1 // SPDX-License-Identifier: GPL-2.0
3 * linux/arch/parisc/mm/init.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
15 #include <linux/module.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages */
26 #include <linux/compat.h>
27 #include <linux/execmem.h>
29 #include <asm/pgalloc.h>
31 #include <asm/pdc_chassis.h>
32 #include <asm/mmzone.h>
33 #include <asm/sections.h>
34 #include <asm/msgbuf.h>
35 #include <asm/sparsemem.h>
36 #include <asm/asm-offsets.h>
37 #include <asm/shmbuf.h>
39 extern int data_start
;
40 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
42 #if CONFIG_PGTABLE_LEVELS == 3
43 pmd_t pmd0
[PTRS_PER_PMD
] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE
)));
46 pgd_t swapper_pg_dir
[PTRS_PER_PGD
] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE
)));
47 pte_t pg0
[PT_INITIAL
* PTRS_PER_PTE
] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE
)));
49 static struct resource data_resource
= {
50 .name
= "Kernel data",
51 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
54 static struct resource code_resource
= {
55 .name
= "Kernel code",
56 .flags
= IORESOURCE_BUSY
| IORESOURCE_SYSTEM_RAM
,
59 static struct resource pdcdata_resource
= {
60 .name
= "PDC data (Page Zero)",
63 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
66 static struct resource sysram_resources
[MAX_PHYSMEM_RANGES
] __ro_after_init
;
68 /* The following array is initialized from the firmware specific
69 * information retrieved in kernel/inventory.c.
72 physmem_range_t pmem_ranges
[MAX_PHYSMEM_RANGES
] __initdata
;
73 int npmem_ranges __initdata
;
76 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
77 #else /* !CONFIG_64BIT */
78 #define MAX_MEM (3584U*1024U*1024U)
79 #endif /* !CONFIG_64BIT */
81 static unsigned long mem_limit __read_mostly
= MAX_MEM
;
83 static void __init
mem_limit_func(void)
88 /* We need this before __setup() functions are called */
91 for (cp
= boot_command_line
; *cp
; ) {
92 if (memcmp(cp
, "mem=", 4) == 0) {
94 limit
= memparse(cp
, &end
);
99 while (*cp
!= ' ' && *cp
)
106 if (limit
< mem_limit
)
110 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
112 static void __init
setup_bootmem(void)
114 unsigned long mem_max
;
115 #ifndef CONFIG_SPARSEMEM
116 physmem_range_t pmem_holes
[MAX_PHYSMEM_RANGES
- 1];
119 int i
, sysram_resource_count
;
121 disable_sr_hashing(); /* Turn off space register hashing */
124 * Sort the ranges. Since the number of ranges is typically
125 * small, and performance is not an issue here, just do
126 * a simple insertion sort.
129 for (i
= 1; i
< npmem_ranges
; i
++) {
132 for (j
= i
; j
> 0; j
--) {
133 if (pmem_ranges
[j
-1].start_pfn
<
134 pmem_ranges
[j
].start_pfn
) {
138 swap(pmem_ranges
[j
-1], pmem_ranges
[j
]);
142 #ifndef CONFIG_SPARSEMEM
144 * Throw out ranges that are too far apart (controlled by
148 for (i
= 1; i
< npmem_ranges
; i
++) {
149 if (pmem_ranges
[i
].start_pfn
-
150 (pmem_ranges
[i
-1].start_pfn
+
151 pmem_ranges
[i
-1].pages
) > MAX_GAP
) {
153 printk("Large gap in memory detected (%ld pages). "
154 "Consider turning on CONFIG_SPARSEMEM\n",
155 pmem_ranges
[i
].start_pfn
-
156 (pmem_ranges
[i
-1].start_pfn
+
157 pmem_ranges
[i
-1].pages
));
163 /* Print the memory ranges */
164 pr_info("Memory Ranges:\n");
166 for (i
= 0; i
< npmem_ranges
; i
++) {
167 struct resource
*res
= &sysram_resources
[i
];
171 size
= (pmem_ranges
[i
].pages
<< PAGE_SHIFT
);
172 start
= (pmem_ranges
[i
].start_pfn
<< PAGE_SHIFT
);
173 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
174 i
, start
, start
+ (size
- 1), size
>> 20);
176 /* request memory resource */
177 res
->name
= "System RAM";
179 res
->end
= start
+ size
- 1;
180 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
181 request_resource(&iomem_resource
, res
);
184 sysram_resource_count
= npmem_ranges
;
187 * For 32 bit kernels we limit the amount of memory we can
188 * support, in order to preserve enough kernel address space
189 * for other purposes. For 64 bit kernels we don't normally
190 * limit the memory, but this mechanism can be used to
191 * artificially limit the amount of memory (and it is written
192 * to work with multiple memory ranges).
195 mem_limit_func(); /* check for "mem=" argument */
198 for (i
= 0; i
< npmem_ranges
; i
++) {
201 rsize
= pmem_ranges
[i
].pages
<< PAGE_SHIFT
;
202 if ((mem_max
+ rsize
) > mem_limit
) {
203 printk(KERN_WARNING
"Memory truncated to %ld MB\n", mem_limit
>> 20);
204 if (mem_max
== mem_limit
)
207 pmem_ranges
[i
].pages
= (mem_limit
>> PAGE_SHIFT
)
208 - (mem_max
>> PAGE_SHIFT
);
209 npmem_ranges
= i
+ 1;
217 printk(KERN_INFO
"Total Memory: %ld MB\n",mem_max
>> 20);
219 #ifndef CONFIG_SPARSEMEM
220 /* Merge the ranges, keeping track of the holes */
222 unsigned long end_pfn
;
223 unsigned long hole_pages
;
226 end_pfn
= pmem_ranges
[0].start_pfn
+ pmem_ranges
[0].pages
;
227 for (i
= 1; i
< npmem_ranges
; i
++) {
229 hole_pages
= pmem_ranges
[i
].start_pfn
- end_pfn
;
231 pmem_holes
[npmem_holes
].start_pfn
= end_pfn
;
232 pmem_holes
[npmem_holes
++].pages
= hole_pages
;
233 end_pfn
+= hole_pages
;
235 end_pfn
+= pmem_ranges
[i
].pages
;
238 pmem_ranges
[0].pages
= end_pfn
- pmem_ranges
[0].start_pfn
;
244 * Initialize and free the full range of memory in each range.
248 for (i
= 0; i
< npmem_ranges
; i
++) {
249 unsigned long start_pfn
;
250 unsigned long npages
;
254 start_pfn
= pmem_ranges
[i
].start_pfn
;
255 npages
= pmem_ranges
[i
].pages
;
257 start
= start_pfn
<< PAGE_SHIFT
;
258 size
= npages
<< PAGE_SHIFT
;
260 /* add system RAM memblock */
261 memblock_add(start
, size
);
263 if ((start_pfn
+ npages
) > max_pfn
)
264 max_pfn
= start_pfn
+ npages
;
268 * We can't use memblock top-down allocations because we only
269 * created the initial mapping up to KERNEL_INITIAL_SIZE in
270 * the assembly bootup code.
272 memblock_set_bottom_up(true);
274 /* IOMMU is always used to access "high mem" on those boxes
275 * that can support enough mem that a PCI device couldn't
276 * directly DMA to any physical addresses.
277 * ISA DMA support will need to revisit this.
279 max_low_pfn
= max_pfn
;
281 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
283 #define PDC_CONSOLE_IO_IODC_SIZE 32768
285 memblock_reserve(0UL, (unsigned long)(PAGE0
->mem_free
+
286 PDC_CONSOLE_IO_IODC_SIZE
));
287 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START
),
288 (unsigned long)(_end
- KERNEL_BINARY_TEXT_START
));
290 #ifndef CONFIG_SPARSEMEM
292 /* reserve the holes */
294 for (i
= 0; i
< npmem_holes
; i
++) {
295 memblock_reserve((pmem_holes
[i
].start_pfn
<< PAGE_SHIFT
),
296 (pmem_holes
[i
].pages
<< PAGE_SHIFT
));
300 #ifdef CONFIG_BLK_DEV_INITRD
302 printk(KERN_INFO
"initrd: %08lx-%08lx\n", initrd_start
, initrd_end
);
303 if (__pa(initrd_start
) < mem_max
) {
304 unsigned long initrd_reserve
;
306 if (__pa(initrd_end
) > mem_max
) {
307 initrd_reserve
= mem_max
- __pa(initrd_start
);
309 initrd_reserve
= initrd_end
- initrd_start
;
311 initrd_below_start_ok
= 1;
312 printk(KERN_INFO
"initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start
), __pa(initrd_start
) + initrd_reserve
, mem_max
);
314 memblock_reserve(__pa(initrd_start
), initrd_reserve
);
319 data_resource
.start
= virt_to_phys(&data_start
);
320 data_resource
.end
= virt_to_phys(_end
) - 1;
321 code_resource
.start
= virt_to_phys(_text
);
322 code_resource
.end
= virt_to_phys(&data_start
)-1;
324 /* We don't know which region the kernel will be in, so try
327 for (i
= 0; i
< sysram_resource_count
; i
++) {
328 struct resource
*res
= &sysram_resources
[i
];
329 request_resource(res
, &code_resource
);
330 request_resource(res
, &data_resource
);
332 request_resource(&sysram_resources
[0], &pdcdata_resource
);
334 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
337 memblock_allow_resize();
341 static bool kernel_set_to_readonly
;
343 static void __ref
map_pages(unsigned long start_vaddr
,
344 unsigned long start_paddr
, unsigned long size
,
345 pgprot_t pgprot
, int force
)
349 unsigned long end_paddr
;
350 unsigned long start_pmd
;
351 unsigned long start_pte
;
354 unsigned long address
;
356 unsigned long ro_start
;
357 unsigned long ro_end
;
358 unsigned long kernel_start
, kernel_end
;
360 ro_start
= __pa((unsigned long)_text
);
361 ro_end
= __pa((unsigned long)&data_start
);
362 kernel_start
= __pa((unsigned long)&__init_begin
);
363 kernel_end
= __pa((unsigned long)&_end
);
365 end_paddr
= start_paddr
+ size
;
367 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
368 start_pmd
= ((start_vaddr
>> PMD_SHIFT
) & (PTRS_PER_PMD
- 1));
369 start_pte
= ((start_vaddr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
371 address
= start_paddr
;
373 while (address
< end_paddr
) {
374 pgd_t
*pgd
= pgd_offset_k(vaddr
);
375 p4d_t
*p4d
= p4d_offset(pgd
, vaddr
);
376 pud_t
*pud
= pud_offset(p4d
, vaddr
);
378 #if CONFIG_PGTABLE_LEVELS == 3
379 if (pud_none(*pud
)) {
380 pmd
= memblock_alloc(PAGE_SIZE
<< PMD_TABLE_ORDER
,
381 PAGE_SIZE
<< PMD_TABLE_ORDER
);
383 panic("pmd allocation failed.\n");
384 pud_populate(NULL
, pud
, pmd
);
388 pmd
= pmd_offset(pud
, vaddr
);
389 for (tmp1
= start_pmd
; tmp1
< PTRS_PER_PMD
; tmp1
++, pmd
++) {
390 if (pmd_none(*pmd
)) {
391 pg_table
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
393 panic("page table allocation failed\n");
394 pmd_populate_kernel(NULL
, pmd
, pg_table
);
397 pg_table
= pte_offset_kernel(pmd
, vaddr
);
398 for (tmp2
= start_pte
; tmp2
< PTRS_PER_PTE
; tmp2
++, pg_table
++) {
405 } else if (address
< kernel_start
|| address
>= kernel_end
) {
406 /* outside kernel memory */
408 } else if (!kernel_set_to_readonly
) {
409 /* still initializing, allow writing to RO memory */
410 prot
= PAGE_KERNEL_RWX
;
412 } else if (address
>= ro_start
) {
413 /* Code (ro) and Data areas */
414 prot
= (address
< ro_end
) ?
415 PAGE_KERNEL_EXEC
: PAGE_KERNEL
;
421 pte
= __mk_pte(address
, prot
);
423 pte
= pte_mkhuge(pte
);
425 if (address
>= end_paddr
)
428 set_pte(pg_table
, pte
);
430 address
+= PAGE_SIZE
;
435 if (address
>= end_paddr
)
442 void __init
set_kernel_text_rw(int enable_read_write
)
444 unsigned long start
= (unsigned long) __init_begin
;
445 unsigned long end
= (unsigned long) &data_start
;
447 map_pages(start
, __pa(start
), end
-start
,
448 PAGE_KERNEL_RWX
, enable_read_write
? 1:0);
450 /* force the kernel to see the new page table entries */
455 void free_initmem(void)
457 unsigned long init_begin
= (unsigned long)__init_begin
;
458 unsigned long init_end
= (unsigned long)__init_end
;
459 unsigned long kernel_end
= (unsigned long)&_end
;
461 /* Remap kernel text and data, but do not touch init section yet. */
462 map_pages(init_end
, __pa(init_end
), kernel_end
- init_end
,
465 /* The init text pages are marked R-X. We have to
466 * flush the icache and mark them RW-
468 * Do a dummy remap of the data section first (the data
469 * section is already PAGE_KERNEL) to pull in the TLB entries
471 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
473 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
475 map_pages(init_begin
, __pa(init_begin
), init_end
- init_begin
,
478 /* force the kernel to see the new TLB entries */
479 __flush_tlb_range(0, init_begin
, kernel_end
);
481 /* finally dump all the instructions which were cached, since the
482 * pages are no-longer executable */
483 flush_icache_range(init_begin
, init_end
);
485 free_initmem_default(POISON_FREE_INITMEM
);
487 /* set up a new led state on systems shipped LED State panel */
488 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE
);
492 #ifdef CONFIG_STRICT_KERNEL_RWX
493 void mark_rodata_ro(void)
495 unsigned long start
= (unsigned long) &__start_rodata
;
496 unsigned long end
= (unsigned long) &__end_rodata
;
498 pr_info("Write protecting the kernel read-only data: %luk\n",
499 (end
- start
) >> 10);
501 kernel_set_to_readonly
= true;
502 map_pages(start
, __pa(start
), end
- start
, PAGE_KERNEL
, 0);
504 /* force the kernel to see the new page table entries */
512 * Just an arbitrary offset to serve as a "hole" between mapping areas
513 * (between top of physical memory and a potential pcxl dma mapping
514 * area, and below the vmalloc mapping area).
516 * The current 32K value just means that there will be a 32K "hole"
517 * between mapping areas. That means that any out-of-bounds memory
518 * accesses will hopefully be caught. The vmalloc() routines leaves
519 * a hole of 4kB between each vmalloced area for the same reason.
522 /* Leave room for gateway page expansion */
523 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
524 #error KERNEL_MAP_START is in gateway reserved region
526 #define MAP_START (KERNEL_MAP_START)
528 #define VM_MAP_OFFSET (32*1024)
529 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
530 & ~(VM_MAP_OFFSET-1)))
532 void *parisc_vmalloc_start __ro_after_init
;
533 EXPORT_SYMBOL(parisc_vmalloc_start
);
535 void __init
mem_init(void)
537 /* Do sanity checks on IPC (compat) structures */
538 BUILD_BUG_ON(sizeof(struct ipc64_perm
) != 48);
540 BUILD_BUG_ON(sizeof(struct semid64_ds
) != 80);
541 BUILD_BUG_ON(sizeof(struct msqid64_ds
) != 104);
542 BUILD_BUG_ON(sizeof(struct shmid64_ds
) != 104);
545 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm
) != sizeof(struct ipc64_perm
));
546 BUILD_BUG_ON(sizeof(struct compat_semid64_ds
) != 80);
547 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds
) != 104);
548 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds
) != 104);
551 /* Do sanity checks on page table constants */
552 BUILD_BUG_ON(PTE_ENTRY_SIZE
!= sizeof(pte_t
));
553 BUILD_BUG_ON(PMD_ENTRY_SIZE
!= sizeof(pmd_t
));
554 BUILD_BUG_ON(PGD_ENTRY_SIZE
!= sizeof(pgd_t
));
555 BUILD_BUG_ON(PAGE_SHIFT
+ BITS_PER_PTE
+ BITS_PER_PMD
+ BITS_PER_PGD
557 #if CONFIG_PGTABLE_LEVELS == 3
558 BUILD_BUG_ON(PT_INITIAL
> PTRS_PER_PMD
);
560 BUILD_BUG_ON(PT_INITIAL
> PTRS_PER_PGD
);
564 /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
565 BUILD_BUG_ON(__PAGE_OFFSET
>= 0x80000000);
566 BUILD_BUG_ON(TMPALIAS_MAP_START
>= 0x80000000);
569 high_memory
= __va((max_pfn
<< PAGE_SHIFT
));
570 set_max_mapnr(max_low_pfn
);
574 if (boot_cpu_data
.cpu_type
== pcxl2
|| boot_cpu_data
.cpu_type
== pcxl
) {
575 pcxl_dma_start
= (unsigned long)SET_MAP_OFFSET(MAP_START
);
576 parisc_vmalloc_start
= SET_MAP_OFFSET(pcxl_dma_start
577 + PCXL_DMA_MAP_SIZE
);
580 parisc_vmalloc_start
= SET_MAP_OFFSET(MAP_START
);
584 * Do not expose the virtual kernel memory layout to userspace.
585 * But keep code for debugging purposes.
587 printk("virtual kernel memory layout:\n"
588 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
589 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
590 " memory : 0x%px - 0x%px (%4ld MB)\n"
591 " .init : 0x%px - 0x%px (%4ld kB)\n"
592 " .data : 0x%px - 0x%px (%4ld kB)\n"
593 " .text : 0x%px - 0x%px (%4ld kB)\n",
595 (void*)VMALLOC_START
, (void*)VMALLOC_END
,
596 (VMALLOC_END
- VMALLOC_START
) >> 20,
598 (void *)FIXMAP_START
, (void *)(FIXMAP_START
+ FIXMAP_SIZE
),
599 (unsigned long)(FIXMAP_SIZE
/ 1024),
601 __va(0), high_memory
,
602 ((unsigned long)high_memory
- (unsigned long)__va(0)) >> 20,
604 __init_begin
, __init_end
,
605 ((unsigned long)__init_end
- (unsigned long)__init_begin
) >> 10,
608 ((unsigned long)_edata
- (unsigned long)_etext
) >> 10,
611 ((unsigned long)_etext
- (unsigned long)_text
) >> 10);
615 unsigned long *empty_zero_page __ro_after_init
;
616 EXPORT_SYMBOL(empty_zero_page
);
619 * pagetable_init() sets up the page tables
621 * Note that gateway_init() places the Linux gateway page at page 0.
622 * Since gateway pages cannot be dereferenced this has the desirable
623 * side effect of trapping those pesky NULL-reference errors in the
626 static void __init
pagetable_init(void)
630 /* Map each physical memory range to its kernel vaddr */
632 for (range
= 0; range
< npmem_ranges
; range
++) {
633 unsigned long start_paddr
;
636 start_paddr
= pmem_ranges
[range
].start_pfn
<< PAGE_SHIFT
;
637 size
= pmem_ranges
[range
].pages
<< PAGE_SHIFT
;
639 map_pages((unsigned long)__va(start_paddr
), start_paddr
,
640 size
, PAGE_KERNEL
, 0);
643 #ifdef CONFIG_BLK_DEV_INITRD
644 if (initrd_end
&& initrd_end
> mem_limit
) {
645 printk(KERN_INFO
"initrd: mapping %08lx-%08lx\n", initrd_start
, initrd_end
);
646 map_pages(initrd_start
, __pa(initrd_start
),
647 initrd_end
- initrd_start
, PAGE_KERNEL
, 0);
651 empty_zero_page
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
652 if (!empty_zero_page
)
653 panic("zero page allocation failed.\n");
657 static void __init
gateway_init(void)
659 unsigned long linux_gateway_page_addr
;
660 /* FIXME: This is 'const' in order to trick the compiler
661 into not treating it as DP-relative data. */
662 extern void * const linux_gateway_page
;
664 linux_gateway_page_addr
= LINUX_GATEWAY_ADDR
& PAGE_MASK
;
667 * Setup Linux Gateway page.
669 * The Linux gateway page will reside in kernel space (on virtual
670 * page 0), so it doesn't need to be aliased into user space.
673 map_pages(linux_gateway_page_addr
, __pa(&linux_gateway_page
),
674 PAGE_SIZE
, PAGE_GATEWAY
, 1);
677 static void __init
fixmap_init(void)
679 unsigned long addr
= FIXMAP_START
;
680 unsigned long end
= FIXMAP_START
+ FIXMAP_SIZE
;
681 pgd_t
*pgd
= pgd_offset_k(addr
);
682 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
683 pud_t
*pud
= pud_offset(p4d
, addr
);
686 BUILD_BUG_ON(FIXMAP_SIZE
> PMD_SIZE
);
688 #if CONFIG_PGTABLE_LEVELS == 3
689 if (pud_none(*pud
)) {
690 pmd
= memblock_alloc(PAGE_SIZE
<< PMD_TABLE_ORDER
,
691 PAGE_SIZE
<< PMD_TABLE_ORDER
);
693 panic("fixmap: pmd allocation failed.\n");
694 pud_populate(NULL
, pud
, pmd
);
698 pmd
= pmd_offset(pud
, addr
);
700 pte_t
*pte
= memblock_alloc(PAGE_SIZE
, PAGE_SIZE
);
702 panic("fixmap: pte allocation failed.\n");
704 pmd_populate_kernel(&init_mm
, pmd
, pte
);
707 } while (addr
< end
);
710 static void __init
parisc_bootmem_free(void)
712 unsigned long max_zone_pfn
[MAX_NR_ZONES
] = { 0, };
714 max_zone_pfn
[0] = memblock_end_of_DRAM();
716 free_area_init(max_zone_pfn
);
719 void __init
paging_init(void)
725 flush_cache_all_local(); /* start with known state */
726 flush_tlb_all_local(NULL
);
729 parisc_bootmem_free();
732 static void alloc_btlb(unsigned long start
, unsigned long end
, int *slot
,
733 unsigned long entry_info
)
735 const int slot_max
= btlb_info
.fixed_range_info
.num_comb
;
736 int min_num_pages
= btlb_info
.min_size
;
739 /* map at minimum 4 pages */
740 if (min_num_pages
< 4)
743 size
= HUGEPAGE_SIZE
;
744 while (start
< end
&& *slot
< slot_max
&& size
>= PAGE_SIZE
) {
745 /* starting address must have same alignment as size! */
746 /* if correctly aligned and fits in double size, increase */
747 if (((start
& (2 * size
- 1)) == 0) &&
748 (end
- start
) >= (2 * size
)) {
752 /* if current size alignment is too big, try smaller size */
753 if ((start
& (size
- 1)) != 0) {
757 if ((end
- start
) >= size
) {
758 if ((size
>> PAGE_SHIFT
) >= min_num_pages
)
759 pdc_btlb_insert(start
>> PAGE_SHIFT
, __pa(start
) >> PAGE_SHIFT
,
760 size
>> PAGE_SHIFT
, entry_info
, *slot
);
770 void btlb_init_per_cpu(void)
772 unsigned long s
, t
, e
;
775 /* BTLBs are not available on 64-bit CPUs */
776 if (IS_ENABLED(CONFIG_PA20
))
778 else if (pdc_btlb_info(&btlb_info
) < 0) {
779 memset(&btlb_info
, 0, sizeof btlb_info
);
782 /* insert BLTLBs for code and data segments */
783 s
= (uintptr_t) dereference_function_descriptor(&_stext
);
784 e
= (uintptr_t) dereference_function_descriptor(&_etext
);
785 t
= (uintptr_t) dereference_function_descriptor(&_sdata
);
790 alloc_btlb(s
, e
, &slot
, 0x13800000);
793 t
= (uintptr_t) dereference_function_descriptor(&_edata
);
794 e
= (uintptr_t) dereference_function_descriptor(&__bss_start
);
798 s
= (uintptr_t) dereference_function_descriptor(&_sdata
);
799 e
= (uintptr_t) dereference_function_descriptor(&__bss_stop
);
800 alloc_btlb(s
, e
, &slot
, 0x11800000);
806 * Currently, all PA20 chips have 18 bit protection IDs, which is the
807 * limiting factor (space ids are 32 bits).
810 #define NR_SPACE_IDS 262144
815 * Currently we have a one-to-one relationship between space IDs and
816 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
817 * support 15 bit protection IDs, so that is the limiting factor.
818 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
819 * probably not worth the effort for a special case here.
822 #define NR_SPACE_IDS 32768
824 #endif /* !CONFIG_PA20 */
826 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
827 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
829 static unsigned long space_id
[SID_ARRAY_SIZE
] = { 1 }; /* disallow space 0 */
830 static unsigned long dirty_space_id
[SID_ARRAY_SIZE
];
831 static unsigned long space_id_index
;
832 static unsigned long free_space_ids
= NR_SPACE_IDS
- 1;
833 static unsigned long dirty_space_ids
;
835 static DEFINE_SPINLOCK(sid_lock
);
837 unsigned long alloc_sid(void)
841 spin_lock(&sid_lock
);
843 if (free_space_ids
== 0) {
844 if (dirty_space_ids
!= 0) {
845 spin_unlock(&sid_lock
);
846 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
847 spin_lock(&sid_lock
);
849 BUG_ON(free_space_ids
== 0);
854 index
= find_next_zero_bit(space_id
, NR_SPACE_IDS
, space_id_index
);
855 space_id
[BIT_WORD(index
)] |= BIT_MASK(index
);
856 space_id_index
= index
;
858 spin_unlock(&sid_lock
);
860 return index
<< SPACEID_SHIFT
;
863 void free_sid(unsigned long spaceid
)
865 unsigned long index
= spaceid
>> SPACEID_SHIFT
;
866 unsigned long *dirty_space_offset
, mask
;
868 dirty_space_offset
= &dirty_space_id
[BIT_WORD(index
)];
869 mask
= BIT_MASK(index
);
871 spin_lock(&sid_lock
);
873 BUG_ON(*dirty_space_offset
& mask
); /* attempt to free space id twice */
875 *dirty_space_offset
|= mask
;
878 spin_unlock(&sid_lock
);
883 static void get_dirty_sids(unsigned long *ndirtyptr
,unsigned long *dirty_array
)
887 /* NOTE: sid_lock must be held upon entry */
889 *ndirtyptr
= dirty_space_ids
;
890 if (dirty_space_ids
!= 0) {
891 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
892 dirty_array
[i
] = dirty_space_id
[i
];
893 dirty_space_id
[i
] = 0;
901 static void recycle_sids(unsigned long ndirty
,unsigned long *dirty_array
)
905 /* NOTE: sid_lock must be held upon entry */
908 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
909 space_id
[i
] ^= dirty_array
[i
];
912 free_space_ids
+= ndirty
;
917 #else /* CONFIG_SMP */
919 static void recycle_sids(void)
923 /* NOTE: sid_lock must be held upon entry */
925 if (dirty_space_ids
!= 0) {
926 for (i
= 0; i
< SID_ARRAY_SIZE
; i
++) {
927 space_id
[i
] ^= dirty_space_id
[i
];
928 dirty_space_id
[i
] = 0;
931 free_space_ids
+= dirty_space_ids
;
939 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
940 * purged, we can safely reuse the space ids that were released but
941 * not flushed from the tlb.
946 static unsigned long recycle_ndirty
;
947 static unsigned long recycle_dirty_array
[SID_ARRAY_SIZE
];
948 static unsigned int recycle_inuse
;
950 void flush_tlb_all(void)
955 spin_lock(&sid_lock
);
956 __inc_irq_stat(irq_tlb_count
);
957 if (dirty_space_ids
> RECYCLE_THRESHOLD
) {
958 BUG_ON(recycle_inuse
); /* FIXME: Use a semaphore/wait queue here */
959 get_dirty_sids(&recycle_ndirty
,recycle_dirty_array
);
963 spin_unlock(&sid_lock
);
964 on_each_cpu(flush_tlb_all_local
, NULL
, 1);
966 spin_lock(&sid_lock
);
967 recycle_sids(recycle_ndirty
,recycle_dirty_array
);
969 spin_unlock(&sid_lock
);
973 void flush_tlb_all(void)
975 spin_lock(&sid_lock
);
976 __inc_irq_stat(irq_tlb_count
);
977 flush_tlb_all_local(NULL
);
979 spin_unlock(&sid_lock
);
983 static const pgprot_t protection_map
[16] = {
984 [VM_NONE
] = PAGE_NONE
,
985 [VM_READ
] = PAGE_READONLY
,
986 [VM_WRITE
] = PAGE_NONE
,
987 [VM_WRITE
| VM_READ
] = PAGE_READONLY
,
988 [VM_EXEC
] = PAGE_EXECREAD
,
989 [VM_EXEC
| VM_READ
] = PAGE_EXECREAD
,
990 [VM_EXEC
| VM_WRITE
] = PAGE_EXECREAD
,
991 [VM_EXEC
| VM_WRITE
| VM_READ
] = PAGE_EXECREAD
,
992 [VM_SHARED
] = PAGE_NONE
,
993 [VM_SHARED
| VM_READ
] = PAGE_READONLY
,
994 [VM_SHARED
| VM_WRITE
] = PAGE_WRITEONLY
,
995 [VM_SHARED
| VM_WRITE
| VM_READ
] = PAGE_SHARED
,
996 [VM_SHARED
| VM_EXEC
] = PAGE_EXECREAD
,
997 [VM_SHARED
| VM_EXEC
| VM_READ
] = PAGE_EXECREAD
,
998 [VM_SHARED
| VM_EXEC
| VM_WRITE
] = PAGE_RWX
,
999 [VM_SHARED
| VM_EXEC
| VM_WRITE
| VM_READ
] = PAGE_RWX
1001 DECLARE_VM_GET_PAGE_PROT
1003 #ifdef CONFIG_EXECMEM
1004 static struct execmem_info execmem_info __ro_after_init
;
1006 struct execmem_info __init
*execmem_arch_setup(void)
1008 execmem_info
= (struct execmem_info
){
1010 [EXECMEM_DEFAULT
] = {
1011 .start
= VMALLOC_START
,
1013 .pgprot
= PAGE_KERNEL_RWX
,
1019 return &execmem_info
;
1021 #endif /* CONFIG_EXECMEM */