1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h> /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
30 #include "radix-tree.h"
33 * Radix tree node cache.
35 struct kmem_cache
*radix_tree_node_cachep
;
38 * The radix tree is variable-height, so an insert operation not only has
39 * to build the branch to its corresponding item, it also has to build the
40 * branch to existing items if the size has to be increased (by
43 * The worst case is a zero height tree with just a single item at index 0,
44 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
45 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
48 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
51 * The IDR does not have to be as high as the radix tree since it uses
52 * signed integers, not unsigned longs.
54 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
55 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
56 RADIX_TREE_MAP_SHIFT))
57 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
60 * Per-cpu pool of preloaded nodes
62 DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = {
63 .lock
= INIT_LOCAL_LOCK(lock
),
65 EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads
);
67 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
69 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
72 static inline void *node_to_entry(void *ptr
)
74 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
77 #define RADIX_TREE_RETRY XA_RETRY_ENTRY
79 static inline unsigned long
80 get_slot_offset(const struct radix_tree_node
*parent
, void __rcu
**slot
)
82 return parent
? slot
- parent
->slots
: 0;
85 static unsigned int radix_tree_descend(const struct radix_tree_node
*parent
,
86 struct radix_tree_node
**nodep
, unsigned long index
)
88 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
89 void __rcu
**entry
= rcu_dereference_raw(parent
->slots
[offset
]);
91 *nodep
= (void *)entry
;
95 static inline gfp_t
root_gfp_mask(const struct radix_tree_root
*root
)
97 return root
->xa_flags
& (__GFP_BITS_MASK
& ~GFP_ZONEMASK
);
100 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
103 __set_bit(offset
, node
->tags
[tag
]);
106 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
109 __clear_bit(offset
, node
->tags
[tag
]);
112 static inline int tag_get(const struct radix_tree_node
*node
, unsigned int tag
,
115 return test_bit(offset
, node
->tags
[tag
]);
118 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned tag
)
120 root
->xa_flags
|= (__force gfp_t
)(1 << (tag
+ ROOT_TAG_SHIFT
));
123 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
125 root
->xa_flags
&= (__force gfp_t
)~(1 << (tag
+ ROOT_TAG_SHIFT
));
128 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
130 root
->xa_flags
&= (__force gfp_t
)((1 << ROOT_TAG_SHIFT
) - 1);
133 static inline int root_tag_get(const struct radix_tree_root
*root
, unsigned tag
)
135 return (__force
int)root
->xa_flags
& (1 << (tag
+ ROOT_TAG_SHIFT
));
138 static inline unsigned root_tags_get(const struct radix_tree_root
*root
)
140 return (__force
unsigned)root
->xa_flags
>> ROOT_TAG_SHIFT
;
143 static inline bool is_idr(const struct radix_tree_root
*root
)
145 return !!(root
->xa_flags
& ROOT_IS_IDR
);
149 * Returns 1 if any slot in the node has this tag set.
150 * Otherwise returns 0.
152 static inline int any_tag_set(const struct radix_tree_node
*node
,
156 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
157 if (node
->tags
[tag
][idx
])
163 static inline void all_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
165 bitmap_fill(node
->tags
[tag
], RADIX_TREE_MAP_SIZE
);
169 * radix_tree_find_next_bit - find the next set bit in a memory region
171 * @node: where to begin the search
172 * @tag: the tag index
173 * @offset: the bitnumber to start searching at
175 * Unrollable variant of find_next_bit() for constant size arrays.
176 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
177 * Returns next bit offset, or size if nothing found.
179 static __always_inline
unsigned long
180 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
181 unsigned long offset
)
183 const unsigned long *addr
= node
->tags
[tag
];
185 if (offset
< RADIX_TREE_MAP_SIZE
) {
188 addr
+= offset
/ BITS_PER_LONG
;
189 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
191 return __ffs(tmp
) + offset
;
192 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
193 while (offset
< RADIX_TREE_MAP_SIZE
) {
196 return __ffs(tmp
) + offset
;
197 offset
+= BITS_PER_LONG
;
200 return RADIX_TREE_MAP_SIZE
;
203 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
205 return iter
->index
& RADIX_TREE_MAP_MASK
;
209 * The maximum index which can be stored in a radix tree
211 static inline unsigned long shift_maxindex(unsigned int shift
)
213 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
216 static inline unsigned long node_maxindex(const struct radix_tree_node
*node
)
218 return shift_maxindex(node
->shift
);
221 static unsigned long next_index(unsigned long index
,
222 const struct radix_tree_node
*node
,
223 unsigned long offset
)
225 return (index
& ~node_maxindex(node
)) + (offset
<< node
->shift
);
229 * This assumes that the caller has performed appropriate preallocation, and
230 * that the caller has pinned this thread of control to the current CPU.
232 static struct radix_tree_node
*
233 radix_tree_node_alloc(gfp_t gfp_mask
, struct radix_tree_node
*parent
,
234 struct radix_tree_root
*root
,
235 unsigned int shift
, unsigned int offset
,
236 unsigned int count
, unsigned int nr_values
)
238 struct radix_tree_node
*ret
= NULL
;
241 * Preload code isn't irq safe and it doesn't make sense to use
242 * preloading during an interrupt anyway as all the allocations have
243 * to be atomic. So just do normal allocation when in interrupt.
245 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
246 struct radix_tree_preload
*rtp
;
249 * Even if the caller has preloaded, try to allocate from the
250 * cache first for the new node to get accounted to the memory
253 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
254 gfp_mask
| __GFP_NOWARN
);
259 * Provided the caller has preloaded here, we will always
260 * succeed in getting a node here (and never reach
263 rtp
= this_cpu_ptr(&radix_tree_preloads
);
266 rtp
->nodes
= ret
->parent
;
270 * Update the allocation stack trace as this is more useful
273 kmemleak_update_trace(ret
);
276 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
278 BUG_ON(radix_tree_is_internal_node(ret
));
281 ret
->offset
= offset
;
283 ret
->nr_values
= nr_values
;
284 ret
->parent
= parent
;
290 void radix_tree_node_rcu_free(struct rcu_head
*head
)
292 struct radix_tree_node
*node
=
293 container_of(head
, struct radix_tree_node
, rcu_head
);
296 * Must only free zeroed nodes into the slab. We can be left with
297 * non-NULL entries by radix_tree_free_nodes, so clear the entries
300 memset(node
->slots
, 0, sizeof(node
->slots
));
301 memset(node
->tags
, 0, sizeof(node
->tags
));
302 INIT_LIST_HEAD(&node
->private_list
);
304 kmem_cache_free(radix_tree_node_cachep
, node
);
308 radix_tree_node_free(struct radix_tree_node
*node
)
310 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
314 * Load up this CPU's radix_tree_node buffer with sufficient objects to
315 * ensure that the addition of a single element in the tree cannot fail. On
316 * success, return zero, with preemption disabled. On error, return -ENOMEM
317 * with preemption not disabled.
319 * To make use of this facility, the radix tree must be initialised without
320 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
322 static __must_check
int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
324 struct radix_tree_preload
*rtp
;
325 struct radix_tree_node
*node
;
329 * Nodes preloaded by one cgroup can be used by another cgroup, so
330 * they should never be accounted to any particular memory cgroup.
332 gfp_mask
&= ~__GFP_ACCOUNT
;
334 local_lock(&radix_tree_preloads
.lock
);
335 rtp
= this_cpu_ptr(&radix_tree_preloads
);
336 while (rtp
->nr
< nr
) {
337 local_unlock(&radix_tree_preloads
.lock
);
338 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
341 local_lock(&radix_tree_preloads
.lock
);
342 rtp
= this_cpu_ptr(&radix_tree_preloads
);
344 node
->parent
= rtp
->nodes
;
348 kmem_cache_free(radix_tree_node_cachep
, node
);
357 * Load up this CPU's radix_tree_node buffer with sufficient objects to
358 * ensure that the addition of a single element in the tree cannot fail. On
359 * success, return zero, with preemption disabled. On error, return -ENOMEM
360 * with preemption not disabled.
362 * To make use of this facility, the radix tree must be initialised without
363 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
365 int radix_tree_preload(gfp_t gfp_mask
)
367 /* Warn on non-sensical use... */
368 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
369 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
371 EXPORT_SYMBOL(radix_tree_preload
);
374 * The same as above function, except we don't guarantee preloading happens.
375 * We do it, if we decide it helps. On success, return zero with preemption
376 * disabled. On error, return -ENOMEM with preemption not disabled.
378 int radix_tree_maybe_preload(gfp_t gfp_mask
)
380 if (gfpflags_allow_blocking(gfp_mask
))
381 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
382 /* Preloading doesn't help anything with this gfp mask, skip it */
383 local_lock(&radix_tree_preloads
.lock
);
386 EXPORT_SYMBOL(radix_tree_maybe_preload
);
388 static unsigned radix_tree_load_root(const struct radix_tree_root
*root
,
389 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
391 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
395 if (likely(radix_tree_is_internal_node(node
))) {
396 node
= entry_to_node(node
);
397 *maxindex
= node_maxindex(node
);
398 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
406 * Extend a radix tree so it can store key @index.
408 static int radix_tree_extend(struct radix_tree_root
*root
, gfp_t gfp
,
409 unsigned long index
, unsigned int shift
)
412 unsigned int maxshift
;
415 /* Figure out what the shift should be. */
417 while (index
> shift_maxindex(maxshift
))
418 maxshift
+= RADIX_TREE_MAP_SHIFT
;
420 entry
= rcu_dereference_raw(root
->xa_head
);
421 if (!entry
&& (!is_idr(root
) || root_tag_get(root
, IDR_FREE
)))
425 struct radix_tree_node
*node
= radix_tree_node_alloc(gfp
, NULL
,
426 root
, shift
, 0, 1, 0);
431 all_tag_set(node
, IDR_FREE
);
432 if (!root_tag_get(root
, IDR_FREE
)) {
433 tag_clear(node
, IDR_FREE
, 0);
434 root_tag_set(root
, IDR_FREE
);
437 /* Propagate the aggregated tag info to the new child */
438 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
439 if (root_tag_get(root
, tag
))
440 tag_set(node
, tag
, 0);
444 BUG_ON(shift
> BITS_PER_LONG
);
445 if (radix_tree_is_internal_node(entry
)) {
446 entry_to_node(entry
)->parent
= node
;
447 } else if (xa_is_value(entry
)) {
448 /* Moving a value entry root->xa_head to a node */
452 * entry was already in the radix tree, so we do not need
453 * rcu_assign_pointer here
455 node
->slots
[0] = (void __rcu
*)entry
;
456 entry
= node_to_entry(node
);
457 rcu_assign_pointer(root
->xa_head
, entry
);
458 shift
+= RADIX_TREE_MAP_SHIFT
;
459 } while (shift
<= maxshift
);
461 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
465 * radix_tree_shrink - shrink radix tree to minimum height
466 * @root: radix tree root
468 static inline bool radix_tree_shrink(struct radix_tree_root
*root
)
473 struct radix_tree_node
*node
= rcu_dereference_raw(root
->xa_head
);
474 struct radix_tree_node
*child
;
476 if (!radix_tree_is_internal_node(node
))
478 node
= entry_to_node(node
);
481 * The candidate node has more than one child, or its child
482 * is not at the leftmost slot, we cannot shrink.
484 if (node
->count
!= 1)
486 child
= rcu_dereference_raw(node
->slots
[0]);
491 * For an IDR, we must not shrink entry 0 into the root in
492 * case somebody calls idr_replace() with a pointer that
493 * appears to be an internal entry
495 if (!node
->shift
&& is_idr(root
))
498 if (radix_tree_is_internal_node(child
))
499 entry_to_node(child
)->parent
= NULL
;
502 * We don't need rcu_assign_pointer(), since we are simply
503 * moving the node from one part of the tree to another: if it
504 * was safe to dereference the old pointer to it
505 * (node->slots[0]), it will be safe to dereference the new
506 * one (root->xa_head) as far as dependent read barriers go.
508 root
->xa_head
= (void __rcu
*)child
;
509 if (is_idr(root
) && !tag_get(node
, IDR_FREE
, 0))
510 root_tag_clear(root
, IDR_FREE
);
513 * We have a dilemma here. The node's slot[0] must not be
514 * NULLed in case there are concurrent lookups expecting to
515 * find the item. However if this was a bottom-level node,
516 * then it may be subject to the slot pointer being visible
517 * to callers dereferencing it. If item corresponding to
518 * slot[0] is subsequently deleted, these callers would expect
519 * their slot to become empty sooner or later.
521 * For example, lockless pagecache will look up a slot, deref
522 * the page pointer, and if the page has 0 refcount it means it
523 * was concurrently deleted from pagecache so try the deref
524 * again. Fortunately there is already a requirement for logic
525 * to retry the entire slot lookup -- the indirect pointer
526 * problem (replacing direct root node with an indirect pointer
527 * also results in a stale slot). So tag the slot as indirect
528 * to force callers to retry.
531 if (!radix_tree_is_internal_node(child
)) {
532 node
->slots
[0] = (void __rcu
*)RADIX_TREE_RETRY
;
535 WARN_ON_ONCE(!list_empty(&node
->private_list
));
536 radix_tree_node_free(node
);
543 static bool delete_node(struct radix_tree_root
*root
,
544 struct radix_tree_node
*node
)
546 bool deleted
= false;
549 struct radix_tree_node
*parent
;
552 if (node_to_entry(node
) ==
553 rcu_dereference_raw(root
->xa_head
))
554 deleted
|= radix_tree_shrink(root
);
558 parent
= node
->parent
;
560 parent
->slots
[node
->offset
] = NULL
;
564 * Shouldn't the tags already have all been cleared
568 root_tag_clear_all(root
);
569 root
->xa_head
= NULL
;
572 WARN_ON_ONCE(!list_empty(&node
->private_list
));
573 radix_tree_node_free(node
);
583 * __radix_tree_create - create a slot in a radix tree
584 * @root: radix tree root
586 * @nodep: returns node
587 * @slotp: returns slot
589 * Create, if necessary, and return the node and slot for an item
590 * at position @index in the radix tree @root.
592 * Until there is more than one item in the tree, no nodes are
593 * allocated and @root->xa_head is used as a direct slot instead of
594 * pointing to a node, in which case *@nodep will be NULL.
596 * Returns -ENOMEM, or 0 for success.
598 static int __radix_tree_create(struct radix_tree_root
*root
,
599 unsigned long index
, struct radix_tree_node
**nodep
,
602 struct radix_tree_node
*node
= NULL
, *child
;
603 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
604 unsigned long maxindex
;
605 unsigned int shift
, offset
= 0;
606 unsigned long max
= index
;
607 gfp_t gfp
= root_gfp_mask(root
);
609 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
611 /* Make sure the tree is high enough. */
612 if (max
> maxindex
) {
613 int error
= radix_tree_extend(root
, gfp
, max
, shift
);
617 child
= rcu_dereference_raw(root
->xa_head
);
621 shift
-= RADIX_TREE_MAP_SHIFT
;
623 /* Have to add a child node. */
624 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
628 rcu_assign_pointer(*slot
, node_to_entry(child
));
631 } else if (!radix_tree_is_internal_node(child
))
634 /* Go a level down */
635 node
= entry_to_node(child
);
636 offset
= radix_tree_descend(node
, &child
, index
);
637 slot
= &node
->slots
[offset
];
648 * Free any nodes below this node. The tree is presumed to not need
649 * shrinking, and any user data in the tree is presumed to not need a
650 * destructor called on it. If we need to add a destructor, we can
651 * add that functionality later. Note that we may not clear tags or
652 * slots from the tree as an RCU walker may still have a pointer into
653 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
654 * but we'll still have to clear those in rcu_free.
656 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
659 struct radix_tree_node
*child
= entry_to_node(node
);
662 void *entry
= rcu_dereference_raw(child
->slots
[offset
]);
663 if (xa_is_node(entry
) && child
->shift
) {
664 child
= entry_to_node(entry
);
669 while (offset
== RADIX_TREE_MAP_SIZE
) {
670 struct radix_tree_node
*old
= child
;
671 offset
= child
->offset
+ 1;
672 child
= child
->parent
;
673 WARN_ON_ONCE(!list_empty(&old
->private_list
));
674 radix_tree_node_free(old
);
675 if (old
== entry_to_node(node
))
681 static inline int insert_entries(struct radix_tree_node
*node
,
682 void __rcu
**slot
, void *item
)
686 rcu_assign_pointer(*slot
, item
);
689 if (xa_is_value(item
))
696 * radix_tree_insert - insert into a radix tree
697 * @root: radix tree root
699 * @item: item to insert
701 * Insert an item into the radix tree at position @index.
703 int radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
706 struct radix_tree_node
*node
;
710 BUG_ON(radix_tree_is_internal_node(item
));
712 error
= __radix_tree_create(root
, index
, &node
, &slot
);
716 error
= insert_entries(node
, slot
, item
);
721 unsigned offset
= get_slot_offset(node
, slot
);
722 BUG_ON(tag_get(node
, 0, offset
));
723 BUG_ON(tag_get(node
, 1, offset
));
724 BUG_ON(tag_get(node
, 2, offset
));
726 BUG_ON(root_tags_get(root
));
731 EXPORT_SYMBOL(radix_tree_insert
);
734 * __radix_tree_lookup - lookup an item in a radix tree
735 * @root: radix tree root
737 * @nodep: returns node
738 * @slotp: returns slot
740 * Lookup and return the item at position @index in the radix
743 * Until there is more than one item in the tree, no nodes are
744 * allocated and @root->xa_head is used as a direct slot instead of
745 * pointing to a node, in which case *@nodep will be NULL.
747 void *__radix_tree_lookup(const struct radix_tree_root
*root
,
748 unsigned long index
, struct radix_tree_node
**nodep
,
751 struct radix_tree_node
*node
, *parent
;
752 unsigned long maxindex
;
757 slot
= (void __rcu
**)&root
->xa_head
;
758 radix_tree_load_root(root
, &node
, &maxindex
);
759 if (index
> maxindex
)
762 while (radix_tree_is_internal_node(node
)) {
765 parent
= entry_to_node(node
);
766 offset
= radix_tree_descend(parent
, &node
, index
);
767 slot
= parent
->slots
+ offset
;
768 if (node
== RADIX_TREE_RETRY
)
770 if (parent
->shift
== 0)
782 * radix_tree_lookup_slot - lookup a slot in a radix tree
783 * @root: radix tree root
786 * Returns: the slot corresponding to the position @index in the
787 * radix tree @root. This is useful for update-if-exists operations.
789 * This function can be called under rcu_read_lock iff the slot is not
790 * modified by radix_tree_replace_slot, otherwise it must be called
791 * exclusive from other writers. Any dereference of the slot must be done
792 * using radix_tree_deref_slot.
794 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*root
,
799 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
803 EXPORT_SYMBOL(radix_tree_lookup_slot
);
806 * radix_tree_lookup - perform lookup operation on a radix tree
807 * @root: radix tree root
810 * Lookup the item at the position @index in the radix tree @root.
812 * This function can be called under rcu_read_lock, however the caller
813 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
814 * them safely). No RCU barriers are required to access or modify the
815 * returned item, however.
817 void *radix_tree_lookup(const struct radix_tree_root
*root
, unsigned long index
)
819 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
821 EXPORT_SYMBOL(radix_tree_lookup
);
823 static void replace_slot(void __rcu
**slot
, void *item
,
824 struct radix_tree_node
*node
, int count
, int values
)
826 if (node
&& (count
|| values
)) {
827 node
->count
+= count
;
828 node
->nr_values
+= values
;
831 rcu_assign_pointer(*slot
, item
);
834 static bool node_tag_get(const struct radix_tree_root
*root
,
835 const struct radix_tree_node
*node
,
836 unsigned int tag
, unsigned int offset
)
839 return tag_get(node
, tag
, offset
);
840 return root_tag_get(root
, tag
);
844 * IDR users want to be able to store NULL in the tree, so if the slot isn't
845 * free, don't adjust the count, even if it's transitioning between NULL and
846 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
847 * have empty bits, but it only stores NULL in slots when they're being
850 static int calculate_count(struct radix_tree_root
*root
,
851 struct radix_tree_node
*node
, void __rcu
**slot
,
852 void *item
, void *old
)
855 unsigned offset
= get_slot_offset(node
, slot
);
856 bool free
= node_tag_get(root
, node
, IDR_FREE
, offset
);
862 return !!item
- !!old
;
866 * __radix_tree_replace - replace item in a slot
867 * @root: radix tree root
868 * @node: pointer to tree node
869 * @slot: pointer to slot in @node
870 * @item: new item to store in the slot.
872 * For use with __radix_tree_lookup(). Caller must hold tree write locked
873 * across slot lookup and replacement.
875 void __radix_tree_replace(struct radix_tree_root
*root
,
876 struct radix_tree_node
*node
,
877 void __rcu
**slot
, void *item
)
879 void *old
= rcu_dereference_raw(*slot
);
880 int values
= !!xa_is_value(item
) - !!xa_is_value(old
);
881 int count
= calculate_count(root
, node
, slot
, item
, old
);
884 * This function supports replacing value entries and
885 * deleting entries, but that needs accounting against the
886 * node unless the slot is root->xa_head.
888 WARN_ON_ONCE(!node
&& (slot
!= (void __rcu
**)&root
->xa_head
) &&
890 replace_slot(slot
, item
, node
, count
, values
);
895 delete_node(root
, node
);
899 * radix_tree_replace_slot - replace item in a slot
900 * @root: radix tree root
901 * @slot: pointer to slot
902 * @item: new item to store in the slot.
904 * For use with radix_tree_lookup_slot() and
905 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
906 * across slot lookup and replacement.
908 * NOTE: This cannot be used to switch between non-entries (empty slots),
909 * regular entries, and value entries, as that requires accounting
910 * inside the radix tree node. When switching from one type of entry or
911 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
912 * radix_tree_iter_replace().
914 void radix_tree_replace_slot(struct radix_tree_root
*root
,
915 void __rcu
**slot
, void *item
)
917 __radix_tree_replace(root
, NULL
, slot
, item
);
919 EXPORT_SYMBOL(radix_tree_replace_slot
);
922 * radix_tree_iter_replace - replace item in a slot
923 * @root: radix tree root
924 * @iter: iterator state
925 * @slot: pointer to slot
926 * @item: new item to store in the slot.
928 * For use with radix_tree_for_each_slot().
929 * Caller must hold tree write locked.
931 void radix_tree_iter_replace(struct radix_tree_root
*root
,
932 const struct radix_tree_iter
*iter
,
933 void __rcu
**slot
, void *item
)
935 __radix_tree_replace(root
, iter
->node
, slot
, item
);
938 static void node_tag_set(struct radix_tree_root
*root
,
939 struct radix_tree_node
*node
,
940 unsigned int tag
, unsigned int offset
)
943 if (tag_get(node
, tag
, offset
))
945 tag_set(node
, tag
, offset
);
946 offset
= node
->offset
;
950 if (!root_tag_get(root
, tag
))
951 root_tag_set(root
, tag
);
955 * radix_tree_tag_set - set a tag on a radix tree node
956 * @root: radix tree root
960 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
961 * corresponding to @index in the radix tree. From
962 * the root all the way down to the leaf node.
964 * Returns the address of the tagged item. Setting a tag on a not-present
967 void *radix_tree_tag_set(struct radix_tree_root
*root
,
968 unsigned long index
, unsigned int tag
)
970 struct radix_tree_node
*node
, *parent
;
971 unsigned long maxindex
;
973 radix_tree_load_root(root
, &node
, &maxindex
);
974 BUG_ON(index
> maxindex
);
976 while (radix_tree_is_internal_node(node
)) {
979 parent
= entry_to_node(node
);
980 offset
= radix_tree_descend(parent
, &node
, index
);
983 if (!tag_get(parent
, tag
, offset
))
984 tag_set(parent
, tag
, offset
);
987 /* set the root's tag bit */
988 if (!root_tag_get(root
, tag
))
989 root_tag_set(root
, tag
);
993 EXPORT_SYMBOL(radix_tree_tag_set
);
995 static void node_tag_clear(struct radix_tree_root
*root
,
996 struct radix_tree_node
*node
,
997 unsigned int tag
, unsigned int offset
)
1000 if (!tag_get(node
, tag
, offset
))
1002 tag_clear(node
, tag
, offset
);
1003 if (any_tag_set(node
, tag
))
1006 offset
= node
->offset
;
1007 node
= node
->parent
;
1010 /* clear the root's tag bit */
1011 if (root_tag_get(root
, tag
))
1012 root_tag_clear(root
, tag
);
1016 * radix_tree_tag_clear - clear a tag on a radix tree node
1017 * @root: radix tree root
1021 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1022 * corresponding to @index in the radix tree. If this causes
1023 * the leaf node to have no tags set then clear the tag in the
1024 * next-to-leaf node, etc.
1026 * Returns the address of the tagged item on success, else NULL. ie:
1027 * has the same return value and semantics as radix_tree_lookup().
1029 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1030 unsigned long index
, unsigned int tag
)
1032 struct radix_tree_node
*node
, *parent
;
1033 unsigned long maxindex
;
1036 radix_tree_load_root(root
, &node
, &maxindex
);
1037 if (index
> maxindex
)
1042 while (radix_tree_is_internal_node(node
)) {
1043 parent
= entry_to_node(node
);
1044 offset
= radix_tree_descend(parent
, &node
, index
);
1048 node_tag_clear(root
, parent
, tag
, offset
);
1052 EXPORT_SYMBOL(radix_tree_tag_clear
);
1055 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1056 * @root: radix tree root
1057 * @iter: iterator state
1058 * @tag: tag to clear
1060 void radix_tree_iter_tag_clear(struct radix_tree_root
*root
,
1061 const struct radix_tree_iter
*iter
, unsigned int tag
)
1063 node_tag_clear(root
, iter
->node
, tag
, iter_offset(iter
));
1067 * radix_tree_tag_get - get a tag on a radix tree node
1068 * @root: radix tree root
1070 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1074 * 0: tag not present or not set
1077 * Note that the return value of this function may not be relied on, even if
1078 * the RCU lock is held, unless tag modification and node deletion are excluded
1081 int radix_tree_tag_get(const struct radix_tree_root
*root
,
1082 unsigned long index
, unsigned int tag
)
1084 struct radix_tree_node
*node
, *parent
;
1085 unsigned long maxindex
;
1087 if (!root_tag_get(root
, tag
))
1090 radix_tree_load_root(root
, &node
, &maxindex
);
1091 if (index
> maxindex
)
1094 while (radix_tree_is_internal_node(node
)) {
1097 parent
= entry_to_node(node
);
1098 offset
= radix_tree_descend(parent
, &node
, index
);
1100 if (!tag_get(parent
, tag
, offset
))
1102 if (node
== RADIX_TREE_RETRY
)
1108 EXPORT_SYMBOL(radix_tree_tag_get
);
1110 /* Construct iter->tags bit-mask from node->tags[tag] array */
1111 static void set_iter_tags(struct radix_tree_iter
*iter
,
1112 struct radix_tree_node
*node
, unsigned offset
,
1115 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1116 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1123 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1125 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1126 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1127 /* Pick tags from next element */
1129 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1130 (BITS_PER_LONG
- tag_bit
);
1131 /* Clip chunk size, here only BITS_PER_LONG tags */
1132 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1136 void __rcu
**radix_tree_iter_resume(void __rcu
**slot
,
1137 struct radix_tree_iter
*iter
)
1139 iter
->index
= __radix_tree_iter_add(iter
, 1);
1140 iter
->next_index
= iter
->index
;
1144 EXPORT_SYMBOL(radix_tree_iter_resume
);
1147 * radix_tree_next_chunk - find next chunk of slots for iteration
1149 * @root: radix tree root
1150 * @iter: iterator state
1151 * @flags: RADIX_TREE_ITER_* flags and tag index
1152 * Returns: pointer to chunk first slot, or NULL if iteration is over
1154 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*root
,
1155 struct radix_tree_iter
*iter
, unsigned flags
)
1157 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1158 struct radix_tree_node
*node
, *child
;
1159 unsigned long index
, offset
, maxindex
;
1161 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1165 * Catch next_index overflow after ~0UL. iter->index never overflows
1166 * during iterating; it can be zero only at the beginning.
1167 * And we cannot overflow iter->next_index in a single step,
1168 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1170 * This condition also used by radix_tree_next_slot() to stop
1171 * contiguous iterating, and forbid switching to the next chunk.
1173 index
= iter
->next_index
;
1174 if (!index
&& iter
->index
)
1178 radix_tree_load_root(root
, &child
, &maxindex
);
1179 if (index
> maxindex
)
1184 if (!radix_tree_is_internal_node(child
)) {
1185 /* Single-slot tree */
1186 iter
->index
= index
;
1187 iter
->next_index
= maxindex
+ 1;
1190 return (void __rcu
**)&root
->xa_head
;
1194 node
= entry_to_node(child
);
1195 offset
= radix_tree_descend(node
, &child
, index
);
1197 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1198 !tag_get(node
, tag
, offset
) : !child
) {
1200 if (flags
& RADIX_TREE_ITER_CONTIG
)
1203 if (flags
& RADIX_TREE_ITER_TAGGED
)
1204 offset
= radix_tree_find_next_bit(node
, tag
,
1207 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1208 void *slot
= rcu_dereference_raw(
1209 node
->slots
[offset
]);
1213 index
&= ~node_maxindex(node
);
1214 index
+= offset
<< node
->shift
;
1215 /* Overflow after ~0UL */
1218 if (offset
== RADIX_TREE_MAP_SIZE
)
1220 child
= rcu_dereference_raw(node
->slots
[offset
]);
1225 if (child
== RADIX_TREE_RETRY
)
1227 } while (node
->shift
&& radix_tree_is_internal_node(child
));
1229 /* Update the iterator state */
1230 iter
->index
= (index
&~ node_maxindex(node
)) | offset
;
1231 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1234 if (flags
& RADIX_TREE_ITER_TAGGED
)
1235 set_iter_tags(iter
, node
, offset
, tag
);
1237 return node
->slots
+ offset
;
1239 EXPORT_SYMBOL(radix_tree_next_chunk
);
1242 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1243 * @root: radix tree root
1244 * @results: where the results of the lookup are placed
1245 * @first_index: start the lookup from this key
1246 * @max_items: place up to this many items at *results
1248 * Performs an index-ascending scan of the tree for present items. Places
1249 * them at *@results and returns the number of items which were placed at
1252 * The implementation is naive.
1254 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1255 * rcu_read_lock. In this case, rather than the returned results being
1256 * an atomic snapshot of the tree at a single point in time, the
1257 * semantics of an RCU protected gang lookup are as though multiple
1258 * radix_tree_lookups have been issued in individual locks, and results
1259 * stored in 'results'.
1262 radix_tree_gang_lookup(const struct radix_tree_root
*root
, void **results
,
1263 unsigned long first_index
, unsigned int max_items
)
1265 struct radix_tree_iter iter
;
1267 unsigned int ret
= 0;
1269 if (unlikely(!max_items
))
1272 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1273 results
[ret
] = rcu_dereference_raw(*slot
);
1276 if (radix_tree_is_internal_node(results
[ret
])) {
1277 slot
= radix_tree_iter_retry(&iter
);
1280 if (++ret
== max_items
)
1286 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1289 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1291 * @root: radix tree root
1292 * @results: where the results of the lookup are placed
1293 * @first_index: start the lookup from this key
1294 * @max_items: place up to this many items at *results
1295 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1297 * Performs an index-ascending scan of the tree for present items which
1298 * have the tag indexed by @tag set. Places the items at *@results and
1299 * returns the number of items which were placed at *@results.
1302 radix_tree_gang_lookup_tag(const struct radix_tree_root
*root
, void **results
,
1303 unsigned long first_index
, unsigned int max_items
,
1306 struct radix_tree_iter iter
;
1308 unsigned int ret
= 0;
1310 if (unlikely(!max_items
))
1313 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1314 results
[ret
] = rcu_dereference_raw(*slot
);
1317 if (radix_tree_is_internal_node(results
[ret
])) {
1318 slot
= radix_tree_iter_retry(&iter
);
1321 if (++ret
== max_items
)
1327 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1330 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1331 * radix tree based on a tag
1332 * @root: radix tree root
1333 * @results: where the results of the lookup are placed
1334 * @first_index: start the lookup from this key
1335 * @max_items: place up to this many items at *results
1336 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1338 * Performs an index-ascending scan of the tree for present items which
1339 * have the tag indexed by @tag set. Places the slots at *@results and
1340 * returns the number of slots which were placed at *@results.
1343 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*root
,
1344 void __rcu
***results
, unsigned long first_index
,
1345 unsigned int max_items
, unsigned int tag
)
1347 struct radix_tree_iter iter
;
1349 unsigned int ret
= 0;
1351 if (unlikely(!max_items
))
1354 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1355 results
[ret
] = slot
;
1356 if (++ret
== max_items
)
1362 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1364 static bool __radix_tree_delete(struct radix_tree_root
*root
,
1365 struct radix_tree_node
*node
, void __rcu
**slot
)
1367 void *old
= rcu_dereference_raw(*slot
);
1368 int values
= xa_is_value(old
) ? -1 : 0;
1369 unsigned offset
= get_slot_offset(node
, slot
);
1373 node_tag_set(root
, node
, IDR_FREE
, offset
);
1375 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1376 node_tag_clear(root
, node
, tag
, offset
);
1378 replace_slot(slot
, NULL
, node
, -1, values
);
1379 return node
&& delete_node(root
, node
);
1383 * radix_tree_iter_delete - delete the entry at this iterator position
1384 * @root: radix tree root
1385 * @iter: iterator state
1386 * @slot: pointer to slot
1388 * Delete the entry at the position currently pointed to by the iterator.
1389 * This may result in the current node being freed; if it is, the iterator
1390 * is advanced so that it will not reference the freed memory. This
1391 * function may be called without any locking if there are no other threads
1392 * which can access this tree.
1394 void radix_tree_iter_delete(struct radix_tree_root
*root
,
1395 struct radix_tree_iter
*iter
, void __rcu
**slot
)
1397 if (__radix_tree_delete(root
, iter
->node
, slot
))
1398 iter
->index
= iter
->next_index
;
1400 EXPORT_SYMBOL(radix_tree_iter_delete
);
1403 * radix_tree_delete_item - delete an item from a radix tree
1404 * @root: radix tree root
1406 * @item: expected item
1408 * Remove @item at @index from the radix tree rooted at @root.
1410 * Return: the deleted entry, or %NULL if it was not present
1411 * or the entry at the given @index was not @item.
1413 void *radix_tree_delete_item(struct radix_tree_root
*root
,
1414 unsigned long index
, void *item
)
1416 struct radix_tree_node
*node
= NULL
;
1417 void __rcu
**slot
= NULL
;
1420 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
1423 if (!entry
&& (!is_idr(root
) || node_tag_get(root
, node
, IDR_FREE
,
1424 get_slot_offset(node
, slot
))))
1427 if (item
&& entry
!= item
)
1430 __radix_tree_delete(root
, node
, slot
);
1434 EXPORT_SYMBOL(radix_tree_delete_item
);
1437 * radix_tree_delete - delete an entry from a radix tree
1438 * @root: radix tree root
1441 * Remove the entry at @index from the radix tree rooted at @root.
1443 * Return: The deleted entry, or %NULL if it was not present.
1445 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1447 return radix_tree_delete_item(root
, index
, NULL
);
1449 EXPORT_SYMBOL(radix_tree_delete
);
1452 * radix_tree_tagged - test whether any items in the tree are tagged
1453 * @root: radix tree root
1456 int radix_tree_tagged(const struct radix_tree_root
*root
, unsigned int tag
)
1458 return root_tag_get(root
, tag
);
1460 EXPORT_SYMBOL(radix_tree_tagged
);
1463 * idr_preload - preload for idr_alloc()
1464 * @gfp_mask: allocation mask to use for preloading
1466 * Preallocate memory to use for the next call to idr_alloc(). This function
1467 * returns with preemption disabled. It will be enabled by idr_preload_end().
1469 void idr_preload(gfp_t gfp_mask
)
1471 if (__radix_tree_preload(gfp_mask
, IDR_PRELOAD_SIZE
))
1472 local_lock(&radix_tree_preloads
.lock
);
1474 EXPORT_SYMBOL(idr_preload
);
1476 void __rcu
**idr_get_free(struct radix_tree_root
*root
,
1477 struct radix_tree_iter
*iter
, gfp_t gfp
,
1480 struct radix_tree_node
*node
= NULL
, *child
;
1481 void __rcu
**slot
= (void __rcu
**)&root
->xa_head
;
1482 unsigned long maxindex
, start
= iter
->next_index
;
1483 unsigned int shift
, offset
= 0;
1486 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
1487 if (!radix_tree_tagged(root
, IDR_FREE
))
1488 start
= max(start
, maxindex
+ 1);
1490 return ERR_PTR(-ENOSPC
);
1492 if (start
> maxindex
) {
1493 int error
= radix_tree_extend(root
, gfp
, start
, shift
);
1495 return ERR_PTR(error
);
1497 child
= rcu_dereference_raw(root
->xa_head
);
1499 if (start
== 0 && shift
== 0)
1500 shift
= RADIX_TREE_MAP_SHIFT
;
1503 shift
-= RADIX_TREE_MAP_SHIFT
;
1504 if (child
== NULL
) {
1505 /* Have to add a child node. */
1506 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
1509 return ERR_PTR(-ENOMEM
);
1510 all_tag_set(child
, IDR_FREE
);
1511 rcu_assign_pointer(*slot
, node_to_entry(child
));
1514 } else if (!radix_tree_is_internal_node(child
))
1517 node
= entry_to_node(child
);
1518 offset
= radix_tree_descend(node
, &child
, start
);
1519 if (!tag_get(node
, IDR_FREE
, offset
)) {
1520 offset
= radix_tree_find_next_bit(node
, IDR_FREE
,
1522 start
= next_index(start
, node
, offset
);
1523 if (start
> max
|| start
== 0)
1524 return ERR_PTR(-ENOSPC
);
1525 while (offset
== RADIX_TREE_MAP_SIZE
) {
1526 offset
= node
->offset
+ 1;
1527 node
= node
->parent
;
1530 shift
= node
->shift
;
1532 child
= rcu_dereference_raw(node
->slots
[offset
]);
1534 slot
= &node
->slots
[offset
];
1537 iter
->index
= start
;
1539 iter
->next_index
= 1 + min(max
, (start
| node_maxindex(node
)));
1541 iter
->next_index
= 1;
1543 set_iter_tags(iter
, node
, offset
, IDR_FREE
);
1549 * idr_destroy - release all internal memory from an IDR
1552 * After this function is called, the IDR is empty, and may be reused or
1553 * the data structure containing it may be freed.
1555 * A typical clean-up sequence for objects stored in an idr tree will use
1556 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1557 * free the memory used to keep track of those objects.
1559 void idr_destroy(struct idr
*idr
)
1561 struct radix_tree_node
*node
= rcu_dereference_raw(idr
->idr_rt
.xa_head
);
1562 if (radix_tree_is_internal_node(node
))
1563 radix_tree_free_nodes(node
);
1564 idr
->idr_rt
.xa_head
= NULL
;
1565 root_tag_set(&idr
->idr_rt
, IDR_FREE
);
1567 EXPORT_SYMBOL(idr_destroy
);
1570 radix_tree_node_ctor(void *arg
)
1572 struct radix_tree_node
*node
= arg
;
1574 memset(node
, 0, sizeof(*node
));
1575 INIT_LIST_HEAD(&node
->private_list
);
1578 static int radix_tree_cpu_dead(unsigned int cpu
)
1580 struct radix_tree_preload
*rtp
;
1581 struct radix_tree_node
*node
;
1583 /* Free per-cpu pool of preloaded nodes */
1584 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1587 rtp
->nodes
= node
->parent
;
1588 kmem_cache_free(radix_tree_node_cachep
, node
);
1594 void __init
radix_tree_init(void)
1598 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS
+ __GFP_BITS_SHIFT
> 32);
1599 BUILD_BUG_ON(ROOT_IS_IDR
& ~GFP_ZONEMASK
);
1600 BUILD_BUG_ON(XA_CHUNK_SIZE
> 255);
1601 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1602 sizeof(struct radix_tree_node
), 0,
1603 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1604 radix_tree_node_ctor
);
1605 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
1606 NULL
, radix_tree_cpu_dead
);