drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / mips / kernel / mips-cm.c
blob3eb2cfb893e19c7260ff0cdc9113c7b3d6e92015
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
7 #include <linux/errno.h>
8 #include <linux/percpu.h>
9 #include <linux/spinlock.h>
11 #include <asm/mips-cps.h>
12 #include <asm/mipsregs.h>
14 void __iomem *mips_gcr_base;
15 void __iomem *mips_cm_l2sync_base;
16 int mips_cm_is64;
18 static char *cm2_tr[8] = {
19 "mem", "gcr", "gic", "mmio",
20 "0x04", "cpc", "0x06", "0x07"
23 /* CM3 Tag ECC transaction type */
24 static char *cm3_tr[16] = {
25 [0x0] = "ReqNoData",
26 [0x1] = "0x1",
27 [0x2] = "ReqWData",
28 [0x3] = "0x3",
29 [0x4] = "IReqNoResp",
30 [0x5] = "IReqWResp",
31 [0x6] = "IReqNoRespDat",
32 [0x7] = "IReqWRespDat",
33 [0x8] = "RespNoData",
34 [0x9] = "RespDataFol",
35 [0xa] = "RespWData",
36 [0xb] = "RespDataOnly",
37 [0xc] = "IRespNoData",
38 [0xd] = "IRespDataFol",
39 [0xe] = "IRespWData",
40 [0xf] = "IRespDataOnly"
43 static char *cm2_cmd[32] = {
44 [0x00] = "0x00",
45 [0x01] = "Legacy Write",
46 [0x02] = "Legacy Read",
47 [0x03] = "0x03",
48 [0x04] = "0x04",
49 [0x05] = "0x05",
50 [0x06] = "0x06",
51 [0x07] = "0x07",
52 [0x08] = "Coherent Read Own",
53 [0x09] = "Coherent Read Share",
54 [0x0a] = "Coherent Read Discard",
55 [0x0b] = "Coherent Ready Share Always",
56 [0x0c] = "Coherent Upgrade",
57 [0x0d] = "Coherent Writeback",
58 [0x0e] = "0x0e",
59 [0x0f] = "0x0f",
60 [0x10] = "Coherent Copyback",
61 [0x11] = "Coherent Copyback Invalidate",
62 [0x12] = "Coherent Invalidate",
63 [0x13] = "Coherent Write Invalidate",
64 [0x14] = "Coherent Completion Sync",
65 [0x15] = "0x15",
66 [0x16] = "0x16",
67 [0x17] = "0x17",
68 [0x18] = "0x18",
69 [0x19] = "0x19",
70 [0x1a] = "0x1a",
71 [0x1b] = "0x1b",
72 [0x1c] = "0x1c",
73 [0x1d] = "0x1d",
74 [0x1e] = "0x1e",
75 [0x1f] = "0x1f"
78 /* CM3 Tag ECC command type */
79 static char *cm3_cmd[16] = {
80 [0x0] = "Legacy Read",
81 [0x1] = "Legacy Write",
82 [0x2] = "Coherent Read Own",
83 [0x3] = "Coherent Read Share",
84 [0x4] = "Coherent Read Discard",
85 [0x5] = "Coherent Evicted",
86 [0x6] = "Coherent Upgrade",
87 [0x7] = "Coherent Upgrade for Store Conditional",
88 [0x8] = "Coherent Writeback",
89 [0x9] = "Coherent Write Invalidate",
90 [0xa] = "0xa",
91 [0xb] = "0xb",
92 [0xc] = "0xc",
93 [0xd] = "0xd",
94 [0xe] = "0xe",
95 [0xf] = "0xf"
98 /* CM3 Tag ECC command group */
99 static char *cm3_cmd_group[8] = {
100 [0x0] = "Normal",
101 [0x1] = "Registers",
102 [0x2] = "TLB",
103 [0x3] = "0x3",
104 [0x4] = "L1I",
105 [0x5] = "L1D",
106 [0x6] = "L3",
107 [0x7] = "L2"
110 static char *cm2_core[8] = {
111 "Invalid/OK", "Invalid/Data",
112 "Shared/OK", "Shared/Data",
113 "Modified/OK", "Modified/Data",
114 "Exclusive/OK", "Exclusive/Data"
117 static char *cm2_l2_type[4] = {
118 [0x0] = "None",
119 [0x1] = "Tag RAM single/double ECC error",
120 [0x2] = "Data RAM single/double ECC error",
121 [0x3] = "WS RAM uncorrectable dirty parity"
124 static char *cm2_l2_instr[32] = {
125 [0x00] = "L2_NOP",
126 [0x01] = "L2_ERR_CORR",
127 [0x02] = "L2_TAG_INV",
128 [0x03] = "L2_WS_CLEAN",
129 [0x04] = "L2_RD_MDYFY_WR",
130 [0x05] = "L2_WS_MRU",
131 [0x06] = "L2_EVICT_LN2",
132 [0x07] = "0x07",
133 [0x08] = "L2_EVICT",
134 [0x09] = "L2_REFL",
135 [0x0a] = "L2_RD",
136 [0x0b] = "L2_WR",
137 [0x0c] = "L2_EVICT_MRU",
138 [0x0d] = "L2_SYNC",
139 [0x0e] = "L2_REFL_ERR",
140 [0x0f] = "0x0f",
141 [0x10] = "L2_INDX_WB_INV",
142 [0x11] = "L2_INDX_LD_TAG",
143 [0x12] = "L2_INDX_ST_TAG",
144 [0x13] = "L2_INDX_ST_DATA",
145 [0x14] = "L2_INDX_ST_ECC",
146 [0x15] = "0x15",
147 [0x16] = "0x16",
148 [0x17] = "0x17",
149 [0x18] = "L2_FTCH_AND_LCK",
150 [0x19] = "L2_HIT_INV",
151 [0x1a] = "L2_HIT_WB_INV",
152 [0x1b] = "L2_HIT_WB",
153 [0x1c] = "0x1c",
154 [0x1d] = "0x1d",
155 [0x1e] = "0x1e",
156 [0x1f] = "0x1f"
159 static char *cm2_causes[32] = {
160 "None", "GC_WR_ERR", "GC_RD_ERR", "COH_WR_ERR",
161 "COH_RD_ERR", "MMIO_WR_ERR", "MMIO_RD_ERR", "0x07",
162 "0x08", "0x09", "0x0a", "0x0b",
163 "0x0c", "0x0d", "0x0e", "0x0f",
164 "0x10", "INTVN_WR_ERR", "INTVN_RD_ERR", "0x13",
165 "0x14", "0x15", "0x16", "0x17",
166 "L2_RD_UNCORR", "L2_WR_UNCORR", "L2_CORR", "0x1b",
167 "0x1c", "0x1d", "0x1e", "0x1f"
170 static char *cm3_causes[32] = {
171 "0x0", "MP_CORRECTABLE_ECC_ERR", "MP_REQUEST_DECODE_ERR",
172 "MP_UNCORRECTABLE_ECC_ERR", "MP_PARITY_ERR", "MP_COHERENCE_ERR",
173 "CMBIU_REQUEST_DECODE_ERR", "CMBIU_PARITY_ERR", "CMBIU_AXI_RESP_ERR",
174 "0x9", "RBI_BUS_ERR", "0xb", "0xc", "0xd", "0xe", "0xf", "0x10",
175 "0x11", "0x12", "0x13", "0x14", "0x15", "0x16", "0x17", "0x18",
176 "0x19", "0x1a", "0x1b", "0x1c", "0x1d", "0x1e", "0x1f"
179 static DEFINE_PER_CPU_ALIGNED(spinlock_t, cm_core_lock);
180 static DEFINE_PER_CPU_ALIGNED(unsigned long, cm_core_lock_flags);
182 phys_addr_t __weak mips_cm_phys_base(void)
184 unsigned long cmgcr;
186 /* Check the CMGCRBase register is implemented */
187 if (!(read_c0_config() & MIPS_CONF_M))
188 return 0;
190 if (!(read_c0_config2() & MIPS_CONF_M))
191 return 0;
193 if (!(read_c0_config3() & MIPS_CONF3_CMGCR))
194 return 0;
196 /* Read the address from CMGCRBase */
197 cmgcr = read_c0_cmgcrbase();
198 return (cmgcr & MIPS_CMGCRF_BASE) << (36 - 32);
201 phys_addr_t __weak mips_cm_l2sync_phys_base(void)
203 u32 base_reg;
206 * If the L2-only sync region is already enabled then leave it at it's
207 * current location.
209 base_reg = read_gcr_l2_only_sync_base();
210 if (base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN)
211 return base_reg & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE;
213 /* Default to following the CM */
214 return mips_cm_phys_base() + MIPS_CM_GCR_SIZE;
217 static void mips_cm_probe_l2sync(void)
219 unsigned major_rev;
220 phys_addr_t addr;
222 /* L2-only sync was introduced with CM major revision 6 */
223 major_rev = FIELD_GET(CM_GCR_REV_MAJOR, read_gcr_rev());
224 if (major_rev < 6)
225 return;
227 /* Find a location for the L2 sync region */
228 addr = mips_cm_l2sync_phys_base();
229 BUG_ON((addr & CM_GCR_L2_ONLY_SYNC_BASE_SYNCBASE) != addr);
230 if (!addr)
231 return;
233 /* Set the region base address & enable it */
234 write_gcr_l2_only_sync_base(addr | CM_GCR_L2_ONLY_SYNC_BASE_SYNCEN);
236 /* Map the region */
237 mips_cm_l2sync_base = ioremap(addr, MIPS_CM_L2SYNC_SIZE);
240 int mips_cm_probe(void)
242 phys_addr_t addr;
243 u32 base_reg;
244 unsigned cpu;
247 * No need to probe again if we have already been
248 * here before.
250 if (mips_gcr_base)
251 return 0;
253 addr = mips_cm_phys_base();
254 BUG_ON((addr & CM_GCR_BASE_GCRBASE) != addr);
255 if (!addr)
256 return -ENODEV;
258 mips_gcr_base = ioremap(addr, MIPS_CM_GCR_SIZE);
259 if (!mips_gcr_base)
260 return -ENXIO;
262 /* sanity check that we're looking at a CM */
263 base_reg = read_gcr_base();
264 if ((base_reg & CM_GCR_BASE_GCRBASE) != addr) {
265 pr_err("GCRs appear to have been moved (expected them at 0x%08lx)!\n",
266 (unsigned long)addr);
267 iounmap(mips_gcr_base);
268 mips_gcr_base = NULL;
269 return -ENODEV;
272 /* set default target to memory */
273 change_gcr_base(CM_GCR_BASE_CMDEFTGT, CM_GCR_BASE_CMDEFTGT_MEM);
275 /* disable CM regions */
276 write_gcr_reg0_base(CM_GCR_REGn_BASE_BASEADDR);
277 write_gcr_reg0_mask(CM_GCR_REGn_MASK_ADDRMASK);
278 write_gcr_reg1_base(CM_GCR_REGn_BASE_BASEADDR);
279 write_gcr_reg1_mask(CM_GCR_REGn_MASK_ADDRMASK);
280 write_gcr_reg2_base(CM_GCR_REGn_BASE_BASEADDR);
281 write_gcr_reg2_mask(CM_GCR_REGn_MASK_ADDRMASK);
282 write_gcr_reg3_base(CM_GCR_REGn_BASE_BASEADDR);
283 write_gcr_reg3_mask(CM_GCR_REGn_MASK_ADDRMASK);
285 /* probe for an L2-only sync region */
286 mips_cm_probe_l2sync();
288 /* determine register width for this CM */
289 mips_cm_is64 = IS_ENABLED(CONFIG_64BIT) && (mips_cm_revision() >= CM_REV_CM3);
291 for_each_possible_cpu(cpu)
292 spin_lock_init(&per_cpu(cm_core_lock, cpu));
294 return 0;
297 void mips_cm_lock_other(unsigned int cluster, unsigned int core,
298 unsigned int vp, unsigned int block)
300 unsigned int curr_core, cm_rev;
301 u32 val;
303 cm_rev = mips_cm_revision();
304 preempt_disable();
306 if (cm_rev >= CM_REV_CM3) {
307 val = FIELD_PREP(CM3_GCR_Cx_OTHER_CORE, core) |
308 FIELD_PREP(CM3_GCR_Cx_OTHER_VP, vp);
310 if (cm_rev >= CM_REV_CM3_5) {
311 val |= CM_GCR_Cx_OTHER_CLUSTER_EN;
312 val |= FIELD_PREP(CM_GCR_Cx_OTHER_CLUSTER, cluster);
313 val |= FIELD_PREP(CM_GCR_Cx_OTHER_BLOCK, block);
314 } else {
315 WARN_ON(cluster != 0);
316 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
320 * We need to disable interrupts in SMP systems in order to
321 * ensure that we don't interrupt the caller with code which
322 * may modify the redirect register. We do so here in a
323 * slightly obscure way by using a spin lock, since this has
324 * the neat property of also catching any nested uses of
325 * mips_cm_lock_other() leading to a deadlock or a nice warning
326 * with lockdep enabled.
328 spin_lock_irqsave(this_cpu_ptr(&cm_core_lock),
329 *this_cpu_ptr(&cm_core_lock_flags));
330 } else {
331 WARN_ON(cluster != 0);
332 WARN_ON(block != CM_GCR_Cx_OTHER_BLOCK_LOCAL);
335 * We only have a GCR_CL_OTHER per core in systems with
336 * CM 2.5 & older, so have to ensure other VP(E)s don't
337 * race with us.
339 curr_core = cpu_core(&current_cpu_data);
340 spin_lock_irqsave(&per_cpu(cm_core_lock, curr_core),
341 per_cpu(cm_core_lock_flags, curr_core));
343 val = FIELD_PREP(CM_GCR_Cx_OTHER_CORENUM, core);
346 write_gcr_cl_other(val);
349 * Ensure the core-other region reflects the appropriate core &
350 * VP before any accesses to it occur.
352 mb();
355 void mips_cm_unlock_other(void)
357 unsigned int curr_core;
359 if (mips_cm_revision() < CM_REV_CM3) {
360 curr_core = cpu_core(&current_cpu_data);
361 spin_unlock_irqrestore(&per_cpu(cm_core_lock, curr_core),
362 per_cpu(cm_core_lock_flags, curr_core));
363 } else {
364 spin_unlock_irqrestore(this_cpu_ptr(&cm_core_lock),
365 *this_cpu_ptr(&cm_core_lock_flags));
368 preempt_enable();
371 void mips_cm_error_report(void)
373 u64 cm_error, cm_addr, cm_other;
374 unsigned long revision;
375 int ocause, cause;
376 char buf[256];
378 if (!mips_cm_present())
379 return;
381 revision = mips_cm_revision();
382 cm_error = read_gcr_error_cause();
383 cm_addr = read_gcr_error_addr();
384 cm_other = read_gcr_error_mult();
386 if (revision < CM_REV_CM3) { /* CM2 */
387 cause = FIELD_GET(CM_GCR_ERROR_CAUSE_ERRTYPE, cm_error);
388 ocause = FIELD_GET(CM_GCR_ERROR_MULT_ERR2ND, cm_other);
390 if (!cause)
391 return;
393 if (cause < 16) {
394 unsigned long cca_bits = (cm_error >> 15) & 7;
395 unsigned long tr_bits = (cm_error >> 12) & 7;
396 unsigned long cmd_bits = (cm_error >> 7) & 0x1f;
397 unsigned long stag_bits = (cm_error >> 3) & 15;
398 unsigned long sport_bits = (cm_error >> 0) & 7;
400 snprintf(buf, sizeof(buf),
401 "CCA=%lu TR=%s MCmd=%s STag=%lu "
402 "SPort=%lu\n", cca_bits, cm2_tr[tr_bits],
403 cm2_cmd[cmd_bits], stag_bits, sport_bits);
404 } else if (cause < 24) {
405 /* glob state & sresp together */
406 unsigned long c3_bits = (cm_error >> 18) & 7;
407 unsigned long c2_bits = (cm_error >> 15) & 7;
408 unsigned long c1_bits = (cm_error >> 12) & 7;
409 unsigned long c0_bits = (cm_error >> 9) & 7;
410 unsigned long sc_bit = (cm_error >> 8) & 1;
411 unsigned long cmd_bits = (cm_error >> 3) & 0x1f;
412 unsigned long sport_bits = (cm_error >> 0) & 7;
414 snprintf(buf, sizeof(buf),
415 "C3=%s C2=%s C1=%s C0=%s SC=%s "
416 "MCmd=%s SPort=%lu\n",
417 cm2_core[c3_bits], cm2_core[c2_bits],
418 cm2_core[c1_bits], cm2_core[c0_bits],
419 sc_bit ? "True" : "False",
420 cm2_cmd[cmd_bits], sport_bits);
421 } else {
422 unsigned long muc_bit = (cm_error >> 23) & 1;
423 unsigned long ins_bits = (cm_error >> 18) & 0x1f;
424 unsigned long arr_bits = (cm_error >> 16) & 3;
425 unsigned long dw_bits = (cm_error >> 12) & 15;
426 unsigned long way_bits = (cm_error >> 9) & 7;
427 unsigned long mway_bit = (cm_error >> 8) & 1;
428 unsigned long syn_bits = (cm_error >> 0) & 0xFF;
430 snprintf(buf, sizeof(buf),
431 "Type=%s%s Instr=%s DW=%lu Way=%lu "
432 "MWay=%s Syndrome=0x%02lx",
433 muc_bit ? "Multi-UC " : "",
434 cm2_l2_type[arr_bits],
435 cm2_l2_instr[ins_bits], dw_bits, way_bits,
436 mway_bit ? "True" : "False", syn_bits);
438 pr_err("CM_ERROR=%08llx %s <%s>\n", cm_error,
439 cm2_causes[cause], buf);
440 pr_err("CM_ADDR =%08llx\n", cm_addr);
441 pr_err("CM_OTHER=%08llx %s\n", cm_other, cm2_causes[ocause]);
442 } else { /* CM3 */
443 ulong core_id_bits, vp_id_bits, cmd_bits, cmd_group_bits;
444 ulong cm3_cca_bits, mcp_bits, cm3_tr_bits, sched_bit;
446 cause = FIELD_GET(CM3_GCR_ERROR_CAUSE_ERRTYPE, cm_error);
447 ocause = FIELD_GET(CM_GCR_ERROR_MULT_ERR2ND, cm_other);
449 if (!cause)
450 return;
452 /* Used by cause == {1,2,3} */
453 core_id_bits = (cm_error >> 22) & 0xf;
454 vp_id_bits = (cm_error >> 18) & 0xf;
455 cmd_bits = (cm_error >> 14) & 0xf;
456 cmd_group_bits = (cm_error >> 11) & 0xf;
457 cm3_cca_bits = (cm_error >> 8) & 7;
458 mcp_bits = (cm_error >> 5) & 0xf;
459 cm3_tr_bits = (cm_error >> 1) & 0xf;
460 sched_bit = cm_error & 0x1;
462 if (cause == 1 || cause == 3) { /* Tag ECC */
463 unsigned long tag_ecc = (cm_error >> 57) & 0x1;
464 unsigned long tag_way_bits = (cm_error >> 29) & 0xffff;
465 unsigned long dword_bits = (cm_error >> 49) & 0xff;
466 unsigned long data_way_bits = (cm_error >> 45) & 0xf;
467 unsigned long data_sets_bits = (cm_error >> 29) & 0xfff;
468 unsigned long bank_bit = (cm_error >> 28) & 0x1;
469 snprintf(buf, sizeof(buf),
470 "%s ECC Error: Way=%lu (DWORD=%lu, Sets=%lu)"
471 "Bank=%lu CoreID=%lu VPID=%lu Command=%s"
472 "Command Group=%s CCA=%lu MCP=%d"
473 "Transaction type=%s Scheduler=%lu\n",
474 tag_ecc ? "TAG" : "DATA",
475 tag_ecc ? (unsigned long)ffs(tag_way_bits) - 1 :
476 data_way_bits, bank_bit, dword_bits,
477 data_sets_bits,
478 core_id_bits, vp_id_bits,
479 cm3_cmd[cmd_bits],
480 cm3_cmd_group[cmd_group_bits],
481 cm3_cca_bits, 1 << mcp_bits,
482 cm3_tr[cm3_tr_bits], sched_bit);
483 } else if (cause == 2) {
484 unsigned long data_error_type = (cm_error >> 41) & 0xfff;
485 unsigned long data_decode_cmd = (cm_error >> 37) & 0xf;
486 unsigned long data_decode_group = (cm_error >> 34) & 0x7;
487 unsigned long data_decode_destination_id = (cm_error >> 28) & 0x3f;
489 snprintf(buf, sizeof(buf),
490 "Decode Request Error: Type=%lu, Command=%lu"
491 "Command Group=%lu Destination ID=%lu"
492 "CoreID=%lu VPID=%lu Command=%s"
493 "Command Group=%s CCA=%lu MCP=%d"
494 "Transaction type=%s Scheduler=%lu\n",
495 data_error_type, data_decode_cmd,
496 data_decode_group, data_decode_destination_id,
497 core_id_bits, vp_id_bits,
498 cm3_cmd[cmd_bits],
499 cm3_cmd_group[cmd_group_bits],
500 cm3_cca_bits, 1 << mcp_bits,
501 cm3_tr[cm3_tr_bits], sched_bit);
502 } else {
503 buf[0] = 0;
506 pr_err("CM_ERROR=%llx %s <%s>\n", cm_error,
507 cm3_causes[cause], buf);
508 pr_err("CM_ADDR =%llx\n", cm_addr);
509 pr_err("CM_OTHER=%llx %s\n", cm_other, cm3_causes[ocause]);
512 /* reprime cause register */
513 write_gcr_error_cause(cm_error);
516 unsigned int mips_cps_first_online_in_cluster(void)
518 unsigned int local_cl;
519 int i;
521 local_cl = cpu_cluster(&current_cpu_data);
524 * We rely upon knowledge that CPUs are numbered sequentially by
525 * cluster - ie. CPUs 0..X will be in cluster 0, CPUs X+1..Y in cluster
526 * 1, CPUs Y+1..Z in cluster 2 etc. This means that CPUs in the same
527 * cluster will immediately precede or follow one another.
529 * First we scan backwards, until we find an online CPU in the cluster
530 * or we move on to another cluster.
532 for (i = smp_processor_id() - 1; i >= 0; i--) {
533 if (cpu_cluster(&cpu_data[i]) != local_cl)
534 break;
535 if (!cpu_online(i))
536 continue;
537 return false;
540 /* Then do the same for higher numbered CPUs */
541 for (i = smp_processor_id() + 1; i < nr_cpu_ids; i++) {
542 if (cpu_cluster(&cpu_data[i]) != local_cl)
543 break;
544 if (!cpu_online(i))
545 continue;
546 return false;
549 /* We found no online CPUs in the local cluster */
550 return true;