drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / crypto / sha512-avx-asm.S
blob5bfce4b045fdfb0ae93b181657fb4157c7ba1407
1 ########################################################################
2 # Implement fast SHA-512 with AVX instructions. (x86_64)
4 # Copyright (C) 2013 Intel Corporation.
6 # Authors:
7 #     James Guilford <james.guilford@intel.com>
8 #     Kirk Yap <kirk.s.yap@intel.com>
9 #     David Cote <david.m.cote@intel.com>
10 #     Tim Chen <tim.c.chen@linux.intel.com>
12 # This software is available to you under a choice of one of two
13 # licenses.  You may choose to be licensed under the terms of the GNU
14 # General Public License (GPL) Version 2, available from the file
15 # COPYING in the main directory of this source tree, or the
16 # OpenIB.org BSD license below:
18 #     Redistribution and use in source and binary forms, with or
19 #     without modification, are permitted provided that the following
20 #     conditions are met:
22 #      - Redistributions of source code must retain the above
23 #        copyright notice, this list of conditions and the following
24 #        disclaimer.
26 #      - Redistributions in binary form must reproduce the above
27 #        copyright notice, this list of conditions and the following
28 #        disclaimer in the documentation and/or other materials
29 #        provided with the distribution.
31 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34 # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35 # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36 # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37 # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 # SOFTWARE.
40 ########################################################################
42 # This code is described in an Intel White-Paper:
43 # "Fast SHA-512 Implementations on Intel Architecture Processors"
45 # To find it, surf to http://www.intel.com/p/en_US/embedded
46 # and search for that title.
48 ########################################################################
50 #include <linux/linkage.h>
51 #include <linux/cfi_types.h>
53 .text
55 # Virtual Registers
56 # ARG1
57 digest  = %rdi
58 # ARG2
59 msg     = %rsi
60 # ARG3
61 msglen  = %rdx
62 T1      = %rcx
63 T2      = %r8
64 a_64    = %r9
65 b_64    = %r10
66 c_64    = %r11
67 d_64    = %r12
68 e_64    = %r13
69 f_64    = %r14
70 g_64    = %r15
71 h_64    = %rbx
72 tmp0    = %rax
74 # Local variables (stack frame)
76 # Message Schedule
77 W_SIZE = 80*8
78 # W[t] + K[t] | W[t+1] + K[t+1]
79 WK_SIZE = 2*8
81 frame_W = 0
82 frame_WK = frame_W + W_SIZE
83 frame_size = frame_WK + WK_SIZE
85 # Useful QWORD "arrays" for simpler memory references
86 # MSG, DIGEST, K_t, W_t are arrays
87 # WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even
89 # Input message (arg1)
90 #define MSG(i)    8*i(msg)
92 # Output Digest (arg2)
93 #define DIGEST(i) 8*i(digest)
95 # SHA Constants (static mem)
96 #define K_t(i)    8*i+K512(%rip)
98 # Message Schedule (stack frame)
99 #define W_t(i)    8*i+frame_W(%rsp)
101 # W[t]+K[t] (stack frame)
102 #define WK_2(i)   8*((i%2))+frame_WK(%rsp)
104 .macro RotateState
105         # Rotate symbols a..h right
106         TMP   = h_64
107         h_64  = g_64
108         g_64  = f_64
109         f_64  = e_64
110         e_64  = d_64
111         d_64  = c_64
112         c_64  = b_64
113         b_64  = a_64
114         a_64  = TMP
115 .endm
117 .macro RORQ p1 p2
118         # shld is faster than ror on Sandybridge
119         shld    $(64-\p2), \p1, \p1
120 .endm
122 .macro SHA512_Round rnd
123         # Compute Round %%t
124         mov     f_64, T1          # T1 = f
125         mov     e_64, tmp0        # tmp = e
126         xor     g_64, T1          # T1 = f ^ g
127         RORQ    tmp0, 23   # 41    # tmp = e ror 23
128         and     e_64, T1          # T1 = (f ^ g) & e
129         xor     e_64, tmp0        # tmp = (e ror 23) ^ e
130         xor     g_64, T1          # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
131         idx = \rnd
132         add     WK_2(idx), T1     # W[t] + K[t] from message scheduler
133         RORQ    tmp0, 4   # 18    # tmp = ((e ror 23) ^ e) ror 4
134         xor     e_64, tmp0        # tmp = (((e ror 23) ^ e) ror 4) ^ e
135         mov     a_64, T2          # T2 = a
136         add     h_64, T1          # T1 = CH(e,f,g) + W[t] + K[t] + h
137         RORQ    tmp0, 14  # 14    # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
138         add     tmp0, T1          # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
139         mov     a_64, tmp0        # tmp = a
140         xor     c_64, T2          # T2 = a ^ c
141         and     c_64, tmp0        # tmp = a & c
142         and     b_64, T2          # T2 = (a ^ c) & b
143         xor     tmp0, T2          # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
144         mov     a_64, tmp0        # tmp = a
145         RORQ    tmp0, 5  # 39     # tmp = a ror 5
146         xor     a_64, tmp0        # tmp = (a ror 5) ^ a
147         add     T1, d_64          # e(next_state) = d + T1
148         RORQ    tmp0, 6  # 34     # tmp = ((a ror 5) ^ a) ror 6
149         xor     a_64, tmp0        # tmp = (((a ror 5) ^ a) ror 6) ^ a
150         lea     (T1, T2), h_64    # a(next_state) = T1 + Maj(a,b,c)
151         RORQ    tmp0, 28  # 28    # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
152         add     tmp0, h_64        # a(next_state) = T1 + Maj(a,b,c) S0(a)
153         RotateState
154 .endm
156 .macro SHA512_2Sched_2Round_avx rnd
157         # Compute rounds t-2 and t-1
158         # Compute message schedule QWORDS t and t+1
160         #   Two rounds are computed based on the values for K[t-2]+W[t-2] and
161         # K[t-1]+W[t-1] which were previously stored at WK_2 by the message
162         # scheduler.
163         #   The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
164         # They are then added to their respective SHA512 constants at
165         # [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
166         #   For brievity, the comments following vectored instructions only refer to
167         # the first of a pair of QWORDS.
168         # Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
169         #   The computation of the message schedule and the rounds are tightly
170         # stitched to take advantage of instruction-level parallelism.
172         idx = \rnd - 2
173         vmovdqa W_t(idx), %xmm4         # XMM4 = W[t-2]
174         idx = \rnd - 15
175         vmovdqu W_t(idx), %xmm5         # XMM5 = W[t-15]
176         mov     f_64, T1
177         vpsrlq  $61, %xmm4, %xmm0       # XMM0 = W[t-2]>>61
178         mov     e_64, tmp0
179         vpsrlq  $1, %xmm5, %xmm6        # XMM6 = W[t-15]>>1
180         xor     g_64, T1
181         RORQ    tmp0, 23 # 41
182         vpsrlq  $19, %xmm4, %xmm1       # XMM1 = W[t-2]>>19
183         and     e_64, T1
184         xor     e_64, tmp0
185         vpxor   %xmm1, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
186         xor     g_64, T1
187         idx = \rnd
188         add     WK_2(idx), T1#
189         vpsrlq  $8, %xmm5, %xmm7        # XMM7 = W[t-15]>>8
190         RORQ    tmp0, 4 # 18
191         vpsrlq  $6, %xmm4, %xmm2        # XMM2 = W[t-2]>>6
192         xor     e_64, tmp0
193         mov     a_64, T2
194         add     h_64, T1
195         vpxor   %xmm7, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
196         RORQ    tmp0, 14 # 14
197         add     tmp0, T1
198         vpsrlq  $7, %xmm5, %xmm8        # XMM8 = W[t-15]>>7
199         mov     a_64, tmp0
200         xor     c_64, T2
201         vpsllq  $(64-61), %xmm4, %xmm3  # XMM3 = W[t-2]<<3
202         and     c_64, tmp0
203         and     b_64, T2
204         vpxor   %xmm3, %xmm2, %xmm2     # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
205         xor     tmp0, T2
206         mov     a_64, tmp0
207         vpsllq  $(64-1), %xmm5, %xmm9   # XMM9 = W[t-15]<<63
208         RORQ    tmp0, 5 # 39
209         vpxor   %xmm9, %xmm8, %xmm8     # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
210         xor     a_64, tmp0
211         add     T1, d_64
212         RORQ    tmp0, 6 # 34
213         xor     a_64, tmp0
214         vpxor   %xmm8, %xmm6, %xmm6     # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
215                                         #  W[t-15]>>7 ^ W[t-15]<<63
216         lea     (T1, T2), h_64
217         RORQ    tmp0, 28 # 28
218         vpsllq  $(64-19), %xmm4, %xmm4  # XMM4 = W[t-2]<<25
219         add     tmp0, h_64
220         RotateState
221         vpxor   %xmm4, %xmm0, %xmm0     # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
222                                         #        W[t-2]<<25
223         mov     f_64, T1
224         vpxor   %xmm2, %xmm0, %xmm0     # XMM0 = s1(W[t-2])
225         mov     e_64, tmp0
226         xor     g_64, T1
227         idx = \rnd - 16
228         vpaddq  W_t(idx), %xmm0, %xmm0  # XMM0 = s1(W[t-2]) + W[t-16]
229         idx = \rnd - 7
230         vmovdqu W_t(idx), %xmm1         # XMM1 = W[t-7]
231         RORQ    tmp0, 23 # 41
232         and     e_64, T1
233         xor     e_64, tmp0
234         xor     g_64, T1
235         vpsllq  $(64-8), %xmm5, %xmm5   # XMM5 = W[t-15]<<56
236         idx = \rnd + 1
237         add     WK_2(idx), T1
238         vpxor   %xmm5, %xmm6, %xmm6     # XMM6 = s0(W[t-15])
239         RORQ    tmp0, 4 # 18
240         vpaddq  %xmm6, %xmm0, %xmm0     # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
241         xor     e_64, tmp0
242         vpaddq  %xmm1, %xmm0, %xmm0     # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
243                                         #               s0(W[t-15]) + W[t-16]
244         mov     a_64, T2
245         add     h_64, T1
246         RORQ    tmp0, 14 # 14
247         add     tmp0, T1
248         idx = \rnd
249         vmovdqa %xmm0, W_t(idx)         # Store W[t]
250         vpaddq  K_t(idx), %xmm0, %xmm0  # Compute W[t]+K[t]
251         vmovdqa %xmm0, WK_2(idx)        # Store W[t]+K[t] for next rounds
252         mov     a_64, tmp0
253         xor     c_64, T2
254         and     c_64, tmp0
255         and     b_64, T2
256         xor     tmp0, T2
257         mov     a_64, tmp0
258         RORQ    tmp0, 5 # 39
259         xor     a_64, tmp0
260         add     T1, d_64
261         RORQ    tmp0, 6 # 34
262         xor     a_64, tmp0
263         lea     (T1, T2), h_64
264         RORQ    tmp0, 28 # 28
265         add     tmp0, h_64
266         RotateState
267 .endm
269 ########################################################################
270 # void sha512_transform_avx(sha512_state *state, const u8 *data, int blocks)
271 # Purpose: Updates the SHA512 digest stored at "state" with the message
272 # stored in "data".
273 # The size of the message pointed to by "data" must be an integer multiple
274 # of SHA512 message blocks.
275 # "blocks" is the message length in SHA512 blocks
276 ########################################################################
277 SYM_TYPED_FUNC_START(sha512_transform_avx)
278         test msglen, msglen
279         je .Lnowork
281         # Save GPRs
282         push    %rbx
283         push    %r12
284         push    %r13
285         push    %r14
286         push    %r15
288         # Allocate Stack Space
289         push    %rbp
290         mov     %rsp, %rbp
291         sub     $frame_size, %rsp
292         and     $~(0x20 - 1), %rsp
294 .Lupdateblock:
296         # Load state variables
297         mov     DIGEST(0), a_64
298         mov     DIGEST(1), b_64
299         mov     DIGEST(2), c_64
300         mov     DIGEST(3), d_64
301         mov     DIGEST(4), e_64
302         mov     DIGEST(5), f_64
303         mov     DIGEST(6), g_64
304         mov     DIGEST(7), h_64
306         t = 0
307         .rept 80/2 + 1
308         # (80 rounds) / (2 rounds/iteration) + (1 iteration)
309         # +1 iteration because the scheduler leads hashing by 1 iteration
310                 .if t < 2
311                         # BSWAP 2 QWORDS
312                         vmovdqa  XMM_QWORD_BSWAP(%rip), %xmm1
313                         vmovdqu  MSG(t), %xmm0
314                         vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
315                         vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
316                         vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
317                         vmovdqa  %xmm0, WK_2(t) # Store into WK for rounds
318                 .elseif t < 16
319                         # BSWAP 2 QWORDS# Compute 2 Rounds
320                         vmovdqu  MSG(t), %xmm0
321                         vpshufb  %xmm1, %xmm0, %xmm0    # BSWAP
322                         SHA512_Round t-2    # Round t-2
323                         vmovdqa  %xmm0, W_t(t) # Store Scheduled Pair
324                         vpaddq   K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
325                         SHA512_Round t-1    # Round t-1
326                         vmovdqa  %xmm0, WK_2(t)# Store W[t]+K[t] into WK
327                 .elseif t < 79
328                         # Schedule 2 QWORDS# Compute 2 Rounds
329                         SHA512_2Sched_2Round_avx t
330                 .else
331                         # Compute 2 Rounds
332                         SHA512_Round t-2
333                         SHA512_Round t-1
334                 .endif
335                 t = t+2
336         .endr
338         # Update digest
339         add     a_64, DIGEST(0)
340         add     b_64, DIGEST(1)
341         add     c_64, DIGEST(2)
342         add     d_64, DIGEST(3)
343         add     e_64, DIGEST(4)
344         add     f_64, DIGEST(5)
345         add     g_64, DIGEST(6)
346         add     h_64, DIGEST(7)
348         # Advance to next message block
349         add     $16*8, msg
350         dec     msglen
351         jnz     .Lupdateblock
353         # Restore Stack Pointer
354         mov     %rbp, %rsp
355         pop     %rbp
357         # Restore GPRs
358         pop     %r15
359         pop     %r14
360         pop     %r13
361         pop     %r12
362         pop     %rbx
364 .Lnowork:
365         RET
366 SYM_FUNC_END(sha512_transform_avx)
368 ########################################################################
369 ### Binary Data
371 .section        .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
372 .align 16
373 # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
374 XMM_QWORD_BSWAP:
375         .octa 0x08090a0b0c0d0e0f0001020304050607
377 # Mergeable 640-byte rodata section. This allows linker to merge the table
378 # with other, exactly the same 640-byte fragment of another rodata section
379 # (if such section exists).
380 .section        .rodata.cst640.K512, "aM", @progbits, 640
381 .align 64
382 # K[t] used in SHA512 hashing
383 K512:
384         .quad 0x428a2f98d728ae22,0x7137449123ef65cd
385         .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
386         .quad 0x3956c25bf348b538,0x59f111f1b605d019
387         .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
388         .quad 0xd807aa98a3030242,0x12835b0145706fbe
389         .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
390         .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
391         .quad 0x9bdc06a725c71235,0xc19bf174cf692694
392         .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
393         .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
394         .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
395         .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
396         .quad 0x983e5152ee66dfab,0xa831c66d2db43210
397         .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
398         .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
399         .quad 0x06ca6351e003826f,0x142929670a0e6e70
400         .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
401         .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
402         .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
403         .quad 0x81c2c92e47edaee6,0x92722c851482353b
404         .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
405         .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
406         .quad 0xd192e819d6ef5218,0xd69906245565a910
407         .quad 0xf40e35855771202a,0x106aa07032bbd1b8
408         .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
409         .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
410         .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
411         .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
412         .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
413         .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
414         .quad 0x90befffa23631e28,0xa4506cebde82bde9
415         .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
416         .quad 0xca273eceea26619c,0xd186b8c721c0c207
417         .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
418         .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
419         .quad 0x113f9804bef90dae,0x1b710b35131c471b
420         .quad 0x28db77f523047d84,0x32caab7b40c72493
421         .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
422         .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
423         .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817