2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <linux/units.h>
62 #include <net/cfg80211.h>
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
72 #define REG_ENFORCE_GRACE_MS 60000
75 * enum reg_request_treatment - regulatory request treatment
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
84 enum reg_request_treatment
{
91 static struct regulatory_request core_request_world
= {
92 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
97 .country_ie_env
= ENVIRON_ANY
,
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
104 static struct regulatory_request __rcu
*last_request
=
105 (void __force __rcu
*)&core_request_world
;
107 /* To trigger userspace events and load firmware */
108 static struct platform_device
*reg_pdev
;
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
116 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
123 static int reg_num_devs_support_basehint
;
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
130 static bool reg_is_indoor
;
131 static DEFINE_SPINLOCK(reg_indoor_lock
);
133 /* Used to track the userspace process controlling the indoor setting */
134 static u32 reg_is_indoor_portid
;
136 static void restore_regulatory_settings(bool reset_user
, bool cached
);
137 static void print_regdomain(const struct ieee80211_regdomain
*rd
);
138 static void reg_process_hint(struct regulatory_request
*reg_request
);
140 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
142 return rcu_dereference_rtnl(cfg80211_regdomain
);
146 * Returns the regulatory domain associated with the wiphy.
148 * Requires any of RTNL, wiphy mutex or RCU protection.
150 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
152 return rcu_dereference_check(wiphy
->regd
,
153 lockdep_is_held(&wiphy
->mtx
) ||
154 lockdep_rtnl_is_held());
156 EXPORT_SYMBOL(get_wiphy_regdom
);
158 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
160 switch (dfs_region
) {
161 case NL80211_DFS_UNSET
:
163 case NL80211_DFS_FCC
:
165 case NL80211_DFS_ETSI
:
173 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
175 const struct ieee80211_regdomain
*regd
= NULL
;
176 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
177 enum nl80211_dfs_regions dfs_region
;
180 regd
= get_cfg80211_regdom();
181 dfs_region
= regd
->dfs_region
;
186 wiphy_regd
= get_wiphy_regdom(wiphy
);
190 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
191 dfs_region
= wiphy_regd
->dfs_region
;
195 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy
->dev
),
200 reg_dfs_region_str(wiphy_regd
->dfs_region
),
201 reg_dfs_region_str(regd
->dfs_region
));
209 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
213 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
216 static struct regulatory_request
*get_last_request(void)
218 return rcu_dereference_rtnl(last_request
);
221 /* Used to queue up regulatory hints */
222 static LIST_HEAD(reg_requests_list
);
223 static DEFINE_SPINLOCK(reg_requests_lock
);
225 /* Used to queue up beacon hints for review */
226 static LIST_HEAD(reg_pending_beacons
);
227 static DEFINE_SPINLOCK(reg_pending_beacons_lock
);
229 /* Used to keep track of processed beacon hints */
230 static LIST_HEAD(reg_beacon_list
);
233 struct list_head list
;
234 struct ieee80211_channel chan
;
237 static void reg_check_chans_work(struct work_struct
*work
);
238 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
240 static void reg_todo(struct work_struct
*work
);
241 static DECLARE_WORK(reg_work
, reg_todo
);
243 /* We keep a static world regulatory domain in case of the absence of CRDA */
244 static const struct ieee80211_regdomain world_regdom
= {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
257 NL80211_RRF_NO_OFDM
),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
261 NL80211_RRF_AUTO_BW
),
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
266 NL80211_RRF_AUTO_BW
|
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
283 /* protected by RTNL */
284 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
287 static char *ieee80211_regdom
= "00";
288 static char user_alpha2
[2];
289 static const struct ieee80211_regdomain
*cfg80211_user_regdom
;
291 module_param(ieee80211_regdom
, charp
, 0444);
292 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
294 static void reg_free_request(struct regulatory_request
*request
)
296 if (request
== &core_request_world
)
299 if (request
!= get_last_request())
303 static void reg_free_last_request(void)
305 struct regulatory_request
*lr
= get_last_request();
307 if (lr
!= &core_request_world
&& lr
)
308 kfree_rcu(lr
, rcu_head
);
311 static void reg_update_last_request(struct regulatory_request
*request
)
313 struct regulatory_request
*lr
;
315 lr
= get_last_request();
319 reg_free_last_request();
320 rcu_assign_pointer(last_request
, request
);
323 static void reset_regdomains(bool full_reset
,
324 const struct ieee80211_regdomain
*new_regdom
)
326 const struct ieee80211_regdomain
*r
;
330 r
= get_cfg80211_regdom();
332 /* avoid freeing static information or freeing something twice */
333 if (r
== cfg80211_world_regdom
)
335 if (cfg80211_world_regdom
== &world_regdom
)
336 cfg80211_world_regdom
= NULL
;
337 if (r
== &world_regdom
)
341 rcu_free_regdom(cfg80211_world_regdom
);
343 cfg80211_world_regdom
= &world_regdom
;
344 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
349 reg_update_last_request(&core_request_world
);
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
356 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
358 struct regulatory_request
*lr
;
360 lr
= get_last_request();
364 reset_regdomains(false, rd
);
366 cfg80211_world_regdom
= rd
;
369 bool is_world_regdom(const char *alpha2
)
373 return alpha2
[0] == '0' && alpha2
[1] == '0';
376 static bool is_alpha2_set(const char *alpha2
)
380 return alpha2
[0] && alpha2
[1];
383 static bool is_unknown_alpha2(const char *alpha2
)
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
391 return alpha2
[0] == '9' && alpha2
[1] == '9';
394 static bool is_intersected_alpha2(const char *alpha2
)
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
403 return alpha2
[0] == '9' && alpha2
[1] == '8';
406 static bool is_an_alpha2(const char *alpha2
)
410 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
413 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
415 if (!alpha2_x
|| !alpha2_y
)
417 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
420 static bool regdom_changes(const char *alpha2
)
422 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
426 return !alpha2_equal(r
->alpha2
, alpha2
);
430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432 * has ever been issued.
434 static bool is_user_regdom_saved(void)
436 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
439 /* This would indicate a mistake on the design */
440 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
441 "Unexpected user alpha2: %c%c\n",
442 user_alpha2
[0], user_alpha2
[1]))
448 static const struct ieee80211_regdomain
*
449 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
451 struct ieee80211_regdomain
*regd
;
454 regd
= kzalloc(struct_size(regd
, reg_rules
, src_regd
->n_reg_rules
),
457 return ERR_PTR(-ENOMEM
);
459 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
461 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
462 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
463 sizeof(struct ieee80211_reg_rule
));
468 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain
*rd
)
472 if (!IS_ERR(cfg80211_user_regdom
))
473 kfree(cfg80211_user_regdom
);
474 cfg80211_user_regdom
= reg_copy_regd(rd
);
477 struct reg_regdb_apply_request
{
478 struct list_head list
;
479 const struct ieee80211_regdomain
*regdom
;
482 static LIST_HEAD(reg_regdb_apply_list
);
483 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
485 static void reg_regdb_apply(struct work_struct
*work
)
487 struct reg_regdb_apply_request
*request
;
491 mutex_lock(®_regdb_apply_mutex
);
492 while (!list_empty(®_regdb_apply_list
)) {
493 request
= list_first_entry(®_regdb_apply_list
,
494 struct reg_regdb_apply_request
,
496 list_del(&request
->list
);
498 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
501 mutex_unlock(®_regdb_apply_mutex
);
506 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
508 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
510 struct reg_regdb_apply_request
*request
;
512 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
518 request
->regdom
= regdom
;
520 mutex_lock(®_regdb_apply_mutex
);
521 list_add_tail(&request
->list
, ®_regdb_apply_list
);
522 mutex_unlock(®_regdb_apply_mutex
);
524 schedule_work(®_regdb_work
);
528 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
529 /* Max number of consecutive attempts to communicate with CRDA */
530 #define REG_MAX_CRDA_TIMEOUTS 10
532 static u32 reg_crda_timeouts
;
534 static void crda_timeout_work(struct work_struct
*work
);
535 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
537 static void crda_timeout_work(struct work_struct
*work
)
539 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
542 restore_regulatory_settings(true, false);
546 static void cancel_crda_timeout(void)
548 cancel_delayed_work(&crda_timeout
);
551 static void cancel_crda_timeout_sync(void)
553 cancel_delayed_work_sync(&crda_timeout
);
556 static void reset_crda_timeouts(void)
558 reg_crda_timeouts
= 0;
562 * This lets us keep regulatory code which is updated on a regulatory
563 * basis in userspace.
565 static int call_crda(const char *alpha2
)
568 char *env
[] = { country
, NULL
};
571 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
572 alpha2
[0], alpha2
[1]);
574 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
575 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
579 if (!is_world_regdom((char *) alpha2
))
580 pr_debug("Calling CRDA for country: %c%c\n",
581 alpha2
[0], alpha2
[1]);
583 pr_debug("Calling CRDA to update world regulatory domain\n");
585 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
589 queue_delayed_work(system_power_efficient_wq
,
590 &crda_timeout
, msecs_to_jiffies(3142));
594 static inline void cancel_crda_timeout(void) {}
595 static inline void cancel_crda_timeout_sync(void) {}
596 static inline void reset_crda_timeouts(void) {}
597 static inline int call_crda(const char *alpha2
)
601 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
603 /* code to directly load a firmware database through request_firmware */
604 static const struct fwdb_header
*regdb
;
606 struct fwdb_country
{
609 /* this struct cannot be extended */
610 } __packed
__aligned(4);
612 struct fwdb_collection
{
616 /* no optional data yet */
617 /* aligned to 2, then followed by __be16 array of rule pointers */
618 } __packed
__aligned(4);
621 FWDB_FLAG_NO_OFDM
= BIT(0),
622 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
623 FWDB_FLAG_DFS
= BIT(2),
624 FWDB_FLAG_NO_IR
= BIT(3),
625 FWDB_FLAG_AUTO_BW
= BIT(4),
634 struct fwdb_wmm_rule
{
635 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
636 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
643 __be32 start
, end
, max_bw
;
644 /* start of optional data */
647 } __packed
__aligned(4);
649 #define FWDB_MAGIC 0x52474442
650 #define FWDB_VERSION 20
655 struct fwdb_country country
[];
656 } __packed
__aligned(4);
658 static int ecw2cw(int ecw
)
660 return (1 << ecw
) - 1;
663 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
665 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
668 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
669 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
670 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
671 u8 aifsn
= ac
[i
].aifsn
;
673 if (cw_min
>= cw_max
)
683 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
685 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
687 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
690 /* mandatory fields */
691 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
693 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
694 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
695 struct fwdb_wmm_rule
*wmm
;
697 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
700 wmm
= (void *)(data
+ wmm_ptr
);
708 static bool valid_country(const u8
*data
, unsigned int size
,
709 const struct fwdb_country
*country
)
711 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
712 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
716 /* make sure we can read len/n_rules */
717 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
720 /* make sure base struct and all rules fit */
721 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
722 (coll
->n_rules
* 2) > data
+ size
)
725 /* mandatory fields must exist */
726 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
729 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
731 for (i
= 0; i
< coll
->n_rules
; i
++) {
732 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
734 if (!valid_rule(data
, size
, rule_ptr
))
741 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742 #include <keys/asymmetric-type.h>
744 static struct key
*builtin_regdb_keys
;
746 static int __init
load_builtin_regdb_keys(void)
749 keyring_alloc(".builtin_regdb_keys",
750 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
752 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
753 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
754 if (IS_ERR(builtin_regdb_keys
))
755 return PTR_ERR(builtin_regdb_keys
);
757 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
759 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760 x509_load_certificate_list(shipped_regdb_certs
,
761 shipped_regdb_certs_len
,
764 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
766 x509_load_certificate_list(extra_regdb_certs
,
767 extra_regdb_certs_len
,
774 MODULE_FIRMWARE("regulatory.db.p7s");
776 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
778 const struct firmware
*sig
;
781 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
784 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
786 VERIFYING_UNSPECIFIED_SIGNATURE
,
789 release_firmware(sig
);
794 static void free_regdb_keyring(void)
796 key_put(builtin_regdb_keys
);
799 static int load_builtin_regdb_keys(void)
804 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
809 static void free_regdb_keyring(void)
812 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
814 static bool valid_regdb(const u8
*data
, unsigned int size
)
816 const struct fwdb_header
*hdr
= (void *)data
;
817 const struct fwdb_country
*country
;
819 if (size
< sizeof(*hdr
))
822 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
825 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
828 if (!regdb_has_valid_signature(data
, size
))
831 country
= &hdr
->country
[0];
832 while ((u8
*)(country
+ 1) <= data
+ size
) {
833 if (!country
->coll_ptr
)
835 if (!valid_country(data
, size
, country
))
843 static void set_wmm_rule(const struct fwdb_header
*db
,
844 const struct fwdb_country
*country
,
845 const struct fwdb_rule
*rule
,
846 struct ieee80211_reg_rule
*rrule
)
848 struct ieee80211_wmm_rule
*wmm_rule
= &rrule
->wmm_rule
;
849 struct fwdb_wmm_rule
*wmm
;
850 unsigned int i
, wmm_ptr
;
852 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
853 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
855 if (!valid_wmm(wmm
)) {
856 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857 be32_to_cpu(rule
->start
), be32_to_cpu(rule
->end
),
858 country
->alpha2
[0], country
->alpha2
[1]);
862 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
863 wmm_rule
->client
[i
].cw_min
=
864 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
865 wmm_rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
866 wmm_rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
867 wmm_rule
->client
[i
].cot
=
868 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
869 wmm_rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
870 wmm_rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
871 wmm_rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
872 wmm_rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
875 rrule
->has_wmm
= true;
878 static int __regdb_query_wmm(const struct fwdb_header
*db
,
879 const struct fwdb_country
*country
, int freq
,
880 struct ieee80211_reg_rule
*rrule
)
882 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
883 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
886 for (i
= 0; i
< coll
->n_rules
; i
++) {
887 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
888 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
889 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
891 if (rule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
894 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rule
->start
)) &&
895 freq
<= KHZ_TO_MHZ(be32_to_cpu(rule
->end
))) {
896 set_wmm_rule(db
, country
, rule
, rrule
);
904 int reg_query_regdb_wmm(char *alpha2
, int freq
, struct ieee80211_reg_rule
*rule
)
906 const struct fwdb_header
*hdr
= regdb
;
907 const struct fwdb_country
*country
;
913 return PTR_ERR(regdb
);
915 country
= &hdr
->country
[0];
916 while (country
->coll_ptr
) {
917 if (alpha2_equal(alpha2
, country
->alpha2
))
918 return __regdb_query_wmm(regdb
, country
, freq
, rule
);
925 EXPORT_SYMBOL(reg_query_regdb_wmm
);
927 static int regdb_query_country(const struct fwdb_header
*db
,
928 const struct fwdb_country
*country
)
930 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
931 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
932 struct ieee80211_regdomain
*regdom
;
935 regdom
= kzalloc(struct_size(regdom
, reg_rules
, coll
->n_rules
),
940 regdom
->n_reg_rules
= coll
->n_rules
;
941 regdom
->alpha2
[0] = country
->alpha2
[0];
942 regdom
->alpha2
[1] = country
->alpha2
[1];
943 regdom
->dfs_region
= coll
->dfs_region
;
945 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
946 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
947 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
948 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
949 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
951 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
952 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
953 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
955 rrule
->power_rule
.max_antenna_gain
= 0;
956 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
959 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
960 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
961 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
962 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
963 if (rule
->flags
& FWDB_FLAG_DFS
)
964 rrule
->flags
|= NL80211_RRF_DFS
;
965 if (rule
->flags
& FWDB_FLAG_NO_IR
)
966 rrule
->flags
|= NL80211_RRF_NO_IR
;
967 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
968 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
970 rrule
->dfs_cac_ms
= 0;
972 /* handle optional data */
973 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
975 1000 * be16_to_cpu(rule
->cac_timeout
);
976 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
))
977 set_wmm_rule(db
, country
, rule
, rrule
);
980 return reg_schedule_apply(regdom
);
983 static int query_regdb(const char *alpha2
)
985 const struct fwdb_header
*hdr
= regdb
;
986 const struct fwdb_country
*country
;
991 return PTR_ERR(regdb
);
993 country
= &hdr
->country
[0];
994 while (country
->coll_ptr
) {
995 if (alpha2_equal(alpha2
, country
->alpha2
))
996 return regdb_query_country(regdb
, country
);
1003 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1006 bool restore
= true;
1010 pr_info("failed to load regulatory.db\n");
1011 set_error
= -ENODATA
;
1012 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1013 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014 set_error
= -EINVAL
;
1018 if (regdb
&& !IS_ERR(regdb
)) {
1019 /* negative case - a bug
1020 * positive case - can happen due to race in case of multiple cb's in
1021 * queue, due to usage of asynchronous callback
1023 * Either case, just restore and free new db.
1025 } else if (set_error
) {
1026 regdb
= ERR_PTR(set_error
);
1028 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1031 restore
= context
&& query_regdb(context
);
1038 restore_regulatory_settings(true, false);
1044 release_firmware(fw
);
1047 MODULE_FIRMWARE("regulatory.db");
1049 static int query_regdb_file(const char *alpha2
)
1056 return query_regdb(alpha2
);
1058 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1062 err
= request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1063 ®_pdev
->dev
, GFP_KERNEL
,
1064 (void *)alpha2
, regdb_fw_cb
);
1071 int reg_reload_regdb(void)
1073 const struct firmware
*fw
;
1076 const struct ieee80211_regdomain
*current_regdomain
;
1077 struct regulatory_request
*request
;
1079 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1083 if (!valid_regdb(fw
->data
, fw
->size
)) {
1088 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1095 if (!IS_ERR_OR_NULL(regdb
))
1099 /* reset regulatory domain */
1100 current_regdomain
= get_cfg80211_regdom();
1102 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
1108 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
1109 request
->alpha2
[0] = current_regdomain
->alpha2
[0];
1110 request
->alpha2
[1] = current_regdomain
->alpha2
[1];
1111 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1112 request
->user_reg_hint_type
= NL80211_USER_REG_HINT_USER
;
1114 reg_process_hint(request
);
1119 release_firmware(fw
);
1123 static bool reg_query_database(struct regulatory_request
*request
)
1125 if (query_regdb_file(request
->alpha2
) == 0)
1128 if (call_crda(request
->alpha2
) == 0)
1134 bool reg_is_valid_request(const char *alpha2
)
1136 struct regulatory_request
*lr
= get_last_request();
1138 if (!lr
|| lr
->processed
)
1141 return alpha2_equal(lr
->alpha2
, alpha2
);
1144 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1146 struct regulatory_request
*lr
= get_last_request();
1149 * Follow the driver's regulatory domain, if present, unless a country
1150 * IE has been processed or a user wants to help compliance further
1152 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1153 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1155 return get_wiphy_regdom(wiphy
);
1157 return get_cfg80211_regdom();
1161 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1162 const struct ieee80211_reg_rule
*rule
)
1164 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1165 const struct ieee80211_freq_range
*freq_range_tmp
;
1166 const struct ieee80211_reg_rule
*tmp
;
1167 u32 start_freq
, end_freq
, idx
, no
;
1169 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1170 if (rule
== &rd
->reg_rules
[idx
])
1173 if (idx
== rd
->n_reg_rules
)
1176 /* get start_freq */
1180 tmp
= &rd
->reg_rules
[--no
];
1181 freq_range_tmp
= &tmp
->freq_range
;
1183 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1186 freq_range
= freq_range_tmp
;
1189 start_freq
= freq_range
->start_freq_khz
;
1192 freq_range
= &rule
->freq_range
;
1195 while (no
< rd
->n_reg_rules
- 1) {
1196 tmp
= &rd
->reg_rules
[++no
];
1197 freq_range_tmp
= &tmp
->freq_range
;
1199 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1202 freq_range
= freq_range_tmp
;
1205 end_freq
= freq_range
->end_freq_khz
;
1207 return end_freq
- start_freq
;
1210 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1211 const struct ieee80211_reg_rule
*rule
)
1213 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1215 if (rule
->flags
& NL80211_RRF_NO_320MHZ
)
1216 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(160));
1217 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1218 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1219 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1220 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1223 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1226 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1227 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1228 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1233 /* Sanity check on a regulatory rule */
1234 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1236 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1239 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1242 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1245 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1247 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1248 freq_range
->max_bandwidth_khz
> freq_diff
)
1254 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1256 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1259 if (!rd
->n_reg_rules
)
1262 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1265 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1266 reg_rule
= &rd
->reg_rules
[i
];
1267 if (!is_valid_reg_rule(reg_rule
))
1275 * freq_in_rule_band - tells us if a frequency is in a frequency band
1276 * @freq_range: frequency rule we want to query
1277 * @freq_khz: frequency we are inquiring about
1279 * This lets us know if a specific frequency rule is or is not relevant to
1280 * a specific frequency's band. Bands are device specific and artificial
1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282 * however it is safe for now to assume that a frequency rule should not be
1283 * part of a frequency's band if the start freq or end freq are off by more
1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1286 * This resolution can be lowered and should be considered as we add
1287 * regulatory rule support for other "bands".
1289 * Returns: whether or not the frequency is in the range
1291 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1295 * From 802.11ad: directional multi-gigabit (DMG):
1296 * Pertaining to operation in a frequency band containing a channel
1297 * with the Channel starting frequency above 45 GHz.
1299 u32 limit
= freq_khz
> 45 * KHZ_PER_GHZ
? 20 * KHZ_PER_GHZ
: 2 * KHZ_PER_GHZ
;
1300 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1302 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1312 static enum nl80211_dfs_regions
1313 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1314 const enum nl80211_dfs_regions dfs_region2
)
1316 if (dfs_region1
!= dfs_region2
)
1317 return NL80211_DFS_UNSET
;
1321 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac
*wmm_ac1
,
1322 const struct ieee80211_wmm_ac
*wmm_ac2
,
1323 struct ieee80211_wmm_ac
*intersect
)
1325 intersect
->cw_min
= max_t(u16
, wmm_ac1
->cw_min
, wmm_ac2
->cw_min
);
1326 intersect
->cw_max
= max_t(u16
, wmm_ac1
->cw_max
, wmm_ac2
->cw_max
);
1327 intersect
->cot
= min_t(u16
, wmm_ac1
->cot
, wmm_ac2
->cot
);
1328 intersect
->aifsn
= max_t(u8
, wmm_ac1
->aifsn
, wmm_ac2
->aifsn
);
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1335 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1336 const struct ieee80211_regdomain
*rd2
,
1337 const struct ieee80211_reg_rule
*rule1
,
1338 const struct ieee80211_reg_rule
*rule2
,
1339 struct ieee80211_reg_rule
*intersected_rule
)
1341 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1342 struct ieee80211_freq_range
*freq_range
;
1343 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1344 struct ieee80211_power_rule
*power_rule
;
1345 const struct ieee80211_wmm_rule
*wmm_rule1
, *wmm_rule2
;
1346 struct ieee80211_wmm_rule
*wmm_rule
;
1347 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1349 freq_range1
= &rule1
->freq_range
;
1350 freq_range2
= &rule2
->freq_range
;
1351 freq_range
= &intersected_rule
->freq_range
;
1353 power_rule1
= &rule1
->power_rule
;
1354 power_rule2
= &rule2
->power_rule
;
1355 power_rule
= &intersected_rule
->power_rule
;
1357 wmm_rule1
= &rule1
->wmm_rule
;
1358 wmm_rule2
= &rule2
->wmm_rule
;
1359 wmm_rule
= &intersected_rule
->wmm_rule
;
1361 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1362 freq_range2
->start_freq_khz
);
1363 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1364 freq_range2
->end_freq_khz
);
1366 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1367 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1369 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1370 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1371 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1372 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1374 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1376 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1379 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 * set AUTO_BW in intersected rule also. Next we will
1381 * calculate BW correctly in handle_channel function.
1382 * In other case remove AUTO_BW flag while we calculate
1383 * maximum bandwidth correctly and auto calculation is
1386 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1387 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1388 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1390 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1392 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1393 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1394 freq_range
->max_bandwidth_khz
= freq_diff
;
1396 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1397 power_rule2
->max_eirp
);
1398 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1399 power_rule2
->max_antenna_gain
);
1401 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1404 if (rule1
->has_wmm
&& rule2
->has_wmm
) {
1407 for (ac
= 0; ac
< IEEE80211_NUM_ACS
; ac
++) {
1408 reg_wmm_rules_intersect(&wmm_rule1
->client
[ac
],
1409 &wmm_rule2
->client
[ac
],
1410 &wmm_rule
->client
[ac
]);
1411 reg_wmm_rules_intersect(&wmm_rule1
->ap
[ac
],
1416 intersected_rule
->has_wmm
= true;
1417 } else if (rule1
->has_wmm
) {
1418 *wmm_rule
= *wmm_rule1
;
1419 intersected_rule
->has_wmm
= true;
1420 } else if (rule2
->has_wmm
) {
1421 *wmm_rule
= *wmm_rule2
;
1422 intersected_rule
->has_wmm
= true;
1424 intersected_rule
->has_wmm
= false;
1427 if (!is_valid_reg_rule(intersected_rule
))
1433 /* check whether old rule contains new rule */
1434 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1435 struct ieee80211_reg_rule
*r2
)
1437 /* for simplicity, currently consider only same flags */
1438 if (r1
->flags
!= r2
->flags
)
1441 /* verify r1 is more restrictive */
1442 if ((r1
->power_rule
.max_antenna_gain
>
1443 r2
->power_rule
.max_antenna_gain
) ||
1444 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1447 /* make sure r2's range is contained within r1 */
1448 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1449 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1452 /* and finally verify that r1.max_bw >= r2.max_bw */
1453 if (r1
->freq_range
.max_bandwidth_khz
<
1454 r2
->freq_range
.max_bandwidth_khz
)
1460 /* add or extend current rules. do nothing if rule is already contained */
1461 static void add_rule(struct ieee80211_reg_rule
*rule
,
1462 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1464 struct ieee80211_reg_rule
*tmp_rule
;
1467 for (i
= 0; i
< *n_rules
; i
++) {
1468 tmp_rule
= ®_rules
[i
];
1469 /* rule is already contained - do nothing */
1470 if (rule_contains(tmp_rule
, rule
))
1473 /* extend rule if possible */
1474 if (rule_contains(rule
, tmp_rule
)) {
1475 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1480 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1497 * Returns: the intersected regdomain
1499 static struct ieee80211_regdomain
*
1500 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1501 const struct ieee80211_regdomain
*rd2
)
1505 unsigned int num_rules
= 0;
1506 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1507 struct ieee80211_reg_rule intersected_rule
;
1508 struct ieee80211_regdomain
*rd
;
1514 * First we get a count of the rules we'll need, then we actually
1515 * build them. This is to so we can malloc() and free() a
1516 * regdomain once. The reason we use reg_rules_intersect() here
1517 * is it will return -EINVAL if the rule computed makes no sense.
1518 * All rules that do check out OK are valid.
1521 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1522 rule1
= &rd1
->reg_rules
[x
];
1523 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1524 rule2
= &rd2
->reg_rules
[y
];
1525 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1534 rd
= kzalloc(struct_size(rd
, reg_rules
, num_rules
), GFP_KERNEL
);
1538 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1539 rule1
= &rd1
->reg_rules
[x
];
1540 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1541 rule2
= &rd2
->reg_rules
[y
];
1542 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1545 * No need to memset here the intersected rule here as
1546 * we're not using the stack anymore
1551 add_rule(&intersected_rule
, rd
->reg_rules
,
1556 rd
->alpha2
[0] = '9';
1557 rd
->alpha2
[1] = '8';
1558 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566 * want to just have the channel structure use these
1568 static u32
map_regdom_flags(u32 rd_flags
)
1570 u32 channel_flags
= 0;
1571 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1572 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1573 if (rd_flags
& NL80211_RRF_DFS
)
1574 channel_flags
|= IEEE80211_CHAN_RADAR
;
1575 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1576 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1577 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1578 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1579 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1580 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1581 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1582 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1583 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1584 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1585 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1586 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1587 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1588 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1589 if (rd_flags
& NL80211_RRF_NO_HE
)
1590 channel_flags
|= IEEE80211_CHAN_NO_HE
;
1591 if (rd_flags
& NL80211_RRF_NO_320MHZ
)
1592 channel_flags
|= IEEE80211_CHAN_NO_320MHZ
;
1593 if (rd_flags
& NL80211_RRF_NO_EHT
)
1594 channel_flags
|= IEEE80211_CHAN_NO_EHT
;
1595 if (rd_flags
& NL80211_RRF_DFS_CONCURRENT
)
1596 channel_flags
|= IEEE80211_CHAN_DFS_CONCURRENT
;
1597 if (rd_flags
& NL80211_RRF_NO_6GHZ_VLP_CLIENT
)
1598 channel_flags
|= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT
;
1599 if (rd_flags
& NL80211_RRF_NO_6GHZ_AFC_CLIENT
)
1600 channel_flags
|= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT
;
1601 if (rd_flags
& NL80211_RRF_PSD
)
1602 channel_flags
|= IEEE80211_CHAN_PSD
;
1603 if (rd_flags
& NL80211_RRF_ALLOW_6GHZ_VLP_AP
)
1604 channel_flags
|= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP
;
1605 return channel_flags
;
1608 static const struct ieee80211_reg_rule
*
1609 freq_reg_info_regd(u32 center_freq
,
1610 const struct ieee80211_regdomain
*regd
, u32 bw
)
1613 bool band_rule_found
= false;
1614 bool bw_fits
= false;
1617 return ERR_PTR(-EINVAL
);
1619 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1620 const struct ieee80211_reg_rule
*rr
;
1621 const struct ieee80211_freq_range
*fr
= NULL
;
1623 rr
= ®d
->reg_rules
[i
];
1624 fr
= &rr
->freq_range
;
1627 * We only need to know if one frequency rule was
1628 * in center_freq's band, that's enough, so let's
1629 * not overwrite it once found
1631 if (!band_rule_found
)
1632 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1634 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1636 if (band_rule_found
&& bw_fits
)
1640 if (!band_rule_found
)
1641 return ERR_PTR(-ERANGE
);
1643 return ERR_PTR(-EINVAL
);
1646 static const struct ieee80211_reg_rule
*
1647 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1649 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1650 static const u32 bws
[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1651 const struct ieee80211_reg_rule
*reg_rule
= ERR_PTR(-ERANGE
);
1652 int i
= ARRAY_SIZE(bws
) - 1;
1655 for (bw
= MHZ_TO_KHZ(bws
[i
]); bw
>= min_bw
; bw
= MHZ_TO_KHZ(bws
[i
--])) {
1656 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1657 if (!IS_ERR(reg_rule
))
1664 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1667 u32 min_bw
= center_freq
< MHZ_TO_KHZ(1000) ? 1 : 20;
1669 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(min_bw
));
1671 EXPORT_SYMBOL(freq_reg_info
);
1673 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1675 switch (initiator
) {
1676 case NL80211_REGDOM_SET_BY_CORE
:
1678 case NL80211_REGDOM_SET_BY_USER
:
1680 case NL80211_REGDOM_SET_BY_DRIVER
:
1682 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1683 return "country element";
1689 EXPORT_SYMBOL(reg_initiator_name
);
1691 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1692 const struct ieee80211_reg_rule
*reg_rule
,
1693 const struct ieee80211_channel
*chan
)
1695 const struct ieee80211_freq_range
*freq_range
= NULL
;
1696 u32 max_bandwidth_khz
, center_freq_khz
, bw_flags
= 0;
1697 bool is_s1g
= chan
->band
== NL80211_BAND_S1GHZ
;
1699 freq_range
= ®_rule
->freq_range
;
1701 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1702 center_freq_khz
= ieee80211_channel_to_khz(chan
);
1703 /* Check if auto calculation requested */
1704 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1705 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1707 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1708 if (!cfg80211_does_bw_fit_range(freq_range
,
1711 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1712 if (!cfg80211_does_bw_fit_range(freq_range
,
1715 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1718 /* S1G is strict about non overlapping channels. We can
1719 * calculate which bandwidth is allowed per channel by finding
1720 * the largest bandwidth which cleanly divides the freq_range.
1723 int ch_bw
= max_bandwidth_khz
;
1726 edge_offset
= (center_freq_khz
- ch_bw
/ 2) -
1727 freq_range
->start_freq_khz
;
1728 if (edge_offset
% ch_bw
== 0) {
1729 switch (KHZ_TO_MHZ(ch_bw
)) {
1731 bw_flags
|= IEEE80211_CHAN_1MHZ
;
1734 bw_flags
|= IEEE80211_CHAN_2MHZ
;
1737 bw_flags
|= IEEE80211_CHAN_4MHZ
;
1740 bw_flags
|= IEEE80211_CHAN_8MHZ
;
1743 bw_flags
|= IEEE80211_CHAN_16MHZ
;
1746 /* If we got here, no bandwidths fit on
1747 * this frequency, ie. band edge.
1749 bw_flags
|= IEEE80211_CHAN_DISABLED
;
1757 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1758 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1759 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1760 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1761 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1762 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1763 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1764 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1765 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1766 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1767 if (max_bandwidth_khz
< MHZ_TO_KHZ(320))
1768 bw_flags
|= IEEE80211_CHAN_NO_320MHZ
;
1773 static void handle_channel_single_rule(struct wiphy
*wiphy
,
1774 enum nl80211_reg_initiator initiator
,
1775 struct ieee80211_channel
*chan
,
1777 struct regulatory_request
*lr
,
1778 struct wiphy
*request_wiphy
,
1779 const struct ieee80211_reg_rule
*reg_rule
)
1782 const struct ieee80211_power_rule
*power_rule
= NULL
;
1783 const struct ieee80211_regdomain
*regd
;
1785 regd
= reg_get_regdomain(wiphy
);
1787 power_rule
= ®_rule
->power_rule
;
1788 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1790 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1791 request_wiphy
&& request_wiphy
== wiphy
&&
1792 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1794 * This guarantees the driver's requested regulatory domain
1795 * will always be used as a base for further regulatory
1798 chan
->flags
= chan
->orig_flags
=
1799 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1800 chan
->max_antenna_gain
= chan
->orig_mag
=
1801 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1802 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1803 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1805 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1806 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1807 if (reg_rule
->dfs_cac_ms
)
1808 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1811 if (chan
->flags
& IEEE80211_CHAN_PSD
)
1812 chan
->psd
= reg_rule
->psd
;
1817 chan
->dfs_state
= NL80211_DFS_USABLE
;
1818 chan
->dfs_state_entered
= jiffies
;
1820 chan
->beacon_found
= false;
1821 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1822 chan
->max_antenna_gain
=
1823 min_t(int, chan
->orig_mag
,
1824 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1825 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1827 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1828 if (reg_rule
->dfs_cac_ms
)
1829 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1831 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1834 if (chan
->flags
& IEEE80211_CHAN_PSD
)
1835 chan
->psd
= reg_rule
->psd
;
1837 if (chan
->orig_mpwr
) {
1839 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1840 * will always follow the passed country IE power settings.
1842 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1843 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1844 chan
->max_power
= chan
->max_reg_power
;
1846 chan
->max_power
= min(chan
->orig_mpwr
,
1847 chan
->max_reg_power
);
1849 chan
->max_power
= chan
->max_reg_power
;
1852 static void handle_channel_adjacent_rules(struct wiphy
*wiphy
,
1853 enum nl80211_reg_initiator initiator
,
1854 struct ieee80211_channel
*chan
,
1856 struct regulatory_request
*lr
,
1857 struct wiphy
*request_wiphy
,
1858 const struct ieee80211_reg_rule
*rrule1
,
1859 const struct ieee80211_reg_rule
*rrule2
,
1860 struct ieee80211_freq_range
*comb_range
)
1864 const struct ieee80211_power_rule
*power_rule1
= NULL
;
1865 const struct ieee80211_power_rule
*power_rule2
= NULL
;
1866 const struct ieee80211_regdomain
*regd
;
1868 regd
= reg_get_regdomain(wiphy
);
1870 power_rule1
= &rrule1
->power_rule
;
1871 power_rule2
= &rrule2
->power_rule
;
1872 bw_flags1
= reg_rule_to_chan_bw_flags(regd
, rrule1
, chan
);
1873 bw_flags2
= reg_rule_to_chan_bw_flags(regd
, rrule2
, chan
);
1875 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1876 request_wiphy
&& request_wiphy
== wiphy
&&
1877 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1878 /* This guarantees the driver's requested regulatory domain
1879 * will always be used as a base for further regulatory
1883 map_regdom_flags(rrule1
->flags
) |
1884 map_regdom_flags(rrule2
->flags
) |
1887 chan
->orig_flags
= chan
->flags
;
1888 chan
->max_antenna_gain
=
1889 min_t(int, MBI_TO_DBI(power_rule1
->max_antenna_gain
),
1890 MBI_TO_DBI(power_rule2
->max_antenna_gain
));
1891 chan
->orig_mag
= chan
->max_antenna_gain
;
1892 chan
->max_reg_power
=
1893 min_t(int, MBM_TO_DBM(power_rule1
->max_eirp
),
1894 MBM_TO_DBM(power_rule2
->max_eirp
));
1895 chan
->max_power
= chan
->max_reg_power
;
1896 chan
->orig_mpwr
= chan
->max_reg_power
;
1898 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1899 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1900 if (rrule1
->dfs_cac_ms
|| rrule2
->dfs_cac_ms
)
1901 chan
->dfs_cac_ms
= max_t(unsigned int,
1903 rrule2
->dfs_cac_ms
);
1906 if ((rrule1
->flags
& NL80211_RRF_PSD
) &&
1907 (rrule2
->flags
& NL80211_RRF_PSD
))
1908 chan
->psd
= min_t(s8
, rrule1
->psd
, rrule2
->psd
);
1910 chan
->flags
&= ~NL80211_RRF_PSD
;
1915 chan
->dfs_state
= NL80211_DFS_USABLE
;
1916 chan
->dfs_state_entered
= jiffies
;
1918 chan
->beacon_found
= false;
1919 chan
->flags
= flags
| bw_flags1
| bw_flags2
|
1920 map_regdom_flags(rrule1
->flags
) |
1921 map_regdom_flags(rrule2
->flags
);
1923 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1924 * (otherwise no adj. rule case), recheck therefore
1926 if (cfg80211_does_bw_fit_range(comb_range
,
1927 ieee80211_channel_to_khz(chan
),
1929 chan
->flags
&= ~IEEE80211_CHAN_NO_10MHZ
;
1930 if (cfg80211_does_bw_fit_range(comb_range
,
1931 ieee80211_channel_to_khz(chan
),
1933 chan
->flags
&= ~IEEE80211_CHAN_NO_20MHZ
;
1935 chan
->max_antenna_gain
=
1936 min_t(int, chan
->orig_mag
,
1938 MBI_TO_DBI(power_rule1
->max_antenna_gain
),
1939 MBI_TO_DBI(power_rule2
->max_antenna_gain
)));
1940 chan
->max_reg_power
= min_t(int,
1941 MBM_TO_DBM(power_rule1
->max_eirp
),
1942 MBM_TO_DBM(power_rule2
->max_eirp
));
1944 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1945 if (rrule1
->dfs_cac_ms
|| rrule2
->dfs_cac_ms
)
1946 chan
->dfs_cac_ms
= max_t(unsigned int,
1948 rrule2
->dfs_cac_ms
);
1950 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1953 if (chan
->orig_mpwr
) {
1954 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1955 * will always follow the passed country IE power settings.
1957 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1958 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1959 chan
->max_power
= chan
->max_reg_power
;
1961 chan
->max_power
= min(chan
->orig_mpwr
,
1962 chan
->max_reg_power
);
1964 chan
->max_power
= chan
->max_reg_power
;
1968 /* Note that right now we assume the desired channel bandwidth
1969 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1970 * per channel, the primary and the extension channel).
1972 static void handle_channel(struct wiphy
*wiphy
,
1973 enum nl80211_reg_initiator initiator
,
1974 struct ieee80211_channel
*chan
)
1976 const u32 orig_chan_freq
= ieee80211_channel_to_khz(chan
);
1977 struct regulatory_request
*lr
= get_last_request();
1978 struct wiphy
*request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1979 const struct ieee80211_reg_rule
*rrule
= NULL
;
1980 const struct ieee80211_reg_rule
*rrule1
= NULL
;
1981 const struct ieee80211_reg_rule
*rrule2
= NULL
;
1983 u32 flags
= chan
->orig_flags
;
1985 rrule
= freq_reg_info(wiphy
, orig_chan_freq
);
1986 if (IS_ERR(rrule
)) {
1987 /* check for adjacent match, therefore get rules for
1988 * chan - 20 MHz and chan + 20 MHz and test
1989 * if reg rules are adjacent
1991 rrule1
= freq_reg_info(wiphy
,
1992 orig_chan_freq
- MHZ_TO_KHZ(20));
1993 rrule2
= freq_reg_info(wiphy
,
1994 orig_chan_freq
+ MHZ_TO_KHZ(20));
1995 if (!IS_ERR(rrule1
) && !IS_ERR(rrule2
)) {
1996 struct ieee80211_freq_range comb_range
;
1998 if (rrule1
->freq_range
.end_freq_khz
!=
1999 rrule2
->freq_range
.start_freq_khz
)
2002 comb_range
.start_freq_khz
=
2003 rrule1
->freq_range
.start_freq_khz
;
2004 comb_range
.end_freq_khz
=
2005 rrule2
->freq_range
.end_freq_khz
;
2006 comb_range
.max_bandwidth_khz
=
2008 rrule1
->freq_range
.max_bandwidth_khz
,
2009 rrule2
->freq_range
.max_bandwidth_khz
);
2011 if (!cfg80211_does_bw_fit_range(&comb_range
,
2016 handle_channel_adjacent_rules(wiphy
, initiator
, chan
,
2017 flags
, lr
, request_wiphy
,
2024 /* We will disable all channels that do not match our
2025 * received regulatory rule unless the hint is coming
2026 * from a Country IE and the Country IE had no information
2027 * about a band. The IEEE 802.11 spec allows for an AP
2028 * to send only a subset of the regulatory rules allowed,
2029 * so an AP in the US that only supports 2.4 GHz may only send
2030 * a country IE with information for the 2.4 GHz band
2031 * while 5 GHz is still supported.
2033 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2034 PTR_ERR(rrule
) == -ERANGE
)
2037 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2038 request_wiphy
&& request_wiphy
== wiphy
&&
2039 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2040 pr_debug("Disabling freq %d.%03d MHz for good\n",
2041 chan
->center_freq
, chan
->freq_offset
);
2042 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2043 chan
->flags
= chan
->orig_flags
;
2045 pr_debug("Disabling freq %d.%03d MHz\n",
2046 chan
->center_freq
, chan
->freq_offset
);
2047 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2052 handle_channel_single_rule(wiphy
, initiator
, chan
, flags
, lr
,
2053 request_wiphy
, rrule
);
2056 static void handle_band(struct wiphy
*wiphy
,
2057 enum nl80211_reg_initiator initiator
,
2058 struct ieee80211_supported_band
*sband
)
2065 for (i
= 0; i
< sband
->n_channels
; i
++)
2066 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
2069 static bool reg_request_cell_base(struct regulatory_request
*request
)
2071 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
2073 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
2076 bool reg_last_request_cell_base(void)
2078 return reg_request_cell_base(get_last_request());
2081 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2082 /* Core specific check */
2083 static enum reg_request_treatment
2084 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
2086 struct regulatory_request
*lr
= get_last_request();
2088 if (!reg_num_devs_support_basehint
)
2089 return REG_REQ_IGNORE
;
2091 if (reg_request_cell_base(lr
) &&
2092 !regdom_changes(pending_request
->alpha2
))
2093 return REG_REQ_ALREADY_SET
;
2098 /* Device specific check */
2099 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
2101 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
2104 static enum reg_request_treatment
2105 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
2107 return REG_REQ_IGNORE
;
2110 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
2116 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
2118 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
2119 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
2124 static bool ignore_reg_update(struct wiphy
*wiphy
,
2125 enum nl80211_reg_initiator initiator
)
2127 struct regulatory_request
*lr
= get_last_request();
2129 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2133 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2134 reg_initiator_name(initiator
));
2138 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2139 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
2140 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2141 reg_initiator_name(initiator
));
2146 * wiphy->regd will be set once the device has its own
2147 * desired regulatory domain set
2149 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
2150 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2151 !is_world_regdom(lr
->alpha2
)) {
2152 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2153 reg_initiator_name(initiator
));
2157 if (reg_request_cell_base(lr
))
2158 return reg_dev_ignore_cell_hint(wiphy
);
2163 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
2165 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
2166 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
2167 struct regulatory_request
*lr
= get_last_request();
2169 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
2172 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2173 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
2179 static void reg_call_notifier(struct wiphy
*wiphy
,
2180 struct regulatory_request
*request
)
2182 if (wiphy
->reg_notifier
)
2183 wiphy
->reg_notifier(wiphy
, request
);
2186 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
2187 struct reg_beacon
*reg_beacon
)
2189 struct ieee80211_supported_band
*sband
;
2190 struct ieee80211_channel
*chan
;
2191 bool channel_changed
= false;
2192 struct ieee80211_channel chan_before
;
2193 struct regulatory_request
*lr
= get_last_request();
2195 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2196 chan
= &sband
->channels
[chan_idx
];
2198 if (likely(!ieee80211_channel_equal(chan
, ®_beacon
->chan
)))
2201 if (chan
->beacon_found
)
2204 chan
->beacon_found
= true;
2206 if (!reg_is_world_roaming(wiphy
))
2209 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
2212 chan_before
= *chan
;
2214 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
2215 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
2216 channel_changed
= true;
2219 if (channel_changed
) {
2220 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
2221 if (wiphy
->flags
& WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON
)
2222 reg_call_notifier(wiphy
, lr
);
2227 * Called when a scan on a wiphy finds a beacon on
2230 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
2231 struct reg_beacon
*reg_beacon
)
2234 struct ieee80211_supported_band
*sband
;
2236 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
2239 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2241 for (i
= 0; i
< sband
->n_channels
; i
++)
2242 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2246 * Called upon reg changes or a new wiphy is added
2248 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
2251 struct ieee80211_supported_band
*sband
;
2252 struct reg_beacon
*reg_beacon
;
2254 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
2255 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
2257 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
2258 for (i
= 0; i
< sband
->n_channels
; i
++)
2259 handle_reg_beacon(wiphy
, i
, reg_beacon
);
2263 /* Reap the advantages of previously found beacons */
2264 static void reg_process_beacons(struct wiphy
*wiphy
)
2267 * Means we are just firing up cfg80211, so no beacons would
2268 * have been processed yet.
2272 wiphy_update_beacon_reg(wiphy
);
2275 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
2279 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
2281 /* This would happen when regulatory rules disallow HT40 completely */
2282 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
2287 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
2288 struct ieee80211_channel
*channel
)
2290 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
2291 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
2292 const struct ieee80211_regdomain
*regd
;
2296 if (!is_ht40_allowed(channel
)) {
2297 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
2302 * We need to ensure the extension channels exist to
2303 * be able to use HT40- or HT40+, this finds them (or not)
2305 for (i
= 0; i
< sband
->n_channels
; i
++) {
2306 struct ieee80211_channel
*c
= &sband
->channels
[i
];
2308 if (c
->center_freq
== (channel
->center_freq
- 20))
2310 if (c
->center_freq
== (channel
->center_freq
+ 20))
2315 regd
= get_wiphy_regdom(wiphy
);
2317 const struct ieee80211_reg_rule
*reg_rule
=
2318 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2319 regd
, MHZ_TO_KHZ(20));
2321 if (!IS_ERR(reg_rule
))
2322 flags
= reg_rule
->flags
;
2326 * Please note that this assumes target bandwidth is 20 MHz,
2327 * if that ever changes we also need to change the below logic
2328 * to include that as well.
2330 if (!is_ht40_allowed(channel_before
) ||
2331 flags
& NL80211_RRF_NO_HT40MINUS
)
2332 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2334 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2336 if (!is_ht40_allowed(channel_after
) ||
2337 flags
& NL80211_RRF_NO_HT40PLUS
)
2338 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2340 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2343 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2344 struct ieee80211_supported_band
*sband
)
2351 for (i
= 0; i
< sband
->n_channels
; i
++)
2352 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2355 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2357 enum nl80211_band band
;
2362 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2363 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2366 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2368 struct cfg80211_chan_def chandef
= {};
2369 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2370 enum nl80211_iftype iftype
;
2374 iftype
= wdev
->iftype
;
2376 /* make sure the interface is active */
2377 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2380 for (link
= 0; link
< ARRAY_SIZE(wdev
->links
); link
++) {
2381 struct ieee80211_channel
*chan
;
2383 if (!wdev
->valid_links
&& link
> 0)
2385 if (wdev
->valid_links
&& !(wdev
->valid_links
& BIT(link
)))
2388 case NL80211_IFTYPE_AP
:
2389 case NL80211_IFTYPE_P2P_GO
:
2390 if (!wdev
->links
[link
].ap
.beacon_interval
)
2392 chandef
= wdev
->links
[link
].ap
.chandef
;
2394 case NL80211_IFTYPE_MESH_POINT
:
2395 if (!wdev
->u
.mesh
.beacon_interval
)
2397 chandef
= wdev
->u
.mesh
.chandef
;
2399 case NL80211_IFTYPE_ADHOC
:
2400 if (!wdev
->u
.ibss
.ssid_len
)
2402 chandef
= wdev
->u
.ibss
.chandef
;
2404 case NL80211_IFTYPE_STATION
:
2405 case NL80211_IFTYPE_P2P_CLIENT
:
2406 /* Maybe we could consider disabling that link only? */
2407 if (!wdev
->links
[link
].client
.current_bss
)
2410 chan
= wdev
->links
[link
].client
.current_bss
->pub
.channel
;
2414 if (!rdev
->ops
->get_channel
||
2415 rdev_get_channel(rdev
, wdev
, link
, &chandef
))
2416 cfg80211_chandef_create(&chandef
, chan
,
2417 NL80211_CHAN_NO_HT
);
2419 case NL80211_IFTYPE_MONITOR
:
2420 case NL80211_IFTYPE_AP_VLAN
:
2421 case NL80211_IFTYPE_P2P_DEVICE
:
2422 /* no enforcement required */
2424 case NL80211_IFTYPE_OCB
:
2425 if (!wdev
->u
.ocb
.chandef
.chan
)
2427 chandef
= wdev
->u
.ocb
.chandef
;
2429 case NL80211_IFTYPE_NAN
:
2430 /* we have no info, but NAN is also pretty universal */
2433 /* others not implemented for now */
2439 case NL80211_IFTYPE_AP
:
2440 case NL80211_IFTYPE_P2P_GO
:
2441 case NL80211_IFTYPE_ADHOC
:
2442 case NL80211_IFTYPE_MESH_POINT
:
2443 ret
= cfg80211_reg_can_beacon_relax(wiphy
, &chandef
,
2448 case NL80211_IFTYPE_STATION
:
2449 case NL80211_IFTYPE_P2P_CLIENT
:
2450 ret
= cfg80211_chandef_usable(wiphy
, &chandef
,
2451 IEEE80211_CHAN_DISABLED
);
2463 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2465 struct wireless_dev
*wdev
;
2466 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2469 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2470 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2471 cfg80211_leave(rdev
, wdev
);
2472 wiphy_unlock(wiphy
);
2475 static void reg_check_chans_work(struct work_struct
*work
)
2477 struct cfg80211_registered_device
*rdev
;
2479 pr_debug("Verifying active interfaces after reg change\n");
2483 reg_leave_invalid_chans(&rdev
->wiphy
);
2488 void reg_check_channels(void)
2491 * Give usermode a chance to do something nicer (move to another
2492 * channel, orderly disconnection), before forcing a disconnection.
2494 mod_delayed_work(system_power_efficient_wq
,
2496 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2499 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2500 enum nl80211_reg_initiator initiator
)
2502 enum nl80211_band band
;
2503 struct regulatory_request
*lr
= get_last_request();
2505 if (ignore_reg_update(wiphy
, initiator
)) {
2507 * Regulatory updates set by CORE are ignored for custom
2508 * regulatory cards. Let us notify the changes to the driver,
2509 * as some drivers used this to restore its orig_* reg domain.
2511 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2512 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
&&
2513 !(wiphy
->regulatory_flags
&
2514 REGULATORY_WIPHY_SELF_MANAGED
))
2515 reg_call_notifier(wiphy
, lr
);
2519 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2521 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2522 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2524 reg_process_beacons(wiphy
);
2525 reg_process_ht_flags(wiphy
);
2526 reg_call_notifier(wiphy
, lr
);
2529 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2531 struct cfg80211_registered_device
*rdev
;
2532 struct wiphy
*wiphy
;
2536 for_each_rdev(rdev
) {
2537 wiphy
= &rdev
->wiphy
;
2538 wiphy_update_regulatory(wiphy
, initiator
);
2541 reg_check_channels();
2544 static void handle_channel_custom(struct wiphy
*wiphy
,
2545 struct ieee80211_channel
*chan
,
2546 const struct ieee80211_regdomain
*regd
,
2550 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2551 const struct ieee80211_power_rule
*power_rule
= NULL
;
2552 u32 bw
, center_freq_khz
;
2554 center_freq_khz
= ieee80211_channel_to_khz(chan
);
2555 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
2556 reg_rule
= freq_reg_info_regd(center_freq_khz
, regd
, bw
);
2557 if (!IS_ERR(reg_rule
))
2561 if (IS_ERR_OR_NULL(reg_rule
)) {
2562 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2563 chan
->center_freq
, chan
->freq_offset
);
2564 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2565 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2567 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2568 chan
->flags
= chan
->orig_flags
;
2573 power_rule
= ®_rule
->power_rule
;
2574 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2576 chan
->dfs_state_entered
= jiffies
;
2577 chan
->dfs_state
= NL80211_DFS_USABLE
;
2579 chan
->beacon_found
= false;
2581 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2582 chan
->flags
= chan
->orig_flags
| bw_flags
|
2583 map_regdom_flags(reg_rule
->flags
);
2585 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2587 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2588 chan
->max_reg_power
= chan
->max_power
=
2589 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2591 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2592 if (reg_rule
->dfs_cac_ms
)
2593 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2595 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2598 if (chan
->flags
& IEEE80211_CHAN_PSD
)
2599 chan
->psd
= reg_rule
->psd
;
2601 chan
->max_power
= chan
->max_reg_power
;
2604 static void handle_band_custom(struct wiphy
*wiphy
,
2605 struct ieee80211_supported_band
*sband
,
2606 const struct ieee80211_regdomain
*regd
)
2614 * We currently assume that you always want at least 20 MHz,
2615 * otherwise channel 12 might get enabled if this rule is
2616 * compatible to US, which permits 2402 - 2472 MHz.
2618 for (i
= 0; i
< sband
->n_channels
; i
++)
2619 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
,
2623 /* Used by drivers prior to wiphy registration */
2624 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2625 const struct ieee80211_regdomain
*regd
)
2627 const struct ieee80211_regdomain
*new_regd
, *tmp
;
2628 enum nl80211_band band
;
2629 unsigned int bands_set
= 0;
2631 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2632 "wiphy should have REGULATORY_CUSTOM_REG\n");
2633 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2635 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2636 if (!wiphy
->bands
[band
])
2638 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2643 * no point in calling this if it won't have any effect
2644 * on your device's supported bands.
2646 WARN_ON(!bands_set
);
2647 new_regd
= reg_copy_regd(regd
);
2648 if (IS_ERR(new_regd
))
2654 tmp
= get_wiphy_regdom(wiphy
);
2655 rcu_assign_pointer(wiphy
->regd
, new_regd
);
2656 rcu_free_regdom(tmp
);
2658 wiphy_unlock(wiphy
);
2661 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2663 static void reg_set_request_processed(void)
2665 bool need_more_processing
= false;
2666 struct regulatory_request
*lr
= get_last_request();
2668 lr
->processed
= true;
2670 spin_lock(®_requests_lock
);
2671 if (!list_empty(®_requests_list
))
2672 need_more_processing
= true;
2673 spin_unlock(®_requests_lock
);
2675 cancel_crda_timeout();
2677 if (need_more_processing
)
2678 schedule_work(®_work
);
2682 * reg_process_hint_core - process core regulatory requests
2683 * @core_request: a pending core regulatory request
2685 * The wireless subsystem can use this function to process
2686 * a regulatory request issued by the regulatory core.
2688 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2689 * hint was processed or ignored
2691 static enum reg_request_treatment
2692 reg_process_hint_core(struct regulatory_request
*core_request
)
2694 if (reg_query_database(core_request
)) {
2695 core_request
->intersect
= false;
2696 core_request
->processed
= false;
2697 reg_update_last_request(core_request
);
2701 return REG_REQ_IGNORE
;
2704 static enum reg_request_treatment
2705 __reg_process_hint_user(struct regulatory_request
*user_request
)
2707 struct regulatory_request
*lr
= get_last_request();
2709 if (reg_request_cell_base(user_request
))
2710 return reg_ignore_cell_hint(user_request
);
2712 if (reg_request_cell_base(lr
))
2713 return REG_REQ_IGNORE
;
2715 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2716 return REG_REQ_INTERSECT
;
2718 * If the user knows better the user should set the regdom
2719 * to their country before the IE is picked up
2721 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2723 return REG_REQ_IGNORE
;
2725 * Process user requests only after previous user/driver/core
2726 * requests have been processed
2728 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2729 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2730 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2731 regdom_changes(lr
->alpha2
))
2732 return REG_REQ_IGNORE
;
2734 if (!regdom_changes(user_request
->alpha2
))
2735 return REG_REQ_ALREADY_SET
;
2741 * reg_process_hint_user - process user regulatory requests
2742 * @user_request: a pending user regulatory request
2744 * The wireless subsystem can use this function to process
2745 * a regulatory request initiated by userspace.
2747 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2748 * hint was processed or ignored
2750 static enum reg_request_treatment
2751 reg_process_hint_user(struct regulatory_request
*user_request
)
2753 enum reg_request_treatment treatment
;
2755 treatment
= __reg_process_hint_user(user_request
);
2756 if (treatment
== REG_REQ_IGNORE
||
2757 treatment
== REG_REQ_ALREADY_SET
)
2758 return REG_REQ_IGNORE
;
2760 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2761 user_request
->processed
= false;
2763 if (reg_query_database(user_request
)) {
2764 reg_update_last_request(user_request
);
2765 user_alpha2
[0] = user_request
->alpha2
[0];
2766 user_alpha2
[1] = user_request
->alpha2
[1];
2770 return REG_REQ_IGNORE
;
2773 static enum reg_request_treatment
2774 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2776 struct regulatory_request
*lr
= get_last_request();
2778 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2779 if (regdom_changes(driver_request
->alpha2
))
2781 return REG_REQ_ALREADY_SET
;
2785 * This would happen if you unplug and plug your card
2786 * back in or if you add a new device for which the previously
2787 * loaded card also agrees on the regulatory domain.
2789 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2790 !regdom_changes(driver_request
->alpha2
))
2791 return REG_REQ_ALREADY_SET
;
2793 return REG_REQ_INTERSECT
;
2797 * reg_process_hint_driver - process driver regulatory requests
2798 * @wiphy: the wireless device for the regulatory request
2799 * @driver_request: a pending driver regulatory request
2801 * The wireless subsystem can use this function to process
2802 * a regulatory request issued by an 802.11 driver.
2804 * Returns: one of the different reg request treatment values.
2806 static enum reg_request_treatment
2807 reg_process_hint_driver(struct wiphy
*wiphy
,
2808 struct regulatory_request
*driver_request
)
2810 const struct ieee80211_regdomain
*regd
, *tmp
;
2811 enum reg_request_treatment treatment
;
2813 treatment
= __reg_process_hint_driver(driver_request
);
2815 switch (treatment
) {
2818 case REG_REQ_IGNORE
:
2819 return REG_REQ_IGNORE
;
2820 case REG_REQ_INTERSECT
:
2821 case REG_REQ_ALREADY_SET
:
2822 regd
= reg_copy_regd(get_cfg80211_regdom());
2824 return REG_REQ_IGNORE
;
2826 tmp
= get_wiphy_regdom(wiphy
);
2829 rcu_assign_pointer(wiphy
->regd
, regd
);
2830 wiphy_unlock(wiphy
);
2831 rcu_free_regdom(tmp
);
2835 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2836 driver_request
->processed
= false;
2839 * Since CRDA will not be called in this case as we already
2840 * have applied the requested regulatory domain before we just
2841 * inform userspace we have processed the request
2843 if (treatment
== REG_REQ_ALREADY_SET
) {
2844 nl80211_send_reg_change_event(driver_request
);
2845 reg_update_last_request(driver_request
);
2846 reg_set_request_processed();
2847 return REG_REQ_ALREADY_SET
;
2850 if (reg_query_database(driver_request
)) {
2851 reg_update_last_request(driver_request
);
2855 return REG_REQ_IGNORE
;
2858 static enum reg_request_treatment
2859 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2860 struct regulatory_request
*country_ie_request
)
2862 struct wiphy
*last_wiphy
= NULL
;
2863 struct regulatory_request
*lr
= get_last_request();
2865 if (reg_request_cell_base(lr
)) {
2866 /* Trust a Cell base station over the AP's country IE */
2867 if (regdom_changes(country_ie_request
->alpha2
))
2868 return REG_REQ_IGNORE
;
2869 return REG_REQ_ALREADY_SET
;
2871 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2872 return REG_REQ_IGNORE
;
2875 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2878 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2881 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2883 if (last_wiphy
!= wiphy
) {
2885 * Two cards with two APs claiming different
2886 * Country IE alpha2s. We could
2887 * intersect them, but that seems unlikely
2888 * to be correct. Reject second one for now.
2890 if (regdom_changes(country_ie_request
->alpha2
))
2891 return REG_REQ_IGNORE
;
2892 return REG_REQ_ALREADY_SET
;
2895 if (regdom_changes(country_ie_request
->alpha2
))
2897 return REG_REQ_ALREADY_SET
;
2901 * reg_process_hint_country_ie - process regulatory requests from country IEs
2902 * @wiphy: the wireless device for the regulatory request
2903 * @country_ie_request: a regulatory request from a country IE
2905 * The wireless subsystem can use this function to process
2906 * a regulatory request issued by a country Information Element.
2908 * Returns: one of the different reg request treatment values.
2910 static enum reg_request_treatment
2911 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2912 struct regulatory_request
*country_ie_request
)
2914 enum reg_request_treatment treatment
;
2916 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2918 switch (treatment
) {
2921 case REG_REQ_IGNORE
:
2922 return REG_REQ_IGNORE
;
2923 case REG_REQ_ALREADY_SET
:
2924 reg_free_request(country_ie_request
);
2925 return REG_REQ_ALREADY_SET
;
2926 case REG_REQ_INTERSECT
:
2928 * This doesn't happen yet, not sure we
2929 * ever want to support it for this case.
2931 WARN_ONCE(1, "Unexpected intersection for country elements");
2932 return REG_REQ_IGNORE
;
2935 country_ie_request
->intersect
= false;
2936 country_ie_request
->processed
= false;
2938 if (reg_query_database(country_ie_request
)) {
2939 reg_update_last_request(country_ie_request
);
2943 return REG_REQ_IGNORE
;
2946 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2948 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2949 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2950 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2951 bool dfs_domain_same
;
2955 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2956 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2958 wiphy1_regd
= cfg80211_regd
;
2960 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2962 wiphy2_regd
= cfg80211_regd
;
2964 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2968 return dfs_domain_same
;
2971 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2972 struct ieee80211_channel
*src_chan
)
2974 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2975 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2978 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2979 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2982 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2983 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2984 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2985 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2989 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2990 struct wiphy
*src_wiphy
)
2992 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2993 struct ieee80211_channel
*src_chan
, *dst_chan
;
2996 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2999 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3000 dst_sband
= dst_wiphy
->bands
[band
];
3001 src_sband
= src_wiphy
->bands
[band
];
3002 if (!dst_sband
|| !src_sband
)
3005 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
3006 dst_chan
= &dst_sband
->channels
[i
];
3007 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
3008 src_chan
= &src_sband
->channels
[j
];
3009 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
3015 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
3017 struct cfg80211_registered_device
*rdev
;
3021 for_each_rdev(rdev
) {
3022 if (wiphy
== &rdev
->wiphy
)
3024 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
3028 /* This processes *all* regulatory hints */
3029 static void reg_process_hint(struct regulatory_request
*reg_request
)
3031 struct wiphy
*wiphy
= NULL
;
3032 enum reg_request_treatment treatment
;
3033 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
3035 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3036 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
3038 switch (initiator
) {
3039 case NL80211_REGDOM_SET_BY_CORE
:
3040 treatment
= reg_process_hint_core(reg_request
);
3042 case NL80211_REGDOM_SET_BY_USER
:
3043 treatment
= reg_process_hint_user(reg_request
);
3045 case NL80211_REGDOM_SET_BY_DRIVER
:
3048 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
3050 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3053 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
3056 WARN(1, "invalid initiator %d\n", initiator
);
3060 if (treatment
== REG_REQ_IGNORE
)
3063 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
3064 "unexpected treatment value %d\n", treatment
);
3066 /* This is required so that the orig_* parameters are saved.
3067 * NOTE: treatment must be set for any case that reaches here!
3069 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
3070 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
3071 wiphy_update_regulatory(wiphy
, initiator
);
3072 wiphy_all_share_dfs_chan_state(wiphy
);
3073 reg_check_channels();
3079 reg_free_request(reg_request
);
3082 static void notify_self_managed_wiphys(struct regulatory_request
*request
)
3084 struct cfg80211_registered_device
*rdev
;
3085 struct wiphy
*wiphy
;
3087 for_each_rdev(rdev
) {
3088 wiphy
= &rdev
->wiphy
;
3089 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
&&
3090 request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
3091 reg_call_notifier(wiphy
, request
);
3096 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3097 * Regulatory hints come on a first come first serve basis and we
3098 * must process each one atomically.
3100 static void reg_process_pending_hints(void)
3102 struct regulatory_request
*reg_request
, *lr
;
3104 lr
= get_last_request();
3106 /* When last_request->processed becomes true this will be rescheduled */
3107 if (lr
&& !lr
->processed
) {
3108 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3112 spin_lock(®_requests_lock
);
3114 if (list_empty(®_requests_list
)) {
3115 spin_unlock(®_requests_lock
);
3119 reg_request
= list_first_entry(®_requests_list
,
3120 struct regulatory_request
,
3122 list_del_init(®_request
->list
);
3124 spin_unlock(®_requests_lock
);
3126 notify_self_managed_wiphys(reg_request
);
3128 reg_process_hint(reg_request
);
3130 lr
= get_last_request();
3132 spin_lock(®_requests_lock
);
3133 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
3134 schedule_work(®_work
);
3135 spin_unlock(®_requests_lock
);
3138 /* Processes beacon hints -- this has nothing to do with country IEs */
3139 static void reg_process_pending_beacon_hints(void)
3141 struct cfg80211_registered_device
*rdev
;
3142 struct reg_beacon
*pending_beacon
, *tmp
;
3144 /* This goes through the _pending_ beacon list */
3145 spin_lock_bh(®_pending_beacons_lock
);
3147 list_for_each_entry_safe(pending_beacon
, tmp
,
3148 ®_pending_beacons
, list
) {
3149 list_del_init(&pending_beacon
->list
);
3151 /* Applies the beacon hint to current wiphys */
3153 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
3155 /* Remembers the beacon hint for new wiphys or reg changes */
3156 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
3159 spin_unlock_bh(®_pending_beacons_lock
);
3162 static void reg_process_self_managed_hint(struct wiphy
*wiphy
)
3164 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
3165 const struct ieee80211_regdomain
*tmp
;
3166 const struct ieee80211_regdomain
*regd
;
3167 enum nl80211_band band
;
3168 struct regulatory_request request
= {};
3171 lockdep_assert_wiphy(wiphy
);
3173 spin_lock(®_requests_lock
);
3174 regd
= rdev
->requested_regd
;
3175 rdev
->requested_regd
= NULL
;
3176 spin_unlock(®_requests_lock
);
3181 tmp
= get_wiphy_regdom(wiphy
);
3182 rcu_assign_pointer(wiphy
->regd
, regd
);
3183 rcu_free_regdom(tmp
);
3185 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
3186 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
3188 reg_process_ht_flags(wiphy
);
3190 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
3191 request
.alpha2
[0] = regd
->alpha2
[0];
3192 request
.alpha2
[1] = regd
->alpha2
[1];
3193 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3195 if (wiphy
->flags
& WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER
)
3196 reg_call_notifier(wiphy
, &request
);
3198 nl80211_send_wiphy_reg_change_event(&request
);
3201 static void reg_process_self_managed_hints(void)
3203 struct cfg80211_registered_device
*rdev
;
3207 for_each_rdev(rdev
) {
3208 wiphy_lock(&rdev
->wiphy
);
3209 reg_process_self_managed_hint(&rdev
->wiphy
);
3210 wiphy_unlock(&rdev
->wiphy
);
3213 reg_check_channels();
3216 static void reg_todo(struct work_struct
*work
)
3219 reg_process_pending_hints();
3220 reg_process_pending_beacon_hints();
3221 reg_process_self_managed_hints();
3225 static void queue_regulatory_request(struct regulatory_request
*request
)
3227 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
3228 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
3230 spin_lock(®_requests_lock
);
3231 list_add_tail(&request
->list
, ®_requests_list
);
3232 spin_unlock(®_requests_lock
);
3234 schedule_work(®_work
);
3238 * Core regulatory hint -- happens during cfg80211_init()
3239 * and when we restore regulatory settings.
3241 static int regulatory_hint_core(const char *alpha2
)
3243 struct regulatory_request
*request
;
3245 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3249 request
->alpha2
[0] = alpha2
[0];
3250 request
->alpha2
[1] = alpha2
[1];
3251 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
3252 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
3254 queue_regulatory_request(request
);
3260 int regulatory_hint_user(const char *alpha2
,
3261 enum nl80211_user_reg_hint_type user_reg_hint_type
)
3263 struct regulatory_request
*request
;
3265 if (WARN_ON(!alpha2
))
3268 if (!is_world_regdom(alpha2
) && !is_an_alpha2(alpha2
))
3271 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3275 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
3276 request
->alpha2
[0] = alpha2
[0];
3277 request
->alpha2
[1] = alpha2
[1];
3278 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
3279 request
->user_reg_hint_type
= user_reg_hint_type
;
3281 /* Allow calling CRDA again */
3282 reset_crda_timeouts();
3284 queue_regulatory_request(request
);
3289 void regulatory_hint_indoor(bool is_indoor
, u32 portid
)
3291 spin_lock(®_indoor_lock
);
3293 /* It is possible that more than one user space process is trying to
3294 * configure the indoor setting. To handle such cases, clear the indoor
3295 * setting in case that some process does not think that the device
3296 * is operating in an indoor environment. In addition, if a user space
3297 * process indicates that it is controlling the indoor setting, save its
3298 * portid, i.e., make it the owner.
3300 reg_is_indoor
= is_indoor
;
3301 if (reg_is_indoor
) {
3302 if (!reg_is_indoor_portid
)
3303 reg_is_indoor_portid
= portid
;
3305 reg_is_indoor_portid
= 0;
3308 spin_unlock(®_indoor_lock
);
3311 reg_check_channels();
3314 void regulatory_netlink_notify(u32 portid
)
3316 spin_lock(®_indoor_lock
);
3318 if (reg_is_indoor_portid
!= portid
) {
3319 spin_unlock(®_indoor_lock
);
3323 reg_is_indoor
= false;
3324 reg_is_indoor_portid
= 0;
3326 spin_unlock(®_indoor_lock
);
3328 reg_check_channels();
3332 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
3334 struct regulatory_request
*request
;
3336 if (WARN_ON(!alpha2
|| !wiphy
))
3339 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
3341 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
3345 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3347 request
->alpha2
[0] = alpha2
[0];
3348 request
->alpha2
[1] = alpha2
[1];
3349 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
3351 /* Allow calling CRDA again */
3352 reset_crda_timeouts();
3354 queue_regulatory_request(request
);
3358 EXPORT_SYMBOL(regulatory_hint
);
3360 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
3361 const u8
*country_ie
, u8 country_ie_len
)
3364 enum environment_cap env
= ENVIRON_ANY
;
3365 struct regulatory_request
*request
= NULL
, *lr
;
3367 /* IE len must be evenly divisible by 2 */
3368 if (country_ie_len
& 0x01)
3371 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
3374 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3378 alpha2
[0] = country_ie
[0];
3379 alpha2
[1] = country_ie
[1];
3381 if (country_ie
[2] == 'I')
3382 env
= ENVIRON_INDOOR
;
3383 else if (country_ie
[2] == 'O')
3384 env
= ENVIRON_OUTDOOR
;
3387 lr
= get_last_request();
3393 * We will run this only upon a successful connection on cfg80211.
3394 * We leave conflict resolution to the workqueue, where can hold
3397 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3398 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3401 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3402 request
->alpha2
[0] = alpha2
[0];
3403 request
->alpha2
[1] = alpha2
[1];
3404 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3405 request
->country_ie_env
= env
;
3407 /* Allow calling CRDA again */
3408 reset_crda_timeouts();
3410 queue_regulatory_request(request
);
3417 static void restore_alpha2(char *alpha2
, bool reset_user
)
3419 /* indicates there is no alpha2 to consider for restoration */
3423 /* The user setting has precedence over the module parameter */
3424 if (is_user_regdom_saved()) {
3425 /* Unless we're asked to ignore it and reset it */
3427 pr_debug("Restoring regulatory settings including user preference\n");
3428 user_alpha2
[0] = '9';
3429 user_alpha2
[1] = '7';
3432 * If we're ignoring user settings, we still need to
3433 * check the module parameter to ensure we put things
3434 * back as they were for a full restore.
3436 if (!is_world_regdom(ieee80211_regdom
)) {
3437 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3439 alpha2
[0] = ieee80211_regdom
[0];
3440 alpha2
[1] = ieee80211_regdom
[1];
3443 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444 user_alpha2
[0], user_alpha2
[1]);
3445 alpha2
[0] = user_alpha2
[0];
3446 alpha2
[1] = user_alpha2
[1];
3448 } else if (!is_world_regdom(ieee80211_regdom
)) {
3449 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3451 alpha2
[0] = ieee80211_regdom
[0];
3452 alpha2
[1] = ieee80211_regdom
[1];
3454 pr_debug("Restoring regulatory settings\n");
3457 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3459 struct ieee80211_supported_band
*sband
;
3460 enum nl80211_band band
;
3461 struct ieee80211_channel
*chan
;
3464 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3465 sband
= wiphy
->bands
[band
];
3468 for (i
= 0; i
< sband
->n_channels
; i
++) {
3469 chan
= &sband
->channels
[i
];
3470 chan
->flags
= chan
->orig_flags
;
3471 chan
->max_antenna_gain
= chan
->orig_mag
;
3472 chan
->max_power
= chan
->orig_mpwr
;
3473 chan
->beacon_found
= false;
3479 * Restoring regulatory settings involves ignoring any
3480 * possibly stale country IE information and user regulatory
3481 * settings if so desired, this includes any beacon hints
3482 * learned as we could have traveled outside to another country
3483 * after disconnection. To restore regulatory settings we do
3484 * exactly what we did at bootup:
3486 * - send a core regulatory hint
3487 * - send a user regulatory hint if applicable
3489 * Device drivers that send a regulatory hint for a specific country
3490 * keep their own regulatory domain on wiphy->regd so that does
3491 * not need to be remembered.
3493 static void restore_regulatory_settings(bool reset_user
, bool cached
)
3496 char world_alpha2
[2];
3497 struct reg_beacon
*reg_beacon
, *btmp
;
3498 LIST_HEAD(tmp_reg_req_list
);
3499 struct cfg80211_registered_device
*rdev
;
3504 * Clear the indoor setting in case that it is not controlled by user
3505 * space, as otherwise there is no guarantee that the device is still
3506 * operating in an indoor environment.
3508 spin_lock(®_indoor_lock
);
3509 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3510 reg_is_indoor
= false;
3511 reg_check_channels();
3513 spin_unlock(®_indoor_lock
);
3515 reset_regdomains(true, &world_regdom
);
3516 restore_alpha2(alpha2
, reset_user
);
3519 * If there's any pending requests we simply
3520 * stash them to a temporary pending queue and
3521 * add then after we've restored regulatory
3524 spin_lock(®_requests_lock
);
3525 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3526 spin_unlock(®_requests_lock
);
3528 /* Clear beacon hints */
3529 spin_lock_bh(®_pending_beacons_lock
);
3530 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3531 list_del(®_beacon
->list
);
3534 spin_unlock_bh(®_pending_beacons_lock
);
3536 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3537 list_del(®_beacon
->list
);
3541 /* First restore to the basic regulatory settings */
3542 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3543 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3545 for_each_rdev(rdev
) {
3546 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3548 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3549 restore_custom_reg_settings(&rdev
->wiphy
);
3552 if (cached
&& (!is_an_alpha2(alpha2
) ||
3553 !IS_ERR_OR_NULL(cfg80211_user_regdom
))) {
3554 reset_regdomains(false, cfg80211_world_regdom
);
3555 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE
);
3556 print_regdomain(get_cfg80211_regdom());
3557 nl80211_send_reg_change_event(&core_request_world
);
3558 reg_set_request_processed();
3560 if (is_an_alpha2(alpha2
) &&
3561 !regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
)) {
3562 struct regulatory_request
*ureq
;
3564 spin_lock(®_requests_lock
);
3565 ureq
= list_last_entry(®_requests_list
,
3566 struct regulatory_request
,
3568 list_del(&ureq
->list
);
3569 spin_unlock(®_requests_lock
);
3571 notify_self_managed_wiphys(ureq
);
3572 reg_update_last_request(ureq
);
3573 set_regdom(reg_copy_regd(cfg80211_user_regdom
),
3574 REGD_SOURCE_CACHED
);
3577 regulatory_hint_core(world_alpha2
);
3580 * This restores the ieee80211_regdom module parameter
3581 * preference or the last user requested regulatory
3582 * settings, user regulatory settings takes precedence.
3584 if (is_an_alpha2(alpha2
))
3585 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3588 spin_lock(®_requests_lock
);
3589 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3590 spin_unlock(®_requests_lock
);
3592 pr_debug("Kicking the queue\n");
3594 schedule_work(®_work
);
3597 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag
)
3599 struct cfg80211_registered_device
*rdev
;
3600 struct wireless_dev
*wdev
;
3602 for_each_rdev(rdev
) {
3603 wiphy_lock(&rdev
->wiphy
);
3604 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3605 if (!(wdev
->wiphy
->regulatory_flags
& flag
)) {
3606 wiphy_unlock(&rdev
->wiphy
);
3610 wiphy_unlock(&rdev
->wiphy
);
3616 void regulatory_hint_disconnect(void)
3618 /* Restore of regulatory settings is not required when wiphy(s)
3619 * ignore IE from connected access point but clearance of beacon hints
3620 * is required when wiphy(s) supports beacon hints.
3622 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE
)) {
3623 struct reg_beacon
*reg_beacon
, *btmp
;
3625 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS
))
3628 spin_lock_bh(®_pending_beacons_lock
);
3629 list_for_each_entry_safe(reg_beacon
, btmp
,
3630 ®_pending_beacons
, list
) {
3631 list_del(®_beacon
->list
);
3634 spin_unlock_bh(®_pending_beacons_lock
);
3636 list_for_each_entry_safe(reg_beacon
, btmp
,
3637 ®_beacon_list
, list
) {
3638 list_del(®_beacon
->list
);
3645 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646 restore_regulatory_settings(false, true);
3649 static bool freq_is_chan_12_13_14(u32 freq
)
3651 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3652 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3653 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3658 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3660 struct reg_beacon
*pending_beacon
;
3662 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3663 if (ieee80211_channel_equal(beacon_chan
,
3664 &pending_beacon
->chan
))
3669 void regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3670 struct ieee80211_channel
*beacon_chan
,
3673 struct reg_beacon
*reg_beacon
;
3676 if (beacon_chan
->beacon_found
||
3677 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3678 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3679 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3682 spin_lock_bh(®_pending_beacons_lock
);
3683 processing
= pending_reg_beacon(beacon_chan
);
3684 spin_unlock_bh(®_pending_beacons_lock
);
3689 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3693 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694 beacon_chan
->center_freq
, beacon_chan
->freq_offset
,
3695 ieee80211_freq_khz_to_channel(
3696 ieee80211_channel_to_khz(beacon_chan
)),
3699 memcpy(®_beacon
->chan
, beacon_chan
,
3700 sizeof(struct ieee80211_channel
));
3703 * Since we can be called from BH or and non-BH context
3704 * we must use spin_lock_bh()
3706 spin_lock_bh(®_pending_beacons_lock
);
3707 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3708 spin_unlock_bh(®_pending_beacons_lock
);
3710 schedule_work(®_work
);
3713 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3716 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3717 const struct ieee80211_freq_range
*freq_range
= NULL
;
3718 const struct ieee80211_power_rule
*power_rule
= NULL
;
3719 char bw
[32], cac_time
[32];
3721 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3723 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3724 reg_rule
= &rd
->reg_rules
[i
];
3725 freq_range
= ®_rule
->freq_range
;
3726 power_rule
= ®_rule
->power_rule
;
3728 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3729 snprintf(bw
, sizeof(bw
), "%d KHz, %u KHz AUTO",
3730 freq_range
->max_bandwidth_khz
,
3731 reg_get_max_bandwidth(rd
, reg_rule
));
3733 snprintf(bw
, sizeof(bw
), "%d KHz",
3734 freq_range
->max_bandwidth_khz
);
3736 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3737 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3738 reg_rule
->dfs_cac_ms
/1000);
3740 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3744 * There may not be documentation for max antenna gain
3745 * in certain regions
3747 if (power_rule
->max_antenna_gain
)
3748 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3749 freq_range
->start_freq_khz
,
3750 freq_range
->end_freq_khz
,
3752 power_rule
->max_antenna_gain
,
3753 power_rule
->max_eirp
,
3756 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3757 freq_range
->start_freq_khz
,
3758 freq_range
->end_freq_khz
,
3760 power_rule
->max_eirp
,
3765 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3767 switch (dfs_region
) {
3768 case NL80211_DFS_UNSET
:
3769 case NL80211_DFS_FCC
:
3770 case NL80211_DFS_ETSI
:
3771 case NL80211_DFS_JP
:
3774 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region
);
3779 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3781 struct regulatory_request
*lr
= get_last_request();
3783 if (is_intersected_alpha2(rd
->alpha2
)) {
3784 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3785 struct cfg80211_registered_device
*rdev
;
3786 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3788 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3789 rdev
->country_ie_alpha2
[0],
3790 rdev
->country_ie_alpha2
[1]);
3792 pr_debug("Current regulatory domain intersected:\n");
3794 pr_debug("Current regulatory domain intersected:\n");
3795 } else if (is_world_regdom(rd
->alpha2
)) {
3796 pr_debug("World regulatory domain updated:\n");
3798 if (is_unknown_alpha2(rd
->alpha2
))
3799 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3801 if (reg_request_cell_base(lr
))
3802 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3803 rd
->alpha2
[0], rd
->alpha2
[1]);
3805 pr_debug("Regulatory domain changed to country: %c%c\n",
3806 rd
->alpha2
[0], rd
->alpha2
[1]);
3810 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3814 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3816 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3820 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3822 if (!is_world_regdom(rd
->alpha2
))
3824 update_world_regdomain(rd
);
3828 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3829 struct regulatory_request
*user_request
)
3831 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3833 if (!regdom_changes(rd
->alpha2
))
3836 if (!is_valid_rd(rd
)) {
3837 pr_err("Invalid regulatory domain detected: %c%c\n",
3838 rd
->alpha2
[0], rd
->alpha2
[1]);
3839 print_regdomain_info(rd
);
3843 if (!user_request
->intersect
) {
3844 reset_regdomains(false, rd
);
3848 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3849 if (!intersected_rd
)
3854 reset_regdomains(false, intersected_rd
);
3859 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3860 struct regulatory_request
*driver_request
)
3862 const struct ieee80211_regdomain
*regd
;
3863 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3864 const struct ieee80211_regdomain
*tmp
= NULL
;
3865 struct wiphy
*request_wiphy
;
3867 if (is_world_regdom(rd
->alpha2
))
3870 if (!regdom_changes(rd
->alpha2
))
3873 if (!is_valid_rd(rd
)) {
3874 pr_err("Invalid regulatory domain detected: %c%c\n",
3875 rd
->alpha2
[0], rd
->alpha2
[1]);
3876 print_regdomain_info(rd
);
3880 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3884 if (!driver_request
->intersect
) {
3886 wiphy_lock(request_wiphy
);
3887 if (request_wiphy
->regd
)
3888 tmp
= get_wiphy_regdom(request_wiphy
);
3890 regd
= reg_copy_regd(rd
);
3892 wiphy_unlock(request_wiphy
);
3893 return PTR_ERR(regd
);
3896 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3897 rcu_free_regdom(tmp
);
3898 wiphy_unlock(request_wiphy
);
3899 reset_regdomains(false, rd
);
3903 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3904 if (!intersected_rd
)
3908 * We can trash what CRDA provided now.
3909 * However if a driver requested this specific regulatory
3910 * domain we keep it for its private use
3912 tmp
= get_wiphy_regdom(request_wiphy
);
3913 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3914 rcu_free_regdom(tmp
);
3918 reset_regdomains(false, intersected_rd
);
3923 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3924 struct regulatory_request
*country_ie_request
)
3926 struct wiphy
*request_wiphy
;
3928 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3929 !is_unknown_alpha2(rd
->alpha2
))
3933 * Lets only bother proceeding on the same alpha2 if the current
3934 * rd is non static (it means CRDA was present and was used last)
3935 * and the pending request came in from a country IE
3938 if (!is_valid_rd(rd
)) {
3939 pr_err("Invalid regulatory domain detected: %c%c\n",
3940 rd
->alpha2
[0], rd
->alpha2
[1]);
3941 print_regdomain_info(rd
);
3945 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3949 if (country_ie_request
->intersect
)
3952 reset_regdomains(false, rd
);
3957 * Use this call to set the current regulatory domain. Conflicts with
3958 * multiple drivers can be ironed out later. Caller must've already
3959 * kmalloc'd the rd structure.
3961 int set_regdom(const struct ieee80211_regdomain
*rd
,
3962 enum ieee80211_regd_source regd_src
)
3964 struct regulatory_request
*lr
;
3965 bool user_reset
= false;
3968 if (IS_ERR_OR_NULL(rd
))
3971 if (!reg_is_valid_request(rd
->alpha2
)) {
3976 if (regd_src
== REGD_SOURCE_CRDA
)
3977 reset_crda_timeouts();
3979 lr
= get_last_request();
3981 /* Note that this doesn't update the wiphys, this is done below */
3982 switch (lr
->initiator
) {
3983 case NL80211_REGDOM_SET_BY_CORE
:
3984 r
= reg_set_rd_core(rd
);
3986 case NL80211_REGDOM_SET_BY_USER
:
3987 cfg80211_save_user_regdom(rd
);
3988 r
= reg_set_rd_user(rd
, lr
);
3991 case NL80211_REGDOM_SET_BY_DRIVER
:
3992 r
= reg_set_rd_driver(rd
, lr
);
3994 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3995 r
= reg_set_rd_country_ie(rd
, lr
);
3998 WARN(1, "invalid initiator %d\n", lr
->initiator
);
4006 reg_set_request_processed();
4009 /* Back to world regulatory in case of errors */
4010 restore_regulatory_settings(user_reset
, false);
4017 /* This would make this whole thing pointless */
4018 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
4021 /* update all wiphys now with the new established regulatory domain */
4022 update_all_wiphy_regulatory(lr
->initiator
);
4024 print_regdomain(get_cfg80211_regdom());
4026 nl80211_send_reg_change_event(lr
);
4028 reg_set_request_processed();
4033 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
4034 struct ieee80211_regdomain
*rd
)
4036 const struct ieee80211_regdomain
*regd
;
4037 const struct ieee80211_regdomain
*prev_regd
;
4038 struct cfg80211_registered_device
*rdev
;
4040 if (WARN_ON(!wiphy
|| !rd
))
4043 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
4044 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047 if (WARN(!is_valid_rd(rd
),
4048 "Invalid regulatory domain detected: %c%c\n",
4049 rd
->alpha2
[0], rd
->alpha2
[1])) {
4050 print_regdomain_info(rd
);
4054 regd
= reg_copy_regd(rd
);
4056 return PTR_ERR(regd
);
4058 rdev
= wiphy_to_rdev(wiphy
);
4060 spin_lock(®_requests_lock
);
4061 prev_regd
= rdev
->requested_regd
;
4062 rdev
->requested_regd
= regd
;
4063 spin_unlock(®_requests_lock
);
4069 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
4070 struct ieee80211_regdomain
*rd
)
4072 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
4077 schedule_work(®_work
);
4080 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
4082 int regulatory_set_wiphy_regd_sync(struct wiphy
*wiphy
,
4083 struct ieee80211_regdomain
*rd
)
4089 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
4093 /* process the request immediately */
4094 reg_process_self_managed_hint(wiphy
);
4095 reg_check_channels();
4098 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync
);
4100 void wiphy_regulatory_register(struct wiphy
*wiphy
)
4102 struct regulatory_request
*lr
= get_last_request();
4104 /* self-managed devices ignore beacon hints and country IE */
4105 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
4106 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
4107 REGULATORY_COUNTRY_IE_IGNORE
;
4110 * The last request may have been received before this
4111 * registration call. Call the driver notifier if
4112 * initiator is USER.
4114 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
)
4115 reg_call_notifier(wiphy
, lr
);
4118 if (!reg_dev_ignore_cell_hint(wiphy
))
4119 reg_num_devs_support_basehint
++;
4121 wiphy_update_regulatory(wiphy
, lr
->initiator
);
4122 wiphy_all_share_dfs_chan_state(wiphy
);
4123 reg_process_self_managed_hints();
4126 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
4128 struct wiphy
*request_wiphy
= NULL
;
4129 struct regulatory_request
*lr
;
4131 lr
= get_last_request();
4133 if (!reg_dev_ignore_cell_hint(wiphy
))
4134 reg_num_devs_support_basehint
--;
4136 rcu_free_regdom(get_wiphy_regdom(wiphy
));
4137 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
4140 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
4142 if (!request_wiphy
|| request_wiphy
!= wiphy
)
4145 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
4146 lr
->country_ie_env
= ENVIRON_ANY
;
4150 * See FCC notices for UNII band definitions
4151 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4152 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4154 int cfg80211_get_unii(int freq
)
4157 if (freq
>= 5150 && freq
<= 5250)
4161 if (freq
> 5250 && freq
<= 5350)
4165 if (freq
> 5350 && freq
<= 5470)
4169 if (freq
> 5470 && freq
<= 5725)
4173 if (freq
> 5725 && freq
<= 5825)
4177 if (freq
> 5925 && freq
<= 6425)
4181 if (freq
> 6425 && freq
<= 6525)
4185 if (freq
> 6525 && freq
<= 6875)
4189 if (freq
> 6875 && freq
<= 7125)
4195 bool regulatory_indoor_allowed(void)
4197 return reg_is_indoor
;
4200 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
4202 const struct ieee80211_regdomain
*regd
= NULL
;
4203 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
4204 bool pre_cac_allowed
= false;
4208 regd
= rcu_dereference(cfg80211_regdomain
);
4209 wiphy_regd
= rcu_dereference(wiphy
->regd
);
4211 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
4212 pre_cac_allowed
= true;
4216 return pre_cac_allowed
;
4219 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
4220 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
4221 pre_cac_allowed
= true;
4225 return pre_cac_allowed
;
4227 EXPORT_SYMBOL(regulatory_pre_cac_allowed
);
4229 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device
*rdev
)
4231 struct wireless_dev
*wdev
;
4232 unsigned int link_id
;
4234 /* If we finished CAC or received radar, we should end any
4235 * CAC running on the same channels.
4236 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 * either all channels are available - those the CAC_FINISHED
4238 * event has effected another wdev state, or there is a channel
4239 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 * event has effected another wdev state.
4241 * In both cases we should end the CAC on the wdev.
4243 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
4244 struct cfg80211_chan_def
*chandef
;
4246 for_each_valid_link(wdev
, link_id
) {
4247 if (!wdev
->links
[link_id
].cac_started
)
4250 chandef
= wdev_chandef(wdev
, link_id
);
4254 if (!cfg80211_chandef_dfs_usable(&rdev
->wiphy
, chandef
))
4255 rdev_end_cac(rdev
, wdev
->netdev
, link_id
);
4260 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
4261 struct cfg80211_chan_def
*chandef
,
4262 enum nl80211_dfs_state dfs_state
,
4263 enum nl80211_radar_event event
)
4265 struct cfg80211_registered_device
*rdev
;
4269 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
4272 for_each_rdev(rdev
) {
4273 if (wiphy
== &rdev
->wiphy
)
4276 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
4279 if (!ieee80211_get_channel(&rdev
->wiphy
,
4280 chandef
->chan
->center_freq
))
4283 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
4285 if (event
== NL80211_RADAR_DETECTED
||
4286 event
== NL80211_RADAR_CAC_FINISHED
) {
4287 cfg80211_sched_dfs_chan_update(rdev
);
4288 cfg80211_check_and_end_cac(rdev
);
4291 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
4295 static int __init
regulatory_init_db(void)
4300 * It's possible that - due to other bugs/issues - cfg80211
4301 * never called regulatory_init() below, or that it failed;
4302 * in that case, don't try to do any further work here as
4303 * it's doomed to lead to crashes.
4305 if (IS_ERR_OR_NULL(reg_pdev
))
4308 err
= load_builtin_regdb_keys();
4310 platform_device_unregister(reg_pdev
);
4314 /* We always try to get an update for the static regdomain */
4315 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
4317 if (err
== -ENOMEM
) {
4318 platform_device_unregister(reg_pdev
);
4322 * N.B. kobject_uevent_env() can fail mainly for when we're out
4323 * memory which is handled and propagated appropriately above
4324 * but it can also fail during a netlink_broadcast() or during
4325 * early boot for call_usermodehelper(). For now treat these
4326 * errors as non-fatal.
4328 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4332 * Finally, if the user set the module parameter treat it
4335 if (!is_world_regdom(ieee80211_regdom
))
4336 regulatory_hint_user(ieee80211_regdom
,
4337 NL80211_USER_REG_HINT_USER
);
4342 late_initcall(regulatory_init_db
);
4345 int __init
regulatory_init(void)
4347 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
4348 if (IS_ERR(reg_pdev
))
4349 return PTR_ERR(reg_pdev
);
4351 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
4353 user_alpha2
[0] = '9';
4354 user_alpha2
[1] = '7';
4357 return regulatory_init_db();
4363 void regulatory_exit(void)
4365 struct regulatory_request
*reg_request
, *tmp
;
4366 struct reg_beacon
*reg_beacon
, *btmp
;
4368 cancel_work_sync(®_work
);
4369 cancel_crda_timeout_sync();
4370 cancel_delayed_work_sync(®_check_chans
);
4372 /* Lock to suppress warnings */
4374 reset_regdomains(true, NULL
);
4377 dev_set_uevent_suppress(®_pdev
->dev
, true);
4379 platform_device_unregister(reg_pdev
);
4381 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
4382 list_del(®_beacon
->list
);
4386 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
4387 list_del(®_beacon
->list
);
4391 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
4392 list_del(®_request
->list
);
4396 if (!IS_ERR_OR_NULL(regdb
))
4398 if (!IS_ERR_OR_NULL(cfg80211_user_regdom
))
4399 kfree(cfg80211_user_regdom
);
4401 free_regdb_keyring();