1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012 Regents of the University of California
6 #ifndef _ASM_RISCV_BITOPS_H
7 #define _ASM_RISCV_BITOPS_H
9 #ifndef _LINUX_BITOPS_H
10 #error "Only <linux/bitops.h> can be included directly"
11 #endif /* _LINUX_BITOPS_H */
13 #include <linux/compiler.h>
14 #include <linux/irqflags.h>
15 #include <asm/barrier.h>
16 #include <asm/bitsperlong.h>
18 #if !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE)
19 #include <asm-generic/bitops/__ffs.h>
20 #include <asm-generic/bitops/__fls.h>
21 #include <asm-generic/bitops/ffs.h>
22 #include <asm-generic/bitops/fls.h>
25 #define __HAVE_ARCH___FFS
26 #define __HAVE_ARCH___FLS
27 #define __HAVE_ARCH_FFS
28 #define __HAVE_ARCH_FLS
30 #include <asm-generic/bitops/__ffs.h>
31 #include <asm-generic/bitops/__fls.h>
32 #include <asm-generic/bitops/ffs.h>
33 #include <asm-generic/bitops/fls.h>
35 #include <asm/alternative-macros.h>
36 #include <asm/hwcap.h>
38 #if (BITS_PER_LONG == 64)
41 #elif (BITS_PER_LONG == 32)
45 #error "Unexpected BITS_PER_LONG"
48 static __always_inline
unsigned long variable__ffs(unsigned long word
)
50 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
54 asm volatile (".option push\n"
58 : "=r" (word
) : "r" (word
) :);
63 return generic___ffs(word
);
67 * __ffs - find first set bit in a long word
68 * @word: The word to search
70 * Undefined if no set bit exists, so code should check against 0 first.
73 (__builtin_constant_p(word) ? \
74 (unsigned long)__builtin_ctzl(word) : \
77 static __always_inline
unsigned long variable__fls(unsigned long word
)
79 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
83 asm volatile (".option push\n"
87 : "=r" (word
) : "r" (word
) :);
89 return BITS_PER_LONG
- 1 - word
;
92 return generic___fls(word
);
96 * __fls - find last set bit in a long word
97 * @word: the word to search
99 * Undefined if no set bit exists, so code should check against 0 first.
101 #define __fls(word) \
102 (__builtin_constant_p(word) ? \
103 (unsigned long)(BITS_PER_LONG - 1 - __builtin_clzl(word)) : \
106 static __always_inline
int variable_ffs(int x
)
108 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
109 RISCV_ISA_EXT_ZBB
, 1)
115 asm volatile (".option push\n"
116 ".option arch,+zbb\n"
119 : "=r" (x
) : "r" (x
) :);
124 return generic_ffs(x
);
128 * ffs - find first set bit in a word
129 * @x: the word to search
131 * This is defined the same way as the libc and compiler builtin ffs routines.
133 * ffs(value) returns 0 if value is 0 or the position of the first set bit if
134 * value is nonzero. The first (least significant) bit is at position 1.
136 #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
138 static __always_inline
int variable_fls(unsigned int x
)
140 asm goto(ALTERNATIVE("j %l[legacy]", "nop", 0,
141 RISCV_ISA_EXT_ZBB
, 1)
147 asm volatile (".option push\n"
148 ".option arch,+zbb\n"
151 : "=r" (x
) : "r" (x
) :);
156 return generic_fls(x
);
160 * fls - find last set bit in a word
161 * @x: the word to search
163 * This is defined in a similar way as ffs, but returns the position of the most
164 * significant set bit.
166 * fls(value) returns 0 if value is 0 or the position of the last set bit if
167 * value is nonzero. The last (most significant) bit is at position 32.
171 typeof(x) x_ = (x); \
172 __builtin_constant_p(x_) ? \
173 ((x_ != 0) ? (32 - __builtin_clz(x_)) : 0) \
178 #endif /* !defined(CONFIG_RISCV_ISA_ZBB) || defined(NO_ALTERNATIVE) */
180 #include <asm-generic/bitops/ffz.h>
181 #include <asm-generic/bitops/fls64.h>
182 #include <asm-generic/bitops/sched.h>
184 #include <asm/arch_hweight.h>
186 #include <asm-generic/bitops/const_hweight.h>
188 #if (BITS_PER_LONG == 64)
189 #define __AMO(op) "amo" #op ".d"
190 #elif (BITS_PER_LONG == 32)
191 #define __AMO(op) "amo" #op ".w"
193 #error "Unexpected BITS_PER_LONG"
196 #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \
198 unsigned long __res, __mask; \
199 __mask = BIT_MASK(nr); \
200 __asm__ __volatile__ ( \
201 __AMO(op) #ord " %0, %2, %1" \
202 : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \
203 : "r" (mod(__mask)) \
205 ((__res & __mask) != 0); \
208 #define __op_bit_ord(op, mod, nr, addr, ord) \
209 __asm__ __volatile__ ( \
210 __AMO(op) #ord " zero, %1, %0" \
211 : "+A" (addr[BIT_WORD(nr)]) \
212 : "r" (mod(BIT_MASK(nr))) \
215 #define __test_and_op_bit(op, mod, nr, addr) \
216 __test_and_op_bit_ord(op, mod, nr, addr, .aqrl)
217 #define __op_bit(op, mod, nr, addr) \
218 __op_bit_ord(op, mod, nr, addr, )
220 /* Bitmask modifiers */
222 #define __NOT(x) (~(x))
225 * arch_test_and_set_bit - Set a bit and return its old value
227 * @addr: Address to count from
229 * This operation may be reordered on other architectures than x86.
231 static inline int arch_test_and_set_bit(int nr
, volatile unsigned long *addr
)
233 return __test_and_op_bit(or, __NOP
, nr
, addr
);
237 * arch_test_and_clear_bit - Clear a bit and return its old value
239 * @addr: Address to count from
241 * This operation can be reordered on other architectures other than x86.
243 static inline int arch_test_and_clear_bit(int nr
, volatile unsigned long *addr
)
245 return __test_and_op_bit(and, __NOT
, nr
, addr
);
249 * arch_test_and_change_bit - Change a bit and return its old value
251 * @addr: Address to count from
253 * This operation is atomic and cannot be reordered.
254 * It also implies a memory barrier.
256 static inline int arch_test_and_change_bit(int nr
, volatile unsigned long *addr
)
258 return __test_and_op_bit(xor, __NOP
, nr
, addr
);
262 * arch_set_bit - Atomically set a bit in memory
263 * @nr: the bit to set
264 * @addr: the address to start counting from
266 * Note: there are no guarantees that this function will not be reordered
267 * on non x86 architectures, so if you are writing portable code,
268 * make sure not to rely on its reordering guarantees.
270 * Note that @nr may be almost arbitrarily large; this function is not
271 * restricted to acting on a single-word quantity.
273 static inline void arch_set_bit(int nr
, volatile unsigned long *addr
)
275 __op_bit(or, __NOP
, nr
, addr
);
279 * arch_clear_bit - Clears a bit in memory
281 * @addr: Address to start counting from
283 * Note: there are no guarantees that this function will not be reordered
284 * on non x86 architectures, so if you are writing portable code,
285 * make sure not to rely on its reordering guarantees.
287 static inline void arch_clear_bit(int nr
, volatile unsigned long *addr
)
289 __op_bit(and, __NOT
, nr
, addr
);
293 * arch_change_bit - Toggle a bit in memory
295 * @addr: Address to start counting from
297 * change_bit() may be reordered on other architectures than x86.
298 * Note that @nr may be almost arbitrarily large; this function is not
299 * restricted to acting on a single-word quantity.
301 static inline void arch_change_bit(int nr
, volatile unsigned long *addr
)
303 __op_bit(xor, __NOP
, nr
, addr
);
307 * arch_test_and_set_bit_lock - Set a bit and return its old value, for lock
309 * @addr: Address to count from
311 * This operation is atomic and provides acquire barrier semantics.
312 * It can be used to implement bit locks.
314 static inline int arch_test_and_set_bit_lock(
315 unsigned long nr
, volatile unsigned long *addr
)
317 return __test_and_op_bit_ord(or, __NOP
, nr
, addr
, .aq
);
321 * arch_clear_bit_unlock - Clear a bit in memory, for unlock
322 * @nr: the bit to set
323 * @addr: the address to start counting from
325 * This operation is atomic and provides release barrier semantics.
327 static inline void arch_clear_bit_unlock(
328 unsigned long nr
, volatile unsigned long *addr
)
330 __op_bit_ord(and, __NOT
, nr
, addr
, .rl
);
334 * arch___clear_bit_unlock - Clear a bit in memory, for unlock
335 * @nr: the bit to set
336 * @addr: the address to start counting from
338 * This operation is like clear_bit_unlock, however it is not atomic.
339 * It does provide release barrier semantics so it can be used to unlock
340 * a bit lock, however it would only be used if no other CPU can modify
341 * any bits in the memory until the lock is released (a good example is
342 * if the bit lock itself protects access to the other bits in the word).
344 * On RISC-V systems there seems to be no benefit to taking advantage of the
345 * non-atomic property here: it's a lot more instructions and we still have to
346 * provide release semantics anyway.
348 static inline void arch___clear_bit_unlock(
349 unsigned long nr
, volatile unsigned long *addr
)
351 arch_clear_bit_unlock(nr
, addr
);
354 static inline bool arch_xor_unlock_is_negative_byte(unsigned long mask
,
355 volatile unsigned long *addr
)
358 __asm__
__volatile__ (
359 __AMO(xor) ".rl %0, %2, %1"
360 : "=r" (res
), "+A" (*addr
)
363 return (res
& BIT(7)) != 0;
366 #undef __test_and_op_bit
372 #include <asm-generic/bitops/instrumented-atomic.h>
373 #include <asm-generic/bitops/instrumented-lock.h>
375 #include <asm-generic/bitops/non-atomic.h>
376 #include <asm-generic/bitops/le.h>
377 #include <asm-generic/bitops/ext2-atomic.h>
379 #endif /* _ASM_RISCV_BITOPS_H */