1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kernel dynamically loadable module help for PARISC.
4 * The best reference for this stuff is probably the Processor-
5 * Specific ELF Supplement for PA-RISC:
6 * https://parisc.wiki.kernel.org/index.php/File:Elf-pa-hp.pdf
8 * Linux/PA-RISC Project
9 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
10 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
14 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
15 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
16 * fail to reach their PLT stub if we only create one big stub array for
17 * all sections at the beginning of the core or init section.
18 * Instead we now insert individual PLT stub entries directly in front of
19 * of the code sections where the stubs are actually called.
20 * This reduces the distance between the PCREL location and the stub entry
21 * so that the relocations can be fulfilled.
22 * While calculating the final layout of the kernel module in memory, the
23 * kernel module loader calls arch_mod_section_prepend() to request the
24 * to be reserved amount of memory in front of each individual section.
27 * We are not doing SEGREL32 handling correctly. According to the ABI, we
28 * should do a value offset, like this:
29 * if (in_init(me, (void *)val))
30 * val -= (uint32_t)me->mem[MOD_INIT_TEXT].base;
32 * val -= (uint32_t)me->mem[MOD_TEXT].base;
33 * However, SEGREL32 is used only for PARISC unwind entries, and we want
34 * those entries to have an absolute address, and not just an offset.
36 * The unwind table mechanism has the ability to specify an offset for
37 * the unwind table; however, because we split off the init functions into
38 * a different piece of memory, it is not possible to do this using a
39 * single offset. Instead, we use the above hack for now.
42 #include <linux/moduleloader.h>
43 #include <linux/elf.h>
45 #include <linux/ftrace.h>
46 #include <linux/string.h>
47 #include <linux/kernel.h>
48 #include <linux/bug.h>
50 #include <linux/slab.h>
52 #include <asm/unwind.h>
53 #include <asm/sections.h>
55 #define RELOC_REACHABLE(val, bits) \
56 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
57 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
60 #define CHECK_RELOC(val, bits) \
61 if (!RELOC_REACHABLE(val, bits)) { \
62 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
63 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
67 /* Maximum number of GOT entries. We use a long displacement ldd from
68 * the bottom of the table, which has a maximum signed displacement of
69 * 0x3fff; however, since we're only going forward, this becomes
70 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
71 * at most 1023 entries.
72 * To overcome this 14bit displacement with some kernel modules, we'll
73 * use instead the unusal 16bit displacement method (see reassemble_16a)
74 * which gives us a maximum positive displacement of 0x7fff, and as such
75 * allows us to allocate up to 4095 GOT entries. */
84 Elf32_Word insns
[2]; /* each stub entry has two insns */
92 Elf64_Word insns
[4]; /* each stub entry has four insns */
96 /* Field selection types defined by hppa */
97 #define rnd(x) (((x)+0x1000)&~0x1fff)
98 /* fsel: full 32 bits */
99 #define fsel(v,a) ((v)+(a))
100 /* lsel: select left 21 bits */
101 #define lsel(v,a) (((v)+(a))>>11)
102 /* rsel: select right 11 bits */
103 #define rsel(v,a) (((v)+(a))&0x7ff)
104 /* lrsel with rounding of addend to nearest 8k */
105 #define lrsel(v,a) (((v)+rnd(a))>>11)
106 /* rrsel with rounding of addend to nearest 8k */
107 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
109 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
112 /* The reassemble_* functions prepare an immediate value for
113 insertion into an opcode. pa-risc uses all sorts of weird bitfields
114 in the instruction to hold the value. */
115 static inline int sign_unext(int x
, int len
)
119 len_ones
= (1 << len
) - 1;
123 static inline int low_sign_unext(int x
, int len
)
127 sign
= (x
>> (len
-1)) & 1;
128 temp
= sign_unext(x
, len
-1);
129 return (temp
<< 1) | sign
;
132 static inline int reassemble_14(int as14
)
134 return (((as14
& 0x1fff) << 1) |
135 ((as14
& 0x2000) >> 13));
138 static inline int reassemble_16a(int as16
)
142 /* Unusual 16-bit encoding, for wide mode only. */
143 t
= (as16
<< 1) & 0xffff;
145 return (t
^ s
^ (s
>> 1)) | (s
>> 15);
149 static inline int reassemble_17(int as17
)
151 return (((as17
& 0x10000) >> 16) |
152 ((as17
& 0x0f800) << 5) |
153 ((as17
& 0x00400) >> 8) |
154 ((as17
& 0x003ff) << 3));
157 static inline int reassemble_21(int as21
)
159 return (((as21
& 0x100000) >> 20) |
160 ((as21
& 0x0ffe00) >> 8) |
161 ((as21
& 0x000180) << 7) |
162 ((as21
& 0x00007c) << 14) |
163 ((as21
& 0x000003) << 12));
166 static inline int reassemble_22(int as22
)
168 return (((as22
& 0x200000) >> 21) |
169 ((as22
& 0x1f0000) << 5) |
170 ((as22
& 0x00f800) << 5) |
171 ((as22
& 0x000400) >> 8) |
172 ((as22
& 0x0003ff) << 3));
176 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
181 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
186 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
188 unsigned long cnt
= 0;
190 for (; n
> 0; n
--, rela
++)
192 switch (ELF32_R_TYPE(rela
->r_info
)) {
193 case R_PARISC_PCREL17F
:
194 case R_PARISC_PCREL22F
:
202 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
204 unsigned long cnt
= 0;
206 for (; n
> 0; n
--, rela
++)
208 switch (ELF64_R_TYPE(rela
->r_info
)) {
209 case R_PARISC_LTOFF21L
:
210 case R_PARISC_LTOFF14R
:
211 case R_PARISC_PCREL22F
:
219 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
221 unsigned long cnt
= 0;
223 for (; n
> 0; n
--, rela
++)
225 switch (ELF64_R_TYPE(rela
->r_info
)) {
226 case R_PARISC_FPTR64
:
234 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
236 unsigned long cnt
= 0;
238 for (; n
> 0; n
--, rela
++)
240 switch (ELF64_R_TYPE(rela
->r_info
)) {
241 case R_PARISC_PCREL22F
:
250 void module_arch_freeing_init(struct module
*mod
)
252 kfree(mod
->arch
.section
);
253 mod
->arch
.section
= NULL
;
256 /* Additional bytes needed in front of individual sections */
257 unsigned int arch_mod_section_prepend(struct module
*mod
,
258 unsigned int section
)
260 /* size needed for all stubs of this section (including
261 * one additional for correct alignment of the stubs) */
262 return (mod
->arch
.section
[section
].stub_entries
+ 1)
263 * sizeof(struct stub_entry
);
267 int module_frob_arch_sections(CONST Elf_Ehdr
*hdr
,
268 CONST Elf_Shdr
*sechdrs
,
269 CONST
char *secstrings
,
272 unsigned long gots
= 0, fdescs
= 0, len
;
274 struct module_memory
*mod_mem
;
276 len
= hdr
->e_shnum
* sizeof(me
->arch
.section
[0]);
277 me
->arch
.section
= kzalloc(len
, GFP_KERNEL
);
278 if (!me
->arch
.section
)
281 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
282 const Elf_Rela
*rels
= (void *)sechdrs
[i
].sh_addr
;
283 unsigned long nrels
= sechdrs
[i
].sh_size
/ sizeof(*rels
);
284 unsigned int count
, s
;
286 if (strncmp(secstrings
+ sechdrs
[i
].sh_name
,
287 ".PARISC.unwind", 14) == 0)
288 me
->arch
.unwind_section
= i
;
290 if (sechdrs
[i
].sh_type
!= SHT_RELA
)
293 /* some of these are not relevant for 32-bit/64-bit
294 * we leave them here to make the code common. the
295 * compiler will do its thing and optimize out the
296 * stuff we don't need
298 gots
+= count_gots(rels
, nrels
);
299 fdescs
+= count_fdescs(rels
, nrels
);
301 /* XXX: By sorting the relocs and finding duplicate entries
302 * we could reduce the number of necessary stubs and save
304 count
= count_stubs(rels
, nrels
);
308 /* so we need relocation stubs. reserve necessary memory. */
309 /* sh_info gives the section for which we need to add stubs. */
310 s
= sechdrs
[i
].sh_info
;
312 /* each code section should only have one relocation section */
313 WARN_ON(me
->arch
.section
[s
].stub_entries
);
315 /* store number of stubs we need for this section */
316 me
->arch
.section
[s
].stub_entries
+= count
;
319 mod_mem
= &me
->mem
[MOD_TEXT
];
320 /* align things a bit */
321 mod_mem
->size
= ALIGN(mod_mem
->size
, 16);
322 me
->arch
.got_offset
= mod_mem
->size
;
323 mod_mem
->size
+= gots
* sizeof(struct got_entry
);
325 mod_mem
->size
= ALIGN(mod_mem
->size
, 16);
326 me
->arch
.fdesc_offset
= mod_mem
->size
;
327 mod_mem
->size
+= fdescs
* sizeof(Elf_Fdesc
);
329 me
->arch
.got_max
= gots
;
330 me
->arch
.fdesc_max
= fdescs
;
336 static Elf64_Word
get_got(struct module
*me
, unsigned long value
, long addend
)
339 struct got_entry
*got
;
345 got
= me
->mem
[MOD_TEXT
].base
+ me
->arch
.got_offset
;
346 for (i
= 0; got
[i
].addr
; i
++)
347 if (got
[i
].addr
== value
)
350 BUG_ON(++me
->arch
.got_count
> me
->arch
.got_max
);
354 pr_debug("GOT ENTRY %d[%lx] val %lx\n", i
, i
*sizeof(struct got_entry
),
356 return i
* sizeof(struct got_entry
);
358 #endif /* CONFIG_64BIT */
361 static Elf_Addr
get_fdesc(struct module
*me
, unsigned long value
)
363 Elf_Fdesc
*fdesc
= me
->mem
[MOD_TEXT
].base
+ me
->arch
.fdesc_offset
;
366 printk(KERN_ERR
"%s: zero OPD requested!\n", me
->name
);
370 /* Look for existing fdesc entry. */
371 while (fdesc
->addr
) {
372 if (fdesc
->addr
== value
)
373 return (Elf_Addr
)fdesc
;
377 BUG_ON(++me
->arch
.fdesc_count
> me
->arch
.fdesc_max
);
381 fdesc
->gp
= (Elf_Addr
)me
->mem
[MOD_TEXT
].base
+ me
->arch
.got_offset
;
382 return (Elf_Addr
)fdesc
;
384 #endif /* CONFIG_64BIT */
392 static Elf_Addr
get_stub(struct module
*me
, unsigned long value
, long addend
,
393 enum elf_stub_type stub_type
, Elf_Addr loc0
, unsigned int targetsec
)
395 struct stub_entry
*stub
;
396 int __maybe_unused d
;
398 /* initialize stub_offset to point in front of the section */
399 if (!me
->arch
.section
[targetsec
].stub_offset
) {
400 loc0
-= (me
->arch
.section
[targetsec
].stub_entries
+ 1) *
401 sizeof(struct stub_entry
);
402 /* get correct alignment for the stubs */
403 loc0
= ALIGN(loc0
, sizeof(struct stub_entry
));
404 me
->arch
.section
[targetsec
].stub_offset
= loc0
;
407 /* get address of stub entry */
408 stub
= (void *) me
->arch
.section
[targetsec
].stub_offset
;
409 me
->arch
.section
[targetsec
].stub_offset
+= sizeof(struct stub_entry
);
411 /* do not write outside available stub area */
412 BUG_ON(0 == me
->arch
.section
[targetsec
].stub_entries
--);
416 /* for 32-bit the stub looks like this:
418 * be,n R'XXX(%sr4,%r1)
420 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
422 stub
->insns
[0] = 0x20200000; /* ldil L'XXX,%r1 */
423 stub
->insns
[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
425 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
426 stub
->insns
[1] |= reassemble_17(rrsel(value
, addend
) / 4);
429 /* for 64-bit we have three kinds of stubs:
430 * for normal function calls:
442 * for direct branches (jumps between different section of the
450 d
= get_got(me
, value
, addend
);
453 stub
->insns
[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
454 stub
->insns
[0] |= low_sign_unext(d
, 5) << 16;
457 stub
->insns
[0] = 0x537b0000; /* ldd 0(%dp),%dp */
458 stub
->insns
[0] |= reassemble_16a(d
);
460 stub
->insns
[1] = 0x53610020; /* ldd 10(%dp),%r1 */
461 stub
->insns
[2] = 0xe820d000; /* bve (%r1) */
462 stub
->insns
[3] = 0x537b0030; /* ldd 18(%dp),%dp */
465 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
466 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
467 stub
->insns
[2] = 0x50210020; /* ldd 10(%r1),%r1 */
468 stub
->insns
[3] = 0xe820d002; /* bve,n (%r1) */
470 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
471 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
473 case ELF_STUB_DIRECT
:
474 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
475 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
476 stub
->insns
[2] = 0xe820d002; /* bve,n (%r1) */
478 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
479 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
485 return (Elf_Addr
)stub
;
489 int apply_relocate_add(Elf_Shdr
*sechdrs
,
491 unsigned int symindex
,
496 Elf32_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
503 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
504 //unsigned long dp = (unsigned long)$global$;
505 register unsigned long dp
asm ("r27");
507 pr_debug("Applying relocate section %u to %u\n", relsec
,
509 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
510 /* This is where to make the change */
511 loc
= (void *)sechdrs
[targetsec
].sh_addr
513 /* This is the start of the target section */
514 loc0
= sechdrs
[targetsec
].sh_addr
;
515 /* This is the symbol it is referring to */
516 sym
= (Elf32_Sym
*)sechdrs
[symindex
].sh_addr
517 + ELF32_R_SYM(rel
[i
].r_info
);
518 if (!sym
->st_value
) {
519 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
520 me
->name
, strtab
+ sym
->st_name
);
523 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
524 dot
= (Elf32_Addr
)loc
& ~0x03;
527 addend
= rel
[i
].r_addend
;
530 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
531 pr_debug("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
532 strtab
+ sym
->st_name
,
533 (uint32_t)loc
, val
, addend
,
547 switch (ELF32_R_TYPE(rel
[i
].r_info
)) {
548 case R_PARISC_PLABEL32
:
549 /* 32-bit function address */
550 /* no function descriptors... */
551 *loc
= fsel(val
, addend
);
554 /* direct 32-bit ref */
555 *loc
= fsel(val
, addend
);
557 case R_PARISC_DIR21L
:
558 /* left 21 bits of effective address */
559 val
= lrsel(val
, addend
);
560 *loc
= mask(*loc
, 21) | reassemble_21(val
);
562 case R_PARISC_DIR14R
:
563 /* right 14 bits of effective address */
564 val
= rrsel(val
, addend
);
565 *loc
= mask(*loc
, 14) | reassemble_14(val
);
567 case R_PARISC_SEGREL32
:
568 /* 32-bit segment relative address */
569 /* See note about special handling of SEGREL32 at
570 * the beginning of this file.
572 *loc
= fsel(val
, addend
);
574 case R_PARISC_SECREL32
:
575 /* 32-bit section relative address. */
576 *loc
= fsel(val
, addend
);
578 case R_PARISC_DPREL21L
:
579 /* left 21 bit of relative address */
580 val
= lrsel(val
- dp
, addend
);
581 *loc
= mask(*loc
, 21) | reassemble_21(val
);
583 case R_PARISC_DPREL14R
:
584 /* right 14 bit of relative address */
585 val
= rrsel(val
- dp
, addend
);
586 *loc
= mask(*loc
, 14) | reassemble_14(val
);
588 case R_PARISC_PCREL17F
:
589 /* 17-bit PC relative address */
590 /* calculate direct call offset */
592 val
= (val
- dot
- 8)/4;
593 if (!RELOC_REACHABLE(val
, 17)) {
594 /* direct distance too far, create
595 * stub entry instead */
596 val
= get_stub(me
, sym
->st_value
, addend
,
597 ELF_STUB_DIRECT
, loc0
, targetsec
);
598 val
= (val
- dot
- 8)/4;
599 CHECK_RELOC(val
, 17);
601 *loc
= (*loc
& ~0x1f1ffd) | reassemble_17(val
);
603 case R_PARISC_PCREL22F
:
604 /* 22-bit PC relative address; only defined for pa20 */
605 /* calculate direct call offset */
607 val
= (val
- dot
- 8)/4;
608 if (!RELOC_REACHABLE(val
, 22)) {
609 /* direct distance too far, create
610 * stub entry instead */
611 val
= get_stub(me
, sym
->st_value
, addend
,
612 ELF_STUB_DIRECT
, loc0
, targetsec
);
613 val
= (val
- dot
- 8)/4;
614 CHECK_RELOC(val
, 22);
616 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
618 case R_PARISC_PCREL32
:
619 /* 32-bit PC relative address */
620 *loc
= val
- dot
- 8 + addend
;
624 printk(KERN_ERR
"module %s: Unknown relocation: %u\n",
625 me
->name
, ELF32_R_TYPE(rel
[i
].r_info
));
634 int apply_relocate_add(Elf_Shdr
*sechdrs
,
636 unsigned int symindex
,
641 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
649 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
651 pr_debug("Applying relocate section %u to %u\n", relsec
,
653 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
654 /* This is where to make the change */
655 loc
= (void *)sechdrs
[targetsec
].sh_addr
657 /* This is the start of the target section */
658 loc0
= sechdrs
[targetsec
].sh_addr
;
659 /* This is the symbol it is referring to */
660 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
661 + ELF64_R_SYM(rel
[i
].r_info
);
662 if (!sym
->st_value
) {
663 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
664 me
->name
, strtab
+ sym
->st_name
);
667 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
668 dot
= (Elf64_Addr
)loc
& ~0x03;
669 loc64
= (Elf64_Xword
*)loc
;
672 addend
= rel
[i
].r_addend
;
675 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
676 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
677 strtab
+ sym
->st_name
,
689 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
690 case R_PARISC_LTOFF21L
:
691 /* LT-relative; left 21 bits */
692 val
= get_got(me
, val
, addend
);
693 pr_debug("LTOFF21L Symbol %s loc %p val %llx\n",
694 strtab
+ sym
->st_name
,
697 *loc
= mask(*loc
, 21) | reassemble_21(val
);
699 case R_PARISC_LTOFF14R
:
700 /* L(ltoff(val+addend)) */
701 /* LT-relative; right 14 bits */
702 val
= get_got(me
, val
, addend
);
704 pr_debug("LTOFF14R Symbol %s loc %p val %llx\n",
705 strtab
+ sym
->st_name
,
707 *loc
= mask(*loc
, 14) | reassemble_14(val
);
709 case R_PARISC_PCREL22F
:
710 /* PC-relative; 22 bits */
711 pr_debug("PCREL22F Symbol %s loc %p val %llx\n",
712 strtab
+ sym
->st_name
,
715 /* can we reach it locally? */
716 if (within_module(val
, me
)) {
717 /* this is the case where the symbol is local
718 * to the module, but in a different section,
719 * so stub the jump in case it's more than 22
721 val
= (val
- dot
- 8)/4;
722 if (!RELOC_REACHABLE(val
, 22)) {
723 /* direct distance too far, create
724 * stub entry instead */
725 val
= get_stub(me
, sym
->st_value
,
726 addend
, ELF_STUB_DIRECT
,
729 /* Ok, we can reach it directly. */
735 if (strncmp(strtab
+ sym
->st_name
, "$$", 2)
737 val
= get_stub(me
, val
, addend
, ELF_STUB_MILLI
,
740 val
= get_stub(me
, val
, addend
, ELF_STUB_GOT
,
743 pr_debug("STUB FOR %s loc %px, val %llx+%llx at %llx\n",
744 strtab
+ sym
->st_name
, loc
, sym
->st_value
,
746 val
= (val
- dot
- 8)/4;
747 CHECK_RELOC(val
, 22);
748 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
750 case R_PARISC_PCREL32
:
751 /* 32-bit PC relative address */
752 *loc
= val
- dot
- 8 + addend
;
754 case R_PARISC_PCREL64
:
755 /* 64-bit PC relative address */
756 *loc64
= val
- dot
- 8 + addend
;
759 /* 64-bit effective address */
760 *loc64
= val
+ addend
;
762 case R_PARISC_SEGREL32
:
763 /* 32-bit segment relative address */
764 /* See note about special handling of SEGREL32 at
765 * the beginning of this file.
767 *loc
= fsel(val
, addend
);
769 case R_PARISC_SECREL32
:
770 /* 32-bit section relative address. */
771 *loc
= fsel(val
, addend
);
773 case R_PARISC_FPTR64
:
774 /* 64-bit function address */
775 if (within_module(val
+ addend
, me
)) {
776 *loc64
= get_fdesc(me
, val
+addend
);
777 pr_debug("FDESC for %s at %llx points to %llx\n",
778 strtab
+ sym
->st_name
, *loc64
,
779 ((Elf_Fdesc
*)*loc64
)->addr
);
781 /* if the symbol is not local to this
782 * module then val+addend is a pointer
783 * to the function descriptor */
784 pr_debug("Non local FPTR64 Symbol %s loc %p val %llx\n",
785 strtab
+ sym
->st_name
,
787 *loc64
= val
+ addend
;
792 printk(KERN_ERR
"module %s: Unknown relocation: %Lu\n",
793 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
802 register_unwind_table(struct module
*me
,
803 const Elf_Shdr
*sechdrs
)
805 unsigned char *table
, *end
;
808 if (!me
->arch
.unwind_section
)
811 table
= (unsigned char *)sechdrs
[me
->arch
.unwind_section
].sh_addr
;
812 end
= table
+ sechdrs
[me
->arch
.unwind_section
].sh_size
;
813 gp
= (Elf_Addr
)me
->mem
[MOD_TEXT
].base
+ me
->arch
.got_offset
;
815 pr_debug("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816 me
->arch
.unwind_section
, table
, end
, gp
);
817 me
->arch
.unwind
= unwind_table_add(me
->name
, 0, gp
, table
, end
);
821 deregister_unwind_table(struct module
*me
)
824 unwind_table_remove(me
->arch
.unwind
);
827 int module_finalize(const Elf_Ehdr
*hdr
,
828 const Elf_Shdr
*sechdrs
,
833 const char *strtab
= NULL
;
836 int symindex __maybe_unused
= -1;
837 Elf_Sym
*newptr
, *oldptr
;
838 Elf_Shdr
*symhdr
= NULL
;
843 entry
= (Elf_Fdesc
*)me
->init
;
844 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry
,
845 entry
->gp
, entry
->addr
);
846 addr
= (u32
*)entry
->addr
;
847 printk("INSNS: %x %x %x %x\n",
848 addr
[0], addr
[1], addr
[2], addr
[3]);
849 printk("got entries used %ld, gots max %ld\n"
850 "fdescs used %ld, fdescs max %ld\n",
851 me
->arch
.got_count
, me
->arch
.got_max
,
852 me
->arch
.fdesc_count
, me
->arch
.fdesc_max
);
855 register_unwind_table(me
, sechdrs
);
857 /* haven't filled in me->symtab yet, so have to find it
859 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
860 if(sechdrs
[i
].sh_type
== SHT_SYMTAB
861 && (sechdrs
[i
].sh_flags
& SHF_ALLOC
)) {
862 int strindex
= sechdrs
[i
].sh_link
;
865 * The cast is to drop the const from
866 * the sechdrs pointer */
867 symhdr
= (Elf_Shdr
*)&sechdrs
[i
];
868 strtab
= (char *)sechdrs
[strindex
].sh_addr
;
873 pr_debug("module %s: strtab %p, symhdr %p\n",
874 me
->name
, strtab
, symhdr
);
876 if(me
->arch
.got_count
> MAX_GOTS
) {
877 printk(KERN_ERR
"%s: Global Offset Table overflow (used %ld, allowed %d)\n",
878 me
->name
, me
->arch
.got_count
, MAX_GOTS
);
882 kfree(me
->arch
.section
);
883 me
->arch
.section
= NULL
;
885 /* no symbol table */
889 oldptr
= (void *)symhdr
->sh_addr
;
890 newptr
= oldptr
+ 1; /* we start counting at 1 */
891 nsyms
= symhdr
->sh_size
/ sizeof(Elf_Sym
);
892 pr_debug("OLD num_symtab %lu\n", nsyms
);
894 for (i
= 1; i
< nsyms
; i
++) {
895 oldptr
++; /* note, count starts at 1 so preincrement */
896 if(strncmp(strtab
+ oldptr
->st_name
,
906 nsyms
= newptr
- (Elf_Sym
*)symhdr
->sh_addr
;
907 pr_debug("NEW num_symtab %lu\n", nsyms
);
908 symhdr
->sh_size
= nsyms
* sizeof(Elf_Sym
);
910 /* find .altinstructions section */
911 secstrings
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
912 for (s
= sechdrs
; s
< sechdrs
+ hdr
->e_shnum
; s
++) {
913 void *aseg
= (void *) s
->sh_addr
;
914 char *secname
= secstrings
+ s
->sh_name
;
916 if (!strcmp(".altinstructions", secname
))
917 /* patch .altinstructions */
918 apply_alternatives(aseg
, aseg
+ s
->sh_size
, me
->name
);
920 #ifdef CONFIG_DYNAMIC_FTRACE
921 /* For 32 bit kernels we're compiling modules with
922 * -ffunction-sections so we must relocate the addresses in the
923 * ftrace callsite section.
925 if (symindex
!= -1 && !strcmp(secname
, FTRACE_CALLSITE_SECTION
)) {
927 if (s
->sh_type
== SHT_REL
)
928 err
= apply_relocate((Elf_Shdr
*)sechdrs
,
931 else if (s
->sh_type
== SHT_RELA
)
932 err
= apply_relocate_add((Elf_Shdr
*)sechdrs
,
943 void module_arch_cleanup(struct module
*mod
)
945 deregister_unwind_table(mod
);
949 void *dereference_module_function_descriptor(struct module
*mod
, void *ptr
)
951 unsigned long start_opd
= (Elf64_Addr
)mod
->mem
[MOD_TEXT
].base
+
952 mod
->arch
.fdesc_offset
;
953 unsigned long end_opd
= start_opd
+
954 mod
->arch
.fdesc_count
* sizeof(Elf64_Fdesc
);
956 if (ptr
< (void *)start_opd
|| ptr
>= (void *)end_opd
)
959 return dereference_function_descriptor(ptr
);