drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / coco / core.c
blob0f81f70aca822e7d798b48e149a853004638b7b0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Confidential Computing Platform Capability checks
5 * Copyright (C) 2021 Advanced Micro Devices, Inc.
6 * Copyright (C) 2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
8 * Author: Tom Lendacky <thomas.lendacky@amd.com>
9 */
11 #include <linux/export.h>
12 #include <linux/cc_platform.h>
13 #include <linux/string.h>
14 #include <linux/random.h>
16 #include <asm/archrandom.h>
17 #include <asm/coco.h>
18 #include <asm/processor.h>
20 enum cc_vendor cc_vendor __ro_after_init = CC_VENDOR_NONE;
21 u64 cc_mask __ro_after_init;
23 static struct cc_attr_flags {
24 __u64 host_sev_snp : 1,
25 __resv : 63;
26 } cc_flags;
28 static bool noinstr intel_cc_platform_has(enum cc_attr attr)
30 switch (attr) {
31 case CC_ATTR_GUEST_UNROLL_STRING_IO:
32 case CC_ATTR_GUEST_MEM_ENCRYPT:
33 case CC_ATTR_MEM_ENCRYPT:
34 return true;
35 default:
36 return false;
41 * Handle the SEV-SNP vTOM case where sme_me_mask is zero, and
42 * the other levels of SME/SEV functionality, including C-bit
43 * based SEV-SNP, are not enabled.
45 static __maybe_unused __always_inline bool amd_cc_platform_vtom(enum cc_attr attr)
47 switch (attr) {
48 case CC_ATTR_GUEST_MEM_ENCRYPT:
49 case CC_ATTR_MEM_ENCRYPT:
50 return true;
51 default:
52 return false;
57 * SME and SEV are very similar but they are not the same, so there are
58 * times that the kernel will need to distinguish between SME and SEV. The
59 * cc_platform_has() function is used for this. When a distinction isn't
60 * needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
62 * The trampoline code is a good example for this requirement. Before
63 * paging is activated, SME will access all memory as decrypted, but SEV
64 * will access all memory as encrypted. So, when APs are being brought
65 * up under SME the trampoline area cannot be encrypted, whereas under SEV
66 * the trampoline area must be encrypted.
69 static bool noinstr amd_cc_platform_has(enum cc_attr attr)
71 #ifdef CONFIG_AMD_MEM_ENCRYPT
73 if (sev_status & MSR_AMD64_SNP_VTOM)
74 return amd_cc_platform_vtom(attr);
76 switch (attr) {
77 case CC_ATTR_MEM_ENCRYPT:
78 return sme_me_mask;
80 case CC_ATTR_HOST_MEM_ENCRYPT:
81 return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED);
83 case CC_ATTR_GUEST_MEM_ENCRYPT:
84 return sev_status & MSR_AMD64_SEV_ENABLED;
86 case CC_ATTR_GUEST_STATE_ENCRYPT:
87 return sev_status & MSR_AMD64_SEV_ES_ENABLED;
90 * With SEV, the rep string I/O instructions need to be unrolled
91 * but SEV-ES supports them through the #VC handler.
93 case CC_ATTR_GUEST_UNROLL_STRING_IO:
94 return (sev_status & MSR_AMD64_SEV_ENABLED) &&
95 !(sev_status & MSR_AMD64_SEV_ES_ENABLED);
97 case CC_ATTR_GUEST_SEV_SNP:
98 return sev_status & MSR_AMD64_SEV_SNP_ENABLED;
100 case CC_ATTR_HOST_SEV_SNP:
101 return cc_flags.host_sev_snp;
103 default:
104 return false;
106 #else
107 return false;
108 #endif
111 bool noinstr cc_platform_has(enum cc_attr attr)
113 switch (cc_vendor) {
114 case CC_VENDOR_AMD:
115 return amd_cc_platform_has(attr);
116 case CC_VENDOR_INTEL:
117 return intel_cc_platform_has(attr);
118 default:
119 return false;
122 EXPORT_SYMBOL_GPL(cc_platform_has);
124 u64 cc_mkenc(u64 val)
127 * Both AMD and Intel use a bit in the page table to indicate
128 * encryption status of the page.
130 * - for AMD, bit *set* means the page is encrypted
131 * - for AMD with vTOM and for Intel, *clear* means encrypted
133 switch (cc_vendor) {
134 case CC_VENDOR_AMD:
135 if (sev_status & MSR_AMD64_SNP_VTOM)
136 return val & ~cc_mask;
137 else
138 return val | cc_mask;
139 case CC_VENDOR_INTEL:
140 return val & ~cc_mask;
141 default:
142 return val;
146 u64 cc_mkdec(u64 val)
148 /* See comment in cc_mkenc() */
149 switch (cc_vendor) {
150 case CC_VENDOR_AMD:
151 if (sev_status & MSR_AMD64_SNP_VTOM)
152 return val | cc_mask;
153 else
154 return val & ~cc_mask;
155 case CC_VENDOR_INTEL:
156 return val | cc_mask;
157 default:
158 return val;
161 EXPORT_SYMBOL_GPL(cc_mkdec);
163 static void amd_cc_platform_clear(enum cc_attr attr)
165 switch (attr) {
166 case CC_ATTR_HOST_SEV_SNP:
167 cc_flags.host_sev_snp = 0;
168 break;
169 default:
170 break;
174 void cc_platform_clear(enum cc_attr attr)
176 switch (cc_vendor) {
177 case CC_VENDOR_AMD:
178 amd_cc_platform_clear(attr);
179 break;
180 default:
181 break;
185 static void amd_cc_platform_set(enum cc_attr attr)
187 switch (attr) {
188 case CC_ATTR_HOST_SEV_SNP:
189 cc_flags.host_sev_snp = 1;
190 break;
191 default:
192 break;
196 void cc_platform_set(enum cc_attr attr)
198 switch (cc_vendor) {
199 case CC_VENDOR_AMD:
200 amd_cc_platform_set(attr);
201 break;
202 default:
203 break;
207 __init void cc_random_init(void)
210 * The seed is 32 bytes (in units of longs), which is 256 bits, which
211 * is the security level that the RNG is targeting.
213 unsigned long rng_seed[32 / sizeof(long)];
214 size_t i, longs;
216 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
217 return;
220 * Since the CoCo threat model includes the host, the only reliable
221 * source of entropy that can be neither observed nor manipulated is
222 * RDRAND. Usually, RDRAND failure is considered tolerable, but since
223 * CoCo guests have no other unobservable source of entropy, it's
224 * important to at least ensure the RNG gets some initial random seeds.
226 for (i = 0; i < ARRAY_SIZE(rng_seed); i += longs) {
227 longs = arch_get_random_longs(&rng_seed[i], ARRAY_SIZE(rng_seed) - i);
230 * A zero return value means that the guest doesn't have RDRAND
231 * or the CPU is physically broken, and in both cases that
232 * means most crypto inside of the CoCo instance will be
233 * broken, defeating the purpose of CoCo in the first place. So
234 * just panic here because it's absolutely unsafe to continue
235 * executing.
237 if (longs == 0)
238 panic("RDRAND is defective.");
240 add_device_randomness(rng_seed, sizeof(rng_seed));
241 memzero_explicit(rng_seed, sizeof(rng_seed));