1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
10 * 15May2002 Andrew Morton
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
16 #include <linux/kernel.h>
17 #include <linux/export.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
35 * I/O completion handler for multipage BIOs.
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_folio().
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
46 static void mpage_read_end_io(struct bio
*bio
)
49 int err
= blk_status_to_errno(bio
->bi_status
);
51 bio_for_each_folio_all(fi
, bio
)
52 folio_end_read(fi
.folio
, err
== 0);
57 static void mpage_write_end_io(struct bio
*bio
)
60 int err
= blk_status_to_errno(bio
->bi_status
);
62 bio_for_each_folio_all(fi
, bio
) {
64 mapping_set_error(fi
.folio
->mapping
, err
);
65 folio_end_writeback(fi
.folio
);
71 static struct bio
*mpage_bio_submit_read(struct bio
*bio
)
73 bio
->bi_end_io
= mpage_read_end_io
;
79 static struct bio
*mpage_bio_submit_write(struct bio
*bio
)
81 bio
->bi_end_io
= mpage_write_end_io
;
88 * support function for mpage_readahead. The fs supplied get_block might
89 * return an up to date buffer. This is used to map that buffer into
90 * the page, which allows read_folio to avoid triggering a duplicate call
93 * The idea is to avoid adding buffers to pages that don't already have
94 * them. So when the buffer is up to date and the page size == block size,
95 * this marks the page up to date instead of adding new buffers.
97 static void map_buffer_to_folio(struct folio
*folio
, struct buffer_head
*bh
,
100 struct inode
*inode
= folio
->mapping
->host
;
101 struct buffer_head
*page_bh
, *head
;
104 head
= folio_buffers(folio
);
107 * don't make any buffers if there is only one buffer on
108 * the folio and the folio just needs to be set up to date
110 if (inode
->i_blkbits
== PAGE_SHIFT
&&
111 buffer_uptodate(bh
)) {
112 folio_mark_uptodate(folio
);
115 head
= create_empty_buffers(folio
, i_blocksize(inode
), 0);
120 if (block
== page_block
) {
121 page_bh
->b_state
= bh
->b_state
;
122 page_bh
->b_bdev
= bh
->b_bdev
;
123 page_bh
->b_blocknr
= bh
->b_blocknr
;
126 page_bh
= page_bh
->b_this_page
;
128 } while (page_bh
!= head
);
131 struct mpage_readpage_args
{
134 unsigned int nr_pages
;
136 sector_t last_block_in_bio
;
137 struct buffer_head map_bh
;
138 unsigned long first_logical_block
;
139 get_block_t
*get_block
;
143 * This is the worker routine which does all the work of mapping the disk
144 * blocks and constructs largest possible bios, submits them for IO if the
145 * blocks are not contiguous on the disk.
147 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
148 * represent the validity of its disk mapping and to decide when to do the next
151 static struct bio
*do_mpage_readpage(struct mpage_readpage_args
*args
)
153 struct folio
*folio
= args
->folio
;
154 struct inode
*inode
= folio
->mapping
->host
;
155 const unsigned blkbits
= inode
->i_blkbits
;
156 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
157 const unsigned blocksize
= 1 << blkbits
;
158 struct buffer_head
*map_bh
= &args
->map_bh
;
159 sector_t block_in_file
;
161 sector_t last_block_in_file
;
162 sector_t first_block
;
164 unsigned first_hole
= blocks_per_page
;
165 struct block_device
*bdev
= NULL
;
167 int fully_mapped
= 1;
168 blk_opf_t opf
= REQ_OP_READ
;
170 unsigned relative_block
;
171 gfp_t gfp
= mapping_gfp_constraint(folio
->mapping
, GFP_KERNEL
);
173 /* MAX_BUF_PER_PAGE, for example */
174 VM_BUG_ON_FOLIO(folio_test_large(folio
), folio
);
176 if (args
->is_readahead
) {
178 gfp
|= __GFP_NORETRY
| __GFP_NOWARN
;
181 if (folio_buffers(folio
))
184 block_in_file
= (sector_t
)folio
->index
<< (PAGE_SHIFT
- blkbits
);
185 last_block
= block_in_file
+ args
->nr_pages
* blocks_per_page
;
186 last_block_in_file
= (i_size_read(inode
) + blocksize
- 1) >> blkbits
;
187 if (last_block
> last_block_in_file
)
188 last_block
= last_block_in_file
;
192 * Map blocks using the result from the previous get_blocks call first.
194 nblocks
= map_bh
->b_size
>> blkbits
;
195 if (buffer_mapped(map_bh
) &&
196 block_in_file
> args
->first_logical_block
&&
197 block_in_file
< (args
->first_logical_block
+ nblocks
)) {
198 unsigned map_offset
= block_in_file
- args
->first_logical_block
;
199 unsigned last
= nblocks
- map_offset
;
201 first_block
= map_bh
->b_blocknr
+ map_offset
;
202 for (relative_block
= 0; ; relative_block
++) {
203 if (relative_block
== last
) {
204 clear_buffer_mapped(map_bh
);
207 if (page_block
== blocks_per_page
)
212 bdev
= map_bh
->b_bdev
;
216 * Then do more get_blocks calls until we are done with this folio.
218 map_bh
->b_folio
= folio
;
219 while (page_block
< blocks_per_page
) {
223 if (block_in_file
< last_block
) {
224 map_bh
->b_size
= (last_block
-block_in_file
) << blkbits
;
225 if (args
->get_block(inode
, block_in_file
, map_bh
, 0))
227 args
->first_logical_block
= block_in_file
;
230 if (!buffer_mapped(map_bh
)) {
232 if (first_hole
== blocks_per_page
)
233 first_hole
= page_block
;
239 /* some filesystems will copy data into the page during
240 * the get_block call, in which case we don't want to
241 * read it again. map_buffer_to_folio copies the data
242 * we just collected from get_block into the folio's buffers
243 * so read_folio doesn't have to repeat the get_block call
245 if (buffer_uptodate(map_bh
)) {
246 map_buffer_to_folio(folio
, map_bh
, page_block
);
250 if (first_hole
!= blocks_per_page
)
251 goto confused
; /* hole -> non-hole */
253 /* Contiguous blocks? */
255 first_block
= map_bh
->b_blocknr
;
256 else if (first_block
+ page_block
!= map_bh
->b_blocknr
)
258 nblocks
= map_bh
->b_size
>> blkbits
;
259 for (relative_block
= 0; ; relative_block
++) {
260 if (relative_block
== nblocks
) {
261 clear_buffer_mapped(map_bh
);
263 } else if (page_block
== blocks_per_page
)
268 bdev
= map_bh
->b_bdev
;
271 if (first_hole
!= blocks_per_page
) {
272 folio_zero_segment(folio
, first_hole
<< blkbits
, PAGE_SIZE
);
273 if (first_hole
== 0) {
274 folio_mark_uptodate(folio
);
278 } else if (fully_mapped
) {
279 folio_set_mappedtodisk(folio
);
283 * This folio will go to BIO. Do we need to send this BIO off first?
285 if (args
->bio
&& (args
->last_block_in_bio
!= first_block
- 1))
286 args
->bio
= mpage_bio_submit_read(args
->bio
);
289 if (args
->bio
== NULL
) {
290 args
->bio
= bio_alloc(bdev
, bio_max_segs(args
->nr_pages
), opf
,
292 if (args
->bio
== NULL
)
294 args
->bio
->bi_iter
.bi_sector
= first_block
<< (blkbits
- 9);
297 length
= first_hole
<< blkbits
;
298 if (!bio_add_folio(args
->bio
, folio
, length
, 0)) {
299 args
->bio
= mpage_bio_submit_read(args
->bio
);
303 relative_block
= block_in_file
- args
->first_logical_block
;
304 nblocks
= map_bh
->b_size
>> blkbits
;
305 if ((buffer_boundary(map_bh
) && relative_block
== nblocks
) ||
306 (first_hole
!= blocks_per_page
))
307 args
->bio
= mpage_bio_submit_read(args
->bio
);
309 args
->last_block_in_bio
= first_block
+ blocks_per_page
- 1;
315 args
->bio
= mpage_bio_submit_read(args
->bio
);
316 if (!folio_test_uptodate(folio
))
317 block_read_full_folio(folio
, args
->get_block
);
324 * mpage_readahead - start reads against pages
325 * @rac: Describes which pages to read.
326 * @get_block: The filesystem's block mapper function.
328 * This function walks the pages and the blocks within each page, building and
329 * emitting large BIOs.
331 * If anything unusual happens, such as:
333 * - encountering a page which has buffers
334 * - encountering a page which has a non-hole after a hole
335 * - encountering a page with non-contiguous blocks
337 * then this code just gives up and calls the buffer_head-based read function.
338 * It does handle a page which has holes at the end - that is a common case:
339 * the end-of-file on blocksize < PAGE_SIZE setups.
341 * BH_Boundary explanation:
343 * There is a problem. The mpage read code assembles several pages, gets all
344 * their disk mappings, and then submits them all. That's fine, but obtaining
345 * the disk mappings may require I/O. Reads of indirect blocks, for example.
347 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
348 * submitted in the following order:
350 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
352 * because the indirect block has to be read to get the mappings of blocks
353 * 13,14,15,16. Obviously, this impacts performance.
355 * So what we do it to allow the filesystem's get_block() function to set
356 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
357 * after this one will require I/O against a block which is probably close to
358 * this one. So you should push what I/O you have currently accumulated.
360 * This all causes the disk requests to be issued in the correct order.
362 void mpage_readahead(struct readahead_control
*rac
, get_block_t get_block
)
365 struct mpage_readpage_args args
= {
366 .get_block
= get_block
,
367 .is_readahead
= true,
370 while ((folio
= readahead_folio(rac
))) {
371 prefetchw(&folio
->flags
);
373 args
.nr_pages
= readahead_count(rac
);
374 args
.bio
= do_mpage_readpage(&args
);
377 mpage_bio_submit_read(args
.bio
);
379 EXPORT_SYMBOL(mpage_readahead
);
382 * This isn't called much at all
384 int mpage_read_folio(struct folio
*folio
, get_block_t get_block
)
386 struct mpage_readpage_args args
= {
389 .get_block
= get_block
,
392 args
.bio
= do_mpage_readpage(&args
);
394 mpage_bio_submit_read(args
.bio
);
397 EXPORT_SYMBOL(mpage_read_folio
);
400 * Writing is not so simple.
402 * If the page has buffers then they will be used for obtaining the disk
403 * mapping. We only support pages which are fully mapped-and-dirty, with a
404 * special case for pages which are unmapped at the end: end-of-file.
406 * If the page has no buffers (preferred) then the page is mapped here.
408 * If all blocks are found to be contiguous then the page can go into the
409 * BIO. Otherwise fall back to the mapping's writepage().
411 * FIXME: This code wants an estimate of how many pages are still to be
412 * written, so it can intelligently allocate a suitably-sized BIO. For now,
413 * just allocate full-size (16-page) BIOs.
418 sector_t last_block_in_bio
;
419 get_block_t
*get_block
;
423 * We have our BIO, so we can now mark the buffers clean. Make
424 * sure to only clean buffers which we know we'll be writing.
426 static void clean_buffers(struct folio
*folio
, unsigned first_unmapped
)
428 unsigned buffer_counter
= 0;
429 struct buffer_head
*bh
, *head
= folio_buffers(folio
);
436 if (buffer_counter
++ == first_unmapped
)
438 clear_buffer_dirty(bh
);
439 bh
= bh
->b_this_page
;
440 } while (bh
!= head
);
443 * we cannot drop the bh if the page is not uptodate or a concurrent
444 * read_folio would fail to serialize with the bh and it would read from
445 * disk before we reach the platter.
447 if (buffer_heads_over_limit
&& folio_test_uptodate(folio
))
448 try_to_free_buffers(folio
);
451 static int __mpage_writepage(struct folio
*folio
, struct writeback_control
*wbc
,
454 struct mpage_data
*mpd
= data
;
455 struct bio
*bio
= mpd
->bio
;
456 struct address_space
*mapping
= folio
->mapping
;
457 struct inode
*inode
= mapping
->host
;
458 const unsigned blkbits
= inode
->i_blkbits
;
459 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
461 sector_t block_in_file
;
462 sector_t first_block
;
464 unsigned first_unmapped
= blocks_per_page
;
465 struct block_device
*bdev
= NULL
;
467 sector_t boundary_block
= 0;
468 struct block_device
*boundary_bdev
= NULL
;
470 struct buffer_head map_bh
;
471 loff_t i_size
= i_size_read(inode
);
473 struct buffer_head
*head
= folio_buffers(folio
);
476 struct buffer_head
*bh
= head
;
478 /* If they're all mapped and dirty, do it */
481 BUG_ON(buffer_locked(bh
));
482 if (!buffer_mapped(bh
)) {
484 * unmapped dirty buffers are created by
485 * block_dirty_folio -> mmapped data
487 if (buffer_dirty(bh
))
489 if (first_unmapped
== blocks_per_page
)
490 first_unmapped
= page_block
;
494 if (first_unmapped
!= blocks_per_page
)
495 goto confused
; /* hole -> non-hole */
497 if (!buffer_dirty(bh
) || !buffer_uptodate(bh
))
500 if (bh
->b_blocknr
!= first_block
+ page_block
)
503 first_block
= bh
->b_blocknr
;
506 boundary
= buffer_boundary(bh
);
508 boundary_block
= bh
->b_blocknr
;
509 boundary_bdev
= bh
->b_bdev
;
512 } while ((bh
= bh
->b_this_page
) != head
);
518 * Page has buffers, but they are all unmapped. The page was
519 * created by pagein or read over a hole which was handled by
520 * block_read_full_folio(). If this address_space is also
521 * using mpage_readahead then this can rarely happen.
527 * The page has no buffers: map it to disk
529 BUG_ON(!folio_test_uptodate(folio
));
530 block_in_file
= (sector_t
)folio
->index
<< (PAGE_SHIFT
- blkbits
);
532 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
535 if (block_in_file
>= (i_size
+ (1 << blkbits
) - 1) >> blkbits
)
537 last_block
= (i_size
- 1) >> blkbits
;
538 map_bh
.b_folio
= folio
;
539 for (page_block
= 0; page_block
< blocks_per_page
; ) {
542 map_bh
.b_size
= 1 << blkbits
;
543 if (mpd
->get_block(inode
, block_in_file
, &map_bh
, 1))
545 if (!buffer_mapped(&map_bh
))
547 if (buffer_new(&map_bh
))
548 clean_bdev_bh_alias(&map_bh
);
549 if (buffer_boundary(&map_bh
)) {
550 boundary_block
= map_bh
.b_blocknr
;
551 boundary_bdev
= map_bh
.b_bdev
;
554 if (map_bh
.b_blocknr
!= first_block
+ page_block
)
557 first_block
= map_bh
.b_blocknr
;
560 boundary
= buffer_boundary(&map_bh
);
561 bdev
= map_bh
.b_bdev
;
562 if (block_in_file
== last_block
)
566 BUG_ON(page_block
== 0);
568 first_unmapped
= page_block
;
571 /* Don't bother writing beyond EOF, truncate will discard the folio */
572 if (folio_pos(folio
) >= i_size
)
574 length
= folio_size(folio
);
575 if (folio_pos(folio
) + length
> i_size
) {
577 * The page straddles i_size. It must be zeroed out on each
578 * and every writepage invocation because it may be mmapped.
579 * "A file is mapped in multiples of the page size. For a file
580 * that is not a multiple of the page size, the remaining memory
581 * is zeroed when mapped, and writes to that region are not
582 * written out to the file."
584 length
= i_size
- folio_pos(folio
);
585 folio_zero_segment(folio
, length
, folio_size(folio
));
589 * This page will go to BIO. Do we need to send this BIO off first?
591 if (bio
&& mpd
->last_block_in_bio
!= first_block
- 1)
592 bio
= mpage_bio_submit_write(bio
);
596 bio
= bio_alloc(bdev
, BIO_MAX_VECS
,
597 REQ_OP_WRITE
| wbc_to_write_flags(wbc
),
599 bio
->bi_iter
.bi_sector
= first_block
<< (blkbits
- 9);
600 wbc_init_bio(wbc
, bio
);
601 bio
->bi_write_hint
= inode
->i_write_hint
;
605 * Must try to add the page before marking the buffer clean or
606 * the confused fail path above (OOM) will be very confused when
607 * it finds all bh marked clean (i.e. it will not write anything)
609 wbc_account_cgroup_owner(wbc
, folio
, folio_size(folio
));
610 length
= first_unmapped
<< blkbits
;
611 if (!bio_add_folio(bio
, folio
, length
, 0)) {
612 bio
= mpage_bio_submit_write(bio
);
616 clean_buffers(folio
, first_unmapped
);
618 BUG_ON(folio_test_writeback(folio
));
619 folio_start_writeback(folio
);
621 if (boundary
|| (first_unmapped
!= blocks_per_page
)) {
622 bio
= mpage_bio_submit_write(bio
);
623 if (boundary_block
) {
624 write_boundary_block(boundary_bdev
,
625 boundary_block
, 1 << blkbits
);
628 mpd
->last_block_in_bio
= first_block
+ blocks_per_page
- 1;
634 bio
= mpage_bio_submit_write(bio
);
637 * The caller has a ref on the inode, so *mapping is stable
639 ret
= block_write_full_folio(folio
, wbc
, mpd
->get_block
);
640 mapping_set_error(mapping
, ret
);
647 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
648 * @mapping: address space structure to write
649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
650 * @get_block: the filesystem's block mapper function.
652 * This is a library function, which implements the writepages()
653 * address_space_operation.
656 mpage_writepages(struct address_space
*mapping
,
657 struct writeback_control
*wbc
, get_block_t get_block
)
659 struct mpage_data mpd
= {
660 .get_block
= get_block
,
662 struct blk_plug plug
;
665 blk_start_plug(&plug
);
666 ret
= write_cache_pages(mapping
, wbc
, __mpage_writepage
, &mpd
);
668 mpage_bio_submit_write(mpd
.bio
);
669 blk_finish_plug(&plug
);
672 EXPORT_SYMBOL(mpage_writepages
);