1 // SPDX-License-Identifier: GPL-2.0-only
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
11 * Notes on the allocation strategy:
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
38 #include <asm/runtime-const.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
61 * dentry->d_inode->i_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
76 int sysctl_vfs_cache_pressure __read_mostly
= 100;
77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
79 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
81 EXPORT_SYMBOL(rename_lock
);
83 static struct kmem_cache
*dentry_cache __ro_after_init
;
85 const struct qstr empty_name
= QSTR_INIT("", 0);
86 EXPORT_SYMBOL(empty_name
);
87 const struct qstr slash_name
= QSTR_INIT("/", 1);
88 EXPORT_SYMBOL(slash_name
);
89 const struct qstr dotdot_name
= QSTR_INIT("..", 2);
90 EXPORT_SYMBOL(dotdot_name
);
93 * This is the single most critical data structure when it comes
94 * to the dcache: the hashtable for lookups. Somebody should try
95 * to make this good - I've just made it work.
97 * This hash-function tries to avoid losing too many bits of hash
98 * information, yet avoid using a prime hash-size or similar.
100 * Marking the variables "used" ensures that the compiler doesn't
101 * optimize them away completely on architectures with runtime
102 * constant infrastructure, this allows debuggers to see their
103 * values. But updating these values has no effect on those arches.
106 static unsigned int d_hash_shift __ro_after_init __used
;
108 static struct hlist_bl_head
*dentry_hashtable __ro_after_init __used
;
110 static inline struct hlist_bl_head
*d_hash(unsigned long hashlen
)
112 return runtime_const_ptr(dentry_hashtable
) +
113 runtime_const_shift_right_32(hashlen
, d_hash_shift
);
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
119 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
122 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
123 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
126 struct dentry_stat_t
{
129 long age_limit
; /* age in seconds */
130 long want_pages
; /* pages requested by system */
131 long nr_negative
; /* # of unused negative dentries */
132 long dummy
; /* Reserved for future use */
135 static DEFINE_PER_CPU(long, nr_dentry
);
136 static DEFINE_PER_CPU(long, nr_dentry_unused
);
137 static DEFINE_PER_CPU(long, nr_dentry_negative
);
138 static int dentry_negative_policy
;
140 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
141 /* Statistics gathering. */
142 static struct dentry_stat_t dentry_stat
= {
147 * Here we resort to our own counters instead of using generic per-cpu counters
148 * for consistency with what the vfs inode code does. We are expected to harvest
149 * better code and performance by having our own specialized counters.
151 * Please note that the loop is done over all possible CPUs, not over all online
152 * CPUs. The reason for this is that we don't want to play games with CPUs going
153 * on and off. If one of them goes off, we will just keep their counters.
155 * glommer: See cffbc8a for details, and if you ever intend to change this,
156 * please update all vfs counters to match.
158 static long get_nr_dentry(void)
162 for_each_possible_cpu(i
)
163 sum
+= per_cpu(nr_dentry
, i
);
164 return sum
< 0 ? 0 : sum
;
167 static long get_nr_dentry_unused(void)
171 for_each_possible_cpu(i
)
172 sum
+= per_cpu(nr_dentry_unused
, i
);
173 return sum
< 0 ? 0 : sum
;
176 static long get_nr_dentry_negative(void)
181 for_each_possible_cpu(i
)
182 sum
+= per_cpu(nr_dentry_negative
, i
);
183 return sum
< 0 ? 0 : sum
;
186 static int proc_nr_dentry(const struct ctl_table
*table
, int write
, void *buffer
,
187 size_t *lenp
, loff_t
*ppos
)
189 dentry_stat
.nr_dentry
= get_nr_dentry();
190 dentry_stat
.nr_unused
= get_nr_dentry_unused();
191 dentry_stat
.nr_negative
= get_nr_dentry_negative();
192 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
195 static struct ctl_table fs_dcache_sysctls
[] = {
197 .procname
= "dentry-state",
198 .data
= &dentry_stat
,
199 .maxlen
= 6*sizeof(long),
201 .proc_handler
= proc_nr_dentry
,
204 .procname
= "dentry-negative",
205 .data
= &dentry_negative_policy
,
206 .maxlen
= sizeof(dentry_negative_policy
),
208 .proc_handler
= proc_dointvec_minmax
,
209 .extra1
= SYSCTL_ZERO
,
210 .extra2
= SYSCTL_ONE
,
214 static int __init
init_fs_dcache_sysctls(void)
216 register_sysctl_init("fs", fs_dcache_sysctls
);
219 fs_initcall(init_fs_dcache_sysctls
);
223 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
224 * The strings are both count bytes long, and count is non-zero.
226 #ifdef CONFIG_DCACHE_WORD_ACCESS
228 #include <asm/word-at-a-time.h>
230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
231 * aligned allocation for this particular component. We don't
232 * strictly need the load_unaligned_zeropad() safety, but it
233 * doesn't hurt either.
235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
236 * need the careful unaligned handling.
238 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
240 unsigned long a
,b
,mask
;
243 a
= read_word_at_a_time(cs
);
244 b
= load_unaligned_zeropad(ct
);
245 if (tcount
< sizeof(unsigned long))
247 if (unlikely(a
!= b
))
249 cs
+= sizeof(unsigned long);
250 ct
+= sizeof(unsigned long);
251 tcount
-= sizeof(unsigned long);
255 mask
= bytemask_from_count(tcount
);
256 return unlikely(!!((a
^ b
) & mask
));
261 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
275 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
278 * Be careful about RCU walk racing with rename:
279 * use 'READ_ONCE' to fetch the name pointer.
281 * NOTE! Even if a rename will mean that the length
282 * was not loaded atomically, we don't care. The
283 * RCU walk will check the sequence count eventually,
284 * and catch it. And we won't overrun the buffer,
285 * because we're reading the name pointer atomically,
286 * and a dentry name is guaranteed to be properly
287 * terminated with a NUL byte.
289 * End result: even if 'len' is wrong, we'll exit
290 * early because the data cannot match (there can
291 * be no NUL in the ct/tcount data)
293 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
295 return dentry_string_cmp(cs
, ct
, tcount
);
298 struct external_name
{
301 struct rcu_head head
;
303 unsigned char name
[];
306 static inline struct external_name
*external_name(struct dentry
*dentry
)
308 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
311 static void __d_free(struct rcu_head
*head
)
313 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
315 kmem_cache_free(dentry_cache
, dentry
);
318 static void __d_free_external(struct rcu_head
*head
)
320 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
321 kfree(external_name(dentry
));
322 kmem_cache_free(dentry_cache
, dentry
);
325 static inline int dname_external(const struct dentry
*dentry
)
327 return dentry
->d_name
.name
!= dentry
->d_iname
;
330 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
332 spin_lock(&dentry
->d_lock
);
333 name
->name
= dentry
->d_name
;
334 if (unlikely(dname_external(dentry
))) {
335 atomic_inc(&external_name(dentry
)->u
.count
);
337 memcpy(name
->inline_name
, dentry
->d_iname
,
338 dentry
->d_name
.len
+ 1);
339 name
->name
.name
= name
->inline_name
;
341 spin_unlock(&dentry
->d_lock
);
343 EXPORT_SYMBOL(take_dentry_name_snapshot
);
345 void release_dentry_name_snapshot(struct name_snapshot
*name
)
347 if (unlikely(name
->name
.name
!= name
->inline_name
)) {
348 struct external_name
*p
;
349 p
= container_of(name
->name
.name
, struct external_name
, name
[0]);
350 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
351 kfree_rcu(p
, u
.head
);
354 EXPORT_SYMBOL(release_dentry_name_snapshot
);
356 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
362 dentry
->d_inode
= inode
;
363 flags
= READ_ONCE(dentry
->d_flags
);
364 flags
&= ~DCACHE_ENTRY_TYPE
;
366 smp_store_release(&dentry
->d_flags
, flags
);
369 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
371 unsigned flags
= READ_ONCE(dentry
->d_flags
);
373 flags
&= ~DCACHE_ENTRY_TYPE
;
374 WRITE_ONCE(dentry
->d_flags
, flags
);
375 dentry
->d_inode
= NULL
;
377 * The negative counter only tracks dentries on the LRU. Don't inc if
378 * d_lru is on another list.
380 if ((flags
& (DCACHE_LRU_LIST
|DCACHE_SHRINK_LIST
)) == DCACHE_LRU_LIST
)
381 this_cpu_inc(nr_dentry_negative
);
384 static void dentry_free(struct dentry
*dentry
)
386 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
387 if (unlikely(dname_external(dentry
))) {
388 struct external_name
*p
= external_name(dentry
);
389 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
390 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
394 /* if dentry was never visible to RCU, immediate free is OK */
395 if (dentry
->d_flags
& DCACHE_NORCU
)
396 __d_free(&dentry
->d_u
.d_rcu
);
398 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
402 * Release the dentry's inode, using the filesystem
403 * d_iput() operation if defined.
405 static void dentry_unlink_inode(struct dentry
* dentry
)
406 __releases(dentry
->d_lock
)
407 __releases(dentry
->d_inode
->i_lock
)
409 struct inode
*inode
= dentry
->d_inode
;
411 raw_write_seqcount_begin(&dentry
->d_seq
);
412 __d_clear_type_and_inode(dentry
);
413 hlist_del_init(&dentry
->d_u
.d_alias
);
414 raw_write_seqcount_end(&dentry
->d_seq
);
415 spin_unlock(&dentry
->d_lock
);
416 spin_unlock(&inode
->i_lock
);
418 fsnotify_inoderemove(inode
);
419 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
420 dentry
->d_op
->d_iput(dentry
, inode
);
426 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
427 * is in use - which includes both the "real" per-superblock
428 * LRU list _and_ the DCACHE_SHRINK_LIST use.
430 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
431 * on the shrink list (ie not on the superblock LRU list).
433 * The per-cpu "nr_dentry_unused" counters are updated with
434 * the DCACHE_LRU_LIST bit.
436 * The per-cpu "nr_dentry_negative" counters are only updated
437 * when deleted from or added to the per-superblock LRU list, not
438 * from/to the shrink list. That is to avoid an unneeded dec/inc
439 * pair when moving from LRU to shrink list in select_collect().
441 * These helper functions make sure we always follow the
442 * rules. d_lock must be held by the caller.
444 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
445 static void d_lru_add(struct dentry
*dentry
)
447 D_FLAG_VERIFY(dentry
, 0);
448 dentry
->d_flags
|= DCACHE_LRU_LIST
;
449 this_cpu_inc(nr_dentry_unused
);
450 if (d_is_negative(dentry
))
451 this_cpu_inc(nr_dentry_negative
);
452 WARN_ON_ONCE(!list_lru_add_obj(
453 &dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
456 static void d_lru_del(struct dentry
*dentry
)
458 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
459 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
460 this_cpu_dec(nr_dentry_unused
);
461 if (d_is_negative(dentry
))
462 this_cpu_dec(nr_dentry_negative
);
463 WARN_ON_ONCE(!list_lru_del_obj(
464 &dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
467 static void d_shrink_del(struct dentry
*dentry
)
469 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
470 list_del_init(&dentry
->d_lru
);
471 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
472 this_cpu_dec(nr_dentry_unused
);
475 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
477 D_FLAG_VERIFY(dentry
, 0);
478 list_add(&dentry
->d_lru
, list
);
479 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
480 this_cpu_inc(nr_dentry_unused
);
484 * These can only be called under the global LRU lock, ie during the
485 * callback for freeing the LRU list. "isolate" removes it from the
486 * LRU lists entirely, while shrink_move moves it to the indicated
489 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
491 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
492 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
493 this_cpu_dec(nr_dentry_unused
);
494 if (d_is_negative(dentry
))
495 this_cpu_dec(nr_dentry_negative
);
496 list_lru_isolate(lru
, &dentry
->d_lru
);
499 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
500 struct list_head
*list
)
502 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
503 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
504 if (d_is_negative(dentry
))
505 this_cpu_dec(nr_dentry_negative
);
506 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
509 static void ___d_drop(struct dentry
*dentry
)
511 struct hlist_bl_head
*b
;
513 * Hashed dentries are normally on the dentry hashtable,
514 * with the exception of those newly allocated by
515 * d_obtain_root, which are always IS_ROOT:
517 if (unlikely(IS_ROOT(dentry
)))
518 b
= &dentry
->d_sb
->s_roots
;
520 b
= d_hash(dentry
->d_name
.hash
);
523 __hlist_bl_del(&dentry
->d_hash
);
527 void __d_drop(struct dentry
*dentry
)
529 if (!d_unhashed(dentry
)) {
531 dentry
->d_hash
.pprev
= NULL
;
532 write_seqcount_invalidate(&dentry
->d_seq
);
535 EXPORT_SYMBOL(__d_drop
);
538 * d_drop - drop a dentry
539 * @dentry: dentry to drop
541 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
542 * be found through a VFS lookup any more. Note that this is different from
543 * deleting the dentry - d_delete will try to mark the dentry negative if
544 * possible, giving a successful _negative_ lookup, while d_drop will
545 * just make the cache lookup fail.
547 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
548 * reason (NFS timeouts or autofs deletes).
550 * __d_drop requires dentry->d_lock
552 * ___d_drop doesn't mark dentry as "unhashed"
553 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
555 void d_drop(struct dentry
*dentry
)
557 spin_lock(&dentry
->d_lock
);
559 spin_unlock(&dentry
->d_lock
);
561 EXPORT_SYMBOL(d_drop
);
563 static inline void dentry_unlist(struct dentry
*dentry
)
567 * Inform d_walk() and shrink_dentry_list() that we are no longer
568 * attached to the dentry tree
570 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
571 if (unlikely(hlist_unhashed(&dentry
->d_sib
)))
573 __hlist_del(&dentry
->d_sib
);
575 * Cursors can move around the list of children. While we'd been
576 * a normal list member, it didn't matter - ->d_sib.next would've
577 * been updated. However, from now on it won't be and for the
578 * things like d_walk() it might end up with a nasty surprise.
579 * Normally d_walk() doesn't care about cursors moving around -
580 * ->d_lock on parent prevents that and since a cursor has no children
581 * of its own, we get through it without ever unlocking the parent.
582 * There is one exception, though - if we ascend from a child that
583 * gets killed as soon as we unlock it, the next sibling is found
584 * using the value left in its ->d_sib.next. And if _that_
585 * pointed to a cursor, and cursor got moved (e.g. by lseek())
586 * before d_walk() regains parent->d_lock, we'll end up skipping
587 * everything the cursor had been moved past.
589 * Solution: make sure that the pointer left behind in ->d_sib.next
590 * points to something that won't be moving around. I.e. skip the
593 while (dentry
->d_sib
.next
) {
594 next
= hlist_entry(dentry
->d_sib
.next
, struct dentry
, d_sib
);
595 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
597 dentry
->d_sib
.next
= next
->d_sib
.next
;
601 static struct dentry
*__dentry_kill(struct dentry
*dentry
)
603 struct dentry
*parent
= NULL
;
604 bool can_free
= true;
607 * The dentry is now unrecoverably dead to the world.
609 lockref_mark_dead(&dentry
->d_lockref
);
612 * inform the fs via d_prune that this dentry is about to be
613 * unhashed and destroyed.
615 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
616 dentry
->d_op
->d_prune(dentry
);
618 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
619 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
622 /* if it was on the hash then remove it */
625 dentry_unlink_inode(dentry
);
627 spin_unlock(&dentry
->d_lock
);
628 this_cpu_dec(nr_dentry
);
629 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
630 dentry
->d_op
->d_release(dentry
);
633 /* now that it's negative, ->d_parent is stable */
634 if (!IS_ROOT(dentry
)) {
635 parent
= dentry
->d_parent
;
636 spin_lock(&parent
->d_lock
);
638 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
639 dentry_unlist(dentry
);
640 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
)
642 spin_unlock(&dentry
->d_lock
);
643 if (likely(can_free
))
645 if (parent
&& --parent
->d_lockref
.count
) {
646 spin_unlock(&parent
->d_lock
);
653 * Lock a dentry for feeding it to __dentry_kill().
654 * Called under rcu_read_lock() and dentry->d_lock; the former
655 * guarantees that nothing we access will be freed under us.
656 * Note that dentry is *not* protected from concurrent dentry_kill(),
659 * Return false if dentry is busy. Otherwise, return true and have
660 * that dentry's inode locked.
663 static bool lock_for_kill(struct dentry
*dentry
)
665 struct inode
*inode
= dentry
->d_inode
;
667 if (unlikely(dentry
->d_lockref
.count
))
670 if (!inode
|| likely(spin_trylock(&inode
->i_lock
)))
674 spin_unlock(&dentry
->d_lock
);
675 spin_lock(&inode
->i_lock
);
676 spin_lock(&dentry
->d_lock
);
677 if (likely(inode
== dentry
->d_inode
))
679 spin_unlock(&inode
->i_lock
);
680 inode
= dentry
->d_inode
;
682 if (likely(!dentry
->d_lockref
.count
))
685 spin_unlock(&inode
->i_lock
);
690 * Decide if dentry is worth retaining. Usually this is called with dentry
691 * locked; if not locked, we are more limited and might not be able to tell
692 * without a lock. False in this case means "punt to locked path and recheck".
694 * In case we aren't locked, these predicates are not "stable". However, it is
695 * sufficient that at some point after we dropped the reference the dentry was
696 * hashed and the flags had the proper value. Other dentry users may have
697 * re-gotten a reference to the dentry and change that, but our work is done -
698 * we can leave the dentry around with a zero refcount.
700 static inline bool retain_dentry(struct dentry
*dentry
, bool locked
)
702 unsigned int d_flags
;
705 d_flags
= READ_ONCE(dentry
->d_flags
);
707 // Unreachable? Nobody would be able to look it up, no point retaining
708 if (unlikely(d_unhashed(dentry
)))
711 // Same if it's disconnected
712 if (unlikely(d_flags
& DCACHE_DISCONNECTED
))
715 // ->d_delete() might tell us not to bother, but that requires
716 // ->d_lock; can't decide without it
717 if (unlikely(d_flags
& DCACHE_OP_DELETE
)) {
718 if (!locked
|| dentry
->d_op
->d_delete(dentry
))
722 // Explicitly told not to bother
723 if (unlikely(d_flags
& DCACHE_DONTCACHE
))
726 // At this point it looks like we ought to keep it. We also might
727 // need to do something - put it on LRU if it wasn't there already
728 // and mark it referenced if it was on LRU, but not marked yet.
729 // Unfortunately, both actions require ->d_lock, so in lockless
730 // case we'd have to punt rather than doing those.
731 if (unlikely(!(d_flags
& DCACHE_LRU_LIST
))) {
735 } else if (unlikely(!(d_flags
& DCACHE_REFERENCED
))) {
738 dentry
->d_flags
|= DCACHE_REFERENCED
;
743 void d_mark_dontcache(struct inode
*inode
)
747 spin_lock(&inode
->i_lock
);
748 hlist_for_each_entry(de
, &inode
->i_dentry
, d_u
.d_alias
) {
749 spin_lock(&de
->d_lock
);
750 de
->d_flags
|= DCACHE_DONTCACHE
;
751 spin_unlock(&de
->d_lock
);
753 inode
->i_state
|= I_DONTCACHE
;
754 spin_unlock(&inode
->i_lock
);
756 EXPORT_SYMBOL(d_mark_dontcache
);
759 * Try to do a lockless dput(), and return whether that was successful.
761 * If unsuccessful, we return false, having already taken the dentry lock.
762 * In that case refcount is guaranteed to be zero and we have already
763 * decided that it's not worth keeping around.
765 * The caller needs to hold the RCU read lock, so that the dentry is
766 * guaranteed to stay around even if the refcount goes down to zero!
768 static inline bool fast_dput(struct dentry
*dentry
)
773 * try to decrement the lockref optimistically.
775 ret
= lockref_put_return(&dentry
->d_lockref
);
778 * If the lockref_put_return() failed due to the lock being held
779 * by somebody else, the fast path has failed. We will need to
780 * get the lock, and then check the count again.
782 if (unlikely(ret
< 0)) {
783 spin_lock(&dentry
->d_lock
);
784 if (WARN_ON_ONCE(dentry
->d_lockref
.count
<= 0)) {
785 spin_unlock(&dentry
->d_lock
);
788 dentry
->d_lockref
.count
--;
793 * If we weren't the last ref, we're done.
799 * Can we decide that decrement of refcount is all we needed without
800 * taking the lock? There's a very common case when it's all we need -
801 * dentry looks like it ought to be retained and there's nothing else
804 if (retain_dentry(dentry
, false))
808 * Either not worth retaining or we can't tell without the lock.
809 * Get the lock, then. We've already decremented the refcount to 0,
810 * but we'll need to re-check the situation after getting the lock.
812 spin_lock(&dentry
->d_lock
);
815 * Did somebody else grab a reference to it in the meantime, and
816 * we're no longer the last user after all? Alternatively, somebody
817 * else could have killed it and marked it dead. Either way, we
818 * don't need to do anything else.
821 if (dentry
->d_lockref
.count
|| retain_dentry(dentry
, true)) {
822 spin_unlock(&dentry
->d_lock
);
832 * This is complicated by the fact that we do not want to put
833 * dentries that are no longer on any hash chain on the unused
834 * list: we'd much rather just get rid of them immediately.
836 * However, that implies that we have to traverse the dentry
837 * tree upwards to the parents which might _also_ now be
838 * scheduled for deletion (it may have been only waiting for
839 * its last child to go away).
841 * This tail recursion is done by hand as we don't want to depend
842 * on the compiler to always get this right (gcc generally doesn't).
843 * Real recursion would eat up our stack space.
847 * dput - release a dentry
848 * @dentry: dentry to release
850 * Release a dentry. This will drop the usage count and if appropriate
851 * call the dentry unlink method as well as removing it from the queues and
852 * releasing its resources. If the parent dentries were scheduled for release
853 * they too may now get deleted.
855 void dput(struct dentry
*dentry
)
861 if (likely(fast_dput(dentry
))) {
865 while (lock_for_kill(dentry
)) {
867 dentry
= __dentry_kill(dentry
);
870 if (retain_dentry(dentry
, true)) {
871 spin_unlock(&dentry
->d_lock
);
877 spin_unlock(&dentry
->d_lock
);
881 static void to_shrink_list(struct dentry
*dentry
, struct list_head
*list
)
882 __must_hold(&dentry
->d_lock
)
884 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
885 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
887 d_shrink_add(dentry
, list
);
891 void dput_to_list(struct dentry
*dentry
, struct list_head
*list
)
894 if (likely(fast_dput(dentry
))) {
899 to_shrink_list(dentry
, list
);
900 spin_unlock(&dentry
->d_lock
);
903 struct dentry
*dget_parent(struct dentry
*dentry
)
910 * Do optimistic parent lookup without any
914 seq
= raw_seqcount_begin(&dentry
->d_seq
);
915 ret
= READ_ONCE(dentry
->d_parent
);
916 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
918 if (likely(gotref
)) {
919 if (!read_seqcount_retry(&dentry
->d_seq
, seq
))
926 * Don't need rcu_dereference because we re-check it was correct under
930 ret
= dentry
->d_parent
;
931 spin_lock(&ret
->d_lock
);
932 if (unlikely(ret
!= dentry
->d_parent
)) {
933 spin_unlock(&ret
->d_lock
);
938 BUG_ON(!ret
->d_lockref
.count
);
939 ret
->d_lockref
.count
++;
940 spin_unlock(&ret
->d_lock
);
943 EXPORT_SYMBOL(dget_parent
);
945 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
947 struct dentry
*alias
;
949 if (hlist_empty(&inode
->i_dentry
))
951 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
952 lockref_get(&alias
->d_lockref
);
957 * d_find_any_alias - find any alias for a given inode
958 * @inode: inode to find an alias for
960 * If any aliases exist for the given inode, take and return a
961 * reference for one of them. If no aliases exist, return %NULL.
963 struct dentry
*d_find_any_alias(struct inode
*inode
)
967 spin_lock(&inode
->i_lock
);
968 de
= __d_find_any_alias(inode
);
969 spin_unlock(&inode
->i_lock
);
972 EXPORT_SYMBOL(d_find_any_alias
);
974 static struct dentry
*__d_find_alias(struct inode
*inode
)
976 struct dentry
*alias
;
978 if (S_ISDIR(inode
->i_mode
))
979 return __d_find_any_alias(inode
);
981 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
982 spin_lock(&alias
->d_lock
);
983 if (!d_unhashed(alias
)) {
985 spin_unlock(&alias
->d_lock
);
988 spin_unlock(&alias
->d_lock
);
994 * d_find_alias - grab a hashed alias of inode
995 * @inode: inode in question
997 * If inode has a hashed alias, or is a directory and has any alias,
998 * acquire the reference to alias and return it. Otherwise return NULL.
999 * Notice that if inode is a directory there can be only one alias and
1000 * it can be unhashed only if it has no children, or if it is the root
1001 * of a filesystem, or if the directory was renamed and d_revalidate
1002 * was the first vfs operation to notice.
1004 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005 * any other hashed alias over that one.
1007 struct dentry
*d_find_alias(struct inode
*inode
)
1009 struct dentry
*de
= NULL
;
1011 if (!hlist_empty(&inode
->i_dentry
)) {
1012 spin_lock(&inode
->i_lock
);
1013 de
= __d_find_alias(inode
);
1014 spin_unlock(&inode
->i_lock
);
1018 EXPORT_SYMBOL(d_find_alias
);
1021 * Caller MUST be holding rcu_read_lock() and be guaranteed
1022 * that inode won't get freed until rcu_read_unlock().
1024 struct dentry
*d_find_alias_rcu(struct inode
*inode
)
1026 struct hlist_head
*l
= &inode
->i_dentry
;
1027 struct dentry
*de
= NULL
;
1029 spin_lock(&inode
->i_lock
);
1030 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1031 // used without having I_FREEING set, which means no aliases left
1032 if (likely(!(inode
->i_state
& I_FREEING
) && !hlist_empty(l
))) {
1033 if (S_ISDIR(inode
->i_mode
)) {
1034 de
= hlist_entry(l
->first
, struct dentry
, d_u
.d_alias
);
1036 hlist_for_each_entry(de
, l
, d_u
.d_alias
)
1037 if (!d_unhashed(de
))
1041 spin_unlock(&inode
->i_lock
);
1046 * Try to kill dentries associated with this inode.
1047 * WARNING: you must own a reference to inode.
1049 void d_prune_aliases(struct inode
*inode
)
1052 struct dentry
*dentry
;
1054 spin_lock(&inode
->i_lock
);
1055 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
1056 spin_lock(&dentry
->d_lock
);
1057 if (!dentry
->d_lockref
.count
)
1058 to_shrink_list(dentry
, &dispose
);
1059 spin_unlock(&dentry
->d_lock
);
1061 spin_unlock(&inode
->i_lock
);
1062 shrink_dentry_list(&dispose
);
1064 EXPORT_SYMBOL(d_prune_aliases
);
1066 static inline void shrink_kill(struct dentry
*victim
)
1070 victim
= __dentry_kill(victim
);
1072 } while (victim
&& lock_for_kill(victim
));
1075 spin_unlock(&victim
->d_lock
);
1078 void shrink_dentry_list(struct list_head
*list
)
1080 while (!list_empty(list
)) {
1081 struct dentry
*dentry
;
1083 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1084 spin_lock(&dentry
->d_lock
);
1086 if (!lock_for_kill(dentry
)) {
1089 d_shrink_del(dentry
);
1090 can_free
= dentry
->d_flags
& DCACHE_DENTRY_KILLED
;
1091 spin_unlock(&dentry
->d_lock
);
1093 dentry_free(dentry
);
1096 d_shrink_del(dentry
);
1097 shrink_kill(dentry
);
1101 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1102 struct list_lru_one
*lru
, void *arg
)
1104 struct list_head
*freeable
= arg
;
1105 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1109 * we are inverting the lru lock/dentry->d_lock here,
1110 * so use a trylock. If we fail to get the lock, just skip
1113 if (!spin_trylock(&dentry
->d_lock
))
1117 * Referenced dentries are still in use. If they have active
1118 * counts, just remove them from the LRU. Otherwise give them
1119 * another pass through the LRU.
1121 if (dentry
->d_lockref
.count
) {
1122 d_lru_isolate(lru
, dentry
);
1123 spin_unlock(&dentry
->d_lock
);
1127 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1128 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1129 spin_unlock(&dentry
->d_lock
);
1132 * The list move itself will be made by the common LRU code. At
1133 * this point, we've dropped the dentry->d_lock but keep the
1134 * lru lock. This is safe to do, since every list movement is
1135 * protected by the lru lock even if both locks are held.
1137 * This is guaranteed by the fact that all LRU management
1138 * functions are intermediated by the LRU API calls like
1139 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1140 * only ever occur through this functions or through callbacks
1141 * like this one, that are called from the LRU API.
1143 * The only exceptions to this are functions like
1144 * shrink_dentry_list, and code that first checks for the
1145 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1146 * operating only with stack provided lists after they are
1147 * properly isolated from the main list. It is thus, always a
1153 d_lru_shrink_move(lru
, dentry
, freeable
);
1154 spin_unlock(&dentry
->d_lock
);
1160 * prune_dcache_sb - shrink the dcache
1162 * @sc: shrink control, passed to list_lru_shrink_walk()
1164 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1165 * is done when we need more memory and called from the superblock shrinker
1168 * This function may fail to free any resources if all the dentries are in
1171 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1176 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1177 dentry_lru_isolate
, &dispose
);
1178 shrink_dentry_list(&dispose
);
1182 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1183 struct list_lru_one
*lru
, void *arg
)
1185 struct list_head
*freeable
= arg
;
1186 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1189 * we are inverting the lru lock/dentry->d_lock here,
1190 * so use a trylock. If we fail to get the lock, just skip
1193 if (!spin_trylock(&dentry
->d_lock
))
1196 d_lru_shrink_move(lru
, dentry
, freeable
);
1197 spin_unlock(&dentry
->d_lock
);
1204 * shrink_dcache_sb - shrink dcache for a superblock
1207 * Shrink the dcache for the specified super block. This is used to free
1208 * the dcache before unmounting a file system.
1210 void shrink_dcache_sb(struct super_block
*sb
)
1215 list_lru_walk(&sb
->s_dentry_lru
,
1216 dentry_lru_isolate_shrink
, &dispose
, 1024);
1217 shrink_dentry_list(&dispose
);
1218 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1220 EXPORT_SYMBOL(shrink_dcache_sb
);
1223 * enum d_walk_ret - action to talke during tree walk
1224 * @D_WALK_CONTINUE: contrinue walk
1225 * @D_WALK_QUIT: quit walk
1226 * @D_WALK_NORETRY: quit when retry is needed
1227 * @D_WALK_SKIP: skip this dentry and its children
1237 * d_walk - walk the dentry tree
1238 * @parent: start of walk
1239 * @data: data passed to @enter() and @finish()
1240 * @enter: callback when first entering the dentry
1242 * The @enter() callbacks are called with d_lock held.
1244 static void d_walk(struct dentry
*parent
, void *data
,
1245 enum d_walk_ret (*enter
)(void *, struct dentry
*))
1247 struct dentry
*this_parent
, *dentry
;
1249 enum d_walk_ret ret
;
1253 read_seqbegin_or_lock(&rename_lock
, &seq
);
1254 this_parent
= parent
;
1255 spin_lock(&this_parent
->d_lock
);
1257 ret
= enter(data
, this_parent
);
1259 case D_WALK_CONTINUE
:
1264 case D_WALK_NORETRY
:
1269 dentry
= d_first_child(this_parent
);
1271 hlist_for_each_entry_from(dentry
, d_sib
) {
1272 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1275 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1277 ret
= enter(data
, dentry
);
1279 case D_WALK_CONTINUE
:
1282 spin_unlock(&dentry
->d_lock
);
1284 case D_WALK_NORETRY
:
1288 spin_unlock(&dentry
->d_lock
);
1292 if (!hlist_empty(&dentry
->d_children
)) {
1293 spin_unlock(&this_parent
->d_lock
);
1294 spin_release(&dentry
->d_lock
.dep_map
, _RET_IP_
);
1295 this_parent
= dentry
;
1296 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1299 spin_unlock(&dentry
->d_lock
);
1302 * All done at this level ... ascend and resume the search.
1306 if (this_parent
!= parent
) {
1307 dentry
= this_parent
;
1308 this_parent
= dentry
->d_parent
;
1310 spin_unlock(&dentry
->d_lock
);
1311 spin_lock(&this_parent
->d_lock
);
1313 /* might go back up the wrong parent if we have had a rename. */
1314 if (need_seqretry(&rename_lock
, seq
))
1316 /* go into the first sibling still alive */
1317 hlist_for_each_entry_continue(dentry
, d_sib
) {
1318 if (likely(!(dentry
->d_flags
& DCACHE_DENTRY_KILLED
))) {
1325 if (need_seqretry(&rename_lock
, seq
))
1330 spin_unlock(&this_parent
->d_lock
);
1331 done_seqretry(&rename_lock
, seq
);
1335 spin_unlock(&this_parent
->d_lock
);
1344 struct check_mount
{
1345 struct vfsmount
*mnt
;
1346 unsigned int mounted
;
1349 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1351 struct check_mount
*info
= data
;
1352 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1354 if (likely(!d_mountpoint(dentry
)))
1355 return D_WALK_CONTINUE
;
1356 if (__path_is_mountpoint(&path
)) {
1360 return D_WALK_CONTINUE
;
1364 * path_has_submounts - check for mounts over a dentry in the
1365 * current namespace.
1366 * @parent: path to check.
1368 * Return true if the parent or its subdirectories contain
1369 * a mount point in the current namespace.
1371 int path_has_submounts(const struct path
*parent
)
1373 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1375 read_seqlock_excl(&mount_lock
);
1376 d_walk(parent
->dentry
, &data
, path_check_mount
);
1377 read_sequnlock_excl(&mount_lock
);
1379 return data
.mounted
;
1381 EXPORT_SYMBOL(path_has_submounts
);
1384 * Called by mount code to set a mountpoint and check if the mountpoint is
1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386 * subtree can become unreachable).
1388 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1389 * this reason take rename_lock and d_lock on dentry and ancestors.
1391 int d_set_mounted(struct dentry
*dentry
)
1395 write_seqlock(&rename_lock
);
1396 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1397 /* Need exclusion wrt. d_invalidate() */
1398 spin_lock(&p
->d_lock
);
1399 if (unlikely(d_unhashed(p
))) {
1400 spin_unlock(&p
->d_lock
);
1403 spin_unlock(&p
->d_lock
);
1405 spin_lock(&dentry
->d_lock
);
1406 if (!d_unlinked(dentry
)) {
1408 if (!d_mountpoint(dentry
)) {
1409 dentry
->d_flags
|= DCACHE_MOUNTED
;
1413 spin_unlock(&dentry
->d_lock
);
1415 write_sequnlock(&rename_lock
);
1420 * Search the dentry child list of the specified parent,
1421 * and move any unused dentries to the end of the unused
1422 * list for prune_dcache(). We descend to the next level
1423 * whenever the d_children list is non-empty and continue
1426 * It returns zero iff there are no unused children,
1427 * otherwise it returns the number of children moved to
1428 * the end of the unused list. This may not be the total
1429 * number of unused children, because select_parent can
1430 * drop the lock and return early due to latency
1434 struct select_data
{
1435 struct dentry
*start
;
1438 struct dentry
*victim
;
1440 struct list_head dispose
;
1443 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1445 struct select_data
*data
= _data
;
1446 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1448 if (data
->start
== dentry
)
1451 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1453 } else if (!dentry
->d_lockref
.count
) {
1454 to_shrink_list(dentry
, &data
->dispose
);
1456 } else if (dentry
->d_lockref
.count
< 0) {
1460 * We can return to the caller if we have found some (this
1461 * ensures forward progress). We'll be coming back to find
1464 if (!list_empty(&data
->dispose
))
1465 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1470 static enum d_walk_ret
select_collect2(void *_data
, struct dentry
*dentry
)
1472 struct select_data
*data
= _data
;
1473 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1475 if (data
->start
== dentry
)
1478 if (!dentry
->d_lockref
.count
) {
1479 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1481 data
->victim
= dentry
;
1484 to_shrink_list(dentry
, &data
->dispose
);
1487 * We can return to the caller if we have found some (this
1488 * ensures forward progress). We'll be coming back to find
1491 if (!list_empty(&data
->dispose
))
1492 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1498 * shrink_dcache_parent - prune dcache
1499 * @parent: parent of entries to prune
1501 * Prune the dcache to remove unused children of the parent dentry.
1503 void shrink_dcache_parent(struct dentry
*parent
)
1506 struct select_data data
= {.start
= parent
};
1508 INIT_LIST_HEAD(&data
.dispose
);
1509 d_walk(parent
, &data
, select_collect
);
1511 if (!list_empty(&data
.dispose
)) {
1512 shrink_dentry_list(&data
.dispose
);
1520 d_walk(parent
, &data
, select_collect2
);
1522 spin_lock(&data
.victim
->d_lock
);
1523 if (!lock_for_kill(data
.victim
)) {
1524 spin_unlock(&data
.victim
->d_lock
);
1527 shrink_kill(data
.victim
);
1530 if (!list_empty(&data
.dispose
))
1531 shrink_dentry_list(&data
.dispose
);
1534 EXPORT_SYMBOL(shrink_dcache_parent
);
1536 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1538 /* it has busy descendents; complain about those instead */
1539 if (!hlist_empty(&dentry
->d_children
))
1540 return D_WALK_CONTINUE
;
1542 /* root with refcount 1 is fine */
1543 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1544 return D_WALK_CONTINUE
;
1546 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1547 " still in use (%d) [unmount of %s %s]\n",
1550 dentry
->d_inode
->i_ino
: 0UL,
1552 dentry
->d_lockref
.count
,
1553 dentry
->d_sb
->s_type
->name
,
1554 dentry
->d_sb
->s_id
);
1555 return D_WALK_CONTINUE
;
1558 static void do_one_tree(struct dentry
*dentry
)
1560 shrink_dcache_parent(dentry
);
1561 d_walk(dentry
, dentry
, umount_check
);
1567 * destroy the dentries attached to a superblock on unmounting
1569 void shrink_dcache_for_umount(struct super_block
*sb
)
1571 struct dentry
*dentry
;
1573 rwsem_assert_held_write(&sb
->s_umount
);
1575 dentry
= sb
->s_root
;
1577 do_one_tree(dentry
);
1579 while (!hlist_bl_empty(&sb
->s_roots
)) {
1580 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1581 do_one_tree(dentry
);
1585 static enum d_walk_ret
find_submount(void *_data
, struct dentry
*dentry
)
1587 struct dentry
**victim
= _data
;
1588 if (d_mountpoint(dentry
)) {
1589 *victim
= dget_dlock(dentry
);
1592 return D_WALK_CONTINUE
;
1596 * d_invalidate - detach submounts, prune dcache, and drop
1597 * @dentry: dentry to invalidate (aka detach, prune and drop)
1599 void d_invalidate(struct dentry
*dentry
)
1601 bool had_submounts
= false;
1602 spin_lock(&dentry
->d_lock
);
1603 if (d_unhashed(dentry
)) {
1604 spin_unlock(&dentry
->d_lock
);
1608 spin_unlock(&dentry
->d_lock
);
1610 /* Negative dentries can be dropped without further checks */
1611 if (!dentry
->d_inode
)
1614 shrink_dcache_parent(dentry
);
1616 struct dentry
*victim
= NULL
;
1617 d_walk(dentry
, &victim
, find_submount
);
1620 shrink_dcache_parent(dentry
);
1623 had_submounts
= true;
1624 detach_mounts(victim
);
1628 EXPORT_SYMBOL(d_invalidate
);
1631 * __d_alloc - allocate a dcache entry
1632 * @sb: filesystem it will belong to
1633 * @name: qstr of the name
1635 * Allocates a dentry. It returns %NULL if there is insufficient memory
1636 * available. On a success the dentry is returned. The name passed in is
1637 * copied and the copy passed in may be reused after this call.
1640 static struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1642 struct dentry
*dentry
;
1646 dentry
= kmem_cache_alloc_lru(dentry_cache
, &sb
->s_dentry_lru
,
1652 * We guarantee that the inline name is always NUL-terminated.
1653 * This way the memcpy() done by the name switching in rename
1654 * will still always have a NUL at the end, even if we might
1655 * be overwriting an internal NUL character
1657 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1658 if (unlikely(!name
)) {
1660 dname
= dentry
->d_iname
;
1661 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1662 size_t size
= offsetof(struct external_name
, name
[1]);
1663 struct external_name
*p
= kmalloc(size
+ name
->len
,
1664 GFP_KERNEL_ACCOUNT
|
1667 kmem_cache_free(dentry_cache
, dentry
);
1670 atomic_set(&p
->u
.count
, 1);
1673 dname
= dentry
->d_iname
;
1676 dentry
->d_name
.len
= name
->len
;
1677 dentry
->d_name
.hash
= name
->hash
;
1678 memcpy(dname
, name
->name
, name
->len
);
1679 dname
[name
->len
] = 0;
1681 /* Make sure we always see the terminating NUL character */
1682 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1684 dentry
->d_lockref
.count
= 1;
1685 dentry
->d_flags
= 0;
1686 spin_lock_init(&dentry
->d_lock
);
1687 seqcount_spinlock_init(&dentry
->d_seq
, &dentry
->d_lock
);
1688 dentry
->d_inode
= NULL
;
1689 dentry
->d_parent
= dentry
;
1691 dentry
->d_op
= NULL
;
1692 dentry
->d_fsdata
= NULL
;
1693 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1694 INIT_LIST_HEAD(&dentry
->d_lru
);
1695 INIT_HLIST_HEAD(&dentry
->d_children
);
1696 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1697 INIT_HLIST_NODE(&dentry
->d_sib
);
1698 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1700 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1701 err
= dentry
->d_op
->d_init(dentry
);
1703 if (dname_external(dentry
))
1704 kfree(external_name(dentry
));
1705 kmem_cache_free(dentry_cache
, dentry
);
1710 this_cpu_inc(nr_dentry
);
1716 * d_alloc - allocate a dcache entry
1717 * @parent: parent of entry to allocate
1718 * @name: qstr of the name
1720 * Allocates a dentry. It returns %NULL if there is insufficient memory
1721 * available. On a success the dentry is returned. The name passed in is
1722 * copied and the copy passed in may be reused after this call.
1724 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1726 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1729 spin_lock(&parent
->d_lock
);
1731 * don't need child lock because it is not subject
1732 * to concurrency here
1734 dentry
->d_parent
= dget_dlock(parent
);
1735 hlist_add_head(&dentry
->d_sib
, &parent
->d_children
);
1736 spin_unlock(&parent
->d_lock
);
1740 EXPORT_SYMBOL(d_alloc
);
1742 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1744 return __d_alloc(sb
, NULL
);
1746 EXPORT_SYMBOL(d_alloc_anon
);
1748 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1750 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1752 dentry
->d_flags
|= DCACHE_DENTRY_CURSOR
;
1753 dentry
->d_parent
= dget(parent
);
1759 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1760 * @sb: the superblock
1761 * @name: qstr of the name
1763 * For a filesystem that just pins its dentries in memory and never
1764 * performs lookups at all, return an unhashed IS_ROOT dentry.
1765 * This is used for pipes, sockets et.al. - the stuff that should
1766 * never be anyone's children or parents. Unlike all other
1767 * dentries, these will not have RCU delay between dropping the
1768 * last reference and freeing them.
1770 * The only user is alloc_file_pseudo() and that's what should
1771 * be considered a public interface. Don't use directly.
1773 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1775 static const struct dentry_operations anon_ops
= {
1776 .d_dname
= simple_dname
1778 struct dentry
*dentry
= __d_alloc(sb
, name
);
1779 if (likely(dentry
)) {
1780 dentry
->d_flags
|= DCACHE_NORCU
;
1782 d_set_d_op(dentry
, &anon_ops
);
1787 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1792 q
.hash_len
= hashlen_string(parent
, name
);
1793 return d_alloc(parent
, &q
);
1795 EXPORT_SYMBOL(d_alloc_name
);
1797 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1799 WARN_ON_ONCE(dentry
->d_op
);
1800 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1802 DCACHE_OP_REVALIDATE
|
1803 DCACHE_OP_WEAK_REVALIDATE
|
1810 dentry
->d_flags
|= DCACHE_OP_HASH
;
1812 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1813 if (op
->d_revalidate
)
1814 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1815 if (op
->d_weak_revalidate
)
1816 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1818 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1820 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1822 dentry
->d_flags
|= DCACHE_OP_REAL
;
1825 EXPORT_SYMBOL(d_set_d_op
);
1827 static unsigned d_flags_for_inode(struct inode
*inode
)
1829 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1832 return DCACHE_MISS_TYPE
;
1834 if (S_ISDIR(inode
->i_mode
)) {
1835 add_flags
= DCACHE_DIRECTORY_TYPE
;
1836 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1837 if (unlikely(!inode
->i_op
->lookup
))
1838 add_flags
= DCACHE_AUTODIR_TYPE
;
1840 inode
->i_opflags
|= IOP_LOOKUP
;
1842 goto type_determined
;
1845 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1846 if (unlikely(inode
->i_op
->get_link
)) {
1847 add_flags
= DCACHE_SYMLINK_TYPE
;
1848 goto type_determined
;
1850 inode
->i_opflags
|= IOP_NOFOLLOW
;
1853 if (unlikely(!S_ISREG(inode
->i_mode
)))
1854 add_flags
= DCACHE_SPECIAL_TYPE
;
1857 if (unlikely(IS_AUTOMOUNT(inode
)))
1858 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1862 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1864 unsigned add_flags
= d_flags_for_inode(inode
);
1865 WARN_ON(d_in_lookup(dentry
));
1867 spin_lock(&dentry
->d_lock
);
1869 * The negative counter only tracks dentries on the LRU. Don't dec if
1870 * d_lru is on another list.
1872 if ((dentry
->d_flags
&
1873 (DCACHE_LRU_LIST
|DCACHE_SHRINK_LIST
)) == DCACHE_LRU_LIST
)
1874 this_cpu_dec(nr_dentry_negative
);
1875 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1876 raw_write_seqcount_begin(&dentry
->d_seq
);
1877 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1878 raw_write_seqcount_end(&dentry
->d_seq
);
1879 fsnotify_update_flags(dentry
);
1880 spin_unlock(&dentry
->d_lock
);
1884 * d_instantiate - fill in inode information for a dentry
1885 * @entry: dentry to complete
1886 * @inode: inode to attach to this dentry
1888 * Fill in inode information in the entry.
1890 * This turns negative dentries into productive full members
1893 * NOTE! This assumes that the inode count has been incremented
1894 * (or otherwise set) by the caller to indicate that it is now
1895 * in use by the dcache.
1898 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1900 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1902 security_d_instantiate(entry
, inode
);
1903 spin_lock(&inode
->i_lock
);
1904 __d_instantiate(entry
, inode
);
1905 spin_unlock(&inode
->i_lock
);
1908 EXPORT_SYMBOL(d_instantiate
);
1911 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1912 * with lockdep-related part of unlock_new_inode() done before
1913 * anything else. Use that instead of open-coding d_instantiate()/
1914 * unlock_new_inode() combinations.
1916 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1918 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1920 lockdep_annotate_inode_mutex_key(inode
);
1921 security_d_instantiate(entry
, inode
);
1922 spin_lock(&inode
->i_lock
);
1923 __d_instantiate(entry
, inode
);
1924 WARN_ON(!(inode
->i_state
& I_NEW
));
1925 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1927 * Pairs with the barrier in prepare_to_wait_event() to make sure
1928 * ___wait_var_event() either sees the bit cleared or
1929 * waitqueue_active() check in wake_up_var() sees the waiter.
1932 inode_wake_up_bit(inode
, __I_NEW
);
1933 spin_unlock(&inode
->i_lock
);
1935 EXPORT_SYMBOL(d_instantiate_new
);
1937 struct dentry
*d_make_root(struct inode
*root_inode
)
1939 struct dentry
*res
= NULL
;
1942 res
= d_alloc_anon(root_inode
->i_sb
);
1944 d_instantiate(res
, root_inode
);
1950 EXPORT_SYMBOL(d_make_root
);
1952 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1954 struct super_block
*sb
;
1955 struct dentry
*new, *res
;
1958 return ERR_PTR(-ESTALE
);
1960 return ERR_CAST(inode
);
1964 res
= d_find_any_alias(inode
); /* existing alias? */
1968 new = d_alloc_anon(sb
);
1970 res
= ERR_PTR(-ENOMEM
);
1974 security_d_instantiate(new, inode
);
1975 spin_lock(&inode
->i_lock
);
1976 res
= __d_find_any_alias(inode
); /* recheck under lock */
1977 if (likely(!res
)) { /* still no alias, attach a disconnected dentry */
1978 unsigned add_flags
= d_flags_for_inode(inode
);
1981 add_flags
|= DCACHE_DISCONNECTED
;
1983 spin_lock(&new->d_lock
);
1984 __d_set_inode_and_type(new, inode
, add_flags
);
1985 hlist_add_head(&new->d_u
.d_alias
, &inode
->i_dentry
);
1986 if (!disconnected
) {
1987 hlist_bl_lock(&sb
->s_roots
);
1988 hlist_bl_add_head(&new->d_hash
, &sb
->s_roots
);
1989 hlist_bl_unlock(&sb
->s_roots
);
1991 spin_unlock(&new->d_lock
);
1992 spin_unlock(&inode
->i_lock
);
1993 inode
= NULL
; /* consumed by new->d_inode */
1996 spin_unlock(&inode
->i_lock
);
2006 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2007 * @inode: inode to allocate the dentry for
2009 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2010 * similar open by handle operations. The returned dentry may be anonymous,
2011 * or may have a full name (if the inode was already in the cache).
2013 * When called on a directory inode, we must ensure that the inode only ever
2014 * has one dentry. If a dentry is found, that is returned instead of
2015 * allocating a new one.
2017 * On successful return, the reference to the inode has been transferred
2018 * to the dentry. In case of an error the reference on the inode is released.
2019 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2020 * be passed in and the error will be propagated to the return value,
2021 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2023 struct dentry
*d_obtain_alias(struct inode
*inode
)
2025 return __d_obtain_alias(inode
, true);
2027 EXPORT_SYMBOL(d_obtain_alias
);
2030 * d_obtain_root - find or allocate a dentry for a given inode
2031 * @inode: inode to allocate the dentry for
2033 * Obtain an IS_ROOT dentry for the root of a filesystem.
2035 * We must ensure that directory inodes only ever have one dentry. If a
2036 * dentry is found, that is returned instead of allocating a new one.
2038 * On successful return, the reference to the inode has been transferred
2039 * to the dentry. In case of an error the reference on the inode is
2040 * released. A %NULL or IS_ERR inode may be passed in and will be the
2041 * error will be propagate to the return value, with a %NULL @inode
2042 * replaced by ERR_PTR(-ESTALE).
2044 struct dentry
*d_obtain_root(struct inode
*inode
)
2046 return __d_obtain_alias(inode
, false);
2048 EXPORT_SYMBOL(d_obtain_root
);
2051 * d_add_ci - lookup or allocate new dentry with case-exact name
2052 * @dentry: the negative dentry that was passed to the parent's lookup func
2053 * @inode: the inode case-insensitive lookup has found
2054 * @name: the case-exact name to be associated with the returned dentry
2056 * This is to avoid filling the dcache with case-insensitive names to the
2057 * same inode, only the actual correct case is stored in the dcache for
2058 * case-insensitive filesystems.
2060 * For a case-insensitive lookup match and if the case-exact dentry
2061 * already exists in the dcache, use it and return it.
2063 * If no entry exists with the exact case name, allocate new dentry with
2064 * the exact case, and return the spliced entry.
2066 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2069 struct dentry
*found
, *res
;
2072 * First check if a dentry matching the name already exists,
2073 * if not go ahead and create it now.
2075 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2080 if (d_in_lookup(dentry
)) {
2081 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2083 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2088 found
= d_alloc(dentry
->d_parent
, name
);
2091 return ERR_PTR(-ENOMEM
);
2094 res
= d_splice_alias(inode
, found
);
2096 d_lookup_done(found
);
2102 EXPORT_SYMBOL(d_add_ci
);
2105 * d_same_name - compare dentry name with case-exact name
2106 * @dentry: the negative dentry that was passed to the parent's lookup func
2107 * @parent: parent dentry
2108 * @name: the case-exact name to be associated with the returned dentry
2110 * Return: true if names are same, or false
2112 bool d_same_name(const struct dentry
*dentry
, const struct dentry
*parent
,
2113 const struct qstr
*name
)
2115 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2116 if (dentry
->d_name
.len
!= name
->len
)
2118 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2120 return parent
->d_op
->d_compare(dentry
,
2121 dentry
->d_name
.len
, dentry
->d_name
.name
,
2124 EXPORT_SYMBOL_GPL(d_same_name
);
2127 * This is __d_lookup_rcu() when the parent dentry has
2128 * DCACHE_OP_COMPARE, which makes things much nastier.
2130 static noinline
struct dentry
*__d_lookup_rcu_op_compare(
2131 const struct dentry
*parent
,
2132 const struct qstr
*name
,
2135 u64 hashlen
= name
->hash_len
;
2136 struct hlist_bl_head
*b
= d_hash(hashlen
);
2137 struct hlist_bl_node
*node
;
2138 struct dentry
*dentry
;
2140 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2146 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2147 if (dentry
->d_parent
!= parent
)
2149 if (d_unhashed(dentry
))
2151 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2153 tlen
= dentry
->d_name
.len
;
2154 tname
= dentry
->d_name
.name
;
2155 /* we want a consistent (name,len) pair */
2156 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2160 if (parent
->d_op
->d_compare(dentry
, tlen
, tname
, name
) != 0)
2169 * __d_lookup_rcu - search for a dentry (racy, store-free)
2170 * @parent: parent dentry
2171 * @name: qstr of name we wish to find
2172 * @seqp: returns d_seq value at the point where the dentry was found
2173 * Returns: dentry, or NULL
2175 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2176 * resolution (store-free path walking) design described in
2177 * Documentation/filesystems/path-lookup.txt.
2179 * This is not to be used outside core vfs.
2181 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2182 * held, and rcu_read_lock held. The returned dentry must not be stored into
2183 * without taking d_lock and checking d_seq sequence count against @seq
2186 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2187 * the returned dentry, so long as its parent's seqlock is checked after the
2188 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2189 * is formed, giving integrity down the path walk.
2191 * NOTE! The caller *has* to check the resulting dentry against the sequence
2192 * number we've returned before using any of the resulting dentry state!
2194 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2195 const struct qstr
*name
,
2198 u64 hashlen
= name
->hash_len
;
2199 const unsigned char *str
= name
->name
;
2200 struct hlist_bl_head
*b
= d_hash(hashlen
);
2201 struct hlist_bl_node
*node
;
2202 struct dentry
*dentry
;
2205 * Note: There is significant duplication with __d_lookup_rcu which is
2206 * required to prevent single threaded performance regressions
2207 * especially on architectures where smp_rmb (in seqcounts) are costly.
2208 * Keep the two functions in sync.
2211 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
))
2212 return __d_lookup_rcu_op_compare(parent
, name
, seqp
);
2215 * The hash list is protected using RCU.
2217 * Carefully use d_seq when comparing a candidate dentry, to avoid
2218 * races with d_move().
2220 * It is possible that concurrent renames can mess up our list
2221 * walk here and result in missing our dentry, resulting in the
2222 * false-negative result. d_lookup() protects against concurrent
2223 * renames using rename_lock seqlock.
2225 * See Documentation/filesystems/path-lookup.txt for more details.
2227 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2231 * The dentry sequence count protects us from concurrent
2232 * renames, and thus protects parent and name fields.
2234 * The caller must perform a seqcount check in order
2235 * to do anything useful with the returned dentry.
2237 * NOTE! We do a "raw" seqcount_begin here. That means that
2238 * we don't wait for the sequence count to stabilize if it
2239 * is in the middle of a sequence change. If we do the slow
2240 * dentry compare, we will do seqretries until it is stable,
2241 * and if we end up with a successful lookup, we actually
2242 * want to exit RCU lookup anyway.
2244 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2245 * we are still guaranteed NUL-termination of ->d_name.name.
2247 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2248 if (dentry
->d_parent
!= parent
)
2250 if (d_unhashed(dentry
))
2252 if (dentry
->d_name
.hash_len
!= hashlen
)
2254 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2263 * d_lookup - search for a dentry
2264 * @parent: parent dentry
2265 * @name: qstr of name we wish to find
2266 * Returns: dentry, or NULL
2268 * d_lookup searches the children of the parent dentry for the name in
2269 * question. If the dentry is found its reference count is incremented and the
2270 * dentry is returned. The caller must use dput to free the entry when it has
2271 * finished using it. %NULL is returned if the dentry does not exist.
2273 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2275 struct dentry
*dentry
;
2279 seq
= read_seqbegin(&rename_lock
);
2280 dentry
= __d_lookup(parent
, name
);
2283 } while (read_seqretry(&rename_lock
, seq
));
2286 EXPORT_SYMBOL(d_lookup
);
2289 * __d_lookup - search for a dentry (racy)
2290 * @parent: parent dentry
2291 * @name: qstr of name we wish to find
2292 * Returns: dentry, or NULL
2294 * __d_lookup is like d_lookup, however it may (rarely) return a
2295 * false-negative result due to unrelated rename activity.
2297 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298 * however it must be used carefully, eg. with a following d_lookup in
2299 * the case of failure.
2301 * __d_lookup callers must be commented.
2303 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2305 unsigned int hash
= name
->hash
;
2306 struct hlist_bl_head
*b
= d_hash(hash
);
2307 struct hlist_bl_node
*node
;
2308 struct dentry
*found
= NULL
;
2309 struct dentry
*dentry
;
2312 * Note: There is significant duplication with __d_lookup_rcu which is
2313 * required to prevent single threaded performance regressions
2314 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315 * Keep the two functions in sync.
2319 * The hash list is protected using RCU.
2321 * Take d_lock when comparing a candidate dentry, to avoid races
2324 * It is possible that concurrent renames can mess up our list
2325 * walk here and result in missing our dentry, resulting in the
2326 * false-negative result. d_lookup() protects against concurrent
2327 * renames using rename_lock seqlock.
2329 * See Documentation/filesystems/path-lookup.txt for more details.
2333 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2335 if (dentry
->d_name
.hash
!= hash
)
2338 spin_lock(&dentry
->d_lock
);
2339 if (dentry
->d_parent
!= parent
)
2341 if (d_unhashed(dentry
))
2344 if (!d_same_name(dentry
, parent
, name
))
2347 dentry
->d_lockref
.count
++;
2349 spin_unlock(&dentry
->d_lock
);
2352 spin_unlock(&dentry
->d_lock
);
2360 * d_hash_and_lookup - hash the qstr then search for a dentry
2361 * @dir: Directory to search in
2362 * @name: qstr of name we wish to find
2364 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2366 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2369 * Check for a fs-specific hash function. Note that we must
2370 * calculate the standard hash first, as the d_op->d_hash()
2371 * routine may choose to leave the hash value unchanged.
2373 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2374 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2375 int err
= dir
->d_op
->d_hash(dir
, name
);
2376 if (unlikely(err
< 0))
2377 return ERR_PTR(err
);
2379 return d_lookup(dir
, name
);
2381 EXPORT_SYMBOL(d_hash_and_lookup
);
2384 * When a file is deleted, we have two options:
2385 * - turn this dentry into a negative dentry
2386 * - unhash this dentry and free it.
2388 * Usually, we want to just turn this into
2389 * a negative dentry, but if anybody else is
2390 * currently using the dentry or the inode
2391 * we can't do that and we fall back on removing
2392 * it from the hash queues and waiting for
2393 * it to be deleted later when it has no users
2397 * d_delete - delete a dentry
2398 * @dentry: The dentry to delete
2400 * Turn the dentry into a negative dentry if possible, otherwise
2401 * remove it from the hash queues so it can be deleted later
2404 void d_delete(struct dentry
* dentry
)
2406 struct inode
*inode
= dentry
->d_inode
;
2408 spin_lock(&inode
->i_lock
);
2409 spin_lock(&dentry
->d_lock
);
2411 * Are we the only user?
2413 if (dentry
->d_lockref
.count
== 1) {
2414 if (dentry_negative_policy
)
2416 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2417 dentry_unlink_inode(dentry
);
2420 spin_unlock(&dentry
->d_lock
);
2421 spin_unlock(&inode
->i_lock
);
2424 EXPORT_SYMBOL(d_delete
);
2426 static void __d_rehash(struct dentry
*entry
)
2428 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2431 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2436 * d_rehash - add an entry back to the hash
2437 * @entry: dentry to add to the hash
2439 * Adds a dentry to the hash according to its name.
2442 void d_rehash(struct dentry
* entry
)
2444 spin_lock(&entry
->d_lock
);
2446 spin_unlock(&entry
->d_lock
);
2448 EXPORT_SYMBOL(d_rehash
);
2450 static inline unsigned start_dir_add(struct inode
*dir
)
2452 preempt_disable_nested();
2454 unsigned n
= dir
->i_dir_seq
;
2455 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2461 static inline void end_dir_add(struct inode
*dir
, unsigned int n
,
2462 wait_queue_head_t
*d_wait
)
2464 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2465 preempt_enable_nested();
2466 wake_up_all(d_wait
);
2469 static void d_wait_lookup(struct dentry
*dentry
)
2471 if (d_in_lookup(dentry
)) {
2472 DECLARE_WAITQUEUE(wait
, current
);
2473 add_wait_queue(dentry
->d_wait
, &wait
);
2475 set_current_state(TASK_UNINTERRUPTIBLE
);
2476 spin_unlock(&dentry
->d_lock
);
2478 spin_lock(&dentry
->d_lock
);
2479 } while (d_in_lookup(dentry
));
2483 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2484 const struct qstr
*name
,
2485 wait_queue_head_t
*wq
)
2487 unsigned int hash
= name
->hash
;
2488 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2489 struct hlist_bl_node
*node
;
2490 struct dentry
*new = d_alloc(parent
, name
);
2491 struct dentry
*dentry
;
2492 unsigned seq
, r_seq
, d_seq
;
2495 return ERR_PTR(-ENOMEM
);
2499 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2500 r_seq
= read_seqbegin(&rename_lock
);
2501 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2502 if (unlikely(dentry
)) {
2503 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2507 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2516 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2521 if (unlikely(seq
& 1)) {
2527 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2533 * No changes for the parent since the beginning of d_lookup().
2534 * Since all removals from the chain happen with hlist_bl_lock(),
2535 * any potential in-lookup matches are going to stay here until
2536 * we unlock the chain. All fields are stable in everything
2539 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2540 if (dentry
->d_name
.hash
!= hash
)
2542 if (dentry
->d_parent
!= parent
)
2544 if (!d_same_name(dentry
, parent
, name
))
2547 /* now we can try to grab a reference */
2548 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2555 * somebody is likely to be still doing lookup for it;
2556 * wait for them to finish
2558 spin_lock(&dentry
->d_lock
);
2559 d_wait_lookup(dentry
);
2561 * it's not in-lookup anymore; in principle we should repeat
2562 * everything from dcache lookup, but it's likely to be what
2563 * d_lookup() would've found anyway. If it is, just return it;
2564 * otherwise we really have to repeat the whole thing.
2566 if (unlikely(dentry
->d_name
.hash
!= hash
))
2568 if (unlikely(dentry
->d_parent
!= parent
))
2570 if (unlikely(d_unhashed(dentry
)))
2572 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2574 /* OK, it *is* a hashed match; return it */
2575 spin_unlock(&dentry
->d_lock
);
2580 /* we can't take ->d_lock here; it's OK, though. */
2581 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2583 hlist_bl_add_head(&new->d_u
.d_in_lookup_hash
, b
);
2587 spin_unlock(&dentry
->d_lock
);
2591 EXPORT_SYMBOL(d_alloc_parallel
);
2594 * - Unhash the dentry
2595 * - Retrieve and clear the waitqueue head in dentry
2596 * - Return the waitqueue head
2598 static wait_queue_head_t
*__d_lookup_unhash(struct dentry
*dentry
)
2600 wait_queue_head_t
*d_wait
;
2601 struct hlist_bl_head
*b
;
2603 lockdep_assert_held(&dentry
->d_lock
);
2605 b
= in_lookup_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
2607 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2608 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2609 d_wait
= dentry
->d_wait
;
2610 dentry
->d_wait
= NULL
;
2612 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2613 INIT_LIST_HEAD(&dentry
->d_lru
);
2617 void __d_lookup_unhash_wake(struct dentry
*dentry
)
2619 spin_lock(&dentry
->d_lock
);
2620 wake_up_all(__d_lookup_unhash(dentry
));
2621 spin_unlock(&dentry
->d_lock
);
2623 EXPORT_SYMBOL(__d_lookup_unhash_wake
);
2625 /* inode->i_lock held if inode is non-NULL */
2627 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2629 wait_queue_head_t
*d_wait
;
2630 struct inode
*dir
= NULL
;
2632 spin_lock(&dentry
->d_lock
);
2633 if (unlikely(d_in_lookup(dentry
))) {
2634 dir
= dentry
->d_parent
->d_inode
;
2635 n
= start_dir_add(dir
);
2636 d_wait
= __d_lookup_unhash(dentry
);
2639 unsigned add_flags
= d_flags_for_inode(inode
);
2640 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2641 raw_write_seqcount_begin(&dentry
->d_seq
);
2642 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2643 raw_write_seqcount_end(&dentry
->d_seq
);
2644 fsnotify_update_flags(dentry
);
2648 end_dir_add(dir
, n
, d_wait
);
2649 spin_unlock(&dentry
->d_lock
);
2651 spin_unlock(&inode
->i_lock
);
2655 * d_add - add dentry to hash queues
2656 * @entry: dentry to add
2657 * @inode: The inode to attach to this dentry
2659 * This adds the entry to the hash queues and initializes @inode.
2660 * The entry was actually filled in earlier during d_alloc().
2663 void d_add(struct dentry
*entry
, struct inode
*inode
)
2666 security_d_instantiate(entry
, inode
);
2667 spin_lock(&inode
->i_lock
);
2669 __d_add(entry
, inode
);
2671 EXPORT_SYMBOL(d_add
);
2674 * d_exact_alias - find and hash an exact unhashed alias
2675 * @entry: dentry to add
2676 * @inode: The inode to go with this dentry
2678 * If an unhashed dentry with the same name/parent and desired
2679 * inode already exists, hash and return it. Otherwise, return
2682 * Parent directory should be locked.
2684 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2686 struct dentry
*alias
;
2687 unsigned int hash
= entry
->d_name
.hash
;
2689 spin_lock(&inode
->i_lock
);
2690 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2692 * Don't need alias->d_lock here, because aliases with
2693 * d_parent == entry->d_parent are not subject to name or
2694 * parent changes, because the parent inode i_mutex is held.
2696 if (alias
->d_name
.hash
!= hash
)
2698 if (alias
->d_parent
!= entry
->d_parent
)
2700 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2702 spin_lock(&alias
->d_lock
);
2703 if (!d_unhashed(alias
)) {
2704 spin_unlock(&alias
->d_lock
);
2709 spin_unlock(&alias
->d_lock
);
2711 spin_unlock(&inode
->i_lock
);
2714 spin_unlock(&inode
->i_lock
);
2717 EXPORT_SYMBOL(d_exact_alias
);
2719 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2721 if (unlikely(dname_external(target
))) {
2722 if (unlikely(dname_external(dentry
))) {
2724 * Both external: swap the pointers
2726 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2729 * dentry:internal, target:external. Steal target's
2730 * storage and make target internal.
2732 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2733 dentry
->d_name
.len
+ 1);
2734 dentry
->d_name
.name
= target
->d_name
.name
;
2735 target
->d_name
.name
= target
->d_iname
;
2738 if (unlikely(dname_external(dentry
))) {
2740 * dentry:external, target:internal. Give dentry's
2741 * storage to target and make dentry internal
2743 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2744 target
->d_name
.len
+ 1);
2745 target
->d_name
.name
= dentry
->d_name
.name
;
2746 dentry
->d_name
.name
= dentry
->d_iname
;
2749 * Both are internal.
2752 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2753 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2754 swap(((long *) &dentry
->d_iname
)[i
],
2755 ((long *) &target
->d_iname
)[i
]);
2759 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2762 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2764 struct external_name
*old_name
= NULL
;
2765 if (unlikely(dname_external(dentry
)))
2766 old_name
= external_name(dentry
);
2767 if (unlikely(dname_external(target
))) {
2768 atomic_inc(&external_name(target
)->u
.count
);
2769 dentry
->d_name
= target
->d_name
;
2771 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2772 target
->d_name
.len
+ 1);
2773 dentry
->d_name
.name
= dentry
->d_iname
;
2774 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2776 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2777 kfree_rcu(old_name
, u
.head
);
2781 * __d_move - move a dentry
2782 * @dentry: entry to move
2783 * @target: new dentry
2784 * @exchange: exchange the two dentries
2786 * Update the dcache to reflect the move of a file name. Negative
2787 * dcache entries should not be moved in this way. Caller must hold
2788 * rename_lock, the i_mutex of the source and target directories,
2789 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2791 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2794 struct dentry
*old_parent
, *p
;
2795 wait_queue_head_t
*d_wait
;
2796 struct inode
*dir
= NULL
;
2799 WARN_ON(!dentry
->d_inode
);
2800 if (WARN_ON(dentry
== target
))
2803 BUG_ON(d_ancestor(target
, dentry
));
2804 old_parent
= dentry
->d_parent
;
2805 p
= d_ancestor(old_parent
, target
);
2806 if (IS_ROOT(dentry
)) {
2808 spin_lock(&target
->d_parent
->d_lock
);
2810 /* target is not a descendent of dentry->d_parent */
2811 spin_lock(&target
->d_parent
->d_lock
);
2812 spin_lock_nested(&old_parent
->d_lock
, DENTRY_D_LOCK_NESTED
);
2814 BUG_ON(p
== dentry
);
2815 spin_lock(&old_parent
->d_lock
);
2817 spin_lock_nested(&target
->d_parent
->d_lock
,
2818 DENTRY_D_LOCK_NESTED
);
2820 spin_lock_nested(&dentry
->d_lock
, 2);
2821 spin_lock_nested(&target
->d_lock
, 3);
2823 if (unlikely(d_in_lookup(target
))) {
2824 dir
= target
->d_parent
->d_inode
;
2825 n
= start_dir_add(dir
);
2826 d_wait
= __d_lookup_unhash(target
);
2829 write_seqcount_begin(&dentry
->d_seq
);
2830 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2833 if (!d_unhashed(dentry
))
2835 if (!d_unhashed(target
))
2838 /* ... and switch them in the tree */
2839 dentry
->d_parent
= target
->d_parent
;
2841 copy_name(dentry
, target
);
2842 target
->d_hash
.pprev
= NULL
;
2843 dentry
->d_parent
->d_lockref
.count
++;
2844 if (dentry
!= old_parent
) /* wasn't IS_ROOT */
2845 WARN_ON(!--old_parent
->d_lockref
.count
);
2847 target
->d_parent
= old_parent
;
2848 swap_names(dentry
, target
);
2849 if (!hlist_unhashed(&target
->d_sib
))
2850 __hlist_del(&target
->d_sib
);
2851 hlist_add_head(&target
->d_sib
, &target
->d_parent
->d_children
);
2853 fsnotify_update_flags(target
);
2855 if (!hlist_unhashed(&dentry
->d_sib
))
2856 __hlist_del(&dentry
->d_sib
);
2857 hlist_add_head(&dentry
->d_sib
, &dentry
->d_parent
->d_children
);
2859 fsnotify_update_flags(dentry
);
2860 fscrypt_handle_d_move(dentry
);
2862 write_seqcount_end(&target
->d_seq
);
2863 write_seqcount_end(&dentry
->d_seq
);
2866 end_dir_add(dir
, n
, d_wait
);
2868 if (dentry
->d_parent
!= old_parent
)
2869 spin_unlock(&dentry
->d_parent
->d_lock
);
2870 if (dentry
!= old_parent
)
2871 spin_unlock(&old_parent
->d_lock
);
2872 spin_unlock(&target
->d_lock
);
2873 spin_unlock(&dentry
->d_lock
);
2877 * d_move - move a dentry
2878 * @dentry: entry to move
2879 * @target: new dentry
2881 * Update the dcache to reflect the move of a file name. Negative
2882 * dcache entries should not be moved in this way. See the locking
2883 * requirements for __d_move.
2885 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2887 write_seqlock(&rename_lock
);
2888 __d_move(dentry
, target
, false);
2889 write_sequnlock(&rename_lock
);
2891 EXPORT_SYMBOL(d_move
);
2894 * d_exchange - exchange two dentries
2895 * @dentry1: first dentry
2896 * @dentry2: second dentry
2898 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2900 write_seqlock(&rename_lock
);
2902 WARN_ON(!dentry1
->d_inode
);
2903 WARN_ON(!dentry2
->d_inode
);
2904 WARN_ON(IS_ROOT(dentry1
));
2905 WARN_ON(IS_ROOT(dentry2
));
2907 __d_move(dentry1
, dentry2
, true);
2909 write_sequnlock(&rename_lock
);
2913 * d_ancestor - search for an ancestor
2914 * @p1: ancestor dentry
2917 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918 * an ancestor of p2, else NULL.
2920 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2924 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2925 if (p
->d_parent
== p1
)
2932 * This helper attempts to cope with remotely renamed directories
2934 * It assumes that the caller is already holding
2935 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2937 * Note: If ever the locking in lock_rename() changes, then please
2938 * remember to update this too...
2940 static int __d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
2942 struct mutex
*m1
= NULL
;
2943 struct rw_semaphore
*m2
= NULL
;
2946 /* If alias and dentry share a parent, then no extra locks required */
2947 if (alias
->d_parent
== dentry
->d_parent
)
2950 /* See lock_rename() */
2951 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2953 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2954 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2956 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2958 __d_move(alias
, dentry
, false);
2969 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2970 * @inode: the inode which may have a disconnected dentry
2971 * @dentry: a negative dentry which we want to point to the inode.
2973 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2974 * place of the given dentry and return it, else simply d_add the inode
2975 * to the dentry and return NULL.
2977 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2978 * we should error out: directories can't have multiple aliases.
2980 * This is needed in the lookup routine of any filesystem that is exportable
2981 * (via knfsd) so that we can build dcache paths to directories effectively.
2983 * If a dentry was found and moved, then it is returned. Otherwise NULL
2984 * is returned. This matches the expected return value of ->lookup.
2986 * Cluster filesystems may call this function with a negative, hashed dentry.
2987 * In that case, we know that the inode will be a regular file, and also this
2988 * will only occur during atomic_open. So we need to check for the dentry
2989 * being already hashed only in the final case.
2991 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2994 return ERR_CAST(inode
);
2996 BUG_ON(!d_unhashed(dentry
));
3001 security_d_instantiate(dentry
, inode
);
3002 spin_lock(&inode
->i_lock
);
3003 if (S_ISDIR(inode
->i_mode
)) {
3004 struct dentry
*new = __d_find_any_alias(inode
);
3005 if (unlikely(new)) {
3006 /* The reference to new ensures it remains an alias */
3007 spin_unlock(&inode
->i_lock
);
3008 write_seqlock(&rename_lock
);
3009 if (unlikely(d_ancestor(new, dentry
))) {
3010 write_sequnlock(&rename_lock
);
3012 new = ERR_PTR(-ELOOP
);
3013 pr_warn_ratelimited(
3014 "VFS: Lookup of '%s' in %s %s"
3015 " would have caused loop\n",
3016 dentry
->d_name
.name
,
3017 inode
->i_sb
->s_type
->name
,
3019 } else if (!IS_ROOT(new)) {
3020 struct dentry
*old_parent
= dget(new->d_parent
);
3021 int err
= __d_unalias(dentry
, new);
3022 write_sequnlock(&rename_lock
);
3029 __d_move(new, dentry
, false);
3030 write_sequnlock(&rename_lock
);
3037 __d_add(dentry
, inode
);
3040 EXPORT_SYMBOL(d_splice_alias
);
3043 * Test whether new_dentry is a subdirectory of old_dentry.
3045 * Trivially implemented using the dcache structure
3049 * is_subdir - is new dentry a subdirectory of old_dentry
3050 * @new_dentry: new dentry
3051 * @old_dentry: old dentry
3053 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3054 * Returns false otherwise.
3055 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3058 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3063 if (new_dentry
== old_dentry
)
3066 /* Access d_parent under rcu as d_move() may change it. */
3068 seq
= read_seqbegin(&rename_lock
);
3069 subdir
= d_ancestor(old_dentry
, new_dentry
);
3070 /* Try lockless once... */
3071 if (read_seqretry(&rename_lock
, seq
)) {
3072 /* ...else acquire lock for progress even on deep chains. */
3073 read_seqlock_excl(&rename_lock
);
3074 subdir
= d_ancestor(old_dentry
, new_dentry
);
3075 read_sequnlock_excl(&rename_lock
);
3080 EXPORT_SYMBOL(is_subdir
);
3082 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3084 struct dentry
*root
= data
;
3085 if (dentry
!= root
) {
3086 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3089 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3090 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3091 dentry
->d_lockref
.count
--;
3094 return D_WALK_CONTINUE
;
3097 void d_genocide(struct dentry
*parent
)
3099 d_walk(parent
, parent
, d_genocide_kill
);
3102 void d_mark_tmpfile(struct file
*file
, struct inode
*inode
)
3104 struct dentry
*dentry
= file
->f_path
.dentry
;
3106 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3107 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3108 !d_unlinked(dentry
));
3109 spin_lock(&dentry
->d_parent
->d_lock
);
3110 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3111 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3112 (unsigned long long)inode
->i_ino
);
3113 spin_unlock(&dentry
->d_lock
);
3114 spin_unlock(&dentry
->d_parent
->d_lock
);
3116 EXPORT_SYMBOL(d_mark_tmpfile
);
3118 void d_tmpfile(struct file
*file
, struct inode
*inode
)
3120 struct dentry
*dentry
= file
->f_path
.dentry
;
3122 inode_dec_link_count(inode
);
3123 d_mark_tmpfile(file
, inode
);
3124 d_instantiate(dentry
, inode
);
3126 EXPORT_SYMBOL(d_tmpfile
);
3129 * Obtain inode number of the parent dentry.
3131 ino_t
d_parent_ino(struct dentry
*dentry
)
3133 struct dentry
*parent
;
3134 struct inode
*iparent
;
3139 seq
= raw_seqcount_begin(&dentry
->d_seq
);
3140 parent
= READ_ONCE(dentry
->d_parent
);
3141 iparent
= d_inode_rcu(parent
);
3142 if (likely(iparent
)) {
3143 ret
= iparent
->i_ino
;
3144 if (!read_seqcount_retry(&dentry
->d_seq
, seq
))
3149 spin_lock(&dentry
->d_lock
);
3150 ret
= dentry
->d_parent
->d_inode
->i_ino
;
3151 spin_unlock(&dentry
->d_lock
);
3154 EXPORT_SYMBOL(d_parent_ino
);
3156 static __initdata
unsigned long dhash_entries
;
3157 static int __init
set_dhash_entries(char *str
)
3161 dhash_entries
= simple_strtoul(str
, &str
, 0);
3164 __setup("dhash_entries=", set_dhash_entries
);
3166 static void __init
dcache_init_early(void)
3168 /* If hashes are distributed across NUMA nodes, defer
3169 * hash allocation until vmalloc space is available.
3175 alloc_large_system_hash("Dentry cache",
3176 sizeof(struct hlist_bl_head
),
3179 HASH_EARLY
| HASH_ZERO
,
3184 d_hash_shift
= 32 - d_hash_shift
;
3186 runtime_const_init(shift
, d_hash_shift
);
3187 runtime_const_init(ptr
, dentry_hashtable
);
3190 static void __init
dcache_init(void)
3193 * A constructor could be added for stable state like the lists,
3194 * but it is probably not worth it because of the cache nature
3197 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3198 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_ACCOUNT
,
3201 /* Hash may have been set up in dcache_init_early */
3206 alloc_large_system_hash("Dentry cache",
3207 sizeof(struct hlist_bl_head
),
3215 d_hash_shift
= 32 - d_hash_shift
;
3217 runtime_const_init(shift
, d_hash_shift
);
3218 runtime_const_init(ptr
, dentry_hashtable
);
3221 /* SLAB cache for __getname() consumers */
3222 struct kmem_cache
*names_cachep __ro_after_init
;
3223 EXPORT_SYMBOL(names_cachep
);
3225 void __init
vfs_caches_init_early(void)
3229 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3230 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3232 dcache_init_early();
3236 void __init
vfs_caches_init(void)
3238 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3239 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3244 files_maxfiles_init();