1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Code to handle x86 style IRQs plus some generic interrupt stuff.
5 * Copyright (C) 1992 Linus Torvalds
6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8 * Copyright (C) 1999-2000 Grant Grundler
9 * Copyright (c) 2005 Matthew Wilcox
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/types.h>
18 #include <linux/sched/task_stack.h>
21 #include <asm/softirq_stack.h>
25 #undef PARISC_IRQ_CR16_COUNTS
27 #define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq))
29 /* Bits in EIEM correlate with cpu_irq_action[].
30 ** Numbered *Big Endian*! (ie bit 0 is MSB)
32 static volatile unsigned long cpu_eiem
= 0;
35 ** local ACK bitmap ... habitually set to 1, but reset to zero
36 ** between ->ack() and ->end() of the interrupt to prevent
37 ** re-interruption of a processing interrupt.
39 static DEFINE_PER_CPU(unsigned long, local_ack_eiem
) = ~0UL;
41 static void cpu_mask_irq(struct irq_data
*d
)
43 unsigned long eirr_bit
= EIEM_MASK(d
->irq
);
45 cpu_eiem
&= ~eirr_bit
;
46 /* Do nothing on the other CPUs. If they get this interrupt,
47 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
48 * handle it, and the set_eiem() at the bottom will ensure it
49 * then gets disabled */
52 static void __cpu_unmask_irq(unsigned int irq
)
54 unsigned long eirr_bit
= EIEM_MASK(irq
);
58 /* This is just a simple NOP IPI. But what it does is cause
59 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
60 * of the interrupt handler */
64 static void cpu_unmask_irq(struct irq_data
*d
)
66 __cpu_unmask_irq(d
->irq
);
69 void cpu_ack_irq(struct irq_data
*d
)
71 unsigned long mask
= EIEM_MASK(d
->irq
);
72 int cpu
= smp_processor_id();
74 /* Clear in EIEM so we can no longer process */
75 per_cpu(local_ack_eiem
, cpu
) &= ~mask
;
77 /* disable the interrupt */
78 set_eiem(cpu_eiem
& per_cpu(local_ack_eiem
, cpu
));
84 void cpu_eoi_irq(struct irq_data
*d
)
86 unsigned long mask
= EIEM_MASK(d
->irq
);
87 int cpu
= smp_processor_id();
89 /* set it in the eiems---it's no longer in process */
90 per_cpu(local_ack_eiem
, cpu
) |= mask
;
92 /* enable the interrupt */
93 set_eiem(cpu_eiem
& per_cpu(local_ack_eiem
, cpu
));
97 int cpu_check_affinity(struct irq_data
*d
, const struct cpumask
*dest
)
101 /* timer and ipi have to always be received on all CPUs */
102 if (irqd_is_per_cpu(d
))
105 cpu_dest
= cpumask_first_and(dest
, cpu_online_mask
);
106 if (cpu_dest
>= nr_cpu_ids
)
107 cpu_dest
= cpumask_first(cpu_online_mask
);
113 static struct irq_chip cpu_interrupt_type
= {
115 .irq_mask
= cpu_mask_irq
,
116 .irq_unmask
= cpu_unmask_irq
,
117 .irq_ack
= cpu_ack_irq
,
118 .irq_eoi
= cpu_eoi_irq
,
119 /* XXX: Needs to be written. We managed without it so far, but
120 * we really ought to write it.
122 .irq_retrigger
= NULL
,
125 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t
, irq_stat
);
126 #define irq_stats(x) (&per_cpu(irq_stat, x))
129 * /proc/interrupts printing for arch specific interrupts
131 int arch_show_interrupts(struct seq_file
*p
, int prec
)
135 #ifdef CONFIG_DEBUG_STACKOVERFLOW
136 seq_printf(p
, "%*s: ", prec
, "STK");
137 for_each_online_cpu(j
)
138 seq_printf(p
, "%10u ", irq_stats(j
)->kernel_stack_usage
);
139 seq_puts(p
, " Kernel stack usage\n");
140 # ifdef CONFIG_IRQSTACKS
141 seq_printf(p
, "%*s: ", prec
, "IST");
142 for_each_online_cpu(j
)
143 seq_printf(p
, "%10u ", irq_stats(j
)->irq_stack_usage
);
144 seq_puts(p
, " Interrupt stack usage\n");
148 if (num_online_cpus() > 1) {
149 seq_printf(p
, "%*s: ", prec
, "RES");
150 for_each_online_cpu(j
)
151 seq_printf(p
, "%10u ", irq_stats(j
)->irq_resched_count
);
152 seq_puts(p
, " Rescheduling interrupts\n");
153 seq_printf(p
, "%*s: ", prec
, "CAL");
154 for_each_online_cpu(j
)
155 seq_printf(p
, "%10u ", irq_stats(j
)->irq_call_count
);
156 seq_puts(p
, " Function call interrupts\n");
159 seq_printf(p
, "%*s: ", prec
, "UAH");
160 for_each_online_cpu(j
)
161 seq_printf(p
, "%10u ", irq_stats(j
)->irq_unaligned_count
);
162 seq_puts(p
, " Unaligned access handler traps\n");
163 seq_printf(p
, "%*s: ", prec
, "FPA");
164 for_each_online_cpu(j
)
165 seq_printf(p
, "%10u ", irq_stats(j
)->irq_fpassist_count
);
166 seq_puts(p
, " Floating point assist traps\n");
167 seq_printf(p
, "%*s: ", prec
, "TLB");
168 for_each_online_cpu(j
)
169 seq_printf(p
, "%10u ", irq_stats(j
)->irq_tlb_count
);
170 seq_puts(p
, " TLB shootdowns\n");
174 int show_interrupts(struct seq_file
*p
, void *v
)
176 int i
= *(loff_t
*) v
, j
;
181 for_each_online_cpu(j
)
182 seq_printf(p
, " CPU%d", j
);
184 #ifdef PARISC_IRQ_CR16_COUNTS
185 seq_printf(p
, " [min/avg/max] (CPU cycle counts)");
191 struct irq_desc
*desc
= irq_to_desc(i
);
192 struct irqaction
*action
;
194 raw_spin_lock_irqsave(&desc
->lock
, flags
);
195 action
= desc
->action
;
198 seq_printf(p
, "%3d: ", i
);
200 for_each_online_cpu(j
)
201 seq_printf(p
, "%10u ", irq_desc_kstat_cpu(desc
, j
));
203 seq_printf(p
, " %14s", irq_desc_get_chip(desc
)->name
);
204 #ifndef PARISC_IRQ_CR16_COUNTS
205 seq_printf(p
, " %s", action
->name
);
207 while ((action
= action
->next
))
208 seq_printf(p
, ", %s", action
->name
);
210 for ( ;action
; action
= action
->next
) {
211 unsigned int k
, avg
, min
, max
;
213 min
= max
= action
->cr16_hist
[0];
215 for (avg
= k
= 0; k
< PARISC_CR16_HIST_SIZE
; k
++) {
216 int hist
= action
->cr16_hist
[k
];
223 if (hist
> max
) max
= hist
;
224 if (hist
< min
) min
= hist
;
228 seq_printf(p
, " %s[%d/%d/%d]", action
->name
,
235 raw_spin_unlock_irqrestore(&desc
->lock
, flags
);
239 arch_show_interrupts(p
, 3);
247 ** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248 ** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
250 ** To use txn_XXX() interfaces, get a Virtual IRQ first.
251 ** Then use that to get the Transaction address and data.
254 int cpu_claim_irq(unsigned int irq
, struct irq_chip
*type
, void *data
)
256 if (irq_has_action(irq
))
258 if (irq_get_chip(irq
) != &cpu_interrupt_type
)
261 /* for iosapic interrupts */
263 irq_set_chip_and_handler(irq
, type
, handle_percpu_irq
);
264 irq_set_chip_data(irq
, data
);
265 __cpu_unmask_irq(irq
);
270 int txn_claim_irq(int irq
)
272 return cpu_claim_irq(irq
, NULL
, NULL
) ? -1 : irq
;
276 * The bits_wide parameter accommodates the limitations of the HW/SW which
278 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279 * V-class (EPIC): 6 bits
280 * N/L/A-class (iosapic): 8 bits
281 * PCI 2.2 MSI: 16 bits
282 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric)
284 * On the service provider side:
285 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register)
286 * o PA 2.0 wide mode 6-bits (per processor)
287 * o IA64 8-bits (0-256 total)
289 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290 * by the processor...and the N/L-class I/O subsystem supports more bits than
291 * PA2.0 has. The first case is the problem.
293 int txn_alloc_irq(unsigned int bits_wide
)
297 /* never return irq 0 cause that's the interval timer */
298 for (irq
= CPU_IRQ_BASE
+ 1; irq
<= CPU_IRQ_MAX
; irq
++) {
299 if (cpu_claim_irq(irq
, NULL
, NULL
) < 0)
301 if ((irq
- CPU_IRQ_BASE
) >= (1 << bits_wide
))
306 /* unlikely, but be prepared */
311 unsigned long txn_affinity_addr(unsigned int irq
, int cpu
)
314 struct irq_data
*d
= irq_get_irq_data(irq
);
315 irq_data_update_affinity(d
, cpumask_of(cpu
));
318 return per_cpu(cpu_data
, cpu
).txn_addr
;
322 unsigned long txn_alloc_addr(unsigned int virt_irq
)
324 static int next_cpu
= -1;
326 next_cpu
++; /* assign to "next" CPU we want this bugger on */
329 while ((next_cpu
< nr_cpu_ids
) &&
330 (!per_cpu(cpu_data
, next_cpu
).txn_addr
||
331 !cpu_online(next_cpu
)))
334 if (next_cpu
>= nr_cpu_ids
)
335 next_cpu
= 0; /* nothing else, assign monarch */
337 return txn_affinity_addr(virt_irq
, next_cpu
);
341 unsigned int txn_alloc_data(unsigned int virt_irq
)
343 return virt_irq
- CPU_IRQ_BASE
;
346 static inline int eirr_to_irq(unsigned long eirr
)
348 int bit
= fls_long(eirr
);
349 return (BITS_PER_LONG
- bit
) + TIMER_IRQ
;
352 #ifdef CONFIG_IRQSTACKS
354 * IRQ STACK - used for irq handler
357 #define IRQ_STACK_SIZE (4096 << 4) /* 64k irq stack size */
359 #define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */
362 union irq_stack_union
{
363 unsigned long stack
[IRQ_STACK_SIZE
/sizeof(unsigned long)];
364 volatile unsigned int slock
[4];
365 volatile unsigned int lock
[1];
368 static DEFINE_PER_CPU(union irq_stack_union
, irq_stack_union
) = {
369 .slock
= { 1,1,1,1 },
374 int sysctl_panic_on_stackoverflow
= 1;
376 static inline void stack_overflow_check(struct pt_regs
*regs
)
378 #ifdef CONFIG_DEBUG_STACKOVERFLOW
379 #define STACK_MARGIN (256*6)
381 unsigned long stack_start
= (unsigned long) task_stack_page(current
);
382 unsigned long sp
= regs
->gr
[30];
383 unsigned long stack_usage
;
384 unsigned int *last_usage
;
385 int cpu
= smp_processor_id();
387 /* if sr7 != 0, we interrupted a userspace process which we do not want
388 * to check for stack overflow. We will only check the kernel stack. */
392 /* exit if already in panic */
393 if (sysctl_panic_on_stackoverflow
< 0)
396 /* calculate kernel stack usage */
397 stack_usage
= sp
- stack_start
;
398 #ifdef CONFIG_IRQSTACKS
399 if (likely(stack_usage
<= THREAD_SIZE
))
400 goto check_kernel_stack
; /* found kernel stack */
402 /* check irq stack usage */
403 stack_start
= (unsigned long) &per_cpu(irq_stack_union
, cpu
).stack
;
404 stack_usage
= sp
- stack_start
;
406 last_usage
= &per_cpu(irq_stat
.irq_stack_usage
, cpu
);
407 if (unlikely(stack_usage
> *last_usage
))
408 *last_usage
= stack_usage
;
410 if (likely(stack_usage
< (IRQ_STACK_SIZE
- STACK_MARGIN
)))
413 pr_emerg("stackcheck: %s will most likely overflow irq stack "
414 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415 current
->comm
, sp
, stack_start
, stack_start
+ IRQ_STACK_SIZE
);
421 /* check kernel stack usage */
422 last_usage
= &per_cpu(irq_stat
.kernel_stack_usage
, cpu
);
424 if (unlikely(stack_usage
> *last_usage
))
425 *last_usage
= stack_usage
;
427 if (likely(stack_usage
< (THREAD_SIZE
- STACK_MARGIN
)))
430 pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432 current
->comm
, sp
, stack_start
, stack_start
+ THREAD_SIZE
);
434 #ifdef CONFIG_IRQSTACKS
437 if (sysctl_panic_on_stackoverflow
) {
438 sysctl_panic_on_stackoverflow
= -1; /* disable further checks */
439 panic("low stack detected by irq handler - check messages\n");
444 #ifdef CONFIG_IRQSTACKS
446 void call_on_stack(unsigned long p1
, void *func
, unsigned long new_stack
);
448 static void execute_on_irq_stack(void *func
, unsigned long param1
)
450 union irq_stack_union
*union_ptr
;
451 unsigned long irq_stack
;
452 volatile unsigned int *irq_stack_in_use
;
454 union_ptr
= &per_cpu(irq_stack_union
, smp_processor_id());
455 irq_stack
= (unsigned long) &union_ptr
->stack
;
456 irq_stack
= ALIGN(irq_stack
+ sizeof(irq_stack_union
.slock
),
457 FRAME_ALIGN
); /* align for stack frame usage */
459 /* We may be called recursive. If we are already using the irq stack,
460 * just continue to use it. Use spinlocks to serialize
461 * the irq stack usage.
463 irq_stack_in_use
= (volatile unsigned int *)__ldcw_align(union_ptr
);
464 if (!__ldcw(irq_stack_in_use
)) {
465 void (*direct_call
)(unsigned long p1
) = func
;
467 /* We are using the IRQ stack already.
468 * Do direct call on current stack. */
473 /* This is where we switch to the IRQ stack. */
474 call_on_stack(param1
, func
, irq_stack
);
476 /* free up irq stack usage. */
477 *irq_stack_in_use
= 1;
480 #ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
481 void do_softirq_own_stack(void)
483 execute_on_irq_stack(__do_softirq
, 0);
486 #endif /* CONFIG_IRQSTACKS */
488 /* ONLY called from entry.S:intr_extint() */
489 asmlinkage
void do_cpu_irq_mask(struct pt_regs
*regs
)
491 struct pt_regs
*old_regs
;
492 unsigned long eirr_val
;
493 int irq
, cpu
= smp_processor_id();
494 struct irq_data
*irq_data
;
499 old_regs
= set_irq_regs(regs
);
503 eirr_val
= mfctl(23) & cpu_eiem
& per_cpu(local_ack_eiem
, cpu
);
506 irq
= eirr_to_irq(eirr_val
);
508 irq_data
= irq_get_irq_data(irq
);
510 /* Filter out spurious interrupts, mostly from serial port at bootup */
511 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data
))))
515 cpumask_copy(&dest
, irq_data_get_affinity_mask(irq_data
));
516 if (irqd_is_per_cpu(irq_data
) &&
517 !cpumask_test_cpu(smp_processor_id(), &dest
)) {
518 int cpu
= cpumask_first(&dest
);
520 printk(KERN_DEBUG
"redirecting irq %d from CPU %d to %d\n",
521 irq
, smp_processor_id(), cpu
);
522 gsc_writel(irq
+ CPU_IRQ_BASE
,
523 per_cpu(cpu_data
, cpu
).hpa
);
527 stack_overflow_check(regs
);
529 #ifdef CONFIG_IRQSTACKS
530 execute_on_irq_stack(&generic_handle_irq
, irq
);
532 generic_handle_irq(irq
);
533 #endif /* CONFIG_IRQSTACKS */
537 set_irq_regs(old_regs
);
541 set_eiem(cpu_eiem
& per_cpu(local_ack_eiem
, cpu
));
545 static void claim_cpu_irqs(void)
547 unsigned long flags
= IRQF_TIMER
| IRQF_PERCPU
| IRQF_IRQPOLL
;
550 for (i
= CPU_IRQ_BASE
; i
<= CPU_IRQ_MAX
; i
++) {
551 irq_set_chip_and_handler(i
, &cpu_interrupt_type
,
555 irq_set_handler(TIMER_IRQ
, handle_percpu_irq
);
556 if (request_irq(TIMER_IRQ
, timer_interrupt
, flags
, "timer", NULL
))
557 pr_err("Failed to register timer interrupt\n");
559 irq_set_handler(IPI_IRQ
, handle_percpu_irq
);
560 if (request_irq(IPI_IRQ
, ipi_interrupt
, IRQF_PERCPU
, "IPI", NULL
))
561 pr_err("Failed to register IPI interrupt\n");
567 local_irq_disable(); /* PARANOID - should already be disabled */
568 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */
572 cpu_eiem
= EIEM_MASK(IPI_IRQ
) | EIEM_MASK(TIMER_IRQ
);
576 cpu_eiem
= EIEM_MASK(TIMER_IRQ
);
578 set_eiem(cpu_eiem
); /* EIEM : enable all external intr */