_ONCE(tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
+ 1);
6625 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6626 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
6628 /* RFC1323: The window in SYN & SYN/ACK segments is
6631 tp
->snd_wnd
= ntohs(th
->window
);
6632 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
6633 tp
->max_window
= tp
->snd_wnd
;
6635 tcp_ecn_rcv_syn(tp
, th
);
6638 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
6639 tcp_initialize_rcv_mss(sk
);
6641 tcp_send_synack(sk
);
6643 /* Note, we could accept data and URG from this segment.
6644 * There are no obstacles to make this (except that we must
6645 * either change tcp_recvmsg() to prevent it from returning data
6646 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6648 * However, if we ignore data in ACKless segments sometimes,
6649 * we have no reasons to accept it sometimes.
6650 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6651 * is not flawless. So, discard packet for sanity.
6652 * Uncomment this return to process the data.
6659 /* "fifth, if neither of the SYN or RST bits is set then
6660 * drop the segment and return."
6664 tcp_clear_options(&tp
->rx_opt
);
6665 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6666 tcp_drop_reason(sk
, skb
, reason
);
6670 tcp_clear_options(&tp
->rx_opt
);
6671 tp
->rx_opt
.mss_clamp
= saved_clamp
;
6672 /* we can reuse/return @reason to its caller to handle the exception */
6676 static void tcp_rcv_synrecv_state_fastopen(struct sock
*sk
)
6678 struct tcp_sock
*tp
= tcp_sk(sk
);
6679 struct request_sock
*req
;
6681 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6682 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6684 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
&& !tp
->packets_out
)
6685 tcp_try_undo_recovery(sk
);
6687 tcp_update_rto_time(tp
);
6688 inet_csk(sk
)->icsk_retransmits
= 0;
6689 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6690 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6691 * need to zero retrans_stamp here to prevent spurious
6692 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6693 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6694 * set entering CA_Recovery, for correct retransmits_timed_out() and
6697 tcp_retrans_stamp_cleanup(sk
);
6699 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6700 * we no longer need req so release it.
6702 req
= rcu_dereference_protected(tp
->fastopen_rsk
,
6703 lockdep_sock_is_held(sk
));
6704 reqsk_fastopen_remove(sk
, req
, false);
6706 /* Re-arm the timer because data may have been sent out.
6707 * This is similar to the regular data transmission case
6708 * when new data has just been ack'ed.
6710 * (TFO) - we could try to be more aggressive and
6711 * retransmitting any data sooner based on when they
6718 * This function implements the receiving procedure of RFC 793 for
6719 * all states except ESTABLISHED and TIME_WAIT.
6720 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6721 * address independent.
6724 enum skb_drop_reason
6725 tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
6727 struct tcp_sock
*tp
= tcp_sk(sk
);
6728 struct inet_connection_sock
*icsk
= inet_csk(sk
);
6729 const struct tcphdr
*th
= tcp_hdr(skb
);
6730 struct request_sock
*req
;
6734 switch (sk
->sk_state
) {
6736 SKB_DR_SET(reason
, TCP_CLOSE
);
6741 return SKB_DROP_REASON_TCP_FLAGS
;
6744 SKB_DR_SET(reason
, TCP_RESET
);
6749 SKB_DR_SET(reason
, TCP_FLAGS
);
6752 /* It is possible that we process SYN packets from backlog,
6753 * so we need to make sure to disable BH and RCU right there.
6757 icsk
->icsk_af_ops
->conn_request(sk
, skb
);
6764 SKB_DR_SET(reason
, TCP_FLAGS
);
6768 tp
->rx_opt
.saw_tstamp
= 0;
6769 tcp_mstamp_refresh(tp
);
6770 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
6774 /* Do step6 onward by hand. */
6775 tcp_urg(sk
, skb
, th
);
6777 tcp_data_snd_check(sk
);
6781 tcp_mstamp_refresh(tp
);
6782 tp
->rx_opt
.saw_tstamp
= 0;
6783 req
= rcu_dereference_protected(tp
->fastopen_rsk
,
6784 lockdep_sock_is_held(sk
));
6788 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
6789 sk
->sk_state
!= TCP_FIN_WAIT1
);
6791 if (!tcp_check_req(sk
, skb
, req
, true, &req_stolen
)) {
6792 SKB_DR_SET(reason
, TCP_FASTOPEN
);
6797 if (!th
->ack
&& !th
->rst
&& !th
->syn
) {
6798 SKB_DR_SET(reason
, TCP_FLAGS
);
6801 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
6804 /* step 5: check the ACK field */
6805 reason
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
6806 FLAG_UPDATE_TS_RECENT
|
6807 FLAG_NO_CHALLENGE_ACK
);
6809 if ((int)reason
<= 0) {
6810 if (sk
->sk_state
== TCP_SYN_RECV
) {
6813 return SKB_DROP_REASON_TCP_OLD_ACK
;
6816 /* accept old ack during closing */
6817 if ((int)reason
< 0) {
6818 tcp_send_challenge_ack(sk
);
6823 SKB_DR_SET(reason
, NOT_SPECIFIED
);
6824 switch (sk
->sk_state
) {
6826 tp
->delivered
++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6828 tcp_synack_rtt_meas(sk
, req
);
6831 tcp_rcv_synrecv_state_fastopen(sk
);
6833 tcp_try_undo_spurious_syn(sk
);
6834 tp
->retrans_stamp
= 0;
6835 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
,
6837 WRITE_ONCE(tp
->copied_seq
, tp
->rcv_nxt
);
6839 tcp_ao_established(sk
);
6841 tcp_set_state(sk
, TCP_ESTABLISHED
);
6842 sk
->sk_state_change(sk
);
6844 /* Note, that this wakeup is only for marginal crossed SYN case.
6845 * Passively open sockets are not waked up, because
6846 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6849 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
6851 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
6852 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
6853 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
6855 if (tp
->rx_opt
.tstamp_ok
)
6856 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
6858 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
6859 tcp_update_pacing_rate(sk
);
6861 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6862 tp
->lsndtime
= tcp_jiffies32
;
6864 tcp_initialize_rcv_mss(sk
);
6865 tcp_fast_path_on(tp
);
6866 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
6867 tcp_shutdown(sk
, SEND_SHUTDOWN
);
6870 case TCP_FIN_WAIT1
: {
6874 tcp_rcv_synrecv_state_fastopen(sk
);
6876 if (tp
->snd_una
!= tp
->write_seq
)
6879 tcp_set_state(sk
, TCP_FIN_WAIT2
);
6880 WRITE_ONCE(sk
->sk_shutdown
, sk
->sk_shutdown
| SEND_SHUTDOWN
);
6884 if (!sock_flag(sk
, SOCK_DEAD
)) {
6885 /* Wake up lingering close() */
6886 sk
->sk_state_change(sk
);
6890 if (READ_ONCE(tp
->linger2
) < 0) {
6892 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6893 return SKB_DROP_REASON_TCP_ABORT_ON_DATA
;
6895 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6896 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6897 /* Receive out of order FIN after close() */
6898 if (tp
->syn_fastopen
&& th
->fin
)
6899 tcp_fastopen_active_disable(sk
);
6901 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6902 return SKB_DROP_REASON_TCP_ABORT_ON_DATA
;
6905 tmo
= tcp_fin_time(sk
);
6906 if (tmo
> TCP_TIMEWAIT_LEN
) {
6907 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
6908 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
6909 /* Bad case. We could lose such FIN otherwise.
6910 * It is not a big problem, but it looks confusing
6911 * and not so rare event. We still can lose it now,
6912 * if it spins in bh_lock_sock(), but it is really
6915 inet_csk_reset_keepalive_timer(sk
, tmo
);
6917 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6924 if (tp
->snd_una
== tp
->write_seq
) {
6925 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6931 if (tp
->snd_una
== tp
->write_seq
) {
6932 tcp_update_metrics(sk
);
6939 /* step 6: check the URG bit */
6940 tcp_urg(sk
, skb
, th
);
6942 /* step 7: process the segment text */
6943 switch (sk
->sk_state
) {
6944 case TCP_CLOSE_WAIT
:
6947 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
6948 /* If a subflow has been reset, the packet should not
6949 * continue to be processed, drop the packet.
6951 if (sk_is_mptcp(sk
) && !mptcp_incoming_options(sk
, skb
))
6958 /* RFC 793 says to queue data in these states,
6959 * RFC 1122 says we MUST send a reset.
6960 * BSD 4.4 also does reset.
6962 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6963 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6964 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6965 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6967 return SKB_DROP_REASON_TCP_ABORT_ON_DATA
;
6971 case TCP_ESTABLISHED
:
6972 tcp_data_queue(sk
, skb
);
6977 /* tcp_data could move socket to TIME-WAIT */
6978 if (sk
->sk_state
!= TCP_CLOSE
) {
6979 tcp_data_snd_check(sk
);
6980 tcp_ack_snd_check(sk
);
6985 tcp_drop_reason(sk
, skb
, reason
);
6993 EXPORT_SYMBOL(tcp_rcv_state_process
);
6995 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6997 struct inet_request_sock
*ireq
= inet_rsk(req
);
6999 if (family
== AF_INET
)
7000 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7001 &ireq
->ir_rmt_addr
, port
);
7002 #if IS_ENABLED(CONFIG_IPV6)
7003 else if (family
== AF_INET6
)
7004 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7005 &ireq
->ir_v6_rmt_addr
, port
);
7009 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7011 * If we receive a SYN packet with these bits set, it means a
7012 * network is playing bad games with TOS bits. In order to
7013 * avoid possible false congestion notifications, we disable
7014 * TCP ECN negotiation.
7016 * Exception: tcp_ca wants ECN. This is required for DCTCP
7017 * congestion control: Linux DCTCP asserts ECT on all packets,
7018 * including SYN, which is most optimal solution; however,
7019 * others, such as FreeBSD do not.
7021 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7022 * set, indicating the use of a future TCP extension (such as AccECN). See
7023 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7026 static void tcp_ecn_create_request(struct request_sock
*req
,
7027 const struct sk_buff
*skb
,
7028 const struct sock
*listen_sk
,
7029 const struct dst_entry
*dst
)
7031 const struct tcphdr
*th
= tcp_hdr(skb
);
7032 const struct net
*net
= sock_net(listen_sk
);
7033 bool th_ecn
= th
->ece
&& th
->cwr
;
7040 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
7041 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
7042 ecn_ok
= READ_ONCE(net
->ipv4
.sysctl_tcp_ecn
) || ecn_ok_dst
;
7044 if (((!ect
|| th
->res1
) && ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
7045 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
7046 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
7047 inet_rsk(req
)->ecn_ok
= 1;
7050 static void tcp_openreq_init(struct request_sock
*req
,
7051 const struct tcp_options_received
*rx_opt
,
7052 struct sk_buff
*skb
, const struct sock
*sk
)
7054 struct inet_request_sock
*ireq
= inet_rsk(req
);
7056 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
7057 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
7058 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
7059 tcp_rsk(req
)->snt_synack
= 0;
7060 tcp_rsk(req
)->last_oow_ack_time
= 0;
7061 req
->mss
= rx_opt
->mss_clamp
;
7062 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
7063 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
7064 ireq
->sack_ok
= rx_opt
->sack_ok
;
7065 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
7066 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
7069 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
7070 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
7071 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
7072 #if IS_ENABLED(CONFIG_SMC)
7073 ireq
->smc_ok
= rx_opt
->smc_ok
&& !(tcp_sk(sk
)->smc_hs_congested
&&
7074 tcp_sk(sk
)->smc_hs_congested(sk
));
7079 * Return true if a syncookie should be sent
7081 static bool tcp_syn_flood_action(struct sock
*sk
, const char *proto
)
7083 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
7084 const char *msg
= "Dropping request";
7085 struct net
*net
= sock_net(sk
);
7086 bool want_cookie
= false;
7089 syncookies
= READ_ONCE(net
->ipv4
.sysctl_tcp_syncookies
);
7091 #ifdef CONFIG_SYN_COOKIES
7093 msg
= "Sending cookies";
7095 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
7098 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
7100 if (!READ_ONCE(queue
->synflood_warned
) && syncookies
!= 2 &&
7101 xchg(&queue
->synflood_warned
, 1) == 0) {
7102 if (IS_ENABLED(CONFIG_IPV6
) && sk
->sk_family
== AF_INET6
) {
7103 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7104 proto
, inet6_rcv_saddr(sk
),
7107 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7108 proto
, &sk
->sk_rcv_saddr
,
7116 static void tcp_reqsk_record_syn(const struct sock
*sk
,
7117 struct request_sock
*req
,
7118 const struct sk_buff
*skb
)
7120 if (tcp_sk(sk
)->save_syn
) {
7121 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
7122 struct saved_syn
*saved_syn
;
7126 if (tcp_sk(sk
)->save_syn
== 2) { /* Save full header. */
7127 base
= skb_mac_header(skb
);
7128 mac_hdrlen
= skb_mac_header_len(skb
);
7131 base
= skb_network_header(skb
);
7135 saved_syn
= kmalloc(struct_size(saved_syn
, data
, len
),
7138 saved_syn
->mac_hdrlen
= mac_hdrlen
;
7139 saved_syn
->network_hdrlen
= skb_network_header_len(skb
);
7140 saved_syn
->tcp_hdrlen
= tcp_hdrlen(skb
);
7141 memcpy(saved_syn
->data
, base
, len
);
7142 req
->saved_syn
= saved_syn
;
7147 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7148 * used for SYN cookie generation.
7150 u16
tcp_get_syncookie_mss(struct request_sock_ops
*rsk_ops
,
7151 const struct tcp_request_sock_ops
*af_ops
,
7152 struct sock
*sk
, struct tcphdr
*th
)
7154 struct tcp_sock
*tp
= tcp_sk(sk
);
7157 if (READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_syncookies
) != 2 &&
7158 !inet_csk_reqsk_queue_is_full(sk
))
7161 if (!tcp_syn_flood_action(sk
, rsk_ops
->slab_name
))
7164 if (sk_acceptq_is_full(sk
)) {
7165 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
7169 mss
= tcp_parse_mss_option(th
, tp
->rx_opt
.user_mss
);
7171 mss
= af_ops
->mss_clamp
;
7175 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss
);
7177 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
7178 const struct tcp_request_sock_ops
*af_ops
,
7179 struct sock
*sk
, struct sk_buff
*skb
)
7181 struct tcp_fastopen_cookie foc
= { .len
= -1 };
7182 struct tcp_options_received tmp_opt
;
7183 struct tcp_sock
*tp
= tcp_sk(sk
);
7184 struct net
*net
= sock_net(sk
);
7185 struct sock
*fastopen_sk
= NULL
;
7186 struct request_sock
*req
;
7187 bool want_cookie
= false;
7188 struct dst_entry
*dst
;
7193 #ifdef CONFIG_TCP_AO
7194 const struct tcp_ao_hdr
*aoh
;
7197 isn
= __this_cpu_read(tcp_tw_isn
);
7199 /* TW buckets are converted to open requests without
7200 * limitations, they conserve resources and peer is
7201 * evidently real one.
7203 __this_cpu_write(tcp_tw_isn
, 0);
7205 syncookies
= READ_ONCE(net
->ipv4
.sysctl_tcp_syncookies
);
7207 if (syncookies
== 2 || inet_csk_reqsk_queue_is_full(sk
)) {
7208 want_cookie
= tcp_syn_flood_action(sk
,
7209 rsk_ops
->slab_name
);
7215 if (sk_acceptq_is_full(sk
)) {
7216 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
7220 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
7224 req
->syncookie
= want_cookie
;
7225 tcp_rsk(req
)->af_specific
= af_ops
;
7226 tcp_rsk(req
)->ts_off
= 0;
7227 tcp_rsk(req
)->req_usec_ts
= false;
7228 #if IS_ENABLED(CONFIG_MPTCP)
7229 tcp_rsk(req
)->is_mptcp
= 0;
7232 tcp_clear_options(&tmp_opt
);
7233 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
7234 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
7235 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
7236 want_cookie
? NULL
: &foc
);
7238 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
7239 tcp_clear_options(&tmp_opt
);
7241 if (IS_ENABLED(CONFIG_SMC
) && want_cookie
)
7244 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
7245 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
7246 inet_rsk(req
)->no_srccheck
= inet_test_bit(TRANSPARENT
, sk
);
7248 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7249 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
7251 dst
= af_ops
->route_req(sk
, skb
, &fl
, req
, isn
);
7255 if (tmp_opt
.tstamp_ok
) {
7256 tcp_rsk(req
)->req_usec_ts
= dst_tcp_usec_ts(dst
);
7257 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
7259 if (!want_cookie
&& !isn
) {
7260 int max_syn_backlog
= READ_ONCE(net
->ipv4
.sysctl_max_syn_backlog
);
7262 /* Kill the following clause, if you dislike this way. */
7264 (max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
7265 (max_syn_backlog
>> 2)) &&
7266 !tcp_peer_is_proven(req
, dst
)) {
7267 /* Without syncookies last quarter of
7268 * backlog is filled with destinations,
7269 * proven to be alive.
7270 * It means that we continue to communicate
7271 * to destinations, already remembered
7272 * to the moment of synflood.
7274 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
7276 goto drop_and_release
;
7279 isn
= af_ops
->init_seq(skb
);
7282 tcp_ecn_create_request(req
, skb
, sk
, dst
);
7285 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
7286 if (!tmp_opt
.tstamp_ok
)
7287 inet_rsk(req
)->ecn_ok
= 0;
7290 #ifdef CONFIG_TCP_AO
7291 if (tcp_parse_auth_options(tcp_hdr(skb
), NULL
, &aoh
))
7292 goto drop_and_release
; /* Invalid TCP options */
7294 tcp_rsk(req
)->used_tcp_ao
= true;
7295 tcp_rsk(req
)->ao_rcv_next
= aoh
->keyid
;
7296 tcp_rsk(req
)->ao_keyid
= aoh
->rnext_keyid
;
7299 tcp_rsk(req
)->used_tcp_ao
= false;
7302 tcp_rsk(req
)->snt_isn
= isn
;
7303 tcp_rsk(req
)->txhash
= net_tx_rndhash();
7304 tcp_rsk(req
)->syn_tos
= TCP_SKB_CB(skb
)->ip_dsfield
;
7305 tcp_openreq_init_rwin(req
, sk
, dst
);
7306 sk_rx_queue_set(req_to_sk(req
), skb
);
7308 tcp_reqsk_record_syn(sk
, req
, skb
);
7309 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
7312 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
7313 &foc
, TCP_SYNACK_FASTOPEN
, skb
);
7314 /* Add the child socket directly into the accept queue */
7315 if (!inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
)) {
7316 reqsk_fastopen_remove(fastopen_sk
, req
, false);
7317 bh_unlock_sock(fastopen_sk
);
7318 sock_put(fastopen_sk
);
7321 sk
->sk_data_ready(sk
);
7322 bh_unlock_sock(fastopen_sk
);
7323 sock_put(fastopen_sk
);
7325 tcp_rsk(req
)->tfo_listener
= false;
7327 req
->timeout
= tcp_timeout_init((struct sock
*)req
);
7328 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk
, req
,
7335 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
7336 !want_cookie
? TCP_SYNACK_NORMAL
:
7355 EXPORT_SYMBOL(tcp_conn_request
);