Merge tag 'timers_urgent_for_v6.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[drm/drm-misc.git] / lib / find_bit.c
blob0836bb3d76c5541fe82867e9645936dc11eb98ab
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* bit search implementation
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
7 * Copyright (C) 2008 IBM Corporation
8 * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
9 * (Inspired by David Howell's find_next_bit implementation)
11 * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
12 * size and improve performance, 2015.
15 #include <linux/bitops.h>
16 #include <linux/bitmap.h>
17 #include <linux/export.h>
18 #include <linux/math.h>
19 #include <linux/minmax.h>
20 #include <linux/swab.h>
23 * Common helper for find_bit() function family
24 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
25 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
26 * @size: The bitmap size in bits
28 #define FIND_FIRST_BIT(FETCH, MUNGE, size) \
29 ({ \
30 unsigned long idx, val, sz = (size); \
32 for (idx = 0; idx * BITS_PER_LONG < sz; idx++) { \
33 val = (FETCH); \
34 if (val) { \
35 sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(val)), sz); \
36 break; \
37 } \
38 } \
40 sz; \
44 * Common helper for find_next_bit() function family
45 * @FETCH: The expression that fetches and pre-processes each word of bitmap(s)
46 * @MUNGE: The expression that post-processes a word containing found bit (may be empty)
47 * @size: The bitmap size in bits
48 * @start: The bitnumber to start searching at
50 #define FIND_NEXT_BIT(FETCH, MUNGE, size, start) \
51 ({ \
52 unsigned long mask, idx, tmp, sz = (size), __start = (start); \
54 if (unlikely(__start >= sz)) \
55 goto out; \
57 mask = MUNGE(BITMAP_FIRST_WORD_MASK(__start)); \
58 idx = __start / BITS_PER_LONG; \
60 for (tmp = (FETCH) & mask; !tmp; tmp = (FETCH)) { \
61 if ((idx + 1) * BITS_PER_LONG >= sz) \
62 goto out; \
63 idx++; \
64 } \
66 sz = min(idx * BITS_PER_LONG + __ffs(MUNGE(tmp)), sz); \
67 out: \
68 sz; \
71 #define FIND_NTH_BIT(FETCH, size, num) \
72 ({ \
73 unsigned long sz = (size), nr = (num), idx, w, tmp; \
75 for (idx = 0; (idx + 1) * BITS_PER_LONG <= sz; idx++) { \
76 if (idx * BITS_PER_LONG + nr >= sz) \
77 goto out; \
79 tmp = (FETCH); \
80 w = hweight_long(tmp); \
81 if (w > nr) \
82 goto found; \
84 nr -= w; \
85 } \
87 if (sz % BITS_PER_LONG) \
88 tmp = (FETCH) & BITMAP_LAST_WORD_MASK(sz); \
89 found: \
90 sz = idx * BITS_PER_LONG + fns(tmp, nr); \
91 out: \
92 sz; \
95 #ifndef find_first_bit
97 * Find the first set bit in a memory region.
99 unsigned long _find_first_bit(const unsigned long *addr, unsigned long size)
101 return FIND_FIRST_BIT(addr[idx], /* nop */, size);
103 EXPORT_SYMBOL(_find_first_bit);
104 #endif
106 #ifndef find_first_and_bit
108 * Find the first set bit in two memory regions.
110 unsigned long _find_first_and_bit(const unsigned long *addr1,
111 const unsigned long *addr2,
112 unsigned long size)
114 return FIND_FIRST_BIT(addr1[idx] & addr2[idx], /* nop */, size);
116 EXPORT_SYMBOL(_find_first_and_bit);
117 #endif
120 * Find the first set bit in three memory regions.
122 unsigned long _find_first_and_and_bit(const unsigned long *addr1,
123 const unsigned long *addr2,
124 const unsigned long *addr3,
125 unsigned long size)
127 return FIND_FIRST_BIT(addr1[idx] & addr2[idx] & addr3[idx], /* nop */, size);
129 EXPORT_SYMBOL(_find_first_and_and_bit);
131 #ifndef find_first_zero_bit
133 * Find the first cleared bit in a memory region.
135 unsigned long _find_first_zero_bit(const unsigned long *addr, unsigned long size)
137 return FIND_FIRST_BIT(~addr[idx], /* nop */, size);
139 EXPORT_SYMBOL(_find_first_zero_bit);
140 #endif
142 #ifndef find_next_bit
143 unsigned long _find_next_bit(const unsigned long *addr, unsigned long nbits, unsigned long start)
145 return FIND_NEXT_BIT(addr[idx], /* nop */, nbits, start);
147 EXPORT_SYMBOL(_find_next_bit);
148 #endif
150 unsigned long __find_nth_bit(const unsigned long *addr, unsigned long size, unsigned long n)
152 return FIND_NTH_BIT(addr[idx], size, n);
154 EXPORT_SYMBOL(__find_nth_bit);
156 unsigned long __find_nth_and_bit(const unsigned long *addr1, const unsigned long *addr2,
157 unsigned long size, unsigned long n)
159 return FIND_NTH_BIT(addr1[idx] & addr2[idx], size, n);
161 EXPORT_SYMBOL(__find_nth_and_bit);
163 unsigned long __find_nth_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
164 unsigned long size, unsigned long n)
166 return FIND_NTH_BIT(addr1[idx] & ~addr2[idx], size, n);
168 EXPORT_SYMBOL(__find_nth_andnot_bit);
170 unsigned long __find_nth_and_andnot_bit(const unsigned long *addr1,
171 const unsigned long *addr2,
172 const unsigned long *addr3,
173 unsigned long size, unsigned long n)
175 return FIND_NTH_BIT(addr1[idx] & addr2[idx] & ~addr3[idx], size, n);
177 EXPORT_SYMBOL(__find_nth_and_andnot_bit);
179 #ifndef find_next_and_bit
180 unsigned long _find_next_and_bit(const unsigned long *addr1, const unsigned long *addr2,
181 unsigned long nbits, unsigned long start)
183 return FIND_NEXT_BIT(addr1[idx] & addr2[idx], /* nop */, nbits, start);
185 EXPORT_SYMBOL(_find_next_and_bit);
186 #endif
188 #ifndef find_next_andnot_bit
189 unsigned long _find_next_andnot_bit(const unsigned long *addr1, const unsigned long *addr2,
190 unsigned long nbits, unsigned long start)
192 return FIND_NEXT_BIT(addr1[idx] & ~addr2[idx], /* nop */, nbits, start);
194 EXPORT_SYMBOL(_find_next_andnot_bit);
195 #endif
197 #ifndef find_next_or_bit
198 unsigned long _find_next_or_bit(const unsigned long *addr1, const unsigned long *addr2,
199 unsigned long nbits, unsigned long start)
201 return FIND_NEXT_BIT(addr1[idx] | addr2[idx], /* nop */, nbits, start);
203 EXPORT_SYMBOL(_find_next_or_bit);
204 #endif
206 #ifndef find_next_zero_bit
207 unsigned long _find_next_zero_bit(const unsigned long *addr, unsigned long nbits,
208 unsigned long start)
210 return FIND_NEXT_BIT(~addr[idx], /* nop */, nbits, start);
212 EXPORT_SYMBOL(_find_next_zero_bit);
213 #endif
215 #ifndef find_last_bit
216 unsigned long _find_last_bit(const unsigned long *addr, unsigned long size)
218 if (size) {
219 unsigned long val = BITMAP_LAST_WORD_MASK(size);
220 unsigned long idx = (size-1) / BITS_PER_LONG;
222 do {
223 val &= addr[idx];
224 if (val)
225 return idx * BITS_PER_LONG + __fls(val);
227 val = ~0ul;
228 } while (idx--);
230 return size;
232 EXPORT_SYMBOL(_find_last_bit);
233 #endif
235 unsigned long find_next_clump8(unsigned long *clump, const unsigned long *addr,
236 unsigned long size, unsigned long offset)
238 offset = find_next_bit(addr, size, offset);
239 if (offset == size)
240 return size;
242 offset = round_down(offset, 8);
243 *clump = bitmap_get_value8(addr, offset);
245 return offset;
247 EXPORT_SYMBOL(find_next_clump8);
249 #ifdef __BIG_ENDIAN
251 #ifndef find_first_zero_bit_le
253 * Find the first cleared bit in an LE memory region.
255 unsigned long _find_first_zero_bit_le(const unsigned long *addr, unsigned long size)
257 return FIND_FIRST_BIT(~addr[idx], swab, size);
259 EXPORT_SYMBOL(_find_first_zero_bit_le);
261 #endif
263 #ifndef find_next_zero_bit_le
264 unsigned long _find_next_zero_bit_le(const unsigned long *addr,
265 unsigned long size, unsigned long offset)
267 return FIND_NEXT_BIT(~addr[idx], swab, size, offset);
269 EXPORT_SYMBOL(_find_next_zero_bit_le);
270 #endif
272 #ifndef find_next_bit_le
273 unsigned long _find_next_bit_le(const unsigned long *addr,
274 unsigned long size, unsigned long offset)
276 return FIND_NEXT_BIT(addr[idx], swab, size, offset);
278 EXPORT_SYMBOL(_find_next_bit_le);
280 #endif
282 #endif /* __BIG_ENDIAN */