Merge tag 'timers_urgent_for_v6.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[drm/drm-misc.git] / fs / splice.c
blob2898fa1e9e63804c1a5bb2f10ff6746edbc4098a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * "splice": joining two ropes together by interweaving their strands.
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
40 #include "internal.h"
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
48 static noinline void noinline pipe_clear_nowait(struct file *file)
50 fmode_t fmode = READ_ONCE(file->f_mode);
52 do {
53 if (!(fmode & FMODE_NOWAIT))
54 break;
55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 struct pipe_buffer *buf)
67 struct folio *folio = page_folio(buf->page);
68 struct address_space *mapping;
70 folio_lock(folio);
72 mapping = folio_mapping(folio);
73 if (mapping) {
74 WARN_ON(!folio_test_uptodate(folio));
77 * At least for ext2 with nobh option, we need to wait on
78 * writeback completing on this folio, since we'll remove it
79 * from the pagecache. Otherwise truncate wont wait on the
80 * folio, allowing the disk blocks to be reused by someone else
81 * before we actually wrote our data to them. fs corruption
82 * ensues.
84 folio_wait_writeback(folio);
86 if (!filemap_release_folio(folio, GFP_KERNEL))
87 goto out_unlock;
90 * If we succeeded in removing the mapping, set LRU flag
91 * and return good.
93 if (remove_mapping(mapping, folio)) {
94 buf->flags |= PIPE_BUF_FLAG_LRU;
95 return true;
100 * Raced with truncate or failed to remove folio from current
101 * address space, unlock and return failure.
103 out_unlock:
104 folio_unlock(folio);
105 return false;
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 struct pipe_buffer *buf)
111 put_page(buf->page);
112 buf->flags &= ~PIPE_BUF_FLAG_LRU;
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 struct pipe_buffer *buf)
122 struct folio *folio = page_folio(buf->page);
123 int err;
125 if (!folio_test_uptodate(folio)) {
126 folio_lock(folio);
129 * Folio got truncated/unhashed. This will cause a 0-byte
130 * splice, if this is the first page.
132 if (!folio->mapping) {
133 err = -ENODATA;
134 goto error;
138 * Uh oh, read-error from disk.
140 if (!folio_test_uptodate(folio)) {
141 err = -EIO;
142 goto error;
145 /* Folio is ok after all, we are done */
146 folio_unlock(folio);
149 return 0;
150 error:
151 folio_unlock(folio);
152 return err;
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 .confirm = page_cache_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .try_steal = page_cache_pipe_buf_try_steal,
159 .get = generic_pipe_buf_get,
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 struct pipe_buffer *buf)
165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 return false;
168 buf->flags |= PIPE_BUF_FLAG_LRU;
169 return generic_pipe_buf_try_steal(pipe, buf);
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 .release = page_cache_pipe_buf_release,
174 .try_steal = user_page_pipe_buf_try_steal,
175 .get = generic_pipe_buf_get,
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
180 smp_mb();
181 if (waitqueue_active(&pipe->rd_wait))
182 wake_up_interruptible(&pipe->rd_wait);
183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe: pipe to fill
189 * @spd: data to fill
191 * Description:
192 * @spd contains a map of pages and len/offset tuples, along with
193 * the struct pipe_buf_operations associated with these pages. This
194 * function will link that data to the pipe.
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 struct splice_pipe_desc *spd)
200 unsigned int spd_pages = spd->nr_pages;
201 unsigned int tail = pipe->tail;
202 unsigned int head = pipe->head;
203 unsigned int mask = pipe->ring_size - 1;
204 ssize_t ret = 0;
205 int page_nr = 0;
207 if (!spd_pages)
208 return 0;
210 if (unlikely(!pipe->readers)) {
211 send_sig(SIGPIPE, current, 0);
212 ret = -EPIPE;
213 goto out;
216 while (!pipe_full(head, tail, pipe->max_usage)) {
217 struct pipe_buffer *buf = &pipe->bufs[head & mask];
219 buf->page = spd->pages[page_nr];
220 buf->offset = spd->partial[page_nr].offset;
221 buf->len = spd->partial[page_nr].len;
222 buf->private = spd->partial[page_nr].private;
223 buf->ops = spd->ops;
224 buf->flags = 0;
226 head++;
227 pipe->head = head;
228 page_nr++;
229 ret += buf->len;
231 if (!--spd->nr_pages)
232 break;
235 if (!ret)
236 ret = -EAGAIN;
238 out:
239 while (page_nr < spd_pages)
240 spd->spd_release(spd, page_nr++);
242 return ret;
244 EXPORT_SYMBOL_GPL(splice_to_pipe);
246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
248 unsigned int head = pipe->head;
249 unsigned int tail = pipe->tail;
250 unsigned int mask = pipe->ring_size - 1;
251 int ret;
253 if (unlikely(!pipe->readers)) {
254 send_sig(SIGPIPE, current, 0);
255 ret = -EPIPE;
256 } else if (pipe_full(head, tail, pipe->max_usage)) {
257 ret = -EAGAIN;
258 } else {
259 pipe->bufs[head & mask] = *buf;
260 pipe->head = head + 1;
261 return buf->len;
263 pipe_buf_release(pipe, buf);
264 return ret;
266 EXPORT_SYMBOL(add_to_pipe);
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
274 unsigned int max_usage = READ_ONCE(pipe->max_usage);
276 spd->nr_pages_max = max_usage;
277 if (max_usage <= PIPE_DEF_BUFFERS)
278 return 0;
280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 GFP_KERNEL);
284 if (spd->pages && spd->partial)
285 return 0;
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
292 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 return;
297 kfree(spd->pages);
298 kfree(spd->partial);
302 * copy_splice_read - Copy data from a file and splice the copy into a pipe
303 * @in: The file to read from
304 * @ppos: Pointer to the file position to read from
305 * @pipe: The pipe to splice into
306 * @len: The amount to splice
307 * @flags: The SPLICE_F_* flags
309 * This function allocates a bunch of pages sufficient to hold the requested
310 * amount of data (but limited by the remaining pipe capacity), passes it to
311 * the file's ->read_iter() to read into and then splices the used pages into
312 * the pipe.
314 * Return: On success, the number of bytes read will be returned and *@ppos
315 * will be updated if appropriate; 0 will be returned if there is no more data
316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
317 * other negative error code will be returned on error. A short read may occur
318 * if the pipe has insufficient space, we reach the end of the data or we hit a
319 * hole.
321 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t len, unsigned int flags)
325 struct iov_iter to;
326 struct bio_vec *bv;
327 struct kiocb kiocb;
328 struct page **pages;
329 ssize_t ret;
330 size_t used, npages, chunk, remain, keep = 0;
331 int i;
333 /* Work out how much data we can actually add into the pipe */
334 used = pipe_occupancy(pipe->head, pipe->tail);
335 npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 len = min_t(size_t, len, npages * PAGE_SIZE);
337 npages = DIV_ROUND_UP(len, PAGE_SIZE);
339 bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 if (!bv)
342 return -ENOMEM;
344 pages = (struct page **)(bv + npages);
345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 if (!npages) {
347 kfree(bv);
348 return -ENOMEM;
351 remain = len = min_t(size_t, len, npages * PAGE_SIZE);
353 for (i = 0; i < npages; i++) {
354 chunk = min_t(size_t, PAGE_SIZE, remain);
355 bv[i].bv_page = pages[i];
356 bv[i].bv_offset = 0;
357 bv[i].bv_len = chunk;
358 remain -= chunk;
361 /* Do the I/O */
362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 init_sync_kiocb(&kiocb, in);
364 kiocb.ki_pos = *ppos;
365 ret = in->f_op->read_iter(&kiocb, &to);
367 if (ret > 0) {
368 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 *ppos = kiocb.ki_pos;
373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 * there", rather than -EFAULT.
376 if (ret == -EFAULT)
377 ret = -EAGAIN;
379 /* Free any pages that didn't get touched at all. */
380 if (keep < npages)
381 release_pages(pages + keep, npages - keep);
383 /* Push the remaining pages into the pipe. */
384 remain = ret;
385 for (i = 0; i < keep; i++) {
386 struct pipe_buffer *buf = pipe_head_buf(pipe);
388 chunk = min_t(size_t, remain, PAGE_SIZE);
389 *buf = (struct pipe_buffer) {
390 .ops = &default_pipe_buf_ops,
391 .page = bv[i].bv_page,
392 .offset = 0,
393 .len = chunk,
395 pipe->head++;
396 remain -= chunk;
399 kfree(bv);
400 return ret;
402 EXPORT_SYMBOL(copy_splice_read);
404 const struct pipe_buf_operations default_pipe_buf_ops = {
405 .release = generic_pipe_buf_release,
406 .try_steal = generic_pipe_buf_try_steal,
407 .get = generic_pipe_buf_get,
410 /* Pipe buffer operations for a socket and similar. */
411 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 .release = generic_pipe_buf_release,
413 .get = generic_pipe_buf_get,
415 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
419 smp_mb();
420 if (waitqueue_active(&pipe->wr_wait))
421 wake_up_interruptible(&pipe->wr_wait);
422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
426 * splice_from_pipe_feed - feed available data from a pipe to a file
427 * @pipe: pipe to splice from
428 * @sd: information to @actor
429 * @actor: handler that splices the data
431 * Description:
432 * This function loops over the pipe and calls @actor to do the
433 * actual moving of a single struct pipe_buffer to the desired
434 * destination. It returns when there's no more buffers left in
435 * the pipe or if the requested number of bytes (@sd->total_len)
436 * have been copied. It returns a positive number (one) if the
437 * pipe needs to be filled with more data, zero if the required
438 * number of bytes have been copied and -errno on error.
440 * This, together with splice_from_pipe_{begin,end,next}, may be
441 * used to implement the functionality of __splice_from_pipe() when
442 * locking is required around copying the pipe buffers to the
443 * destination.
445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 splice_actor *actor)
448 unsigned int head = pipe->head;
449 unsigned int tail = pipe->tail;
450 unsigned int mask = pipe->ring_size - 1;
451 int ret;
453 while (!pipe_empty(head, tail)) {
454 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
456 sd->len = buf->len;
457 if (sd->len > sd->total_len)
458 sd->len = sd->total_len;
460 ret = pipe_buf_confirm(pipe, buf);
461 if (unlikely(ret)) {
462 if (ret == -ENODATA)
463 ret = 0;
464 return ret;
467 ret = actor(pipe, buf, sd);
468 if (ret <= 0)
469 return ret;
471 buf->offset += ret;
472 buf->len -= ret;
474 sd->num_spliced += ret;
475 sd->len -= ret;
476 sd->pos += ret;
477 sd->total_len -= ret;
479 if (!buf->len) {
480 pipe_buf_release(pipe, buf);
481 tail++;
482 pipe->tail = tail;
483 if (pipe->files)
484 sd->need_wakeup = true;
487 if (!sd->total_len)
488 return 0;
491 return 1;
494 /* We know we have a pipe buffer, but maybe it's empty? */
495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
497 unsigned int tail = pipe->tail;
498 unsigned int mask = pipe->ring_size - 1;
499 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
501 if (unlikely(!buf->len)) {
502 pipe_buf_release(pipe, buf);
503 pipe->tail = tail+1;
504 return true;
507 return false;
511 * splice_from_pipe_next - wait for some data to splice from
512 * @pipe: pipe to splice from
513 * @sd: information about the splice operation
515 * Description:
516 * This function will wait for some data and return a positive
517 * value (one) if pipe buffers are available. It will return zero
518 * or -errno if no more data needs to be spliced.
520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
523 * Check for signal early to make process killable when there are
524 * always buffers available
526 if (signal_pending(current))
527 return -ERESTARTSYS;
529 repeat:
530 while (pipe_empty(pipe->head, pipe->tail)) {
531 if (!pipe->writers)
532 return 0;
534 if (sd->num_spliced)
535 return 0;
537 if (sd->flags & SPLICE_F_NONBLOCK)
538 return -EAGAIN;
540 if (signal_pending(current))
541 return -ERESTARTSYS;
543 if (sd->need_wakeup) {
544 wakeup_pipe_writers(pipe);
545 sd->need_wakeup = false;
548 pipe_wait_readable(pipe);
551 if (eat_empty_buffer(pipe))
552 goto repeat;
554 return 1;
558 * splice_from_pipe_begin - start splicing from pipe
559 * @sd: information about the splice operation
561 * Description:
562 * This function should be called before a loop containing
563 * splice_from_pipe_next() and splice_from_pipe_feed() to
564 * initialize the necessary fields of @sd.
566 static void splice_from_pipe_begin(struct splice_desc *sd)
568 sd->num_spliced = 0;
569 sd->need_wakeup = false;
573 * splice_from_pipe_end - finish splicing from pipe
574 * @pipe: pipe to splice from
575 * @sd: information about the splice operation
577 * Description:
578 * This function will wake up pipe writers if necessary. It should
579 * be called after a loop containing splice_from_pipe_next() and
580 * splice_from_pipe_feed().
582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
584 if (sd->need_wakeup)
585 wakeup_pipe_writers(pipe);
589 * __splice_from_pipe - splice data from a pipe to given actor
590 * @pipe: pipe to splice from
591 * @sd: information to @actor
592 * @actor: handler that splices the data
594 * Description:
595 * This function does little more than loop over the pipe and call
596 * @actor to do the actual moving of a single struct pipe_buffer to
597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598 * pipe_to_user.
601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 splice_actor *actor)
604 int ret;
606 splice_from_pipe_begin(sd);
607 do {
608 cond_resched();
609 ret = splice_from_pipe_next(pipe, sd);
610 if (ret > 0)
611 ret = splice_from_pipe_feed(pipe, sd, actor);
612 } while (ret > 0);
613 splice_from_pipe_end(pipe, sd);
615 return sd->num_spliced ? sd->num_spliced : ret;
617 EXPORT_SYMBOL(__splice_from_pipe);
620 * splice_from_pipe - splice data from a pipe to a file
621 * @pipe: pipe to splice from
622 * @out: file to splice to
623 * @ppos: position in @out
624 * @len: how many bytes to splice
625 * @flags: splice modifier flags
626 * @actor: handler that splices the data
628 * Description:
629 * See __splice_from_pipe. This function locks the pipe inode,
630 * otherwise it's identical to __splice_from_pipe().
633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 loff_t *ppos, size_t len, unsigned int flags,
635 splice_actor *actor)
637 ssize_t ret;
638 struct splice_desc sd = {
639 .total_len = len,
640 .flags = flags,
641 .pos = *ppos,
642 .u.file = out,
645 pipe_lock(pipe);
646 ret = __splice_from_pipe(pipe, &sd, actor);
647 pipe_unlock(pipe);
649 return ret;
653 * iter_file_splice_write - splice data from a pipe to a file
654 * @pipe: pipe info
655 * @out: file to write to
656 * @ppos: position in @out
657 * @len: number of bytes to splice
658 * @flags: splice modifier flags
660 * Description:
661 * Will either move or copy pages (determined by @flags options) from
662 * the given pipe inode to the given file.
663 * This one is ->write_iter-based.
666 ssize_t
667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 loff_t *ppos, size_t len, unsigned int flags)
670 struct splice_desc sd = {
671 .total_len = len,
672 .flags = flags,
673 .pos = *ppos,
674 .u.file = out,
676 int nbufs = pipe->max_usage;
677 struct bio_vec *array;
678 ssize_t ret;
680 if (!out->f_op->write_iter)
681 return -EINVAL;
683 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684 if (unlikely(!array))
685 return -ENOMEM;
687 pipe_lock(pipe);
689 splice_from_pipe_begin(&sd);
690 while (sd.total_len) {
691 struct kiocb kiocb;
692 struct iov_iter from;
693 unsigned int head, tail, mask;
694 size_t left;
695 int n;
697 ret = splice_from_pipe_next(pipe, &sd);
698 if (ret <= 0)
699 break;
701 if (unlikely(nbufs < pipe->max_usage)) {
702 kfree(array);
703 nbufs = pipe->max_usage;
704 array = kcalloc(nbufs, sizeof(struct bio_vec),
705 GFP_KERNEL);
706 if (!array) {
707 ret = -ENOMEM;
708 break;
712 head = pipe->head;
713 tail = pipe->tail;
714 mask = pipe->ring_size - 1;
716 /* build the vector */
717 left = sd.total_len;
718 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720 size_t this_len = buf->len;
722 /* zero-length bvecs are not supported, skip them */
723 if (!this_len)
724 continue;
725 this_len = min(this_len, left);
727 ret = pipe_buf_confirm(pipe, buf);
728 if (unlikely(ret)) {
729 if (ret == -ENODATA)
730 ret = 0;
731 goto done;
734 bvec_set_page(&array[n], buf->page, this_len,
735 buf->offset);
736 left -= this_len;
737 n++;
740 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741 init_sync_kiocb(&kiocb, out);
742 kiocb.ki_pos = sd.pos;
743 ret = out->f_op->write_iter(&kiocb, &from);
744 sd.pos = kiocb.ki_pos;
745 if (ret <= 0)
746 break;
748 sd.num_spliced += ret;
749 sd.total_len -= ret;
750 *ppos = sd.pos;
752 /* dismiss the fully eaten buffers, adjust the partial one */
753 tail = pipe->tail;
754 while (ret) {
755 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756 if (ret >= buf->len) {
757 ret -= buf->len;
758 buf->len = 0;
759 pipe_buf_release(pipe, buf);
760 tail++;
761 pipe->tail = tail;
762 if (pipe->files)
763 sd.need_wakeup = true;
764 } else {
765 buf->offset += ret;
766 buf->len -= ret;
767 ret = 0;
771 done:
772 kfree(array);
773 splice_from_pipe_end(pipe, &sd);
775 pipe_unlock(pipe);
777 if (sd.num_spliced)
778 ret = sd.num_spliced;
780 return ret;
783 EXPORT_SYMBOL(iter_file_splice_write);
785 #ifdef CONFIG_NET
787 * splice_to_socket - splice data from a pipe to a socket
788 * @pipe: pipe to splice from
789 * @out: socket to write to
790 * @ppos: position in @out
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
794 * Description:
795 * Will send @len bytes from the pipe to a network socket. No data copying
796 * is involved.
799 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800 loff_t *ppos, size_t len, unsigned int flags)
802 struct socket *sock = sock_from_file(out);
803 struct bio_vec bvec[16];
804 struct msghdr msg = {};
805 ssize_t ret = 0;
806 size_t spliced = 0;
807 bool need_wakeup = false;
809 pipe_lock(pipe);
811 while (len > 0) {
812 unsigned int head, tail, mask, bc = 0;
813 size_t remain = len;
816 * Check for signal early to make process killable when there
817 * are always buffers available
819 ret = -ERESTARTSYS;
820 if (signal_pending(current))
821 break;
823 while (pipe_empty(pipe->head, pipe->tail)) {
824 ret = 0;
825 if (!pipe->writers)
826 goto out;
828 if (spliced)
829 goto out;
831 ret = -EAGAIN;
832 if (flags & SPLICE_F_NONBLOCK)
833 goto out;
835 ret = -ERESTARTSYS;
836 if (signal_pending(current))
837 goto out;
839 if (need_wakeup) {
840 wakeup_pipe_writers(pipe);
841 need_wakeup = false;
844 pipe_wait_readable(pipe);
847 head = pipe->head;
848 tail = pipe->tail;
849 mask = pipe->ring_size - 1;
851 while (!pipe_empty(head, tail)) {
852 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853 size_t seg;
855 if (!buf->len) {
856 tail++;
857 continue;
860 seg = min_t(size_t, remain, buf->len);
862 ret = pipe_buf_confirm(pipe, buf);
863 if (unlikely(ret)) {
864 if (ret == -ENODATA)
865 ret = 0;
866 break;
869 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870 remain -= seg;
871 if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872 break;
873 tail++;
876 if (!bc)
877 break;
879 msg.msg_flags = MSG_SPLICE_PAGES;
880 if (flags & SPLICE_F_MORE)
881 msg.msg_flags |= MSG_MORE;
882 if (remain && pipe_occupancy(pipe->head, tail) > 0)
883 msg.msg_flags |= MSG_MORE;
884 if (out->f_flags & O_NONBLOCK)
885 msg.msg_flags |= MSG_DONTWAIT;
887 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888 len - remain);
889 ret = sock_sendmsg(sock, &msg);
890 if (ret <= 0)
891 break;
893 spliced += ret;
894 len -= ret;
895 tail = pipe->tail;
896 while (ret > 0) {
897 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898 size_t seg = min_t(size_t, ret, buf->len);
900 buf->offset += seg;
901 buf->len -= seg;
902 ret -= seg;
904 if (!buf->len) {
905 pipe_buf_release(pipe, buf);
906 tail++;
910 if (tail != pipe->tail) {
911 pipe->tail = tail;
912 if (pipe->files)
913 need_wakeup = true;
917 out:
918 pipe_unlock(pipe);
919 if (need_wakeup)
920 wakeup_pipe_writers(pipe);
921 return spliced ?: ret;
923 #endif
925 static int warn_unsupported(struct file *file, const char *op)
927 pr_debug_ratelimited(
928 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929 op, file, current->pid, current->comm);
930 return -EINVAL;
934 * Attempt to initiate a splice from pipe to file.
936 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937 loff_t *ppos, size_t len, unsigned int flags)
939 if (unlikely(!out->f_op->splice_write))
940 return warn_unsupported(out, "write");
941 return out->f_op->splice_write(pipe, out, ppos, len, flags);
945 * Indicate to the caller that there was a premature EOF when reading from the
946 * source and the caller didn't indicate they would be sending more data after
947 * this.
949 static void do_splice_eof(struct splice_desc *sd)
951 if (sd->splice_eof)
952 sd->splice_eof(sd);
956 * Callers already called rw_verify_area() on the entire range.
957 * No need to call it for sub ranges.
959 static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960 struct pipe_inode_info *pipe, size_t len,
961 unsigned int flags)
963 unsigned int p_space;
965 if (unlikely(!(in->f_mode & FMODE_READ)))
966 return -EBADF;
967 if (!len)
968 return 0;
970 /* Don't try to read more the pipe has space for. */
971 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972 len = min_t(size_t, len, p_space << PAGE_SHIFT);
974 if (unlikely(len > MAX_RW_COUNT))
975 len = MAX_RW_COUNT;
977 if (unlikely(!in->f_op->splice_read))
978 return warn_unsupported(in, "read");
980 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981 * buffer, copy into it and splice that into the pipe.
983 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984 return copy_splice_read(in, ppos, pipe, len, flags);
985 return in->f_op->splice_read(in, ppos, pipe, len, flags);
989 * vfs_splice_read - Read data from a file and splice it into a pipe
990 * @in: File to splice from
991 * @ppos: Input file offset
992 * @pipe: Pipe to splice to
993 * @len: Number of bytes to splice
994 * @flags: Splice modifier flags (SPLICE_F_*)
996 * Splice the requested amount of data from the input file to the pipe. This
997 * is synchronous as the caller must hold the pipe lock across the entire
998 * operation.
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1003 ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004 struct pipe_inode_info *pipe, size_t len,
1005 unsigned int flags)
1007 ssize_t ret;
1009 ret = rw_verify_area(READ, in, ppos, len);
1010 if (unlikely(ret < 0))
1011 return ret;
1013 return do_splice_read(in, ppos, pipe, len, flags);
1015 EXPORT_SYMBOL_GPL(vfs_splice_read);
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in: file to splice from
1020 * @sd: actor information on where to splice to
1021 * @actor: handles the data splicing
1023 * Description:
1024 * This is a special case helper to splice directly between two
1025 * points, without requiring an explicit pipe. Internally an allocated
1026 * pipe is cached in the process, and reused during the lifetime of
1027 * that process.
1030 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031 splice_direct_actor *actor)
1033 struct pipe_inode_info *pipe;
1034 ssize_t ret, bytes;
1035 size_t len;
1036 int i, flags, more;
1039 * We require the input to be seekable, as we don't want to randomly
1040 * drop data for eg socket -> socket splicing. Use the piped splicing
1041 * for that!
1043 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044 return -EINVAL;
1047 * neither in nor out is a pipe, setup an internal pipe attached to
1048 * 'out' and transfer the wanted data from 'in' to 'out' through that
1050 pipe = current->splice_pipe;
1051 if (unlikely(!pipe)) {
1052 pipe = alloc_pipe_info();
1053 if (!pipe)
1054 return -ENOMEM;
1057 * We don't have an immediate reader, but we'll read the stuff
1058 * out of the pipe right after the splice_to_pipe(). So set
1059 * PIPE_READERS appropriately.
1061 pipe->readers = 1;
1063 current->splice_pipe = pipe;
1067 * Do the splice.
1069 bytes = 0;
1070 len = sd->total_len;
1072 /* Don't block on output, we have to drain the direct pipe. */
1073 flags = sd->flags;
1074 sd->flags &= ~SPLICE_F_NONBLOCK;
1077 * We signal MORE until we've read sufficient data to fulfill the
1078 * request and we keep signalling it if the caller set it.
1080 more = sd->flags & SPLICE_F_MORE;
1081 sd->flags |= SPLICE_F_MORE;
1083 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1085 while (len) {
1086 size_t read_len;
1087 loff_t pos = sd->pos, prev_pos = pos;
1089 ret = do_splice_read(in, &pos, pipe, len, flags);
1090 if (unlikely(ret <= 0))
1091 goto read_failure;
1093 read_len = ret;
1094 sd->total_len = read_len;
1097 * If we now have sufficient data to fulfill the request then
1098 * we clear SPLICE_F_MORE if it was not set initially.
1100 if (read_len >= len && !more)
1101 sd->flags &= ~SPLICE_F_MORE;
1104 * NOTE: nonblocking mode only applies to the input. We
1105 * must not do the output in nonblocking mode as then we
1106 * could get stuck data in the internal pipe:
1108 ret = actor(pipe, sd);
1109 if (unlikely(ret <= 0)) {
1110 sd->pos = prev_pos;
1111 goto out_release;
1114 bytes += ret;
1115 len -= ret;
1116 sd->pos = pos;
1118 if (ret < read_len) {
1119 sd->pos = prev_pos + ret;
1120 goto out_release;
1124 done:
1125 pipe->tail = pipe->head = 0;
1126 file_accessed(in);
1127 return bytes;
1129 read_failure:
1131 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134 * least 1 byte *then* we will also do the ->splice_eof() call.
1136 if (ret == 0 && !more && len > 0 && bytes)
1137 do_splice_eof(sd);
1138 out_release:
1140 * If we did an incomplete transfer we must release
1141 * the pipe buffers in question:
1143 for (i = 0; i < pipe->ring_size; i++) {
1144 struct pipe_buffer *buf = &pipe->bufs[i];
1146 if (buf->ops)
1147 pipe_buf_release(pipe, buf);
1150 if (!bytes)
1151 bytes = ret;
1153 goto done;
1155 EXPORT_SYMBOL(splice_direct_to_actor);
1157 static int direct_splice_actor(struct pipe_inode_info *pipe,
1158 struct splice_desc *sd)
1160 struct file *file = sd->u.file;
1161 long ret;
1163 file_start_write(file);
1164 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165 file_end_write(file);
1166 return ret;
1169 static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170 struct splice_desc *sd)
1172 struct file *file = sd->u.file;
1174 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1177 static void direct_file_splice_eof(struct splice_desc *sd)
1179 struct file *file = sd->u.file;
1181 if (file->f_op->splice_eof)
1182 file->f_op->splice_eof(file);
1185 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186 struct file *out, loff_t *opos,
1187 size_t len, unsigned int flags,
1188 splice_direct_actor *actor)
1190 struct splice_desc sd = {
1191 .len = len,
1192 .total_len = len,
1193 .flags = flags,
1194 .pos = *ppos,
1195 .u.file = out,
1196 .splice_eof = direct_file_splice_eof,
1197 .opos = opos,
1199 ssize_t ret;
1201 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202 return -EBADF;
1204 if (unlikely(out->f_flags & O_APPEND))
1205 return -EINVAL;
1207 ret = splice_direct_to_actor(in, &sd, actor);
1208 if (ret > 0)
1209 *ppos = sd.pos;
1211 return ret;
1214 * do_splice_direct - splices data directly between two files
1215 * @in: file to splice from
1216 * @ppos: input file offset
1217 * @out: file to splice to
1218 * @opos: output file offset
1219 * @len: number of bytes to splice
1220 * @flags: splice modifier flags
1222 * Description:
1223 * For use by do_sendfile(). splice can easily emulate sendfile, but
1224 * doing it in the application would incur an extra system call
1225 * (splice in + splice out, as compared to just sendfile()). So this helper
1226 * can splice directly through a process-private pipe.
1228 * Callers already called rw_verify_area() on the entire range.
1230 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231 loff_t *opos, size_t len, unsigned int flags)
1233 return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234 direct_splice_actor);
1236 EXPORT_SYMBOL(do_splice_direct);
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in: file to splice from
1241 * @ppos: input file offset
1242 * @out: file to splice to
1243 * @opos: output file offset
1244 * @len: number of bytes to splice
1246 * Description:
1247 * For use by ->copy_file_range() methods.
1248 * Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 * start_file_write() on @out file.
1251 * Callers already called rw_verify_area() on the entire range.
1253 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254 loff_t *opos, size_t len)
1256 lockdep_assert(file_write_started(out));
1258 return do_splice_direct_actor(in, ppos, out, opos,
1259 min_t(size_t, len, MAX_RW_COUNT),
1260 0, splice_file_range_actor);
1262 EXPORT_SYMBOL(splice_file_range);
1264 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1266 for (;;) {
1267 if (unlikely(!pipe->readers)) {
1268 send_sig(SIGPIPE, current, 0);
1269 return -EPIPE;
1271 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272 return 0;
1273 if (flags & SPLICE_F_NONBLOCK)
1274 return -EAGAIN;
1275 if (signal_pending(current))
1276 return -ERESTARTSYS;
1277 pipe_wait_writable(pipe);
1281 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282 struct pipe_inode_info *opipe,
1283 size_t len, unsigned int flags);
1285 ssize_t splice_file_to_pipe(struct file *in,
1286 struct pipe_inode_info *opipe,
1287 loff_t *offset,
1288 size_t len, unsigned int flags)
1290 ssize_t ret;
1292 pipe_lock(opipe);
1293 ret = wait_for_space(opipe, flags);
1294 if (!ret)
1295 ret = do_splice_read(in, offset, opipe, len, flags);
1296 pipe_unlock(opipe);
1297 if (ret > 0)
1298 wakeup_pipe_readers(opipe);
1299 return ret;
1303 * Determine where to splice to/from.
1305 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306 loff_t *off_out, size_t len, unsigned int flags)
1308 struct pipe_inode_info *ipipe;
1309 struct pipe_inode_info *opipe;
1310 loff_t offset;
1311 ssize_t ret;
1313 if (unlikely(!(in->f_mode & FMODE_READ) ||
1314 !(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1317 ipipe = get_pipe_info(in, true);
1318 opipe = get_pipe_info(out, true);
1320 if (ipipe && opipe) {
1321 if (off_in || off_out)
1322 return -ESPIPE;
1324 /* Splicing to self would be fun, but... */
1325 if (ipipe == opipe)
1326 return -EINVAL;
1328 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329 flags |= SPLICE_F_NONBLOCK;
1331 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332 } else if (ipipe) {
1333 if (off_in)
1334 return -ESPIPE;
1335 if (off_out) {
1336 if (!(out->f_mode & FMODE_PWRITE))
1337 return -EINVAL;
1338 offset = *off_out;
1339 } else {
1340 offset = out->f_pos;
1343 if (unlikely(out->f_flags & O_APPEND))
1344 return -EINVAL;
1346 ret = rw_verify_area(WRITE, out, &offset, len);
1347 if (unlikely(ret < 0))
1348 return ret;
1350 if (in->f_flags & O_NONBLOCK)
1351 flags |= SPLICE_F_NONBLOCK;
1353 file_start_write(out);
1354 ret = do_splice_from(ipipe, out, &offset, len, flags);
1355 file_end_write(out);
1357 if (!off_out)
1358 out->f_pos = offset;
1359 else
1360 *off_out = offset;
1361 } else if (opipe) {
1362 if (off_out)
1363 return -ESPIPE;
1364 if (off_in) {
1365 if (!(in->f_mode & FMODE_PREAD))
1366 return -EINVAL;
1367 offset = *off_in;
1368 } else {
1369 offset = in->f_pos;
1372 ret = rw_verify_area(READ, in, &offset, len);
1373 if (unlikely(ret < 0))
1374 return ret;
1376 if (out->f_flags & O_NONBLOCK)
1377 flags |= SPLICE_F_NONBLOCK;
1379 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1381 if (!off_in)
1382 in->f_pos = offset;
1383 else
1384 *off_in = offset;
1385 } else {
1386 ret = -EINVAL;
1389 if (ret > 0) {
1391 * Generate modify out before access in:
1392 * do_splice_from() may've already sent modify out,
1393 * and this ensures the events get merged.
1395 fsnotify_modify(out);
1396 fsnotify_access(in);
1399 return ret;
1402 static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403 struct file *out, loff_t __user *off_out,
1404 size_t len, unsigned int flags)
1406 struct pipe_inode_info *ipipe;
1407 struct pipe_inode_info *opipe;
1408 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409 ssize_t ret;
1411 ipipe = get_pipe_info(in, true);
1412 opipe = get_pipe_info(out, true);
1414 if (ipipe) {
1415 if (off_in)
1416 return -ESPIPE;
1417 pipe_clear_nowait(in);
1419 if (opipe) {
1420 if (off_out)
1421 return -ESPIPE;
1422 pipe_clear_nowait(out);
1425 if (off_out) {
1426 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427 return -EFAULT;
1428 __off_out = &offset;
1430 if (off_in) {
1431 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432 return -EFAULT;
1433 __off_in = &offset;
1436 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437 if (ret < 0)
1438 return ret;
1440 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441 return -EFAULT;
1442 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443 return -EFAULT;
1445 return ret;
1448 static ssize_t iter_to_pipe(struct iov_iter *from,
1449 struct pipe_inode_info *pipe,
1450 unsigned int flags)
1452 struct pipe_buffer buf = {
1453 .ops = &user_page_pipe_buf_ops,
1454 .flags = flags
1456 size_t total = 0;
1457 ssize_t ret = 0;
1459 while (iov_iter_count(from)) {
1460 struct page *pages[16];
1461 ssize_t left;
1462 size_t start;
1463 int i, n;
1465 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466 if (left <= 0) {
1467 ret = left;
1468 break;
1471 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472 for (i = 0; i < n; i++) {
1473 int size = min_t(int, left, PAGE_SIZE - start);
1475 buf.page = pages[i];
1476 buf.offset = start;
1477 buf.len = size;
1478 ret = add_to_pipe(pipe, &buf);
1479 if (unlikely(ret < 0)) {
1480 iov_iter_revert(from, left);
1481 // this one got dropped by add_to_pipe()
1482 while (++i < n)
1483 put_page(pages[i]);
1484 goto out;
1486 total += ret;
1487 left -= size;
1488 start = 0;
1491 out:
1492 return total ? total : ret;
1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 struct splice_desc *sd)
1498 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499 return n == sd->len ? n : -EFAULT;
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1506 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507 unsigned int flags)
1509 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510 struct splice_desc sd = {
1511 .total_len = iov_iter_count(iter),
1512 .flags = flags,
1513 .u.data = iter
1515 ssize_t ret = 0;
1517 if (!pipe)
1518 return -EBADF;
1520 pipe_clear_nowait(file);
1522 if (sd.total_len) {
1523 pipe_lock(pipe);
1524 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525 pipe_unlock(pipe);
1528 if (ret > 0)
1529 fsnotify_access(file);
1531 return ret;
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1539 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540 unsigned int flags)
1542 struct pipe_inode_info *pipe;
1543 ssize_t ret = 0;
1544 unsigned buf_flag = 0;
1546 if (flags & SPLICE_F_GIFT)
1547 buf_flag = PIPE_BUF_FLAG_GIFT;
1549 pipe = get_pipe_info(file, true);
1550 if (!pipe)
1551 return -EBADF;
1553 pipe_clear_nowait(file);
1555 pipe_lock(pipe);
1556 ret = wait_for_space(pipe, flags);
1557 if (!ret)
1558 ret = iter_to_pipe(iter, pipe, buf_flag);
1559 pipe_unlock(pipe);
1560 if (ret > 0) {
1561 wakeup_pipe_readers(pipe);
1562 fsnotify_modify(file);
1564 return ret;
1568 * Note that vmsplice only really supports true splicing _from_ user memory
1569 * to a pipe, not the other way around. Splicing from user memory is a simple
1570 * operation that can be supported without any funky alignment restrictions
1571 * or nasty vm tricks. We simply map in the user memory and fill them into
1572 * a pipe. The reverse isn't quite as easy, though. There are two possible
1573 * solutions for that:
1575 * - memcpy() the data internally, at which point we might as well just
1576 * do a regular read() on the buffer anyway.
1577 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1578 * has restriction limitations on both ends of the pipe).
1580 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1583 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1584 unsigned long, nr_segs, unsigned int, flags)
1586 struct iovec iovstack[UIO_FASTIOV];
1587 struct iovec *iov = iovstack;
1588 struct iov_iter iter;
1589 ssize_t error;
1590 int type;
1592 if (unlikely(flags & ~SPLICE_F_ALL))
1593 return -EINVAL;
1595 CLASS(fd, f)(fd);
1596 if (fd_empty(f))
1597 return -EBADF;
1598 if (fd_file(f)->f_mode & FMODE_WRITE)
1599 type = ITER_SOURCE;
1600 else if (fd_file(f)->f_mode & FMODE_READ)
1601 type = ITER_DEST;
1602 else
1603 return -EBADF;
1605 error = import_iovec(type, uiov, nr_segs,
1606 ARRAY_SIZE(iovstack), &iov, &iter);
1607 if (error < 0)
1608 return error;
1610 if (!iov_iter_count(&iter))
1611 error = 0;
1612 else if (type == ITER_SOURCE)
1613 error = vmsplice_to_pipe(fd_file(f), &iter, flags);
1614 else
1615 error = vmsplice_to_user(fd_file(f), &iter, flags);
1617 kfree(iov);
1618 return error;
1621 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1622 int, fd_out, loff_t __user *, off_out,
1623 size_t, len, unsigned int, flags)
1625 if (unlikely(!len))
1626 return 0;
1628 if (unlikely(flags & ~SPLICE_F_ALL))
1629 return -EINVAL;
1631 CLASS(fd, in)(fd_in);
1632 if (fd_empty(in))
1633 return -EBADF;
1635 CLASS(fd, out)(fd_out);
1636 if (fd_empty(out))
1637 return -EBADF;
1639 return __do_splice(fd_file(in), off_in, fd_file(out), off_out,
1640 len, flags);
1644 * Make sure there's data to read. Wait for input if we can, otherwise
1645 * return an appropriate error.
1647 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1649 int ret;
1652 * Check the pipe occupancy without the inode lock first. This function
1653 * is speculative anyways, so missing one is ok.
1655 if (!pipe_empty(pipe->head, pipe->tail))
1656 return 0;
1658 ret = 0;
1659 pipe_lock(pipe);
1661 while (pipe_empty(pipe->head, pipe->tail)) {
1662 if (signal_pending(current)) {
1663 ret = -ERESTARTSYS;
1664 break;
1666 if (!pipe->writers)
1667 break;
1668 if (flags & SPLICE_F_NONBLOCK) {
1669 ret = -EAGAIN;
1670 break;
1672 pipe_wait_readable(pipe);
1675 pipe_unlock(pipe);
1676 return ret;
1680 * Make sure there's writeable room. Wait for room if we can, otherwise
1681 * return an appropriate error.
1683 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1685 int ret;
1688 * Check pipe occupancy without the inode lock first. This function
1689 * is speculative anyways, so missing one is ok.
1691 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1692 return 0;
1694 ret = 0;
1695 pipe_lock(pipe);
1697 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1698 if (!pipe->readers) {
1699 send_sig(SIGPIPE, current, 0);
1700 ret = -EPIPE;
1701 break;
1703 if (flags & SPLICE_F_NONBLOCK) {
1704 ret = -EAGAIN;
1705 break;
1707 if (signal_pending(current)) {
1708 ret = -ERESTARTSYS;
1709 break;
1711 pipe_wait_writable(pipe);
1714 pipe_unlock(pipe);
1715 return ret;
1719 * Splice contents of ipipe to opipe.
1721 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1722 struct pipe_inode_info *opipe,
1723 size_t len, unsigned int flags)
1725 struct pipe_buffer *ibuf, *obuf;
1726 unsigned int i_head, o_head;
1727 unsigned int i_tail, o_tail;
1728 unsigned int i_mask, o_mask;
1729 int ret = 0;
1730 bool input_wakeup = false;
1733 retry:
1734 ret = ipipe_prep(ipipe, flags);
1735 if (ret)
1736 return ret;
1738 ret = opipe_prep(opipe, flags);
1739 if (ret)
1740 return ret;
1743 * Potential ABBA deadlock, work around it by ordering lock
1744 * grabbing by pipe info address. Otherwise two different processes
1745 * could deadlock (one doing tee from A -> B, the other from B -> A).
1747 pipe_double_lock(ipipe, opipe);
1749 i_tail = ipipe->tail;
1750 i_mask = ipipe->ring_size - 1;
1751 o_head = opipe->head;
1752 o_mask = opipe->ring_size - 1;
1754 do {
1755 size_t o_len;
1757 if (!opipe->readers) {
1758 send_sig(SIGPIPE, current, 0);
1759 if (!ret)
1760 ret = -EPIPE;
1761 break;
1764 i_head = ipipe->head;
1765 o_tail = opipe->tail;
1767 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1768 break;
1771 * Cannot make any progress, because either the input
1772 * pipe is empty or the output pipe is full.
1774 if (pipe_empty(i_head, i_tail) ||
1775 pipe_full(o_head, o_tail, opipe->max_usage)) {
1776 /* Already processed some buffers, break */
1777 if (ret)
1778 break;
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1786 * We raced with another reader/writer and haven't
1787 * managed to process any buffers. A zero return
1788 * value means EOF, so retry instead.
1790 pipe_unlock(ipipe);
1791 pipe_unlock(opipe);
1792 goto retry;
1795 ibuf = &ipipe->bufs[i_tail & i_mask];
1796 obuf = &opipe->bufs[o_head & o_mask];
1798 if (len >= ibuf->len) {
1800 * Simply move the whole buffer from ipipe to opipe
1802 *obuf = *ibuf;
1803 ibuf->ops = NULL;
1804 i_tail++;
1805 ipipe->tail = i_tail;
1806 input_wakeup = true;
1807 o_len = obuf->len;
1808 o_head++;
1809 opipe->head = o_head;
1810 } else {
1812 * Get a reference to this pipe buffer,
1813 * so we can copy the contents over.
1815 if (!pipe_buf_get(ipipe, ibuf)) {
1816 if (ret == 0)
1817 ret = -EFAULT;
1818 break;
1820 *obuf = *ibuf;
1823 * Don't inherit the gift and merge flags, we need to
1824 * prevent multiple steals of this page.
1826 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1827 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1829 obuf->len = len;
1830 ibuf->offset += len;
1831 ibuf->len -= len;
1832 o_len = len;
1833 o_head++;
1834 opipe->head = o_head;
1836 ret += o_len;
1837 len -= o_len;
1838 } while (len);
1840 pipe_unlock(ipipe);
1841 pipe_unlock(opipe);
1844 * If we put data in the output pipe, wakeup any potential readers.
1846 if (ret > 0)
1847 wakeup_pipe_readers(opipe);
1849 if (input_wakeup)
1850 wakeup_pipe_writers(ipipe);
1852 return ret;
1856 * Link contents of ipipe to opipe.
1858 static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1859 struct pipe_inode_info *opipe,
1860 size_t len, unsigned int flags)
1862 struct pipe_buffer *ibuf, *obuf;
1863 unsigned int i_head, o_head;
1864 unsigned int i_tail, o_tail;
1865 unsigned int i_mask, o_mask;
1866 ssize_t ret = 0;
1869 * Potential ABBA deadlock, work around it by ordering lock
1870 * grabbing by pipe info address. Otherwise two different processes
1871 * could deadlock (one doing tee from A -> B, the other from B -> A).
1873 pipe_double_lock(ipipe, opipe);
1875 i_tail = ipipe->tail;
1876 i_mask = ipipe->ring_size - 1;
1877 o_head = opipe->head;
1878 o_mask = opipe->ring_size - 1;
1880 do {
1881 if (!opipe->readers) {
1882 send_sig(SIGPIPE, current, 0);
1883 if (!ret)
1884 ret = -EPIPE;
1885 break;
1888 i_head = ipipe->head;
1889 o_tail = opipe->tail;
1892 * If we have iterated all input buffers or run out of
1893 * output room, break.
1895 if (pipe_empty(i_head, i_tail) ||
1896 pipe_full(o_head, o_tail, opipe->max_usage))
1897 break;
1899 ibuf = &ipipe->bufs[i_tail & i_mask];
1900 obuf = &opipe->bufs[o_head & o_mask];
1903 * Get a reference to this pipe buffer,
1904 * so we can copy the contents over.
1906 if (!pipe_buf_get(ipipe, ibuf)) {
1907 if (ret == 0)
1908 ret = -EFAULT;
1909 break;
1912 *obuf = *ibuf;
1915 * Don't inherit the gift and merge flag, we need to prevent
1916 * multiple steals of this page.
1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1919 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1921 if (obuf->len > len)
1922 obuf->len = len;
1923 ret += obuf->len;
1924 len -= obuf->len;
1926 o_head++;
1927 opipe->head = o_head;
1928 i_tail++;
1929 } while (len);
1931 pipe_unlock(ipipe);
1932 pipe_unlock(opipe);
1935 * If we put data in the output pipe, wakeup any potential readers.
1937 if (ret > 0)
1938 wakeup_pipe_readers(opipe);
1940 return ret;
1944 * This is a tee(1) implementation that works on pipes. It doesn't copy
1945 * any data, it simply references the 'in' pages on the 'out' pipe.
1946 * The 'flags' used are the SPLICE_F_* variants, currently the only
1947 * applicable one is SPLICE_F_NONBLOCK.
1949 ssize_t do_tee(struct file *in, struct file *out, size_t len,
1950 unsigned int flags)
1952 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1953 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1954 ssize_t ret = -EINVAL;
1956 if (unlikely(!(in->f_mode & FMODE_READ) ||
1957 !(out->f_mode & FMODE_WRITE)))
1958 return -EBADF;
1961 * Duplicate the contents of ipipe to opipe without actually
1962 * copying the data.
1964 if (ipipe && opipe && ipipe != opipe) {
1965 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1966 flags |= SPLICE_F_NONBLOCK;
1969 * Keep going, unless we encounter an error. The ipipe/opipe
1970 * ordering doesn't really matter.
1972 ret = ipipe_prep(ipipe, flags);
1973 if (!ret) {
1974 ret = opipe_prep(opipe, flags);
1975 if (!ret)
1976 ret = link_pipe(ipipe, opipe, len, flags);
1980 if (ret > 0) {
1981 fsnotify_access(in);
1982 fsnotify_modify(out);
1985 return ret;
1988 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1990 if (unlikely(flags & ~SPLICE_F_ALL))
1991 return -EINVAL;
1993 if (unlikely(!len))
1994 return 0;
1996 CLASS(fd, in)(fdin);
1997 if (fd_empty(in))
1998 return -EBADF;
2000 CLASS(fd, out)(fdout);
2001 if (fd_empty(out))
2002 return -EBADF;
2004 return do_tee(fd_file(in), fd_file(out), len, flags);