printf: Remove unused 'bprintf'
[drm/drm-misc.git] / net / socket.c
blob9a117248f18f13d574d099c80128986c744fa97f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134 static void sock_splice_eof(struct file *file);
136 #ifdef CONFIG_PROC_FS
137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
154 static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .read_iter = sock_read_iter,
157 .write_iter = sock_write_iter,
158 .poll = sock_poll,
159 .unlocked_ioctl = sock_ioctl,
160 #ifdef CONFIG_COMPAT
161 .compat_ioctl = compat_sock_ioctl,
162 #endif
163 .uring_cmd = io_uring_cmd_sock,
164 .mmap = sock_mmap,
165 .release = sock_close,
166 .fasync = sock_fasync,
167 .splice_write = splice_to_socket,
168 .splice_read = sock_splice_read,
169 .splice_eof = sock_splice_eof,
170 .show_fdinfo = sock_show_fdinfo,
173 static const char * const pf_family_names[] = {
174 [PF_UNSPEC] = "PF_UNSPEC",
175 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
176 [PF_INET] = "PF_INET",
177 [PF_AX25] = "PF_AX25",
178 [PF_IPX] = "PF_IPX",
179 [PF_APPLETALK] = "PF_APPLETALK",
180 [PF_NETROM] = "PF_NETROM",
181 [PF_BRIDGE] = "PF_BRIDGE",
182 [PF_ATMPVC] = "PF_ATMPVC",
183 [PF_X25] = "PF_X25",
184 [PF_INET6] = "PF_INET6",
185 [PF_ROSE] = "PF_ROSE",
186 [PF_DECnet] = "PF_DECnet",
187 [PF_NETBEUI] = "PF_NETBEUI",
188 [PF_SECURITY] = "PF_SECURITY",
189 [PF_KEY] = "PF_KEY",
190 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
191 [PF_PACKET] = "PF_PACKET",
192 [PF_ASH] = "PF_ASH",
193 [PF_ECONET] = "PF_ECONET",
194 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_RDS] = "PF_RDS",
196 [PF_SNA] = "PF_SNA",
197 [PF_IRDA] = "PF_IRDA",
198 [PF_PPPOX] = "PF_PPPOX",
199 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_LLC] = "PF_LLC",
201 [PF_IB] = "PF_IB",
202 [PF_MPLS] = "PF_MPLS",
203 [PF_CAN] = "PF_CAN",
204 [PF_TIPC] = "PF_TIPC",
205 [PF_BLUETOOTH] = "PF_BLUETOOTH",
206 [PF_IUCV] = "PF_IUCV",
207 [PF_RXRPC] = "PF_RXRPC",
208 [PF_ISDN] = "PF_ISDN",
209 [PF_PHONET] = "PF_PHONET",
210 [PF_IEEE802154] = "PF_IEEE802154",
211 [PF_CAIF] = "PF_CAIF",
212 [PF_ALG] = "PF_ALG",
213 [PF_NFC] = "PF_NFC",
214 [PF_VSOCK] = "PF_VSOCK",
215 [PF_KCM] = "PF_KCM",
216 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_SMC] = "PF_SMC",
218 [PF_XDP] = "PF_XDP",
219 [PF_MCTP] = "PF_MCTP",
223 * The protocol list. Each protocol is registered in here.
226 static DEFINE_SPINLOCK(net_family_lock);
227 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 * Support routines.
231 * Move socket addresses back and forth across the kernel/user
232 * divide and look after the messy bits.
236 * move_addr_to_kernel - copy a socket address into kernel space
237 * @uaddr: Address in user space
238 * @kaddr: Address in kernel space
239 * @ulen: Length in user space
241 * The address is copied into kernel space. If the provided address is
242 * too long an error code of -EINVAL is returned. If the copy gives
243 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 return -EINVAL;
250 if (ulen == 0)
251 return 0;
252 if (copy_from_user(kaddr, uaddr, ulen))
253 return -EFAULT;
254 return audit_sockaddr(ulen, kaddr);
258 * move_addr_to_user - copy an address to user space
259 * @kaddr: kernel space address
260 * @klen: length of address in kernel
261 * @uaddr: user space address
262 * @ulen: pointer to user length field
264 * The value pointed to by ulen on entry is the buffer length available.
265 * This is overwritten with the buffer space used. -EINVAL is returned
266 * if an overlong buffer is specified or a negative buffer size. -EFAULT
267 * is returned if either the buffer or the length field are not
268 * accessible.
269 * After copying the data up to the limit the user specifies, the true
270 * length of the data is written over the length limit the user
271 * specified. Zero is returned for a success.
274 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
275 void __user *uaddr, int __user *ulen)
277 int err;
278 int len;
280 BUG_ON(klen > sizeof(struct sockaddr_storage));
281 err = get_user(len, ulen);
282 if (err)
283 return err;
284 if (len > klen)
285 len = klen;
286 if (len < 0)
287 return -EINVAL;
288 if (len) {
289 if (audit_sockaddr(klen, kaddr))
290 return -ENOMEM;
291 if (copy_to_user(uaddr, kaddr, len))
292 return -EFAULT;
295 * "fromlen shall refer to the value before truncation.."
296 * 1003.1g
298 return __put_user(klen, ulen);
301 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 static struct inode *sock_alloc_inode(struct super_block *sb)
305 struct socket_alloc *ei;
307 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 if (!ei)
309 return NULL;
310 init_waitqueue_head(&ei->socket.wq.wait);
311 ei->socket.wq.fasync_list = NULL;
312 ei->socket.wq.flags = 0;
314 ei->socket.state = SS_UNCONNECTED;
315 ei->socket.flags = 0;
316 ei->socket.ops = NULL;
317 ei->socket.sk = NULL;
318 ei->socket.file = NULL;
320 return &ei->vfs_inode;
323 static void sock_free_inode(struct inode *inode)
325 struct socket_alloc *ei;
327 ei = container_of(inode, struct socket_alloc, vfs_inode);
328 kmem_cache_free(sock_inode_cachep, ei);
331 static void init_once(void *foo)
333 struct socket_alloc *ei = (struct socket_alloc *)foo;
335 inode_init_once(&ei->vfs_inode);
338 static void init_inodecache(void)
340 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
341 sizeof(struct socket_alloc),
343 (SLAB_HWCACHE_ALIGN |
344 SLAB_RECLAIM_ACCOUNT |
345 SLAB_ACCOUNT),
346 init_once);
347 BUG_ON(sock_inode_cachep == NULL);
350 static const struct super_operations sockfs_ops = {
351 .alloc_inode = sock_alloc_inode,
352 .free_inode = sock_free_inode,
353 .statfs = simple_statfs,
357 * sockfs_dname() is called from d_path().
359 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 return dynamic_dname(buffer, buflen, "socket:[%lu]",
362 d_inode(dentry)->i_ino);
365 static const struct dentry_operations sockfs_dentry_operations = {
366 .d_dname = sockfs_dname,
369 static int sockfs_xattr_get(const struct xattr_handler *handler,
370 struct dentry *dentry, struct inode *inode,
371 const char *suffix, void *value, size_t size)
373 if (value) {
374 if (dentry->d_name.len + 1 > size)
375 return -ERANGE;
376 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 return dentry->d_name.len + 1;
381 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
382 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
383 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 static const struct xattr_handler sockfs_xattr_handler = {
386 .name = XATTR_NAME_SOCKPROTONAME,
387 .get = sockfs_xattr_get,
390 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
391 struct mnt_idmap *idmap,
392 struct dentry *dentry, struct inode *inode,
393 const char *suffix, const void *value,
394 size_t size, int flags)
396 /* Handled by LSM. */
397 return -EAGAIN;
400 static const struct xattr_handler sockfs_security_xattr_handler = {
401 .prefix = XATTR_SECURITY_PREFIX,
402 .set = sockfs_security_xattr_set,
405 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
406 &sockfs_xattr_handler,
407 &sockfs_security_xattr_handler,
408 NULL
411 static int sockfs_init_fs_context(struct fs_context *fc)
413 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 if (!ctx)
415 return -ENOMEM;
416 ctx->ops = &sockfs_ops;
417 ctx->dops = &sockfs_dentry_operations;
418 ctx->xattr = sockfs_xattr_handlers;
419 return 0;
422 static struct vfsmount *sock_mnt __read_mostly;
424 static struct file_system_type sock_fs_type = {
425 .name = "sockfs",
426 .init_fs_context = sockfs_init_fs_context,
427 .kill_sb = kill_anon_super,
431 * Obtains the first available file descriptor and sets it up for use.
433 * These functions create file structures and maps them to fd space
434 * of the current process. On success it returns file descriptor
435 * and file struct implicitly stored in sock->file.
436 * Note that another thread may close file descriptor before we return
437 * from this function. We use the fact that now we do not refer
438 * to socket after mapping. If one day we will need it, this
439 * function will increment ref. count on file by 1.
441 * In any case returned fd MAY BE not valid!
442 * This race condition is unavoidable
443 * with shared fd spaces, we cannot solve it inside kernel,
444 * but we take care of internal coherence yet.
448 * sock_alloc_file - Bind a &socket to a &file
449 * @sock: socket
450 * @flags: file status flags
451 * @dname: protocol name
453 * Returns the &file bound with @sock, implicitly storing it
454 * in sock->file. If dname is %NULL, sets to "".
456 * On failure @sock is released, and an ERR pointer is returned.
458 * This function uses GFP_KERNEL internally.
461 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 struct file *file;
465 if (!dname)
466 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
469 O_RDWR | (flags & O_NONBLOCK),
470 &socket_file_ops);
471 if (IS_ERR(file)) {
472 sock_release(sock);
473 return file;
476 file->f_mode |= FMODE_NOWAIT;
477 sock->file = file;
478 file->private_data = sock;
479 stream_open(SOCK_INODE(sock), file);
480 return file;
482 EXPORT_SYMBOL(sock_alloc_file);
484 static int sock_map_fd(struct socket *sock, int flags)
486 struct file *newfile;
487 int fd = get_unused_fd_flags(flags);
488 if (unlikely(fd < 0)) {
489 sock_release(sock);
490 return fd;
493 newfile = sock_alloc_file(sock, flags, NULL);
494 if (!IS_ERR(newfile)) {
495 fd_install(fd, newfile);
496 return fd;
499 put_unused_fd(fd);
500 return PTR_ERR(newfile);
504 * sock_from_file - Return the &socket bounded to @file.
505 * @file: file
507 * On failure returns %NULL.
510 struct socket *sock_from_file(struct file *file)
512 if (likely(file->f_op == &socket_file_ops))
513 return file->private_data; /* set in sock_alloc_file */
515 return NULL;
517 EXPORT_SYMBOL(sock_from_file);
520 * sockfd_lookup - Go from a file number to its socket slot
521 * @fd: file handle
522 * @err: pointer to an error code return
524 * The file handle passed in is locked and the socket it is bound
525 * to is returned. If an error occurs the err pointer is overwritten
526 * with a negative errno code and NULL is returned. The function checks
527 * for both invalid handles and passing a handle which is not a socket.
529 * On a success the socket object pointer is returned.
532 struct socket *sockfd_lookup(int fd, int *err)
534 struct file *file;
535 struct socket *sock;
537 file = fget(fd);
538 if (!file) {
539 *err = -EBADF;
540 return NULL;
543 sock = sock_from_file(file);
544 if (!sock) {
545 *err = -ENOTSOCK;
546 fput(file);
548 return sock;
550 EXPORT_SYMBOL(sockfd_lookup);
552 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
553 size_t size)
555 ssize_t len;
556 ssize_t used = 0;
558 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
559 if (len < 0)
560 return len;
561 used += len;
562 if (buffer) {
563 if (size < used)
564 return -ERANGE;
565 buffer += len;
568 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
569 used += len;
570 if (buffer) {
571 if (size < used)
572 return -ERANGE;
573 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
574 buffer += len;
577 return used;
580 static int sockfs_setattr(struct mnt_idmap *idmap,
581 struct dentry *dentry, struct iattr *iattr)
583 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
585 if (!err && (iattr->ia_valid & ATTR_UID)) {
586 struct socket *sock = SOCKET_I(d_inode(dentry));
588 if (sock->sk)
589 sock->sk->sk_uid = iattr->ia_uid;
590 else
591 err = -ENOENT;
594 return err;
597 static const struct inode_operations sockfs_inode_ops = {
598 .listxattr = sockfs_listxattr,
599 .setattr = sockfs_setattr,
603 * sock_alloc - allocate a socket
605 * Allocate a new inode and socket object. The two are bound together
606 * and initialised. The socket is then returned. If we are out of inodes
607 * NULL is returned. This functions uses GFP_KERNEL internally.
610 struct socket *sock_alloc(void)
612 struct inode *inode;
613 struct socket *sock;
615 inode = new_inode_pseudo(sock_mnt->mnt_sb);
616 if (!inode)
617 return NULL;
619 sock = SOCKET_I(inode);
621 inode->i_ino = get_next_ino();
622 inode->i_mode = S_IFSOCK | S_IRWXUGO;
623 inode->i_uid = current_fsuid();
624 inode->i_gid = current_fsgid();
625 inode->i_op = &sockfs_inode_ops;
627 return sock;
629 EXPORT_SYMBOL(sock_alloc);
631 static void __sock_release(struct socket *sock, struct inode *inode)
633 const struct proto_ops *ops = READ_ONCE(sock->ops);
635 if (ops) {
636 struct module *owner = ops->owner;
638 if (inode)
639 inode_lock(inode);
640 ops->release(sock);
641 sock->sk = NULL;
642 if (inode)
643 inode_unlock(inode);
644 sock->ops = NULL;
645 module_put(owner);
648 if (sock->wq.fasync_list)
649 pr_err("%s: fasync list not empty!\n", __func__);
651 if (!sock->file) {
652 iput(SOCK_INODE(sock));
653 return;
655 sock->file = NULL;
659 * sock_release - close a socket
660 * @sock: socket to close
662 * The socket is released from the protocol stack if it has a release
663 * callback, and the inode is then released if the socket is bound to
664 * an inode not a file.
666 void sock_release(struct socket *sock)
668 __sock_release(sock, NULL);
670 EXPORT_SYMBOL(sock_release);
672 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
674 u8 flags = *tx_flags;
676 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
677 flags |= SKBTX_HW_TSTAMP;
679 /* PTP hardware clocks can provide a free running cycle counter
680 * as a time base for virtual clocks. Tell driver to use the
681 * free running cycle counter for timestamp if socket is bound
682 * to virtual clock.
684 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
685 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
688 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
689 flags |= SKBTX_SW_TSTAMP;
691 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
692 flags |= SKBTX_SCHED_TSTAMP;
694 *tx_flags = flags;
696 EXPORT_SYMBOL(__sock_tx_timestamp);
698 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
699 size_t));
700 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
701 size_t));
703 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
704 int flags)
706 trace_sock_send_length(sk, ret, 0);
709 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
711 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
712 inet_sendmsg, sock, msg,
713 msg_data_left(msg));
714 BUG_ON(ret == -EIOCBQUEUED);
716 if (trace_sock_send_length_enabled())
717 call_trace_sock_send_length(sock->sk, ret, 0);
718 return ret;
721 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
723 int err = security_socket_sendmsg(sock, msg,
724 msg_data_left(msg));
726 return err ?: sock_sendmsg_nosec(sock, msg);
730 * sock_sendmsg - send a message through @sock
731 * @sock: socket
732 * @msg: message to send
734 * Sends @msg through @sock, passing through LSM.
735 * Returns the number of bytes sent, or an error code.
737 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
739 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
740 struct sockaddr_storage address;
741 int save_len = msg->msg_namelen;
742 int ret;
744 if (msg->msg_name) {
745 memcpy(&address, msg->msg_name, msg->msg_namelen);
746 msg->msg_name = &address;
749 ret = __sock_sendmsg(sock, msg);
750 msg->msg_name = save_addr;
751 msg->msg_namelen = save_len;
753 return ret;
755 EXPORT_SYMBOL(sock_sendmsg);
758 * kernel_sendmsg - send a message through @sock (kernel-space)
759 * @sock: socket
760 * @msg: message header
761 * @vec: kernel vec
762 * @num: vec array length
763 * @size: total message data size
765 * Builds the message data with @vec and sends it through @sock.
766 * Returns the number of bytes sent, or an error code.
769 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
770 struct kvec *vec, size_t num, size_t size)
772 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
773 return sock_sendmsg(sock, msg);
775 EXPORT_SYMBOL(kernel_sendmsg);
778 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
779 * @sk: sock
780 * @msg: message header
781 * @vec: output s/g array
782 * @num: output s/g array length
783 * @size: total message data size
785 * Builds the message data with @vec and sends it through @sock.
786 * Returns the number of bytes sent, or an error code.
787 * Caller must hold @sk.
790 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
791 struct kvec *vec, size_t num, size_t size)
793 struct socket *sock = sk->sk_socket;
794 const struct proto_ops *ops = READ_ONCE(sock->ops);
796 if (!ops->sendmsg_locked)
797 return sock_no_sendmsg_locked(sk, msg, size);
799 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
801 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
803 EXPORT_SYMBOL(kernel_sendmsg_locked);
805 static bool skb_is_err_queue(const struct sk_buff *skb)
807 /* pkt_type of skbs enqueued on the error queue are set to
808 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
809 * in recvmsg, since skbs received on a local socket will never
810 * have a pkt_type of PACKET_OUTGOING.
812 return skb->pkt_type == PACKET_OUTGOING;
815 /* On transmit, software and hardware timestamps are returned independently.
816 * As the two skb clones share the hardware timestamp, which may be updated
817 * before the software timestamp is received, a hardware TX timestamp may be
818 * returned only if there is no software TX timestamp. Ignore false software
819 * timestamps, which may be made in the __sock_recv_timestamp() call when the
820 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
821 * hardware timestamp.
823 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
825 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
828 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
830 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
831 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
832 struct net_device *orig_dev;
833 ktime_t hwtstamp;
835 rcu_read_lock();
836 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
837 if (orig_dev) {
838 *if_index = orig_dev->ifindex;
839 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
840 } else {
841 hwtstamp = shhwtstamps->hwtstamp;
843 rcu_read_unlock();
845 return hwtstamp;
848 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
849 int if_index)
851 struct scm_ts_pktinfo ts_pktinfo;
852 struct net_device *orig_dev;
854 if (!skb_mac_header_was_set(skb))
855 return;
857 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
859 if (!if_index) {
860 rcu_read_lock();
861 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
862 if (orig_dev)
863 if_index = orig_dev->ifindex;
864 rcu_read_unlock();
866 ts_pktinfo.if_index = if_index;
868 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
869 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
870 sizeof(ts_pktinfo), &ts_pktinfo);
874 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
876 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
877 struct sk_buff *skb)
879 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
880 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
881 struct scm_timestamping_internal tss;
882 int empty = 1, false_tstamp = 0;
883 struct skb_shared_hwtstamps *shhwtstamps =
884 skb_hwtstamps(skb);
885 int if_index;
886 ktime_t hwtstamp;
887 u32 tsflags;
889 /* Race occurred between timestamp enabling and packet
890 receiving. Fill in the current time for now. */
891 if (need_software_tstamp && skb->tstamp == 0) {
892 __net_timestamp(skb);
893 false_tstamp = 1;
896 if (need_software_tstamp) {
897 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
898 if (new_tstamp) {
899 struct __kernel_sock_timeval tv;
901 skb_get_new_timestamp(skb, &tv);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
903 sizeof(tv), &tv);
904 } else {
905 struct __kernel_old_timeval tv;
907 skb_get_timestamp(skb, &tv);
908 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
909 sizeof(tv), &tv);
911 } else {
912 if (new_tstamp) {
913 struct __kernel_timespec ts;
915 skb_get_new_timestampns(skb, &ts);
916 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
917 sizeof(ts), &ts);
918 } else {
919 struct __kernel_old_timespec ts;
921 skb_get_timestampns(skb, &ts);
922 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
923 sizeof(ts), &ts);
928 memset(&tss, 0, sizeof(tss));
929 tsflags = READ_ONCE(sk->sk_tsflags);
930 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
931 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
932 skb_is_err_queue(skb) ||
933 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
934 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
935 empty = 0;
936 if (shhwtstamps &&
937 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
938 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
939 skb_is_err_queue(skb) ||
940 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
941 !skb_is_swtx_tstamp(skb, false_tstamp)) {
942 if_index = 0;
943 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
944 hwtstamp = get_timestamp(sk, skb, &if_index);
945 else
946 hwtstamp = shhwtstamps->hwtstamp;
948 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
949 hwtstamp = ptp_convert_timestamp(&hwtstamp,
950 READ_ONCE(sk->sk_bind_phc));
952 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
953 empty = 0;
955 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
956 !skb_is_err_queue(skb))
957 put_ts_pktinfo(msg, skb, if_index);
960 if (!empty) {
961 if (sock_flag(sk, SOCK_TSTAMP_NEW))
962 put_cmsg_scm_timestamping64(msg, &tss);
963 else
964 put_cmsg_scm_timestamping(msg, &tss);
966 if (skb_is_err_queue(skb) && skb->len &&
967 SKB_EXT_ERR(skb)->opt_stats)
968 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
969 skb->len, skb->data);
972 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
974 #ifdef CONFIG_WIRELESS
975 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
976 struct sk_buff *skb)
978 int ack;
980 if (!sock_flag(sk, SOCK_WIFI_STATUS))
981 return;
982 if (!skb->wifi_acked_valid)
983 return;
985 ack = skb->wifi_acked;
987 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
989 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
990 #endif
992 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
993 struct sk_buff *skb)
995 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
996 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
997 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1000 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1001 struct sk_buff *skb)
1003 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1004 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1005 __u32 mark = skb->mark;
1007 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1011 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1014 sock_recv_timestamp(msg, sk, skb);
1015 sock_recv_drops(msg, sk, skb);
1016 sock_recv_mark(msg, sk, skb);
1018 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1020 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1021 size_t, int));
1022 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1023 size_t, int));
1025 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1027 trace_sock_recv_length(sk, ret, flags);
1030 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1031 int flags)
1033 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1034 inet6_recvmsg,
1035 inet_recvmsg, sock, msg,
1036 msg_data_left(msg), flags);
1037 if (trace_sock_recv_length_enabled())
1038 call_trace_sock_recv_length(sock->sk, ret, flags);
1039 return ret;
1043 * sock_recvmsg - receive a message from @sock
1044 * @sock: socket
1045 * @msg: message to receive
1046 * @flags: message flags
1048 * Receives @msg from @sock, passing through LSM. Returns the total number
1049 * of bytes received, or an error.
1051 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1053 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1055 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1057 EXPORT_SYMBOL(sock_recvmsg);
1060 * kernel_recvmsg - Receive a message from a socket (kernel space)
1061 * @sock: The socket to receive the message from
1062 * @msg: Received message
1063 * @vec: Input s/g array for message data
1064 * @num: Size of input s/g array
1065 * @size: Number of bytes to read
1066 * @flags: Message flags (MSG_DONTWAIT, etc...)
1068 * On return the msg structure contains the scatter/gather array passed in the
1069 * vec argument. The array is modified so that it consists of the unfilled
1070 * portion of the original array.
1072 * The returned value is the total number of bytes received, or an error.
1075 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1076 struct kvec *vec, size_t num, size_t size, int flags)
1078 msg->msg_control_is_user = false;
1079 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1080 return sock_recvmsg(sock, msg, flags);
1082 EXPORT_SYMBOL(kernel_recvmsg);
1084 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1085 struct pipe_inode_info *pipe, size_t len,
1086 unsigned int flags)
1088 struct socket *sock = file->private_data;
1089 const struct proto_ops *ops;
1091 ops = READ_ONCE(sock->ops);
1092 if (unlikely(!ops->splice_read))
1093 return copy_splice_read(file, ppos, pipe, len, flags);
1095 return ops->splice_read(sock, ppos, pipe, len, flags);
1098 static void sock_splice_eof(struct file *file)
1100 struct socket *sock = file->private_data;
1101 const struct proto_ops *ops;
1103 ops = READ_ONCE(sock->ops);
1104 if (ops->splice_eof)
1105 ops->splice_eof(sock);
1108 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1110 struct file *file = iocb->ki_filp;
1111 struct socket *sock = file->private_data;
1112 struct msghdr msg = {.msg_iter = *to,
1113 .msg_iocb = iocb};
1114 ssize_t res;
1116 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1117 msg.msg_flags = MSG_DONTWAIT;
1119 if (iocb->ki_pos != 0)
1120 return -ESPIPE;
1122 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1123 return 0;
1125 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1126 *to = msg.msg_iter;
1127 return res;
1130 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1132 struct file *file = iocb->ki_filp;
1133 struct socket *sock = file->private_data;
1134 struct msghdr msg = {.msg_iter = *from,
1135 .msg_iocb = iocb};
1136 ssize_t res;
1138 if (iocb->ki_pos != 0)
1139 return -ESPIPE;
1141 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1142 msg.msg_flags = MSG_DONTWAIT;
1144 if (sock->type == SOCK_SEQPACKET)
1145 msg.msg_flags |= MSG_EOR;
1147 res = __sock_sendmsg(sock, &msg);
1148 *from = msg.msg_iter;
1149 return res;
1153 * Atomic setting of ioctl hooks to avoid race
1154 * with module unload.
1157 static DEFINE_MUTEX(br_ioctl_mutex);
1158 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1159 unsigned int cmd, struct ifreq *ifr,
1160 void __user *uarg);
1162 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1163 unsigned int cmd, struct ifreq *ifr,
1164 void __user *uarg))
1166 mutex_lock(&br_ioctl_mutex);
1167 br_ioctl_hook = hook;
1168 mutex_unlock(&br_ioctl_mutex);
1170 EXPORT_SYMBOL(brioctl_set);
1172 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1173 struct ifreq *ifr, void __user *uarg)
1175 int err = -ENOPKG;
1177 if (!br_ioctl_hook)
1178 request_module("bridge");
1180 mutex_lock(&br_ioctl_mutex);
1181 if (br_ioctl_hook)
1182 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1183 mutex_unlock(&br_ioctl_mutex);
1185 return err;
1188 static DEFINE_MUTEX(vlan_ioctl_mutex);
1189 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1191 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1193 mutex_lock(&vlan_ioctl_mutex);
1194 vlan_ioctl_hook = hook;
1195 mutex_unlock(&vlan_ioctl_mutex);
1197 EXPORT_SYMBOL(vlan_ioctl_set);
1199 static long sock_do_ioctl(struct net *net, struct socket *sock,
1200 unsigned int cmd, unsigned long arg)
1202 const struct proto_ops *ops = READ_ONCE(sock->ops);
1203 struct ifreq ifr;
1204 bool need_copyout;
1205 int err;
1206 void __user *argp = (void __user *)arg;
1207 void __user *data;
1209 err = ops->ioctl(sock, cmd, arg);
1212 * If this ioctl is unknown try to hand it down
1213 * to the NIC driver.
1215 if (err != -ENOIOCTLCMD)
1216 return err;
1218 if (!is_socket_ioctl_cmd(cmd))
1219 return -ENOTTY;
1221 if (get_user_ifreq(&ifr, &data, argp))
1222 return -EFAULT;
1223 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1224 if (!err && need_copyout)
1225 if (put_user_ifreq(&ifr, argp))
1226 return -EFAULT;
1228 return err;
1232 * With an ioctl, arg may well be a user mode pointer, but we don't know
1233 * what to do with it - that's up to the protocol still.
1236 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1238 const struct proto_ops *ops;
1239 struct socket *sock;
1240 struct sock *sk;
1241 void __user *argp = (void __user *)arg;
1242 int pid, err;
1243 struct net *net;
1245 sock = file->private_data;
1246 ops = READ_ONCE(sock->ops);
1247 sk = sock->sk;
1248 net = sock_net(sk);
1249 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1250 struct ifreq ifr;
1251 void __user *data;
1252 bool need_copyout;
1253 if (get_user_ifreq(&ifr, &data, argp))
1254 return -EFAULT;
1255 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1256 if (!err && need_copyout)
1257 if (put_user_ifreq(&ifr, argp))
1258 return -EFAULT;
1259 } else
1260 #ifdef CONFIG_WEXT_CORE
1261 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1262 err = wext_handle_ioctl(net, cmd, argp);
1263 } else
1264 #endif
1265 switch (cmd) {
1266 case FIOSETOWN:
1267 case SIOCSPGRP:
1268 err = -EFAULT;
1269 if (get_user(pid, (int __user *)argp))
1270 break;
1271 err = f_setown(sock->file, pid, 1);
1272 break;
1273 case FIOGETOWN:
1274 case SIOCGPGRP:
1275 err = put_user(f_getown(sock->file),
1276 (int __user *)argp);
1277 break;
1278 case SIOCGIFBR:
1279 case SIOCSIFBR:
1280 case SIOCBRADDBR:
1281 case SIOCBRDELBR:
1282 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1283 break;
1284 case SIOCGIFVLAN:
1285 case SIOCSIFVLAN:
1286 err = -ENOPKG;
1287 if (!vlan_ioctl_hook)
1288 request_module("8021q");
1290 mutex_lock(&vlan_ioctl_mutex);
1291 if (vlan_ioctl_hook)
1292 err = vlan_ioctl_hook(net, argp);
1293 mutex_unlock(&vlan_ioctl_mutex);
1294 break;
1295 case SIOCGSKNS:
1296 err = -EPERM;
1297 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1298 break;
1300 err = open_related_ns(&net->ns, get_net_ns);
1301 break;
1302 case SIOCGSTAMP_OLD:
1303 case SIOCGSTAMPNS_OLD:
1304 if (!ops->gettstamp) {
1305 err = -ENOIOCTLCMD;
1306 break;
1308 err = ops->gettstamp(sock, argp,
1309 cmd == SIOCGSTAMP_OLD,
1310 !IS_ENABLED(CONFIG_64BIT));
1311 break;
1312 case SIOCGSTAMP_NEW:
1313 case SIOCGSTAMPNS_NEW:
1314 if (!ops->gettstamp) {
1315 err = -ENOIOCTLCMD;
1316 break;
1318 err = ops->gettstamp(sock, argp,
1319 cmd == SIOCGSTAMP_NEW,
1320 false);
1321 break;
1323 case SIOCGIFCONF:
1324 err = dev_ifconf(net, argp);
1325 break;
1327 default:
1328 err = sock_do_ioctl(net, sock, cmd, arg);
1329 break;
1331 return err;
1335 * sock_create_lite - creates a socket
1336 * @family: protocol family (AF_INET, ...)
1337 * @type: communication type (SOCK_STREAM, ...)
1338 * @protocol: protocol (0, ...)
1339 * @res: new socket
1341 * Creates a new socket and assigns it to @res, passing through LSM.
1342 * The new socket initialization is not complete, see kernel_accept().
1343 * Returns 0 or an error. On failure @res is set to %NULL.
1344 * This function internally uses GFP_KERNEL.
1347 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1349 int err;
1350 struct socket *sock = NULL;
1352 err = security_socket_create(family, type, protocol, 1);
1353 if (err)
1354 goto out;
1356 sock = sock_alloc();
1357 if (!sock) {
1358 err = -ENOMEM;
1359 goto out;
1362 sock->type = type;
1363 err = security_socket_post_create(sock, family, type, protocol, 1);
1364 if (err)
1365 goto out_release;
1367 out:
1368 *res = sock;
1369 return err;
1370 out_release:
1371 sock_release(sock);
1372 sock = NULL;
1373 goto out;
1375 EXPORT_SYMBOL(sock_create_lite);
1377 /* No kernel lock held - perfect */
1378 static __poll_t sock_poll(struct file *file, poll_table *wait)
1380 struct socket *sock = file->private_data;
1381 const struct proto_ops *ops = READ_ONCE(sock->ops);
1382 __poll_t events = poll_requested_events(wait), flag = 0;
1384 if (!ops->poll)
1385 return 0;
1387 if (sk_can_busy_loop(sock->sk)) {
1388 /* poll once if requested by the syscall */
1389 if (events & POLL_BUSY_LOOP)
1390 sk_busy_loop(sock->sk, 1);
1392 /* if this socket can poll_ll, tell the system call */
1393 flag = POLL_BUSY_LOOP;
1396 return ops->poll(file, sock, wait) | flag;
1399 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1401 struct socket *sock = file->private_data;
1403 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1406 static int sock_close(struct inode *inode, struct file *filp)
1408 __sock_release(SOCKET_I(inode), inode);
1409 return 0;
1413 * Update the socket async list
1415 * Fasync_list locking strategy.
1417 * 1. fasync_list is modified only under process context socket lock
1418 * i.e. under semaphore.
1419 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1420 * or under socket lock
1423 static int sock_fasync(int fd, struct file *filp, int on)
1425 struct socket *sock = filp->private_data;
1426 struct sock *sk = sock->sk;
1427 struct socket_wq *wq = &sock->wq;
1429 if (sk == NULL)
1430 return -EINVAL;
1432 lock_sock(sk);
1433 fasync_helper(fd, filp, on, &wq->fasync_list);
1435 if (!wq->fasync_list)
1436 sock_reset_flag(sk, SOCK_FASYNC);
1437 else
1438 sock_set_flag(sk, SOCK_FASYNC);
1440 release_sock(sk);
1441 return 0;
1444 /* This function may be called only under rcu_lock */
1446 int sock_wake_async(struct socket_wq *wq, int how, int band)
1448 if (!wq || !wq->fasync_list)
1449 return -1;
1451 switch (how) {
1452 case SOCK_WAKE_WAITD:
1453 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1454 break;
1455 goto call_kill;
1456 case SOCK_WAKE_SPACE:
1457 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1458 break;
1459 fallthrough;
1460 case SOCK_WAKE_IO:
1461 call_kill:
1462 kill_fasync(&wq->fasync_list, SIGIO, band);
1463 break;
1464 case SOCK_WAKE_URG:
1465 kill_fasync(&wq->fasync_list, SIGURG, band);
1468 return 0;
1470 EXPORT_SYMBOL(sock_wake_async);
1473 * __sock_create - creates a socket
1474 * @net: net namespace
1475 * @family: protocol family (AF_INET, ...)
1476 * @type: communication type (SOCK_STREAM, ...)
1477 * @protocol: protocol (0, ...)
1478 * @res: new socket
1479 * @kern: boolean for kernel space sockets
1481 * Creates a new socket and assigns it to @res, passing through LSM.
1482 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1483 * be set to true if the socket resides in kernel space.
1484 * This function internally uses GFP_KERNEL.
1487 int __sock_create(struct net *net, int family, int type, int protocol,
1488 struct socket **res, int kern)
1490 int err;
1491 struct socket *sock;
1492 const struct net_proto_family *pf;
1495 * Check protocol is in range
1497 if (family < 0 || family >= NPROTO)
1498 return -EAFNOSUPPORT;
1499 if (type < 0 || type >= SOCK_MAX)
1500 return -EINVAL;
1502 /* Compatibility.
1504 This uglymoron is moved from INET layer to here to avoid
1505 deadlock in module load.
1507 if (family == PF_INET && type == SOCK_PACKET) {
1508 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1509 current->comm);
1510 family = PF_PACKET;
1513 err = security_socket_create(family, type, protocol, kern);
1514 if (err)
1515 return err;
1518 * Allocate the socket and allow the family to set things up. if
1519 * the protocol is 0, the family is instructed to select an appropriate
1520 * default.
1522 sock = sock_alloc();
1523 if (!sock) {
1524 net_warn_ratelimited("socket: no more sockets\n");
1525 return -ENFILE; /* Not exactly a match, but its the
1526 closest posix thing */
1529 sock->type = type;
1531 #ifdef CONFIG_MODULES
1532 /* Attempt to load a protocol module if the find failed.
1534 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1535 * requested real, full-featured networking support upon configuration.
1536 * Otherwise module support will break!
1538 if (rcu_access_pointer(net_families[family]) == NULL)
1539 request_module("net-pf-%d", family);
1540 #endif
1542 rcu_read_lock();
1543 pf = rcu_dereference(net_families[family]);
1544 err = -EAFNOSUPPORT;
1545 if (!pf)
1546 goto out_release;
1549 * We will call the ->create function, that possibly is in a loadable
1550 * module, so we have to bump that loadable module refcnt first.
1552 if (!try_module_get(pf->owner))
1553 goto out_release;
1555 /* Now protected by module ref count */
1556 rcu_read_unlock();
1558 err = pf->create(net, sock, protocol, kern);
1559 if (err < 0) {
1560 /* ->create should release the allocated sock->sk object on error
1561 * and make sure sock->sk is set to NULL to avoid use-after-free
1563 DEBUG_NET_WARN_ONCE(sock->sk,
1564 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1565 pf->create, family, type, protocol);
1566 goto out_module_put;
1570 * Now to bump the refcnt of the [loadable] module that owns this
1571 * socket at sock_release time we decrement its refcnt.
1573 if (!try_module_get(sock->ops->owner))
1574 goto out_module_busy;
1577 * Now that we're done with the ->create function, the [loadable]
1578 * module can have its refcnt decremented
1580 module_put(pf->owner);
1581 err = security_socket_post_create(sock, family, type, protocol, kern);
1582 if (err)
1583 goto out_sock_release;
1584 *res = sock;
1586 return 0;
1588 out_module_busy:
1589 err = -EAFNOSUPPORT;
1590 out_module_put:
1591 sock->ops = NULL;
1592 module_put(pf->owner);
1593 out_sock_release:
1594 sock_release(sock);
1595 return err;
1597 out_release:
1598 rcu_read_unlock();
1599 goto out_sock_release;
1601 EXPORT_SYMBOL(__sock_create);
1604 * sock_create - creates a socket
1605 * @family: protocol family (AF_INET, ...)
1606 * @type: communication type (SOCK_STREAM, ...)
1607 * @protocol: protocol (0, ...)
1608 * @res: new socket
1610 * A wrapper around __sock_create().
1611 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1614 int sock_create(int family, int type, int protocol, struct socket **res)
1616 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1618 EXPORT_SYMBOL(sock_create);
1621 * sock_create_kern - creates a socket (kernel space)
1622 * @net: net namespace
1623 * @family: protocol family (AF_INET, ...)
1624 * @type: communication type (SOCK_STREAM, ...)
1625 * @protocol: protocol (0, ...)
1626 * @res: new socket
1628 * A wrapper around __sock_create().
1629 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1632 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1634 return __sock_create(net, family, type, protocol, res, 1);
1636 EXPORT_SYMBOL(sock_create_kern);
1638 static struct socket *__sys_socket_create(int family, int type, int protocol)
1640 struct socket *sock;
1641 int retval;
1643 /* Check the SOCK_* constants for consistency. */
1644 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1645 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1646 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1647 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1649 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1650 return ERR_PTR(-EINVAL);
1651 type &= SOCK_TYPE_MASK;
1653 retval = sock_create(family, type, protocol, &sock);
1654 if (retval < 0)
1655 return ERR_PTR(retval);
1657 return sock;
1660 struct file *__sys_socket_file(int family, int type, int protocol)
1662 struct socket *sock;
1663 int flags;
1665 sock = __sys_socket_create(family, type, protocol);
1666 if (IS_ERR(sock))
1667 return ERR_CAST(sock);
1669 flags = type & ~SOCK_TYPE_MASK;
1670 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1671 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1673 return sock_alloc_file(sock, flags, NULL);
1676 /* A hook for bpf progs to attach to and update socket protocol.
1678 * A static noinline declaration here could cause the compiler to
1679 * optimize away the function. A global noinline declaration will
1680 * keep the definition, but may optimize away the callsite.
1681 * Therefore, __weak is needed to ensure that the call is still
1682 * emitted, by telling the compiler that we don't know what the
1683 * function might eventually be.
1686 __bpf_hook_start();
1688 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1690 return protocol;
1693 __bpf_hook_end();
1695 int __sys_socket(int family, int type, int protocol)
1697 struct socket *sock;
1698 int flags;
1700 sock = __sys_socket_create(family, type,
1701 update_socket_protocol(family, type, protocol));
1702 if (IS_ERR(sock))
1703 return PTR_ERR(sock);
1705 flags = type & ~SOCK_TYPE_MASK;
1706 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1707 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1709 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1712 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1714 return __sys_socket(family, type, protocol);
1718 * Create a pair of connected sockets.
1721 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1723 struct socket *sock1, *sock2;
1724 int fd1, fd2, err;
1725 struct file *newfile1, *newfile2;
1726 int flags;
1728 flags = type & ~SOCK_TYPE_MASK;
1729 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1730 return -EINVAL;
1731 type &= SOCK_TYPE_MASK;
1733 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1734 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1737 * reserve descriptors and make sure we won't fail
1738 * to return them to userland.
1740 fd1 = get_unused_fd_flags(flags);
1741 if (unlikely(fd1 < 0))
1742 return fd1;
1744 fd2 = get_unused_fd_flags(flags);
1745 if (unlikely(fd2 < 0)) {
1746 put_unused_fd(fd1);
1747 return fd2;
1750 err = put_user(fd1, &usockvec[0]);
1751 if (err)
1752 goto out;
1754 err = put_user(fd2, &usockvec[1]);
1755 if (err)
1756 goto out;
1759 * Obtain the first socket and check if the underlying protocol
1760 * supports the socketpair call.
1763 err = sock_create(family, type, protocol, &sock1);
1764 if (unlikely(err < 0))
1765 goto out;
1767 err = sock_create(family, type, protocol, &sock2);
1768 if (unlikely(err < 0)) {
1769 sock_release(sock1);
1770 goto out;
1773 err = security_socket_socketpair(sock1, sock2);
1774 if (unlikely(err)) {
1775 sock_release(sock2);
1776 sock_release(sock1);
1777 goto out;
1780 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1781 if (unlikely(err < 0)) {
1782 sock_release(sock2);
1783 sock_release(sock1);
1784 goto out;
1787 newfile1 = sock_alloc_file(sock1, flags, NULL);
1788 if (IS_ERR(newfile1)) {
1789 err = PTR_ERR(newfile1);
1790 sock_release(sock2);
1791 goto out;
1794 newfile2 = sock_alloc_file(sock2, flags, NULL);
1795 if (IS_ERR(newfile2)) {
1796 err = PTR_ERR(newfile2);
1797 fput(newfile1);
1798 goto out;
1801 audit_fd_pair(fd1, fd2);
1803 fd_install(fd1, newfile1);
1804 fd_install(fd2, newfile2);
1805 return 0;
1807 out:
1808 put_unused_fd(fd2);
1809 put_unused_fd(fd1);
1810 return err;
1813 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1814 int __user *, usockvec)
1816 return __sys_socketpair(family, type, protocol, usockvec);
1819 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1820 int addrlen)
1822 int err;
1824 err = security_socket_bind(sock, (struct sockaddr *)address,
1825 addrlen);
1826 if (!err)
1827 err = READ_ONCE(sock->ops)->bind(sock,
1828 (struct sockaddr *)address,
1829 addrlen);
1830 return err;
1834 * Bind a name to a socket. Nothing much to do here since it's
1835 * the protocol's responsibility to handle the local address.
1837 * We move the socket address to kernel space before we call
1838 * the protocol layer (having also checked the address is ok).
1841 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1843 struct socket *sock;
1844 struct sockaddr_storage address;
1845 CLASS(fd, f)(fd);
1846 int err;
1848 if (fd_empty(f))
1849 return -EBADF;
1850 sock = sock_from_file(fd_file(f));
1851 if (unlikely(!sock))
1852 return -ENOTSOCK;
1854 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1855 if (unlikely(err))
1856 return err;
1858 return __sys_bind_socket(sock, &address, addrlen);
1861 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1863 return __sys_bind(fd, umyaddr, addrlen);
1867 * Perform a listen. Basically, we allow the protocol to do anything
1868 * necessary for a listen, and if that works, we mark the socket as
1869 * ready for listening.
1871 int __sys_listen_socket(struct socket *sock, int backlog)
1873 int somaxconn, err;
1875 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1876 if ((unsigned int)backlog > somaxconn)
1877 backlog = somaxconn;
1879 err = security_socket_listen(sock, backlog);
1880 if (!err)
1881 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1882 return err;
1885 int __sys_listen(int fd, int backlog)
1887 CLASS(fd, f)(fd);
1888 struct socket *sock;
1890 if (fd_empty(f))
1891 return -EBADF;
1892 sock = sock_from_file(fd_file(f));
1893 if (unlikely(!sock))
1894 return -ENOTSOCK;
1896 return __sys_listen_socket(sock, backlog);
1899 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1901 return __sys_listen(fd, backlog);
1904 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1905 struct sockaddr __user *upeer_sockaddr,
1906 int __user *upeer_addrlen, int flags)
1908 struct socket *sock, *newsock;
1909 struct file *newfile;
1910 int err, len;
1911 struct sockaddr_storage address;
1912 const struct proto_ops *ops;
1914 sock = sock_from_file(file);
1915 if (!sock)
1916 return ERR_PTR(-ENOTSOCK);
1918 newsock = sock_alloc();
1919 if (!newsock)
1920 return ERR_PTR(-ENFILE);
1921 ops = READ_ONCE(sock->ops);
1923 newsock->type = sock->type;
1924 newsock->ops = ops;
1927 * We don't need try_module_get here, as the listening socket (sock)
1928 * has the protocol module (sock->ops->owner) held.
1930 __module_get(ops->owner);
1932 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1933 if (IS_ERR(newfile))
1934 return newfile;
1936 err = security_socket_accept(sock, newsock);
1937 if (err)
1938 goto out_fd;
1940 arg->flags |= sock->file->f_flags;
1941 err = ops->accept(sock, newsock, arg);
1942 if (err < 0)
1943 goto out_fd;
1945 if (upeer_sockaddr) {
1946 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1947 if (len < 0) {
1948 err = -ECONNABORTED;
1949 goto out_fd;
1951 err = move_addr_to_user(&address,
1952 len, upeer_sockaddr, upeer_addrlen);
1953 if (err < 0)
1954 goto out_fd;
1957 /* File flags are not inherited via accept() unlike another OSes. */
1958 return newfile;
1959 out_fd:
1960 fput(newfile);
1961 return ERR_PTR(err);
1964 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1965 int __user *upeer_addrlen, int flags)
1967 struct proto_accept_arg arg = { };
1968 struct file *newfile;
1969 int newfd;
1971 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1972 return -EINVAL;
1974 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1975 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1977 newfd = get_unused_fd_flags(flags);
1978 if (unlikely(newfd < 0))
1979 return newfd;
1981 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1982 flags);
1983 if (IS_ERR(newfile)) {
1984 put_unused_fd(newfd);
1985 return PTR_ERR(newfile);
1987 fd_install(newfd, newfile);
1988 return newfd;
1992 * For accept, we attempt to create a new socket, set up the link
1993 * with the client, wake up the client, then return the new
1994 * connected fd. We collect the address of the connector in kernel
1995 * space and move it to user at the very end. This is unclean because
1996 * we open the socket then return an error.
1998 * 1003.1g adds the ability to recvmsg() to query connection pending
1999 * status to recvmsg. We need to add that support in a way thats
2000 * clean when we restructure accept also.
2003 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2004 int __user *upeer_addrlen, int flags)
2006 CLASS(fd, f)(fd);
2008 if (fd_empty(f))
2009 return -EBADF;
2010 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2011 upeer_addrlen, flags);
2014 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2015 int __user *, upeer_addrlen, int, flags)
2017 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2020 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2021 int __user *, upeer_addrlen)
2023 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2027 * Attempt to connect to a socket with the server address. The address
2028 * is in user space so we verify it is OK and move it to kernel space.
2030 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2031 * break bindings
2033 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2034 * other SEQPACKET protocols that take time to connect() as it doesn't
2035 * include the -EINPROGRESS status for such sockets.
2038 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2039 int addrlen, int file_flags)
2041 struct socket *sock;
2042 int err;
2044 sock = sock_from_file(file);
2045 if (!sock) {
2046 err = -ENOTSOCK;
2047 goto out;
2050 err =
2051 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2052 if (err)
2053 goto out;
2055 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2056 addrlen, sock->file->f_flags | file_flags);
2057 out:
2058 return err;
2061 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2063 struct sockaddr_storage address;
2064 CLASS(fd, f)(fd);
2065 int ret;
2067 if (fd_empty(f))
2068 return -EBADF;
2070 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2071 if (ret)
2072 return ret;
2074 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2077 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2078 int, addrlen)
2080 return __sys_connect(fd, uservaddr, addrlen);
2084 * Get the local address ('name') of a socket object. Move the obtained
2085 * name to user space.
2088 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2089 int __user *usockaddr_len)
2091 struct socket *sock;
2092 struct sockaddr_storage address;
2093 CLASS(fd, f)(fd);
2094 int err;
2096 if (fd_empty(f))
2097 return -EBADF;
2098 sock = sock_from_file(fd_file(f));
2099 if (unlikely(!sock))
2100 return -ENOTSOCK;
2102 err = security_socket_getsockname(sock);
2103 if (err)
2104 return err;
2106 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2107 if (err < 0)
2108 return err;
2110 /* "err" is actually length in this case */
2111 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2114 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2115 int __user *, usockaddr_len)
2117 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2121 * Get the remote address ('name') of a socket object. Move the obtained
2122 * name to user space.
2125 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2126 int __user *usockaddr_len)
2128 struct socket *sock;
2129 struct sockaddr_storage address;
2130 CLASS(fd, f)(fd);
2131 int err;
2133 if (fd_empty(f))
2134 return -EBADF;
2135 sock = sock_from_file(fd_file(f));
2136 if (unlikely(!sock))
2137 return -ENOTSOCK;
2139 err = security_socket_getpeername(sock);
2140 if (err)
2141 return err;
2143 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2144 if (err < 0)
2145 return err;
2147 /* "err" is actually length in this case */
2148 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2151 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2152 int __user *, usockaddr_len)
2154 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2158 * Send a datagram to a given address. We move the address into kernel
2159 * space and check the user space data area is readable before invoking
2160 * the protocol.
2162 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2163 struct sockaddr __user *addr, int addr_len)
2165 struct socket *sock;
2166 struct sockaddr_storage address;
2167 int err;
2168 struct msghdr msg;
2170 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2171 if (unlikely(err))
2172 return err;
2174 CLASS(fd, f)(fd);
2175 if (fd_empty(f))
2176 return -EBADF;
2177 sock = sock_from_file(fd_file(f));
2178 if (unlikely(!sock))
2179 return -ENOTSOCK;
2181 msg.msg_name = NULL;
2182 msg.msg_control = NULL;
2183 msg.msg_controllen = 0;
2184 msg.msg_namelen = 0;
2185 msg.msg_ubuf = NULL;
2186 if (addr) {
2187 err = move_addr_to_kernel(addr, addr_len, &address);
2188 if (err < 0)
2189 return err;
2190 msg.msg_name = (struct sockaddr *)&address;
2191 msg.msg_namelen = addr_len;
2193 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2194 if (sock->file->f_flags & O_NONBLOCK)
2195 flags |= MSG_DONTWAIT;
2196 msg.msg_flags = flags;
2197 return __sock_sendmsg(sock, &msg);
2200 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2201 unsigned int, flags, struct sockaddr __user *, addr,
2202 int, addr_len)
2204 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2208 * Send a datagram down a socket.
2211 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2212 unsigned int, flags)
2214 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2218 * Receive a frame from the socket and optionally record the address of the
2219 * sender. We verify the buffers are writable and if needed move the
2220 * sender address from kernel to user space.
2222 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2223 struct sockaddr __user *addr, int __user *addr_len)
2225 struct sockaddr_storage address;
2226 struct msghdr msg = {
2227 /* Save some cycles and don't copy the address if not needed */
2228 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2230 struct socket *sock;
2231 int err, err2;
2233 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2234 if (unlikely(err))
2235 return err;
2237 CLASS(fd, f)(fd);
2239 if (fd_empty(f))
2240 return -EBADF;
2241 sock = sock_from_file(fd_file(f));
2242 if (unlikely(!sock))
2243 return -ENOTSOCK;
2245 if (sock->file->f_flags & O_NONBLOCK)
2246 flags |= MSG_DONTWAIT;
2247 err = sock_recvmsg(sock, &msg, flags);
2249 if (err >= 0 && addr != NULL) {
2250 err2 = move_addr_to_user(&address,
2251 msg.msg_namelen, addr, addr_len);
2252 if (err2 < 0)
2253 err = err2;
2255 return err;
2258 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2259 unsigned int, flags, struct sockaddr __user *, addr,
2260 int __user *, addr_len)
2262 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2266 * Receive a datagram from a socket.
2269 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2270 unsigned int, flags)
2272 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2275 static bool sock_use_custom_sol_socket(const struct socket *sock)
2277 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2280 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2281 int optname, sockptr_t optval, int optlen)
2283 const struct proto_ops *ops;
2284 char *kernel_optval = NULL;
2285 int err;
2287 if (optlen < 0)
2288 return -EINVAL;
2290 err = security_socket_setsockopt(sock, level, optname);
2291 if (err)
2292 goto out_put;
2294 if (!compat)
2295 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2296 optval, &optlen,
2297 &kernel_optval);
2298 if (err < 0)
2299 goto out_put;
2300 if (err > 0) {
2301 err = 0;
2302 goto out_put;
2305 if (kernel_optval)
2306 optval = KERNEL_SOCKPTR(kernel_optval);
2307 ops = READ_ONCE(sock->ops);
2308 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2309 err = sock_setsockopt(sock, level, optname, optval, optlen);
2310 else if (unlikely(!ops->setsockopt))
2311 err = -EOPNOTSUPP;
2312 else
2313 err = ops->setsockopt(sock, level, optname, optval,
2314 optlen);
2315 kfree(kernel_optval);
2316 out_put:
2317 return err;
2319 EXPORT_SYMBOL(do_sock_setsockopt);
2321 /* Set a socket option. Because we don't know the option lengths we have
2322 * to pass the user mode parameter for the protocols to sort out.
2324 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2325 int optlen)
2327 sockptr_t optval = USER_SOCKPTR(user_optval);
2328 bool compat = in_compat_syscall();
2329 struct socket *sock;
2330 CLASS(fd, f)(fd);
2332 if (fd_empty(f))
2333 return -EBADF;
2334 sock = sock_from_file(fd_file(f));
2335 if (unlikely(!sock))
2336 return -ENOTSOCK;
2338 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2341 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2342 char __user *, optval, int, optlen)
2344 return __sys_setsockopt(fd, level, optname, optval, optlen);
2347 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2348 int optname));
2350 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2351 int optname, sockptr_t optval, sockptr_t optlen)
2353 int max_optlen __maybe_unused = 0;
2354 const struct proto_ops *ops;
2355 int err;
2357 err = security_socket_getsockopt(sock, level, optname);
2358 if (err)
2359 return err;
2361 if (!compat)
2362 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2364 ops = READ_ONCE(sock->ops);
2365 if (level == SOL_SOCKET) {
2366 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2367 } else if (unlikely(!ops->getsockopt)) {
2368 err = -EOPNOTSUPP;
2369 } else {
2370 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2371 "Invalid argument type"))
2372 return -EOPNOTSUPP;
2374 err = ops->getsockopt(sock, level, optname, optval.user,
2375 optlen.user);
2378 if (!compat)
2379 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2380 optval, optlen, max_optlen,
2381 err);
2383 return err;
2385 EXPORT_SYMBOL(do_sock_getsockopt);
2388 * Get a socket option. Because we don't know the option lengths we have
2389 * to pass a user mode parameter for the protocols to sort out.
2391 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2392 int __user *optlen)
2394 struct socket *sock;
2395 CLASS(fd, f)(fd);
2397 if (fd_empty(f))
2398 return -EBADF;
2399 sock = sock_from_file(fd_file(f));
2400 if (unlikely(!sock))
2401 return -ENOTSOCK;
2403 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2404 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2407 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2408 char __user *, optval, int __user *, optlen)
2410 return __sys_getsockopt(fd, level, optname, optval, optlen);
2414 * Shutdown a socket.
2417 int __sys_shutdown_sock(struct socket *sock, int how)
2419 int err;
2421 err = security_socket_shutdown(sock, how);
2422 if (!err)
2423 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2425 return err;
2428 int __sys_shutdown(int fd, int how)
2430 struct socket *sock;
2431 CLASS(fd, f)(fd);
2433 if (fd_empty(f))
2434 return -EBADF;
2435 sock = sock_from_file(fd_file(f));
2436 if (unlikely(!sock))
2437 return -ENOTSOCK;
2439 return __sys_shutdown_sock(sock, how);
2442 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2444 return __sys_shutdown(fd, how);
2447 /* A couple of helpful macros for getting the address of the 32/64 bit
2448 * fields which are the same type (int / unsigned) on our platforms.
2450 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2451 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2452 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2454 struct used_address {
2455 struct sockaddr_storage name;
2456 unsigned int name_len;
2459 int __copy_msghdr(struct msghdr *kmsg,
2460 struct user_msghdr *msg,
2461 struct sockaddr __user **save_addr)
2463 ssize_t err;
2465 kmsg->msg_control_is_user = true;
2466 kmsg->msg_get_inq = 0;
2467 kmsg->msg_control_user = msg->msg_control;
2468 kmsg->msg_controllen = msg->msg_controllen;
2469 kmsg->msg_flags = msg->msg_flags;
2471 kmsg->msg_namelen = msg->msg_namelen;
2472 if (!msg->msg_name)
2473 kmsg->msg_namelen = 0;
2475 if (kmsg->msg_namelen < 0)
2476 return -EINVAL;
2478 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2479 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2481 if (save_addr)
2482 *save_addr = msg->msg_name;
2484 if (msg->msg_name && kmsg->msg_namelen) {
2485 if (!save_addr) {
2486 err = move_addr_to_kernel(msg->msg_name,
2487 kmsg->msg_namelen,
2488 kmsg->msg_name);
2489 if (err < 0)
2490 return err;
2492 } else {
2493 kmsg->msg_name = NULL;
2494 kmsg->msg_namelen = 0;
2497 if (msg->msg_iovlen > UIO_MAXIOV)
2498 return -EMSGSIZE;
2500 kmsg->msg_iocb = NULL;
2501 kmsg->msg_ubuf = NULL;
2502 return 0;
2505 static int copy_msghdr_from_user(struct msghdr *kmsg,
2506 struct user_msghdr __user *umsg,
2507 struct sockaddr __user **save_addr,
2508 struct iovec **iov)
2510 struct user_msghdr msg;
2511 ssize_t err;
2513 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2514 return -EFAULT;
2516 err = __copy_msghdr(kmsg, &msg, save_addr);
2517 if (err)
2518 return err;
2520 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2521 msg.msg_iov, msg.msg_iovlen,
2522 UIO_FASTIOV, iov, &kmsg->msg_iter);
2523 return err < 0 ? err : 0;
2526 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2527 unsigned int flags, struct used_address *used_address,
2528 unsigned int allowed_msghdr_flags)
2530 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2531 __aligned(sizeof(__kernel_size_t));
2532 /* 20 is size of ipv6_pktinfo */
2533 unsigned char *ctl_buf = ctl;
2534 int ctl_len;
2535 ssize_t err;
2537 err = -ENOBUFS;
2539 if (msg_sys->msg_controllen > INT_MAX)
2540 goto out;
2541 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2542 ctl_len = msg_sys->msg_controllen;
2543 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2544 err =
2545 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2546 sizeof(ctl));
2547 if (err)
2548 goto out;
2549 ctl_buf = msg_sys->msg_control;
2550 ctl_len = msg_sys->msg_controllen;
2551 } else if (ctl_len) {
2552 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2553 CMSG_ALIGN(sizeof(struct cmsghdr)));
2554 if (ctl_len > sizeof(ctl)) {
2555 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2556 if (ctl_buf == NULL)
2557 goto out;
2559 err = -EFAULT;
2560 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2561 goto out_freectl;
2562 msg_sys->msg_control = ctl_buf;
2563 msg_sys->msg_control_is_user = false;
2565 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2566 msg_sys->msg_flags = flags;
2568 if (sock->file->f_flags & O_NONBLOCK)
2569 msg_sys->msg_flags |= MSG_DONTWAIT;
2571 * If this is sendmmsg() and current destination address is same as
2572 * previously succeeded address, omit asking LSM's decision.
2573 * used_address->name_len is initialized to UINT_MAX so that the first
2574 * destination address never matches.
2576 if (used_address && msg_sys->msg_name &&
2577 used_address->name_len == msg_sys->msg_namelen &&
2578 !memcmp(&used_address->name, msg_sys->msg_name,
2579 used_address->name_len)) {
2580 err = sock_sendmsg_nosec(sock, msg_sys);
2581 goto out_freectl;
2583 err = __sock_sendmsg(sock, msg_sys);
2585 * If this is sendmmsg() and sending to current destination address was
2586 * successful, remember it.
2588 if (used_address && err >= 0) {
2589 used_address->name_len = msg_sys->msg_namelen;
2590 if (msg_sys->msg_name)
2591 memcpy(&used_address->name, msg_sys->msg_name,
2592 used_address->name_len);
2595 out_freectl:
2596 if (ctl_buf != ctl)
2597 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2598 out:
2599 return err;
2602 static int sendmsg_copy_msghdr(struct msghdr *msg,
2603 struct user_msghdr __user *umsg, unsigned flags,
2604 struct iovec **iov)
2606 int err;
2608 if (flags & MSG_CMSG_COMPAT) {
2609 struct compat_msghdr __user *msg_compat;
2611 msg_compat = (struct compat_msghdr __user *) umsg;
2612 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2613 } else {
2614 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2616 if (err < 0)
2617 return err;
2619 return 0;
2622 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2623 struct msghdr *msg_sys, unsigned int flags,
2624 struct used_address *used_address,
2625 unsigned int allowed_msghdr_flags)
2627 struct sockaddr_storage address;
2628 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2629 ssize_t err;
2631 msg_sys->msg_name = &address;
2633 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2634 if (err < 0)
2635 return err;
2637 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2638 allowed_msghdr_flags);
2639 kfree(iov);
2640 return err;
2644 * BSD sendmsg interface
2646 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2647 unsigned int flags)
2649 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2652 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2653 bool forbid_cmsg_compat)
2655 struct msghdr msg_sys;
2656 struct socket *sock;
2658 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2659 return -EINVAL;
2661 CLASS(fd, f)(fd);
2663 if (fd_empty(f))
2664 return -EBADF;
2665 sock = sock_from_file(fd_file(f));
2666 if (unlikely(!sock))
2667 return -ENOTSOCK;
2669 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2672 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2674 return __sys_sendmsg(fd, msg, flags, true);
2678 * Linux sendmmsg interface
2681 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2682 unsigned int flags, bool forbid_cmsg_compat)
2684 int err, datagrams;
2685 struct socket *sock;
2686 struct mmsghdr __user *entry;
2687 struct compat_mmsghdr __user *compat_entry;
2688 struct msghdr msg_sys;
2689 struct used_address used_address;
2690 unsigned int oflags = flags;
2692 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2693 return -EINVAL;
2695 if (vlen > UIO_MAXIOV)
2696 vlen = UIO_MAXIOV;
2698 datagrams = 0;
2700 CLASS(fd, f)(fd);
2702 if (fd_empty(f))
2703 return -EBADF;
2704 sock = sock_from_file(fd_file(f));
2705 if (unlikely(!sock))
2706 return -ENOTSOCK;
2708 used_address.name_len = UINT_MAX;
2709 entry = mmsg;
2710 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2711 err = 0;
2712 flags |= MSG_BATCH;
2714 while (datagrams < vlen) {
2715 if (datagrams == vlen - 1)
2716 flags = oflags;
2718 if (MSG_CMSG_COMPAT & flags) {
2719 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2720 &msg_sys, flags, &used_address, MSG_EOR);
2721 if (err < 0)
2722 break;
2723 err = __put_user(err, &compat_entry->msg_len);
2724 ++compat_entry;
2725 } else {
2726 err = ___sys_sendmsg(sock,
2727 (struct user_msghdr __user *)entry,
2728 &msg_sys, flags, &used_address, MSG_EOR);
2729 if (err < 0)
2730 break;
2731 err = put_user(err, &entry->msg_len);
2732 ++entry;
2735 if (err)
2736 break;
2737 ++datagrams;
2738 if (msg_data_left(&msg_sys))
2739 break;
2740 cond_resched();
2743 /* We only return an error if no datagrams were able to be sent */
2744 if (datagrams != 0)
2745 return datagrams;
2747 return err;
2750 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2751 unsigned int, vlen, unsigned int, flags)
2753 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2756 static int recvmsg_copy_msghdr(struct msghdr *msg,
2757 struct user_msghdr __user *umsg, unsigned flags,
2758 struct sockaddr __user **uaddr,
2759 struct iovec **iov)
2761 ssize_t err;
2763 if (MSG_CMSG_COMPAT & flags) {
2764 struct compat_msghdr __user *msg_compat;
2766 msg_compat = (struct compat_msghdr __user *) umsg;
2767 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2768 } else {
2769 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2771 if (err < 0)
2772 return err;
2774 return 0;
2777 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2778 struct user_msghdr __user *msg,
2779 struct sockaddr __user *uaddr,
2780 unsigned int flags, int nosec)
2782 struct compat_msghdr __user *msg_compat =
2783 (struct compat_msghdr __user *) msg;
2784 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2785 struct sockaddr_storage addr;
2786 unsigned long cmsg_ptr;
2787 int len;
2788 ssize_t err;
2790 msg_sys->msg_name = &addr;
2791 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2792 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2794 /* We assume all kernel code knows the size of sockaddr_storage */
2795 msg_sys->msg_namelen = 0;
2797 if (sock->file->f_flags & O_NONBLOCK)
2798 flags |= MSG_DONTWAIT;
2800 if (unlikely(nosec))
2801 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2802 else
2803 err = sock_recvmsg(sock, msg_sys, flags);
2805 if (err < 0)
2806 goto out;
2807 len = err;
2809 if (uaddr != NULL) {
2810 err = move_addr_to_user(&addr,
2811 msg_sys->msg_namelen, uaddr,
2812 uaddr_len);
2813 if (err < 0)
2814 goto out;
2816 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2817 COMPAT_FLAGS(msg));
2818 if (err)
2819 goto out;
2820 if (MSG_CMSG_COMPAT & flags)
2821 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2822 &msg_compat->msg_controllen);
2823 else
2824 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2825 &msg->msg_controllen);
2826 if (err)
2827 goto out;
2828 err = len;
2829 out:
2830 return err;
2833 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2834 struct msghdr *msg_sys, unsigned int flags, int nosec)
2836 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2837 /* user mode address pointers */
2838 struct sockaddr __user *uaddr;
2839 ssize_t err;
2841 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2842 if (err < 0)
2843 return err;
2845 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2846 kfree(iov);
2847 return err;
2851 * BSD recvmsg interface
2854 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2855 struct user_msghdr __user *umsg,
2856 struct sockaddr __user *uaddr, unsigned int flags)
2858 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2861 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2862 bool forbid_cmsg_compat)
2864 struct msghdr msg_sys;
2865 struct socket *sock;
2867 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2868 return -EINVAL;
2870 CLASS(fd, f)(fd);
2872 if (fd_empty(f))
2873 return -EBADF;
2874 sock = sock_from_file(fd_file(f));
2875 if (unlikely(!sock))
2876 return -ENOTSOCK;
2878 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2881 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2882 unsigned int, flags)
2884 return __sys_recvmsg(fd, msg, flags, true);
2888 * Linux recvmmsg interface
2891 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2892 unsigned int vlen, unsigned int flags,
2893 struct timespec64 *timeout)
2895 int err = 0, datagrams;
2896 struct socket *sock;
2897 struct mmsghdr __user *entry;
2898 struct compat_mmsghdr __user *compat_entry;
2899 struct msghdr msg_sys;
2900 struct timespec64 end_time;
2901 struct timespec64 timeout64;
2903 if (timeout &&
2904 poll_select_set_timeout(&end_time, timeout->tv_sec,
2905 timeout->tv_nsec))
2906 return -EINVAL;
2908 datagrams = 0;
2910 CLASS(fd, f)(fd);
2912 if (fd_empty(f))
2913 return -EBADF;
2914 sock = sock_from_file(fd_file(f));
2915 if (unlikely(!sock))
2916 return -ENOTSOCK;
2918 if (likely(!(flags & MSG_ERRQUEUE))) {
2919 err = sock_error(sock->sk);
2920 if (err)
2921 return err;
2924 entry = mmsg;
2925 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2927 while (datagrams < vlen) {
2929 * No need to ask LSM for more than the first datagram.
2931 if (MSG_CMSG_COMPAT & flags) {
2932 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2933 &msg_sys, flags & ~MSG_WAITFORONE,
2934 datagrams);
2935 if (err < 0)
2936 break;
2937 err = __put_user(err, &compat_entry->msg_len);
2938 ++compat_entry;
2939 } else {
2940 err = ___sys_recvmsg(sock,
2941 (struct user_msghdr __user *)entry,
2942 &msg_sys, flags & ~MSG_WAITFORONE,
2943 datagrams);
2944 if (err < 0)
2945 break;
2946 err = put_user(err, &entry->msg_len);
2947 ++entry;
2950 if (err)
2951 break;
2952 ++datagrams;
2954 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2955 if (flags & MSG_WAITFORONE)
2956 flags |= MSG_DONTWAIT;
2958 if (timeout) {
2959 ktime_get_ts64(&timeout64);
2960 *timeout = timespec64_sub(end_time, timeout64);
2961 if (timeout->tv_sec < 0) {
2962 timeout->tv_sec = timeout->tv_nsec = 0;
2963 break;
2966 /* Timeout, return less than vlen datagrams */
2967 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2968 break;
2971 /* Out of band data, return right away */
2972 if (msg_sys.msg_flags & MSG_OOB)
2973 break;
2974 cond_resched();
2977 if (err == 0)
2978 return datagrams;
2980 if (datagrams == 0)
2981 return err;
2984 * We may return less entries than requested (vlen) if the
2985 * sock is non block and there aren't enough datagrams...
2987 if (err != -EAGAIN) {
2989 * ... or if recvmsg returns an error after we
2990 * received some datagrams, where we record the
2991 * error to return on the next call or if the
2992 * app asks about it using getsockopt(SO_ERROR).
2994 WRITE_ONCE(sock->sk->sk_err, -err);
2996 return datagrams;
2999 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3000 unsigned int vlen, unsigned int flags,
3001 struct __kernel_timespec __user *timeout,
3002 struct old_timespec32 __user *timeout32)
3004 int datagrams;
3005 struct timespec64 timeout_sys;
3007 if (timeout && get_timespec64(&timeout_sys, timeout))
3008 return -EFAULT;
3010 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3011 return -EFAULT;
3013 if (!timeout && !timeout32)
3014 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3016 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3018 if (datagrams <= 0)
3019 return datagrams;
3021 if (timeout && put_timespec64(&timeout_sys, timeout))
3022 datagrams = -EFAULT;
3024 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3025 datagrams = -EFAULT;
3027 return datagrams;
3030 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3031 unsigned int, vlen, unsigned int, flags,
3032 struct __kernel_timespec __user *, timeout)
3034 if (flags & MSG_CMSG_COMPAT)
3035 return -EINVAL;
3037 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3040 #ifdef CONFIG_COMPAT_32BIT_TIME
3041 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3042 unsigned int, vlen, unsigned int, flags,
3043 struct old_timespec32 __user *, timeout)
3045 if (flags & MSG_CMSG_COMPAT)
3046 return -EINVAL;
3048 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3050 #endif
3052 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3053 /* Argument list sizes for sys_socketcall */
3054 #define AL(x) ((x) * sizeof(unsigned long))
3055 static const unsigned char nargs[21] = {
3056 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3057 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3058 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3059 AL(4), AL(5), AL(4)
3062 #undef AL
3065 * System call vectors.
3067 * Argument checking cleaned up. Saved 20% in size.
3068 * This function doesn't need to set the kernel lock because
3069 * it is set by the callees.
3072 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3074 unsigned long a[AUDITSC_ARGS];
3075 unsigned long a0, a1;
3076 int err;
3077 unsigned int len;
3079 if (call < 1 || call > SYS_SENDMMSG)
3080 return -EINVAL;
3081 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3083 len = nargs[call];
3084 if (len > sizeof(a))
3085 return -EINVAL;
3087 /* copy_from_user should be SMP safe. */
3088 if (copy_from_user(a, args, len))
3089 return -EFAULT;
3091 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3092 if (err)
3093 return err;
3095 a0 = a[0];
3096 a1 = a[1];
3098 switch (call) {
3099 case SYS_SOCKET:
3100 err = __sys_socket(a0, a1, a[2]);
3101 break;
3102 case SYS_BIND:
3103 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3104 break;
3105 case SYS_CONNECT:
3106 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3107 break;
3108 case SYS_LISTEN:
3109 err = __sys_listen(a0, a1);
3110 break;
3111 case SYS_ACCEPT:
3112 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3113 (int __user *)a[2], 0);
3114 break;
3115 case SYS_GETSOCKNAME:
3116 err =
3117 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3118 (int __user *)a[2]);
3119 break;
3120 case SYS_GETPEERNAME:
3121 err =
3122 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3123 (int __user *)a[2]);
3124 break;
3125 case SYS_SOCKETPAIR:
3126 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3127 break;
3128 case SYS_SEND:
3129 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3130 NULL, 0);
3131 break;
3132 case SYS_SENDTO:
3133 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3134 (struct sockaddr __user *)a[4], a[5]);
3135 break;
3136 case SYS_RECV:
3137 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3138 NULL, NULL);
3139 break;
3140 case SYS_RECVFROM:
3141 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3142 (struct sockaddr __user *)a[4],
3143 (int __user *)a[5]);
3144 break;
3145 case SYS_SHUTDOWN:
3146 err = __sys_shutdown(a0, a1);
3147 break;
3148 case SYS_SETSOCKOPT:
3149 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3150 a[4]);
3151 break;
3152 case SYS_GETSOCKOPT:
3153 err =
3154 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3155 (int __user *)a[4]);
3156 break;
3157 case SYS_SENDMSG:
3158 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3159 a[2], true);
3160 break;
3161 case SYS_SENDMMSG:
3162 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3163 a[3], true);
3164 break;
3165 case SYS_RECVMSG:
3166 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3167 a[2], true);
3168 break;
3169 case SYS_RECVMMSG:
3170 if (IS_ENABLED(CONFIG_64BIT))
3171 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3172 a[2], a[3],
3173 (struct __kernel_timespec __user *)a[4],
3174 NULL);
3175 else
3176 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3177 a[2], a[3], NULL,
3178 (struct old_timespec32 __user *)a[4]);
3179 break;
3180 case SYS_ACCEPT4:
3181 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3182 (int __user *)a[2], a[3]);
3183 break;
3184 default:
3185 err = -EINVAL;
3186 break;
3188 return err;
3191 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3194 * sock_register - add a socket protocol handler
3195 * @ops: description of protocol
3197 * This function is called by a protocol handler that wants to
3198 * advertise its address family, and have it linked into the
3199 * socket interface. The value ops->family corresponds to the
3200 * socket system call protocol family.
3202 int sock_register(const struct net_proto_family *ops)
3204 int err;
3206 if (ops->family >= NPROTO) {
3207 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3208 return -ENOBUFS;
3211 spin_lock(&net_family_lock);
3212 if (rcu_dereference_protected(net_families[ops->family],
3213 lockdep_is_held(&net_family_lock)))
3214 err = -EEXIST;
3215 else {
3216 rcu_assign_pointer(net_families[ops->family], ops);
3217 err = 0;
3219 spin_unlock(&net_family_lock);
3221 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3222 return err;
3224 EXPORT_SYMBOL(sock_register);
3227 * sock_unregister - remove a protocol handler
3228 * @family: protocol family to remove
3230 * This function is called by a protocol handler that wants to
3231 * remove its address family, and have it unlinked from the
3232 * new socket creation.
3234 * If protocol handler is a module, then it can use module reference
3235 * counts to protect against new references. If protocol handler is not
3236 * a module then it needs to provide its own protection in
3237 * the ops->create routine.
3239 void sock_unregister(int family)
3241 BUG_ON(family < 0 || family >= NPROTO);
3243 spin_lock(&net_family_lock);
3244 RCU_INIT_POINTER(net_families[family], NULL);
3245 spin_unlock(&net_family_lock);
3247 synchronize_rcu();
3249 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3251 EXPORT_SYMBOL(sock_unregister);
3253 bool sock_is_registered(int family)
3255 return family < NPROTO && rcu_access_pointer(net_families[family]);
3258 static int __init sock_init(void)
3260 int err;
3262 * Initialize the network sysctl infrastructure.
3264 err = net_sysctl_init();
3265 if (err)
3266 goto out;
3269 * Initialize skbuff SLAB cache
3271 skb_init();
3274 * Initialize the protocols module.
3277 init_inodecache();
3279 err = register_filesystem(&sock_fs_type);
3280 if (err)
3281 goto out;
3282 sock_mnt = kern_mount(&sock_fs_type);
3283 if (IS_ERR(sock_mnt)) {
3284 err = PTR_ERR(sock_mnt);
3285 goto out_mount;
3288 /* The real protocol initialization is performed in later initcalls.
3291 #ifdef CONFIG_NETFILTER
3292 err = netfilter_init();
3293 if (err)
3294 goto out;
3295 #endif
3297 ptp_classifier_init();
3299 out:
3300 return err;
3302 out_mount:
3303 unregister_filesystem(&sock_fs_type);
3304 goto out;
3307 core_initcall(sock_init); /* early initcall */
3309 #ifdef CONFIG_PROC_FS
3310 void socket_seq_show(struct seq_file *seq)
3312 seq_printf(seq, "sockets: used %d\n",
3313 sock_inuse_get(seq->private));
3315 #endif /* CONFIG_PROC_FS */
3317 /* Handle the fact that while struct ifreq has the same *layout* on
3318 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3319 * which are handled elsewhere, it still has different *size* due to
3320 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3321 * resulting in struct ifreq being 32 and 40 bytes respectively).
3322 * As a result, if the struct happens to be at the end of a page and
3323 * the next page isn't readable/writable, we get a fault. To prevent
3324 * that, copy back and forth to the full size.
3326 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3328 if (in_compat_syscall()) {
3329 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3331 memset(ifr, 0, sizeof(*ifr));
3332 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3333 return -EFAULT;
3335 if (ifrdata)
3336 *ifrdata = compat_ptr(ifr32->ifr_data);
3338 return 0;
3341 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3342 return -EFAULT;
3344 if (ifrdata)
3345 *ifrdata = ifr->ifr_data;
3347 return 0;
3349 EXPORT_SYMBOL(get_user_ifreq);
3351 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3353 size_t size = sizeof(*ifr);
3355 if (in_compat_syscall())
3356 size = sizeof(struct compat_ifreq);
3358 if (copy_to_user(arg, ifr, size))
3359 return -EFAULT;
3361 return 0;
3363 EXPORT_SYMBOL(put_user_ifreq);
3365 #ifdef CONFIG_COMPAT
3366 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3368 compat_uptr_t uptr32;
3369 struct ifreq ifr;
3370 void __user *saved;
3371 int err;
3373 if (get_user_ifreq(&ifr, NULL, uifr32))
3374 return -EFAULT;
3376 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3377 return -EFAULT;
3379 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3380 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3382 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3383 if (!err) {
3384 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3385 if (put_user_ifreq(&ifr, uifr32))
3386 err = -EFAULT;
3388 return err;
3391 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3392 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3393 struct compat_ifreq __user *u_ifreq32)
3395 struct ifreq ifreq;
3396 void __user *data;
3398 if (!is_socket_ioctl_cmd(cmd))
3399 return -ENOTTY;
3400 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3401 return -EFAULT;
3402 ifreq.ifr_data = data;
3404 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3407 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3408 unsigned int cmd, unsigned long arg)
3410 void __user *argp = compat_ptr(arg);
3411 struct sock *sk = sock->sk;
3412 struct net *net = sock_net(sk);
3413 const struct proto_ops *ops;
3415 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3416 return sock_ioctl(file, cmd, (unsigned long)argp);
3418 switch (cmd) {
3419 case SIOCWANDEV:
3420 return compat_siocwandev(net, argp);
3421 case SIOCGSTAMP_OLD:
3422 case SIOCGSTAMPNS_OLD:
3423 ops = READ_ONCE(sock->ops);
3424 if (!ops->gettstamp)
3425 return -ENOIOCTLCMD;
3426 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3427 !COMPAT_USE_64BIT_TIME);
3429 case SIOCETHTOOL:
3430 case SIOCBONDSLAVEINFOQUERY:
3431 case SIOCBONDINFOQUERY:
3432 case SIOCSHWTSTAMP:
3433 case SIOCGHWTSTAMP:
3434 return compat_ifr_data_ioctl(net, cmd, argp);
3436 case FIOSETOWN:
3437 case SIOCSPGRP:
3438 case FIOGETOWN:
3439 case SIOCGPGRP:
3440 case SIOCBRADDBR:
3441 case SIOCBRDELBR:
3442 case SIOCGIFVLAN:
3443 case SIOCSIFVLAN:
3444 case SIOCGSKNS:
3445 case SIOCGSTAMP_NEW:
3446 case SIOCGSTAMPNS_NEW:
3447 case SIOCGIFCONF:
3448 case SIOCSIFBR:
3449 case SIOCGIFBR:
3450 return sock_ioctl(file, cmd, arg);
3452 case SIOCGIFFLAGS:
3453 case SIOCSIFFLAGS:
3454 case SIOCGIFMAP:
3455 case SIOCSIFMAP:
3456 case SIOCGIFMETRIC:
3457 case SIOCSIFMETRIC:
3458 case SIOCGIFMTU:
3459 case SIOCSIFMTU:
3460 case SIOCGIFMEM:
3461 case SIOCSIFMEM:
3462 case SIOCGIFHWADDR:
3463 case SIOCSIFHWADDR:
3464 case SIOCADDMULTI:
3465 case SIOCDELMULTI:
3466 case SIOCGIFINDEX:
3467 case SIOCGIFADDR:
3468 case SIOCSIFADDR:
3469 case SIOCSIFHWBROADCAST:
3470 case SIOCDIFADDR:
3471 case SIOCGIFBRDADDR:
3472 case SIOCSIFBRDADDR:
3473 case SIOCGIFDSTADDR:
3474 case SIOCSIFDSTADDR:
3475 case SIOCGIFNETMASK:
3476 case SIOCSIFNETMASK:
3477 case SIOCSIFPFLAGS:
3478 case SIOCGIFPFLAGS:
3479 case SIOCGIFTXQLEN:
3480 case SIOCSIFTXQLEN:
3481 case SIOCBRADDIF:
3482 case SIOCBRDELIF:
3483 case SIOCGIFNAME:
3484 case SIOCSIFNAME:
3485 case SIOCGMIIPHY:
3486 case SIOCGMIIREG:
3487 case SIOCSMIIREG:
3488 case SIOCBONDENSLAVE:
3489 case SIOCBONDRELEASE:
3490 case SIOCBONDSETHWADDR:
3491 case SIOCBONDCHANGEACTIVE:
3492 case SIOCSARP:
3493 case SIOCGARP:
3494 case SIOCDARP:
3495 case SIOCOUTQ:
3496 case SIOCOUTQNSD:
3497 case SIOCATMARK:
3498 return sock_do_ioctl(net, sock, cmd, arg);
3501 return -ENOIOCTLCMD;
3504 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3505 unsigned long arg)
3507 struct socket *sock = file->private_data;
3508 const struct proto_ops *ops = READ_ONCE(sock->ops);
3509 int ret = -ENOIOCTLCMD;
3510 struct sock *sk;
3511 struct net *net;
3513 sk = sock->sk;
3514 net = sock_net(sk);
3516 if (ops->compat_ioctl)
3517 ret = ops->compat_ioctl(sock, cmd, arg);
3519 if (ret == -ENOIOCTLCMD &&
3520 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3521 ret = compat_wext_handle_ioctl(net, cmd, arg);
3523 if (ret == -ENOIOCTLCMD)
3524 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3526 return ret;
3528 #endif
3531 * kernel_bind - bind an address to a socket (kernel space)
3532 * @sock: socket
3533 * @addr: address
3534 * @addrlen: length of address
3536 * Returns 0 or an error.
3539 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3541 struct sockaddr_storage address;
3543 memcpy(&address, addr, addrlen);
3545 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3546 addrlen);
3548 EXPORT_SYMBOL(kernel_bind);
3551 * kernel_listen - move socket to listening state (kernel space)
3552 * @sock: socket
3553 * @backlog: pending connections queue size
3555 * Returns 0 or an error.
3558 int kernel_listen(struct socket *sock, int backlog)
3560 return READ_ONCE(sock->ops)->listen(sock, backlog);
3562 EXPORT_SYMBOL(kernel_listen);
3565 * kernel_accept - accept a connection (kernel space)
3566 * @sock: listening socket
3567 * @newsock: new connected socket
3568 * @flags: flags
3570 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3571 * If it fails, @newsock is guaranteed to be %NULL.
3572 * Returns 0 or an error.
3575 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3577 struct sock *sk = sock->sk;
3578 const struct proto_ops *ops = READ_ONCE(sock->ops);
3579 struct proto_accept_arg arg = {
3580 .flags = flags,
3581 .kern = true,
3583 int err;
3585 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3586 newsock);
3587 if (err < 0)
3588 goto done;
3590 err = ops->accept(sock, *newsock, &arg);
3591 if (err < 0) {
3592 sock_release(*newsock);
3593 *newsock = NULL;
3594 goto done;
3597 (*newsock)->ops = ops;
3598 __module_get(ops->owner);
3600 done:
3601 return err;
3603 EXPORT_SYMBOL(kernel_accept);
3606 * kernel_connect - connect a socket (kernel space)
3607 * @sock: socket
3608 * @addr: address
3609 * @addrlen: address length
3610 * @flags: flags (O_NONBLOCK, ...)
3612 * For datagram sockets, @addr is the address to which datagrams are sent
3613 * by default, and the only address from which datagrams are received.
3614 * For stream sockets, attempts to connect to @addr.
3615 * Returns 0 or an error code.
3618 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3619 int flags)
3621 struct sockaddr_storage address;
3623 memcpy(&address, addr, addrlen);
3625 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3626 addrlen, flags);
3628 EXPORT_SYMBOL(kernel_connect);
3631 * kernel_getsockname - get the address which the socket is bound (kernel space)
3632 * @sock: socket
3633 * @addr: address holder
3635 * Fills the @addr pointer with the address which the socket is bound.
3636 * Returns the length of the address in bytes or an error code.
3639 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3641 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3643 EXPORT_SYMBOL(kernel_getsockname);
3646 * kernel_getpeername - get the address which the socket is connected (kernel space)
3647 * @sock: socket
3648 * @addr: address holder
3650 * Fills the @addr pointer with the address which the socket is connected.
3651 * Returns the length of the address in bytes or an error code.
3654 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3656 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3658 EXPORT_SYMBOL(kernel_getpeername);
3661 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3662 * @sock: socket
3663 * @how: connection part
3665 * Returns 0 or an error.
3668 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3670 return READ_ONCE(sock->ops)->shutdown(sock, how);
3672 EXPORT_SYMBOL(kernel_sock_shutdown);
3675 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3676 * @sk: socket
3678 * This routine returns the IP overhead imposed by a socket i.e.
3679 * the length of the underlying IP header, depending on whether
3680 * this is an IPv4 or IPv6 socket and the length from IP options turned
3681 * on at the socket. Assumes that the caller has a lock on the socket.
3684 u32 kernel_sock_ip_overhead(struct sock *sk)
3686 struct inet_sock *inet;
3687 struct ip_options_rcu *opt;
3688 u32 overhead = 0;
3689 #if IS_ENABLED(CONFIG_IPV6)
3690 struct ipv6_pinfo *np;
3691 struct ipv6_txoptions *optv6 = NULL;
3692 #endif /* IS_ENABLED(CONFIG_IPV6) */
3694 if (!sk)
3695 return overhead;
3697 switch (sk->sk_family) {
3698 case AF_INET:
3699 inet = inet_sk(sk);
3700 overhead += sizeof(struct iphdr);
3701 opt = rcu_dereference_protected(inet->inet_opt,
3702 sock_owned_by_user(sk));
3703 if (opt)
3704 overhead += opt->opt.optlen;
3705 return overhead;
3706 #if IS_ENABLED(CONFIG_IPV6)
3707 case AF_INET6:
3708 np = inet6_sk(sk);
3709 overhead += sizeof(struct ipv6hdr);
3710 if (np)
3711 optv6 = rcu_dereference_protected(np->opt,
3712 sock_owned_by_user(sk));
3713 if (optv6)
3714 overhead += (optv6->opt_flen + optv6->opt_nflen);
3715 return overhead;
3716 #endif /* IS_ENABLED(CONFIG_IPV6) */
3717 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3718 return overhead;
3721 EXPORT_SYMBOL(kernel_sock_ip_overhead);