drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / kernel / apic / io_apic.c
blob1029ea4ac8ba3d97ffdfa7a32e015bfac4f5d433
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Intel IO-APIC support for multi-Pentium hosts.
5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
7 * Many thanks to Stig Venaas for trying out countless experimental
8 * patches and reporting/debugging problems patiently!
10 * (c) 1999, Multiple IO-APIC support, developed by
11 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
12 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
13 * further tested and cleaned up by Zach Brown <zab@redhat.com>
14 * and Ingo Molnar <mingo@redhat.com>
16 * Fixes
17 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
18 * thanks to Eric Gilmore
19 * and Rolf G. Tews
20 * for testing these extensively
21 * Paul Diefenbaugh : Added full ACPI support
23 * Historical information which is worth to be preserved:
25 * - SiS APIC rmw bug:
27 * We used to have a workaround for a bug in SiS chips which
28 * required to rewrite the index register for a read-modify-write
29 * operation as the chip lost the index information which was
30 * setup for the read already. We cache the data now, so that
31 * workaround has been removed.
34 #include <linux/mm.h>
35 #include <linux/interrupt.h>
36 #include <linux/irq.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/sched.h>
40 #include <linux/pci.h>
41 #include <linux/mc146818rtc.h>
42 #include <linux/compiler.h>
43 #include <linux/acpi.h>
44 #include <linux/export.h>
45 #include <linux/syscore_ops.h>
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include <linux/jiffies.h> /* time_after() */
49 #include <linux/slab.h>
50 #include <linux/memblock.h>
51 #include <linux/msi.h>
53 #include <asm/irqdomain.h>
54 #include <asm/io.h>
55 #include <asm/smp.h>
56 #include <asm/cpu.h>
57 #include <asm/desc.h>
58 #include <asm/proto.h>
59 #include <asm/acpi.h>
60 #include <asm/dma.h>
61 #include <asm/timer.h>
62 #include <asm/time.h>
63 #include <asm/i8259.h>
64 #include <asm/setup.h>
65 #include <asm/irq_remapping.h>
66 #include <asm/hw_irq.h>
67 #include <asm/apic.h>
68 #include <asm/pgtable.h>
69 #include <asm/x86_init.h>
71 #define for_each_ioapic(idx) \
72 for ((idx) = 0; (idx) < nr_ioapics; (idx)++)
73 #define for_each_ioapic_reverse(idx) \
74 for ((idx) = nr_ioapics - 1; (idx) >= 0; (idx)--)
75 #define for_each_pin(idx, pin) \
76 for ((pin) = 0; (pin) < ioapics[(idx)].nr_registers; (pin)++)
77 #define for_each_ioapic_pin(idx, pin) \
78 for_each_ioapic((idx)) \
79 for_each_pin((idx), (pin))
80 #define for_each_irq_pin(entry, head) \
81 list_for_each_entry(entry, &head, list)
83 static DEFINE_RAW_SPINLOCK(ioapic_lock);
84 static DEFINE_MUTEX(ioapic_mutex);
85 static unsigned int ioapic_dynirq_base;
86 static int ioapic_initialized;
88 struct irq_pin_list {
89 struct list_head list;
90 int apic, pin;
93 struct mp_chip_data {
94 struct list_head irq_2_pin;
95 struct IO_APIC_route_entry entry;
96 bool is_level;
97 bool active_low;
98 bool isa_irq;
99 u32 count;
102 struct mp_ioapic_gsi {
103 u32 gsi_base;
104 u32 gsi_end;
107 static struct ioapic {
108 /* # of IRQ routing registers */
109 int nr_registers;
110 /* Saved state during suspend/resume, or while enabling intr-remap. */
111 struct IO_APIC_route_entry *saved_registers;
112 /* I/O APIC config */
113 struct mpc_ioapic mp_config;
114 /* IO APIC gsi routing info */
115 struct mp_ioapic_gsi gsi_config;
116 struct ioapic_domain_cfg irqdomain_cfg;
117 struct irq_domain *irqdomain;
118 struct resource *iomem_res;
119 } ioapics[MAX_IO_APICS];
121 #define mpc_ioapic_ver(ioapic_idx) ioapics[ioapic_idx].mp_config.apicver
123 int mpc_ioapic_id(int ioapic_idx)
125 return ioapics[ioapic_idx].mp_config.apicid;
128 unsigned int mpc_ioapic_addr(int ioapic_idx)
130 return ioapics[ioapic_idx].mp_config.apicaddr;
133 static inline struct mp_ioapic_gsi *mp_ioapic_gsi_routing(int ioapic_idx)
135 return &ioapics[ioapic_idx].gsi_config;
138 static inline int mp_ioapic_pin_count(int ioapic)
140 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic);
142 return gsi_cfg->gsi_end - gsi_cfg->gsi_base + 1;
145 static inline u32 mp_pin_to_gsi(int ioapic, int pin)
147 return mp_ioapic_gsi_routing(ioapic)->gsi_base + pin;
150 static inline bool mp_is_legacy_irq(int irq)
152 return irq >= 0 && irq < nr_legacy_irqs();
155 static inline struct irq_domain *mp_ioapic_irqdomain(int ioapic)
157 return ioapics[ioapic].irqdomain;
160 int nr_ioapics;
162 /* The one past the highest gsi number used */
163 u32 gsi_top;
165 /* MP IRQ source entries */
166 struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
168 /* # of MP IRQ source entries */
169 int mp_irq_entries;
171 #ifdef CONFIG_EISA
172 int mp_bus_id_to_type[MAX_MP_BUSSES];
173 #endif
175 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
177 bool ioapic_is_disabled __ro_after_init;
180 * disable_ioapic_support() - disables ioapic support at runtime
182 void disable_ioapic_support(void)
184 #ifdef CONFIG_PCI
185 noioapicquirk = 1;
186 noioapicreroute = -1;
187 #endif
188 ioapic_is_disabled = true;
191 static int __init parse_noapic(char *str)
193 /* disable IO-APIC */
194 disable_ioapic_support();
195 return 0;
197 early_param("noapic", parse_noapic);
199 /* Will be called in mpparse/ACPI codes for saving IRQ info */
200 void mp_save_irq(struct mpc_intsrc *m)
202 int i;
204 apic_pr_verbose("Int: type %d, pol %d, trig %d, bus %02x, IRQ %02x, APIC ID %x, APIC INT %02x\n",
205 m->irqtype, m->irqflag & 3, (m->irqflag >> 2) & 3, m->srcbus,
206 m->srcbusirq, m->dstapic, m->dstirq);
208 for (i = 0; i < mp_irq_entries; i++) {
209 if (!memcmp(&mp_irqs[i], m, sizeof(*m)))
210 return;
213 memcpy(&mp_irqs[mp_irq_entries], m, sizeof(*m));
214 if (++mp_irq_entries == MAX_IRQ_SOURCES)
215 panic("Max # of irq sources exceeded!!\n");
218 static void alloc_ioapic_saved_registers(int idx)
220 size_t size;
222 if (ioapics[idx].saved_registers)
223 return;
225 size = sizeof(struct IO_APIC_route_entry) * ioapics[idx].nr_registers;
226 ioapics[idx].saved_registers = kzalloc(size, GFP_KERNEL);
227 if (!ioapics[idx].saved_registers)
228 pr_err("IOAPIC %d: suspend/resume impossible!\n", idx);
231 static void free_ioapic_saved_registers(int idx)
233 kfree(ioapics[idx].saved_registers);
234 ioapics[idx].saved_registers = NULL;
237 int __init arch_early_ioapic_init(void)
239 int i;
241 if (!nr_legacy_irqs())
242 io_apic_irqs = ~0UL;
244 for_each_ioapic(i)
245 alloc_ioapic_saved_registers(i);
247 return 0;
250 struct io_apic {
251 unsigned int index;
252 unsigned int unused[3];
253 unsigned int data;
254 unsigned int unused2[11];
255 unsigned int eoi;
258 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
260 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
261 + (mpc_ioapic_addr(idx) & ~PAGE_MASK);
264 static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
266 struct io_apic __iomem *io_apic = io_apic_base(apic);
268 writel(vector, &io_apic->eoi);
271 unsigned int native_io_apic_read(unsigned int apic, unsigned int reg)
273 struct io_apic __iomem *io_apic = io_apic_base(apic);
275 writel(reg, &io_apic->index);
276 return readl(&io_apic->data);
279 static void io_apic_write(unsigned int apic, unsigned int reg,
280 unsigned int value)
282 struct io_apic __iomem *io_apic = io_apic_base(apic);
284 writel(reg, &io_apic->index);
285 writel(value, &io_apic->data);
288 static struct IO_APIC_route_entry __ioapic_read_entry(int apic, int pin)
290 struct IO_APIC_route_entry entry;
292 entry.w1 = io_apic_read(apic, 0x10 + 2 * pin);
293 entry.w2 = io_apic_read(apic, 0x11 + 2 * pin);
295 return entry;
298 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
300 guard(raw_spinlock_irqsave)(&ioapic_lock);
301 return __ioapic_read_entry(apic, pin);
305 * When we write a new IO APIC routing entry, we need to write the high
306 * word first! If the mask bit in the low word is clear, we will enable
307 * the interrupt, and we need to make sure the entry is fully populated
308 * before that happens.
310 static void __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
312 io_apic_write(apic, 0x11 + 2*pin, e.w2);
313 io_apic_write(apic, 0x10 + 2*pin, e.w1);
316 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
318 guard(raw_spinlock_irqsave)(&ioapic_lock);
319 __ioapic_write_entry(apic, pin, e);
323 * When we mask an IO APIC routing entry, we need to write the low
324 * word first, in order to set the mask bit before we change the
325 * high bits!
327 static void ioapic_mask_entry(int apic, int pin)
329 struct IO_APIC_route_entry e = { .masked = true };
331 guard(raw_spinlock_irqsave)(&ioapic_lock);
332 io_apic_write(apic, 0x10 + 2*pin, e.w1);
333 io_apic_write(apic, 0x11 + 2*pin, e.w2);
337 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
338 * shared ISA-space IRQs, so we have to support them. We are super
339 * fast in the common case, and fast for shared ISA-space IRQs.
341 static bool add_pin_to_irq_node(struct mp_chip_data *data, int node, int apic, int pin)
343 struct irq_pin_list *entry;
345 /* Don't allow duplicates */
346 for_each_irq_pin(entry, data->irq_2_pin) {
347 if (entry->apic == apic && entry->pin == pin)
348 return true;
351 entry = kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node);
352 if (!entry) {
353 pr_err("Cannot allocate irq_pin_list (%d,%d,%d)\n", node, apic, pin);
354 return false;
357 entry->apic = apic;
358 entry->pin = pin;
359 list_add_tail(&entry->list, &data->irq_2_pin);
360 return true;
363 static void __remove_pin_from_irq(struct mp_chip_data *data, int apic, int pin)
365 struct irq_pin_list *tmp, *entry;
367 list_for_each_entry_safe(entry, tmp, &data->irq_2_pin, list) {
368 if (entry->apic == apic && entry->pin == pin) {
369 list_del(&entry->list);
370 kfree(entry);
371 return;
376 static void io_apic_modify_irq(struct mp_chip_data *data, bool masked,
377 void (*final)(struct irq_pin_list *entry))
379 struct irq_pin_list *entry;
381 data->entry.masked = masked;
383 for_each_irq_pin(entry, data->irq_2_pin) {
384 io_apic_write(entry->apic, 0x10 + 2 * entry->pin, data->entry.w1);
385 if (final)
386 final(entry);
391 * Synchronize the IO-APIC and the CPU by doing a dummy read from the
392 * IO-APIC
394 static void io_apic_sync(struct irq_pin_list *entry)
396 struct io_apic __iomem *io_apic;
398 io_apic = io_apic_base(entry->apic);
399 readl(&io_apic->data);
402 static void mask_ioapic_irq(struct irq_data *irq_data)
404 struct mp_chip_data *data = irq_data->chip_data;
406 guard(raw_spinlock_irqsave)(&ioapic_lock);
407 io_apic_modify_irq(data, true, &io_apic_sync);
410 static void __unmask_ioapic(struct mp_chip_data *data)
412 io_apic_modify_irq(data, false, NULL);
415 static void unmask_ioapic_irq(struct irq_data *irq_data)
417 struct mp_chip_data *data = irq_data->chip_data;
419 guard(raw_spinlock_irqsave)(&ioapic_lock);
420 __unmask_ioapic(data);
424 * IO-APIC versions below 0x20 don't support EOI register.
425 * For the record, here is the information about various versions:
426 * 0Xh 82489DX
427 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
428 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
429 * 30h-FFh Reserved
431 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
432 * version as 0x2. This is an error with documentation and these ICH chips
433 * use io-apic's of version 0x20.
435 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
436 * Otherwise, we simulate the EOI message manually by changing the trigger
437 * mode to edge and then back to level, with RTE being masked during this.
439 static void __eoi_ioapic_pin(int apic, int pin, int vector)
441 if (mpc_ioapic_ver(apic) >= 0x20) {
442 io_apic_eoi(apic, vector);
443 } else {
444 struct IO_APIC_route_entry entry, entry1;
446 entry = entry1 = __ioapic_read_entry(apic, pin);
448 /* Mask the entry and change the trigger mode to edge. */
449 entry1.masked = true;
450 entry1.is_level = false;
452 __ioapic_write_entry(apic, pin, entry1);
454 /* Restore the previous level triggered entry. */
455 __ioapic_write_entry(apic, pin, entry);
459 static void eoi_ioapic_pin(int vector, struct mp_chip_data *data)
461 struct irq_pin_list *entry;
463 guard(raw_spinlock_irqsave)(&ioapic_lock);
464 for_each_irq_pin(entry, data->irq_2_pin)
465 __eoi_ioapic_pin(entry->apic, entry->pin, vector);
468 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
470 struct IO_APIC_route_entry entry;
472 /* Check delivery_mode to be sure we're not clearing an SMI pin */
473 entry = ioapic_read_entry(apic, pin);
474 if (entry.delivery_mode == APIC_DELIVERY_MODE_SMI)
475 return;
478 * Make sure the entry is masked and re-read the contents to check
479 * if it is a level triggered pin and if the remote-IRR is set.
481 if (!entry.masked) {
482 entry.masked = true;
483 ioapic_write_entry(apic, pin, entry);
484 entry = ioapic_read_entry(apic, pin);
487 if (entry.irr) {
489 * Make sure the trigger mode is set to level. Explicit EOI
490 * doesn't clear the remote-IRR if the trigger mode is not
491 * set to level.
493 if (!entry.is_level) {
494 entry.is_level = true;
495 ioapic_write_entry(apic, pin, entry);
497 guard(raw_spinlock_irqsave)(&ioapic_lock);
498 __eoi_ioapic_pin(apic, pin, entry.vector);
502 * Clear the rest of the bits in the IO-APIC RTE except for the mask
503 * bit.
505 ioapic_mask_entry(apic, pin);
506 entry = ioapic_read_entry(apic, pin);
507 if (entry.irr)
508 pr_err("Unable to reset IRR for apic: %d, pin :%d\n",
509 mpc_ioapic_id(apic), pin);
512 void clear_IO_APIC (void)
514 int apic, pin;
516 for_each_ioapic_pin(apic, pin)
517 clear_IO_APIC_pin(apic, pin);
520 #ifdef CONFIG_X86_32
522 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
523 * specific CPU-side IRQs.
526 #define MAX_PIRQS 8
527 static int pirq_entries[MAX_PIRQS] = {
528 [0 ... MAX_PIRQS - 1] = -1
531 static int __init ioapic_pirq_setup(char *str)
533 int i, max, ints[MAX_PIRQS+1];
535 get_options(str, ARRAY_SIZE(ints), ints);
537 apic_pr_verbose("PIRQ redirection, working around broken MP-BIOS.\n");
539 max = MAX_PIRQS;
540 if (ints[0] < MAX_PIRQS)
541 max = ints[0];
543 for (i = 0; i < max; i++) {
544 apic_pr_verbose("... PIRQ%d -> IRQ %d\n", i, ints[i + 1]);
545 /* PIRQs are mapped upside down, usually */
546 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
548 return 1;
550 __setup("pirq=", ioapic_pirq_setup);
551 #endif /* CONFIG_X86_32 */
554 * Saves all the IO-APIC RTE's
556 int save_ioapic_entries(void)
558 int apic, pin;
559 int err = 0;
561 for_each_ioapic(apic) {
562 if (!ioapics[apic].saved_registers) {
563 err = -ENOMEM;
564 continue;
567 for_each_pin(apic, pin)
568 ioapics[apic].saved_registers[pin] = ioapic_read_entry(apic, pin);
571 return err;
575 * Mask all IO APIC entries.
577 void mask_ioapic_entries(void)
579 int apic, pin;
581 for_each_ioapic(apic) {
582 if (!ioapics[apic].saved_registers)
583 continue;
585 for_each_pin(apic, pin) {
586 struct IO_APIC_route_entry entry;
588 entry = ioapics[apic].saved_registers[pin];
589 if (!entry.masked) {
590 entry.masked = true;
591 ioapic_write_entry(apic, pin, entry);
598 * Restore IO APIC entries which was saved in the ioapic structure.
600 int restore_ioapic_entries(void)
602 int apic, pin;
604 for_each_ioapic(apic) {
605 if (!ioapics[apic].saved_registers)
606 continue;
608 for_each_pin(apic, pin)
609 ioapic_write_entry(apic, pin, ioapics[apic].saved_registers[pin]);
611 return 0;
615 * Find the IRQ entry number of a certain pin.
617 static int find_irq_entry(int ioapic_idx, int pin, int type)
619 int i;
621 for (i = 0; i < mp_irq_entries; i++) {
622 if (mp_irqs[i].irqtype == type &&
623 (mp_irqs[i].dstapic == mpc_ioapic_id(ioapic_idx) ||
624 mp_irqs[i].dstapic == MP_APIC_ALL) &&
625 mp_irqs[i].dstirq == pin)
626 return i;
629 return -1;
633 * Find the pin to which IRQ[irq] (ISA) is connected
635 static int __init find_isa_irq_pin(int irq, int type)
637 int i;
639 for (i = 0; i < mp_irq_entries; i++) {
640 int lbus = mp_irqs[i].srcbus;
642 if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) &&
643 (mp_irqs[i].srcbusirq == irq))
644 return mp_irqs[i].dstirq;
646 return -1;
649 static int __init find_isa_irq_apic(int irq, int type)
651 int i;
653 for (i = 0; i < mp_irq_entries; i++) {
654 int lbus = mp_irqs[i].srcbus;
656 if (test_bit(lbus, mp_bus_not_pci) && (mp_irqs[i].irqtype == type) &&
657 (mp_irqs[i].srcbusirq == irq))
658 break;
661 if (i < mp_irq_entries) {
662 int ioapic_idx;
664 for_each_ioapic(ioapic_idx) {
665 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic)
666 return ioapic_idx;
670 return -1;
673 static bool irq_active_low(int idx)
675 int bus = mp_irqs[idx].srcbus;
678 * Determine IRQ line polarity (high active or low active):
680 switch (mp_irqs[idx].irqflag & MP_IRQPOL_MASK) {
681 case MP_IRQPOL_DEFAULT:
683 * Conforms to spec, ie. bus-type dependent polarity. PCI
684 * defaults to low active. [E]ISA defaults to high active.
686 return !test_bit(bus, mp_bus_not_pci);
687 case MP_IRQPOL_ACTIVE_HIGH:
688 return false;
689 case MP_IRQPOL_RESERVED:
690 pr_warn("IOAPIC: Invalid polarity: 2, defaulting to low\n");
691 fallthrough;
692 case MP_IRQPOL_ACTIVE_LOW:
693 default: /* Pointless default required due to do gcc stupidity */
694 return true;
698 #ifdef CONFIG_EISA
700 * EISA Edge/Level control register, ELCR
702 static bool EISA_ELCR(unsigned int irq)
704 if (irq < nr_legacy_irqs()) {
705 unsigned int port = PIC_ELCR1 + (irq >> 3);
706 return (inb(port) >> (irq & 7)) & 1;
708 apic_pr_verbose("Broken MPtable reports ISA irq %d\n", irq);
709 return false;
713 * EISA interrupts are always active high and can be edge or level
714 * triggered depending on the ELCR value. If an interrupt is listed as
715 * EISA conforming in the MP table, that means its trigger type must be
716 * read in from the ELCR.
718 static bool eisa_irq_is_level(int idx, int bus, bool level)
720 switch (mp_bus_id_to_type[bus]) {
721 case MP_BUS_PCI:
722 case MP_BUS_ISA:
723 return level;
724 case MP_BUS_EISA:
725 return EISA_ELCR(mp_irqs[idx].srcbusirq);
727 pr_warn("IOAPIC: Invalid srcbus: %d defaulting to level\n", bus);
728 return true;
730 #else
731 static inline int eisa_irq_is_level(int idx, int bus, bool level)
733 return level;
735 #endif
737 static bool irq_is_level(int idx)
739 int bus = mp_irqs[idx].srcbus;
740 bool level;
743 * Determine IRQ trigger mode (edge or level sensitive):
745 switch (mp_irqs[idx].irqflag & MP_IRQTRIG_MASK) {
746 case MP_IRQTRIG_DEFAULT:
748 * Conforms to spec, ie. bus-type dependent trigger
749 * mode. PCI defaults to level, ISA to edge.
751 level = !test_bit(bus, mp_bus_not_pci);
752 /* Take EISA into account */
753 return eisa_irq_is_level(idx, bus, level);
754 case MP_IRQTRIG_EDGE:
755 return false;
756 case MP_IRQTRIG_RESERVED:
757 pr_warn("IOAPIC: Invalid trigger mode 2 defaulting to level\n");
758 fallthrough;
759 case MP_IRQTRIG_LEVEL:
760 default: /* Pointless default required due to do gcc stupidity */
761 return true;
765 static int __acpi_get_override_irq(u32 gsi, bool *trigger, bool *polarity)
767 int ioapic, pin, idx;
769 if (ioapic_is_disabled)
770 return -1;
772 ioapic = mp_find_ioapic(gsi);
773 if (ioapic < 0)
774 return -1;
776 pin = mp_find_ioapic_pin(ioapic, gsi);
777 if (pin < 0)
778 return -1;
780 idx = find_irq_entry(ioapic, pin, mp_INT);
781 if (idx < 0)
782 return -1;
784 *trigger = irq_is_level(idx);
785 *polarity = irq_active_low(idx);
786 return 0;
789 #ifdef CONFIG_ACPI
790 int acpi_get_override_irq(u32 gsi, int *is_level, int *active_low)
792 *is_level = *active_low = 0;
793 return __acpi_get_override_irq(gsi, (bool *)is_level,
794 (bool *)active_low);
796 #endif
798 void ioapic_set_alloc_attr(struct irq_alloc_info *info, int node,
799 int trigger, int polarity)
801 init_irq_alloc_info(info, NULL);
802 info->type = X86_IRQ_ALLOC_TYPE_IOAPIC;
803 info->ioapic.node = node;
804 info->ioapic.is_level = trigger;
805 info->ioapic.active_low = polarity;
806 info->ioapic.valid = 1;
809 static void ioapic_copy_alloc_attr(struct irq_alloc_info *dst,
810 struct irq_alloc_info *src,
811 u32 gsi, int ioapic_idx, int pin)
813 bool level, pol_low;
815 copy_irq_alloc_info(dst, src);
816 dst->type = X86_IRQ_ALLOC_TYPE_IOAPIC;
817 dst->devid = mpc_ioapic_id(ioapic_idx);
818 dst->ioapic.pin = pin;
819 dst->ioapic.valid = 1;
820 if (src && src->ioapic.valid) {
821 dst->ioapic.node = src->ioapic.node;
822 dst->ioapic.is_level = src->ioapic.is_level;
823 dst->ioapic.active_low = src->ioapic.active_low;
824 } else {
825 dst->ioapic.node = NUMA_NO_NODE;
826 if (__acpi_get_override_irq(gsi, &level, &pol_low) >= 0) {
827 dst->ioapic.is_level = level;
828 dst->ioapic.active_low = pol_low;
829 } else {
831 * PCI interrupts are always active low level
832 * triggered.
834 dst->ioapic.is_level = true;
835 dst->ioapic.active_low = true;
840 static int ioapic_alloc_attr_node(struct irq_alloc_info *info)
842 return (info && info->ioapic.valid) ? info->ioapic.node : NUMA_NO_NODE;
845 static void mp_register_handler(unsigned int irq, bool level)
847 irq_flow_handler_t hdl;
848 bool fasteoi;
850 if (level) {
851 irq_set_status_flags(irq, IRQ_LEVEL);
852 fasteoi = true;
853 } else {
854 irq_clear_status_flags(irq, IRQ_LEVEL);
855 fasteoi = false;
858 hdl = fasteoi ? handle_fasteoi_irq : handle_edge_irq;
859 __irq_set_handler(irq, hdl, 0, fasteoi ? "fasteoi" : "edge");
862 static bool mp_check_pin_attr(int irq, struct irq_alloc_info *info)
864 struct mp_chip_data *data = irq_get_chip_data(irq);
867 * setup_IO_APIC_irqs() programs all legacy IRQs with default trigger
868 * and polarity attributes. So allow the first user to reprogram the
869 * pin with real trigger and polarity attributes.
871 if (irq < nr_legacy_irqs() && data->count == 1) {
872 if (info->ioapic.is_level != data->is_level)
873 mp_register_handler(irq, info->ioapic.is_level);
874 data->entry.is_level = data->is_level = info->ioapic.is_level;
875 data->entry.active_low = data->active_low = info->ioapic.active_low;
878 return data->is_level == info->ioapic.is_level &&
879 data->active_low == info->ioapic.active_low;
882 static int alloc_irq_from_domain(struct irq_domain *domain, int ioapic, u32 gsi,
883 struct irq_alloc_info *info)
885 int type = ioapics[ioapic].irqdomain_cfg.type;
886 bool legacy = false;
887 int irq = -1;
889 switch (type) {
890 case IOAPIC_DOMAIN_LEGACY:
892 * Dynamically allocate IRQ number for non-ISA IRQs in the first
893 * 16 GSIs on some weird platforms.
895 if (!ioapic_initialized || gsi >= nr_legacy_irqs())
896 irq = gsi;
897 legacy = mp_is_legacy_irq(irq);
898 break;
899 case IOAPIC_DOMAIN_STRICT:
900 irq = gsi;
901 break;
902 case IOAPIC_DOMAIN_DYNAMIC:
903 break;
904 default:
905 WARN(1, "ioapic: unknown irqdomain type %d\n", type);
906 return -1;
909 return __irq_domain_alloc_irqs(domain, irq, 1, ioapic_alloc_attr_node(info),
910 info, legacy, NULL);
914 * Need special handling for ISA IRQs because there may be multiple IOAPIC pins
915 * sharing the same ISA IRQ number and irqdomain only supports 1:1 mapping
916 * between IOAPIC pin and IRQ number. A typical IOAPIC has 24 pins, pin 0-15 are
917 * used for legacy IRQs and pin 16-23 are used for PCI IRQs (PIRQ A-H).
918 * When ACPI is disabled, only legacy IRQ numbers (IRQ0-15) are available, and
919 * some BIOSes may use MP Interrupt Source records to override IRQ numbers for
920 * PIRQs instead of reprogramming the interrupt routing logic. Thus there may be
921 * multiple pins sharing the same legacy IRQ number when ACPI is disabled.
923 static int alloc_isa_irq_from_domain(struct irq_domain *domain, int irq, int ioapic, int pin,
924 struct irq_alloc_info *info)
926 struct irq_data *irq_data = irq_get_irq_data(irq);
927 int node = ioapic_alloc_attr_node(info);
928 struct mp_chip_data *data;
931 * Legacy ISA IRQ has already been allocated, just add pin to
932 * the pin list associated with this IRQ and program the IOAPIC
933 * entry.
935 if (irq_data && irq_data->parent_data) {
936 if (!mp_check_pin_attr(irq, info))
937 return -EBUSY;
938 if (!add_pin_to_irq_node(irq_data->chip_data, node, ioapic, info->ioapic.pin))
939 return -ENOMEM;
940 } else {
941 info->flags |= X86_IRQ_ALLOC_LEGACY;
942 irq = __irq_domain_alloc_irqs(domain, irq, 1, node, info, true, NULL);
943 if (irq >= 0) {
944 irq_data = irq_domain_get_irq_data(domain, irq);
945 data = irq_data->chip_data;
946 data->isa_irq = true;
950 return irq;
953 static int mp_map_pin_to_irq(u32 gsi, int idx, int ioapic, int pin,
954 unsigned int flags, struct irq_alloc_info *info)
956 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic);
957 struct irq_alloc_info tmp;
958 struct mp_chip_data *data;
959 bool legacy = false;
960 int irq;
962 if (!domain)
963 return -ENOSYS;
965 if (idx >= 0 && test_bit(mp_irqs[idx].srcbus, mp_bus_not_pci)) {
966 irq = mp_irqs[idx].srcbusirq;
967 legacy = mp_is_legacy_irq(irq);
969 * IRQ2 is unusable for historical reasons on systems which
970 * have a legacy PIC. See the comment vs. IRQ2 further down.
972 * If this gets removed at some point then the related code
973 * in lapic_assign_system_vectors() needs to be adjusted as
974 * well.
976 if (legacy && irq == PIC_CASCADE_IR)
977 return -EINVAL;
980 guard(mutex)(&ioapic_mutex);
981 if (!(flags & IOAPIC_MAP_ALLOC)) {
982 if (!legacy) {
983 irq = irq_find_mapping(domain, pin);
984 if (irq == 0)
985 irq = -ENOENT;
987 } else {
988 ioapic_copy_alloc_attr(&tmp, info, gsi, ioapic, pin);
989 if (legacy)
990 irq = alloc_isa_irq_from_domain(domain, irq,
991 ioapic, pin, &tmp);
992 else if ((irq = irq_find_mapping(domain, pin)) == 0)
993 irq = alloc_irq_from_domain(domain, ioapic, gsi, &tmp);
994 else if (!mp_check_pin_attr(irq, &tmp))
995 irq = -EBUSY;
996 if (irq >= 0) {
997 data = irq_get_chip_data(irq);
998 data->count++;
1001 return irq;
1004 static int pin_2_irq(int idx, int ioapic, int pin, unsigned int flags)
1006 u32 gsi = mp_pin_to_gsi(ioapic, pin);
1008 /* Debugging check, we are in big trouble if this message pops up! */
1009 if (mp_irqs[idx].dstirq != pin)
1010 pr_err("broken BIOS or MPTABLE parser, ayiee!!\n");
1012 #ifdef CONFIG_X86_32
1013 /* PCI IRQ command line redirection. Yes, limits are hardcoded. */
1014 if ((pin >= 16) && (pin <= 23)) {
1015 if (pirq_entries[pin - 16] != -1) {
1016 if (!pirq_entries[pin - 16]) {
1017 apic_pr_verbose("Disabling PIRQ%d\n", pin - 16);
1018 } else {
1019 int irq = pirq_entries[pin-16];
1021 apic_pr_verbose("Using PIRQ%d -> IRQ %d\n", pin - 16, irq);
1022 return irq;
1026 #endif
1028 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, NULL);
1031 int mp_map_gsi_to_irq(u32 gsi, unsigned int flags, struct irq_alloc_info *info)
1033 int ioapic, pin, idx;
1035 ioapic = mp_find_ioapic(gsi);
1036 if (ioapic < 0)
1037 return -ENODEV;
1039 pin = mp_find_ioapic_pin(ioapic, gsi);
1040 idx = find_irq_entry(ioapic, pin, mp_INT);
1041 if ((flags & IOAPIC_MAP_CHECK) && idx < 0)
1042 return -ENODEV;
1044 return mp_map_pin_to_irq(gsi, idx, ioapic, pin, flags, info);
1047 void mp_unmap_irq(int irq)
1049 struct irq_data *irq_data = irq_get_irq_data(irq);
1050 struct mp_chip_data *data;
1052 if (!irq_data || !irq_data->domain)
1053 return;
1055 data = irq_data->chip_data;
1056 if (!data || data->isa_irq)
1057 return;
1059 guard(mutex)(&ioapic_mutex);
1060 if (--data->count == 0)
1061 irq_domain_free_irqs(irq, 1);
1065 * Find a specific PCI IRQ entry.
1066 * Not an __init, possibly needed by modules
1068 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
1070 int irq, i, best_ioapic = -1, best_idx = -1;
1072 apic_pr_debug("Querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
1073 bus, slot, pin);
1074 if (test_bit(bus, mp_bus_not_pci)) {
1075 apic_pr_verbose("PCI BIOS passed nonexistent PCI bus %d!\n", bus);
1076 return -1;
1079 for (i = 0; i < mp_irq_entries; i++) {
1080 int lbus = mp_irqs[i].srcbus;
1081 int ioapic_idx, found = 0;
1083 if (bus != lbus || mp_irqs[i].irqtype != mp_INT ||
1084 slot != ((mp_irqs[i].srcbusirq >> 2) & 0x1f))
1085 continue;
1087 for_each_ioapic(ioapic_idx)
1088 if (mpc_ioapic_id(ioapic_idx) == mp_irqs[i].dstapic ||
1089 mp_irqs[i].dstapic == MP_APIC_ALL) {
1090 found = 1;
1091 break;
1093 if (!found)
1094 continue;
1096 /* Skip ISA IRQs */
1097 irq = pin_2_irq(i, ioapic_idx, mp_irqs[i].dstirq, 0);
1098 if (irq > 0 && !IO_APIC_IRQ(irq))
1099 continue;
1101 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1102 best_idx = i;
1103 best_ioapic = ioapic_idx;
1104 goto out;
1108 * Use the first all-but-pin matching entry as a
1109 * best-guess fuzzy result for broken mptables.
1111 if (best_idx < 0) {
1112 best_idx = i;
1113 best_ioapic = ioapic_idx;
1116 if (best_idx < 0)
1117 return -1;
1119 out:
1120 return pin_2_irq(best_idx, best_ioapic, mp_irqs[best_idx].dstirq, IOAPIC_MAP_ALLOC);
1122 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1124 static struct irq_chip ioapic_chip, ioapic_ir_chip;
1126 static void __init setup_IO_APIC_irqs(void)
1128 unsigned int ioapic, pin;
1129 int idx;
1131 apic_pr_verbose("Init IO_APIC IRQs\n");
1133 for_each_ioapic_pin(ioapic, pin) {
1134 idx = find_irq_entry(ioapic, pin, mp_INT);
1135 if (idx < 0) {
1136 apic_pr_verbose("apic %d pin %d not connected\n",
1137 mpc_ioapic_id(ioapic), pin);
1138 } else {
1139 pin_2_irq(idx, ioapic, pin, ioapic ? 0 : IOAPIC_MAP_ALLOC);
1144 void ioapic_zap_locks(void)
1146 raw_spin_lock_init(&ioapic_lock);
1149 static void io_apic_print_entries(unsigned int apic, unsigned int nr_entries)
1151 struct IO_APIC_route_entry entry;
1152 char buf[256];
1153 int i;
1155 apic_dbg("IOAPIC %d:\n", apic);
1156 for (i = 0; i <= nr_entries; i++) {
1157 entry = ioapic_read_entry(apic, i);
1158 snprintf(buf, sizeof(buf), " pin%02x, %s, %s, %s, V(%02X), IRR(%1d), S(%1d)",
1159 i, entry.masked ? "disabled" : "enabled ",
1160 entry.is_level ? "level" : "edge ",
1161 entry.active_low ? "low " : "high",
1162 entry.vector, entry.irr, entry.delivery_status);
1163 if (entry.ir_format) {
1164 apic_dbg("%s, remapped, I(%04X), Z(%X)\n", buf,
1165 (entry.ir_index_15 << 15) | entry.ir_index_0_14, entry.ir_zero);
1166 } else {
1167 apic_dbg("%s, %s, D(%02X%02X), M(%1d)\n", buf,
1168 entry.dest_mode_logical ? "logical " : "physic al",
1169 entry.virt_destid_8_14, entry.destid_0_7, entry.delivery_mode);
1174 static void __init print_IO_APIC(int ioapic_idx)
1176 union IO_APIC_reg_00 reg_00;
1177 union IO_APIC_reg_01 reg_01;
1178 union IO_APIC_reg_02 reg_02;
1179 union IO_APIC_reg_03 reg_03;
1181 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) {
1182 reg_00.raw = io_apic_read(ioapic_idx, 0);
1183 reg_01.raw = io_apic_read(ioapic_idx, 1);
1184 if (reg_01.bits.version >= 0x10)
1185 reg_02.raw = io_apic_read(ioapic_idx, 2);
1186 if (reg_01.bits.version >= 0x20)
1187 reg_03.raw = io_apic_read(ioapic_idx, 3);
1190 apic_dbg("IO APIC #%d......\n", mpc_ioapic_id(ioapic_idx));
1191 apic_dbg(".... register #00: %08X\n", reg_00.raw);
1192 apic_dbg("....... : physical APIC id: %02X\n", reg_00.bits.ID);
1193 apic_dbg("....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1194 apic_dbg("....... : LTS : %X\n", reg_00.bits.LTS);
1195 apic_dbg(".... register #01: %08X\n", *(int *)&reg_01);
1196 apic_dbg("....... : max redirection entries: %02X\n", reg_01.bits.entries);
1197 apic_dbg("....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1198 apic_dbg("....... : IO APIC version: %02X\n", reg_01.bits.version);
1201 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1202 * but the value of reg_02 is read as the previous read register
1203 * value, so ignore it if reg_02 == reg_01.
1205 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1206 apic_dbg(".... register #02: %08X\n", reg_02.raw);
1207 apic_dbg("....... : arbitration: %02X\n", reg_02.bits.arbitration);
1211 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1212 * or reg_03, but the value of reg_0[23] is read as the previous read
1213 * register value, so ignore it if reg_03 == reg_0[12].
1215 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1216 reg_03.raw != reg_01.raw) {
1217 apic_dbg(".... register #03: %08X\n", reg_03.raw);
1218 apic_dbg("....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1221 apic_dbg(".... IRQ redirection table:\n");
1222 io_apic_print_entries(ioapic_idx, reg_01.bits.entries);
1225 void __init print_IO_APICs(void)
1227 int ioapic_idx;
1228 unsigned int irq;
1230 apic_dbg("number of MP IRQ sources: %d.\n", mp_irq_entries);
1231 for_each_ioapic(ioapic_idx) {
1232 apic_dbg("number of IO-APIC #%d registers: %d.\n",
1233 mpc_ioapic_id(ioapic_idx), ioapics[ioapic_idx].nr_registers);
1237 * We are a bit conservative about what we expect. We have to
1238 * know about every hardware change ASAP.
1240 printk(KERN_INFO "testing the IO APIC.......................\n");
1242 for_each_ioapic(ioapic_idx)
1243 print_IO_APIC(ioapic_idx);
1245 apic_dbg("IRQ to pin mappings:\n");
1246 for_each_active_irq(irq) {
1247 struct irq_pin_list *entry;
1248 struct irq_chip *chip;
1249 struct mp_chip_data *data;
1251 chip = irq_get_chip(irq);
1252 if (chip != &ioapic_chip && chip != &ioapic_ir_chip)
1253 continue;
1254 data = irq_get_chip_data(irq);
1255 if (!data)
1256 continue;
1257 if (list_empty(&data->irq_2_pin))
1258 continue;
1260 apic_dbg("IRQ%d ", irq);
1261 for_each_irq_pin(entry, data->irq_2_pin)
1262 pr_cont("-> %d:%d", entry->apic, entry->pin);
1263 pr_cont("\n");
1266 printk(KERN_INFO ".................................... done.\n");
1269 /* Where if anywhere is the i8259 connect in external int mode */
1270 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1272 void __init enable_IO_APIC(void)
1274 int i8259_apic, i8259_pin, apic, pin;
1276 if (ioapic_is_disabled)
1277 nr_ioapics = 0;
1279 if (!nr_legacy_irqs() || !nr_ioapics)
1280 return;
1282 for_each_ioapic_pin(apic, pin) {
1283 /* See if any of the pins is in ExtINT mode */
1284 struct IO_APIC_route_entry entry = ioapic_read_entry(apic, pin);
1287 * If the interrupt line is enabled and in ExtInt mode I
1288 * have found the pin where the i8259 is connected.
1290 if (!entry.masked && entry.delivery_mode == APIC_DELIVERY_MODE_EXTINT) {
1291 ioapic_i8259.apic = apic;
1292 ioapic_i8259.pin = pin;
1293 break;
1298 * Look to see what if the MP table has reported the ExtINT
1300 * If we could not find the appropriate pin by looking at the ioapic
1301 * the i8259 probably is not connected the ioapic but give the
1302 * mptable a chance anyway.
1304 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1305 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1306 /* Trust the MP table if nothing is setup in the hardware */
1307 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1308 pr_warn("ExtINT not setup in hardware but reported by MP table\n");
1309 ioapic_i8259.pin = i8259_pin;
1310 ioapic_i8259.apic = i8259_apic;
1312 /* Complain if the MP table and the hardware disagree */
1313 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1314 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1315 pr_warn("ExtINT in hardware and MP table differ\n");
1317 /* Do not trust the IO-APIC being empty at bootup */
1318 clear_IO_APIC();
1321 void native_restore_boot_irq_mode(void)
1324 * If the i8259 is routed through an IOAPIC Put that IOAPIC in
1325 * virtual wire mode so legacy interrupts can be delivered.
1327 if (ioapic_i8259.pin != -1) {
1328 struct IO_APIC_route_entry entry;
1329 u32 apic_id = read_apic_id();
1331 memset(&entry, 0, sizeof(entry));
1332 entry.masked = false;
1333 entry.is_level = false;
1334 entry.active_low = false;
1335 entry.dest_mode_logical = false;
1336 entry.delivery_mode = APIC_DELIVERY_MODE_EXTINT;
1337 entry.destid_0_7 = apic_id & 0xFF;
1338 entry.virt_destid_8_14 = apic_id >> 8;
1340 /* Add it to the IO-APIC irq-routing table */
1341 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1344 if (boot_cpu_has(X86_FEATURE_APIC) || apic_from_smp_config())
1345 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
1348 void restore_boot_irq_mode(void)
1350 if (!nr_legacy_irqs())
1351 return;
1353 x86_apic_ops.restore();
1356 #ifdef CONFIG_X86_32
1358 * function to set the IO-APIC physical IDs based on the
1359 * values stored in the MPC table.
1361 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1363 static void __init setup_ioapic_ids_from_mpc_nocheck(void)
1365 DECLARE_BITMAP(phys_id_present_map, MAX_LOCAL_APIC);
1366 const u32 broadcast_id = 0xF;
1367 union IO_APIC_reg_00 reg_00;
1368 unsigned char old_id;
1369 int ioapic_idx, i;
1372 * This is broken; anything with a real cpu count has to
1373 * circumvent this idiocy regardless.
1375 copy_phys_cpu_present_map(phys_id_present_map);
1378 * Set the IOAPIC ID to the value stored in the MPC table.
1380 for_each_ioapic(ioapic_idx) {
1381 /* Read the register 0 value */
1382 scoped_guard (raw_spinlock_irqsave, &ioapic_lock)
1383 reg_00.raw = io_apic_read(ioapic_idx, 0);
1385 old_id = mpc_ioapic_id(ioapic_idx);
1387 if (mpc_ioapic_id(ioapic_idx) >= broadcast_id) {
1388 pr_err(FW_BUG "IO-APIC#%d ID is %d in the MPC table!...\n",
1389 ioapic_idx, mpc_ioapic_id(ioapic_idx));
1390 pr_err("... fixing up to %d. (tell your hw vendor)\n", reg_00.bits.ID);
1391 ioapics[ioapic_idx].mp_config.apicid = reg_00.bits.ID;
1395 * Sanity check, is the ID really free? Every APIC in a
1396 * system must have a unique ID or we get lots of nice
1397 * 'stuck on smp_invalidate_needed IPI wait' messages.
1399 if (test_bit(mpc_ioapic_id(ioapic_idx), phys_id_present_map)) {
1400 pr_err(FW_BUG "IO-APIC#%d ID %d is already used!...\n",
1401 ioapic_idx, mpc_ioapic_id(ioapic_idx));
1402 for (i = 0; i < broadcast_id; i++)
1403 if (!test_bit(i, phys_id_present_map))
1404 break;
1405 if (i >= broadcast_id)
1406 panic("Max APIC ID exceeded!\n");
1407 pr_err("... fixing up to %d. (tell your hw vendor)\n", i);
1408 set_bit(i, phys_id_present_map);
1409 ioapics[ioapic_idx].mp_config.apicid = i;
1410 } else {
1411 apic_pr_verbose("Setting %d in the phys_id_present_map\n",
1412 mpc_ioapic_id(ioapic_idx));
1413 set_bit(mpc_ioapic_id(ioapic_idx), phys_id_present_map);
1417 * We need to adjust the IRQ routing table if the ID
1418 * changed.
1420 if (old_id != mpc_ioapic_id(ioapic_idx)) {
1421 for (i = 0; i < mp_irq_entries; i++) {
1422 if (mp_irqs[i].dstapic == old_id)
1423 mp_irqs[i].dstapic = mpc_ioapic_id(ioapic_idx);
1428 * Update the ID register according to the right value from
1429 * the MPC table if they are different.
1431 if (mpc_ioapic_id(ioapic_idx) == reg_00.bits.ID)
1432 continue;
1434 apic_pr_verbose("...changing IO-APIC physical APIC ID to %d ...",
1435 mpc_ioapic_id(ioapic_idx));
1437 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx);
1438 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) {
1439 io_apic_write(ioapic_idx, 0, reg_00.raw);
1440 reg_00.raw = io_apic_read(ioapic_idx, 0);
1442 /* Sanity check */
1443 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx))
1444 pr_cont("could not set ID!\n");
1445 else
1446 apic_pr_verbose(" ok.\n");
1450 void __init setup_ioapic_ids_from_mpc(void)
1453 if (acpi_ioapic)
1454 return;
1456 * Don't check I/O APIC IDs for xAPIC systems. They have
1457 * no meaning without the serial APIC bus.
1459 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1460 || APIC_XAPIC(boot_cpu_apic_version))
1461 return;
1462 setup_ioapic_ids_from_mpc_nocheck();
1464 #endif
1466 int no_timer_check __initdata;
1468 static int __init notimercheck(char *s)
1470 no_timer_check = 1;
1471 return 1;
1473 __setup("no_timer_check", notimercheck);
1475 static void __init delay_with_tsc(void)
1477 unsigned long long start, now;
1478 unsigned long end = jiffies + 4;
1480 start = rdtsc();
1483 * We don't know the TSC frequency yet, but waiting for
1484 * 40000000000/HZ TSC cycles is safe:
1485 * 4 GHz == 10 jiffies
1486 * 1 GHz == 40 jiffies
1488 do {
1489 rep_nop();
1490 now = rdtsc();
1491 } while ((now - start) < 40000000000ULL / HZ && time_before_eq(jiffies, end));
1494 static void __init delay_without_tsc(void)
1496 unsigned long end = jiffies + 4;
1497 int band = 1;
1500 * We don't know any frequency yet, but waiting for
1501 * 40940000000/HZ cycles is safe:
1502 * 4 GHz == 10 jiffies
1503 * 1 GHz == 40 jiffies
1504 * 1 << 1 + 1 << 2 +...+ 1 << 11 = 4094
1506 do {
1507 __delay(((1U << band++) * 10000000UL) / HZ);
1508 } while (band < 12 && time_before_eq(jiffies, end));
1512 * There is a nasty bug in some older SMP boards, their mptable lies
1513 * about the timer IRQ. We do the following to work around the situation:
1515 * - timer IRQ defaults to IO-APIC IRQ
1516 * - if this function detects that timer IRQs are defunct, then we fall
1517 * back to ISA timer IRQs
1519 static int __init timer_irq_works(void)
1521 unsigned long t1 = jiffies;
1523 if (no_timer_check)
1524 return 1;
1526 local_irq_enable();
1527 if (boot_cpu_has(X86_FEATURE_TSC))
1528 delay_with_tsc();
1529 else
1530 delay_without_tsc();
1533 * Expect a few ticks at least, to be sure some possible
1534 * glue logic does not lock up after one or two first
1535 * ticks in a non-ExtINT mode. Also the local APIC
1536 * might have cached one ExtINT interrupt. Finally, at
1537 * least one tick may be lost due to delays.
1540 local_irq_disable();
1542 /* Did jiffies advance? */
1543 return time_after(jiffies, t1 + 4);
1547 * In the SMP+IOAPIC case it might happen that there are an unspecified
1548 * number of pending IRQ events unhandled. These cases are very rare,
1549 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
1550 * better to do it this way as thus we do not have to be aware of
1551 * 'pending' interrupts in the IRQ path, except at this point.
1554 * Edge triggered needs to resend any interrupt that was delayed but this
1555 * is now handled in the device independent code.
1557 * Starting up a edge-triggered IO-APIC interrupt is nasty - we need to
1558 * make sure that we get the edge. If it is already asserted for some
1559 * reason, we need return 1 to indicate that is was pending.
1561 * This is not complete - we should be able to fake an edge even if it
1562 * isn't on the 8259A...
1564 static unsigned int startup_ioapic_irq(struct irq_data *data)
1566 int was_pending = 0, irq = data->irq;
1568 guard(raw_spinlock_irqsave)(&ioapic_lock);
1569 if (irq < nr_legacy_irqs()) {
1570 legacy_pic->mask(irq);
1571 if (legacy_pic->irq_pending(irq))
1572 was_pending = 1;
1574 __unmask_ioapic(data->chip_data);
1575 return was_pending;
1578 atomic_t irq_mis_count;
1580 #ifdef CONFIG_GENERIC_PENDING_IRQ
1581 static bool io_apic_level_ack_pending(struct mp_chip_data *data)
1583 struct irq_pin_list *entry;
1585 guard(raw_spinlock_irqsave)(&ioapic_lock);
1586 for_each_irq_pin(entry, data->irq_2_pin) {
1587 struct IO_APIC_route_entry e;
1588 int pin;
1590 pin = entry->pin;
1591 e.w1 = io_apic_read(entry->apic, 0x10 + pin*2);
1592 /* Is the remote IRR bit set? */
1593 if (e.irr)
1594 return true;
1596 return false;
1599 static inline bool ioapic_prepare_move(struct irq_data *data)
1601 /* If we are moving the IRQ we need to mask it */
1602 if (unlikely(irqd_is_setaffinity_pending(data))) {
1603 if (!irqd_irq_masked(data))
1604 mask_ioapic_irq(data);
1605 return true;
1607 return false;
1610 static inline void ioapic_finish_move(struct irq_data *data, bool moveit)
1612 if (unlikely(moveit)) {
1614 * Only migrate the irq if the ack has been received.
1616 * On rare occasions the broadcast level triggered ack gets
1617 * delayed going to ioapics, and if we reprogram the
1618 * vector while Remote IRR is still set the irq will never
1619 * fire again.
1621 * To prevent this scenario we read the Remote IRR bit
1622 * of the ioapic. This has two effects.
1623 * - On any sane system the read of the ioapic will
1624 * flush writes (and acks) going to the ioapic from
1625 * this cpu.
1626 * - We get to see if the ACK has actually been delivered.
1628 * Based on failed experiments of reprogramming the
1629 * ioapic entry from outside of irq context starting
1630 * with masking the ioapic entry and then polling until
1631 * Remote IRR was clear before reprogramming the
1632 * ioapic I don't trust the Remote IRR bit to be
1633 * completely accurate.
1635 * However there appears to be no other way to plug
1636 * this race, so if the Remote IRR bit is not
1637 * accurate and is causing problems then it is a hardware bug
1638 * and you can go talk to the chipset vendor about it.
1640 if (!io_apic_level_ack_pending(data->chip_data))
1641 irq_move_masked_irq(data);
1642 /* If the IRQ is masked in the core, leave it: */
1643 if (!irqd_irq_masked(data))
1644 unmask_ioapic_irq(data);
1647 #else
1648 static inline bool ioapic_prepare_move(struct irq_data *data)
1650 return false;
1652 static inline void ioapic_finish_move(struct irq_data *data, bool moveit)
1655 #endif
1657 static void ioapic_ack_level(struct irq_data *irq_data)
1659 struct irq_cfg *cfg = irqd_cfg(irq_data);
1660 unsigned long v;
1661 bool moveit;
1662 int i;
1664 irq_complete_move(cfg);
1665 moveit = ioapic_prepare_move(irq_data);
1668 * It appears there is an erratum which affects at least version 0x11
1669 * of I/O APIC (that's the 82093AA and cores integrated into various
1670 * chipsets). Under certain conditions a level-triggered interrupt is
1671 * erroneously delivered as edge-triggered one but the respective IRR
1672 * bit gets set nevertheless. As a result the I/O unit expects an EOI
1673 * message but it will never arrive and further interrupts are blocked
1674 * from the source. The exact reason is so far unknown, but the
1675 * phenomenon was observed when two consecutive interrupt requests
1676 * from a given source get delivered to the same CPU and the source is
1677 * temporarily disabled in between.
1679 * A workaround is to simulate an EOI message manually. We achieve it
1680 * by setting the trigger mode to edge and then to level when the edge
1681 * trigger mode gets detected in the TMR of a local APIC for a
1682 * level-triggered interrupt. We mask the source for the time of the
1683 * operation to prevent an edge-triggered interrupt escaping meanwhile.
1684 * The idea is from Manfred Spraul. --macro
1686 * Also in the case when cpu goes offline, fixup_irqs() will forward
1687 * any unhandled interrupt on the offlined cpu to the new cpu
1688 * destination that is handling the corresponding interrupt. This
1689 * interrupt forwarding is done via IPI's. Hence, in this case also
1690 * level-triggered io-apic interrupt will be seen as an edge
1691 * interrupt in the IRR. And we can't rely on the cpu's EOI
1692 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
1693 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
1694 * supporting EOI register, we do an explicit EOI to clear the
1695 * remote IRR and on IO-APIC's which don't have an EOI register,
1696 * we use the above logic (mask+edge followed by unmask+level) from
1697 * Manfred Spraul to clear the remote IRR.
1699 i = cfg->vector;
1700 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
1703 * We must acknowledge the irq before we move it or the acknowledge will
1704 * not propagate properly.
1706 apic_eoi();
1709 * Tail end of clearing remote IRR bit (either by delivering the EOI
1710 * message via io-apic EOI register write or simulating it using
1711 * mask+edge followed by unmask+level logic) manually when the
1712 * level triggered interrupt is seen as the edge triggered interrupt
1713 * at the cpu.
1715 if (!(v & (1 << (i & 0x1f)))) {
1716 atomic_inc(&irq_mis_count);
1717 eoi_ioapic_pin(cfg->vector, irq_data->chip_data);
1720 ioapic_finish_move(irq_data, moveit);
1723 static void ioapic_ir_ack_level(struct irq_data *irq_data)
1725 struct mp_chip_data *data = irq_data->chip_data;
1728 * Intr-remapping uses pin number as the virtual vector
1729 * in the RTE. Actual vector is programmed in
1730 * intr-remapping table entry. Hence for the io-apic
1731 * EOI we use the pin number.
1733 apic_ack_irq(irq_data);
1734 eoi_ioapic_pin(data->entry.vector, data);
1738 * The I/OAPIC is just a device for generating MSI messages from legacy
1739 * interrupt pins. Various fields of the RTE translate into bits of the
1740 * resulting MSI which had a historical meaning.
1742 * With interrupt remapping, many of those bits have different meanings
1743 * in the underlying MSI, but the way that the I/OAPIC transforms them
1744 * from its RTE to the MSI message is the same. This function allows
1745 * the parent IRQ domain to compose the MSI message, then takes the
1746 * relevant bits to put them in the appropriate places in the RTE in
1747 * order to generate that message when the IRQ happens.
1749 * The setup here relies on a preconfigured route entry (is_level,
1750 * active_low, masked) because the parent domain is merely composing the
1751 * generic message routing information which is used for the MSI.
1753 static void ioapic_setup_msg_from_msi(struct irq_data *irq_data,
1754 struct IO_APIC_route_entry *entry)
1756 struct msi_msg msg;
1758 /* Let the parent domain compose the MSI message */
1759 irq_chip_compose_msi_msg(irq_data, &msg);
1762 * - Real vector
1763 * - DMAR/IR: 8bit subhandle (ioapic.pin)
1764 * - AMD/IR: 8bit IRTE index
1766 entry->vector = msg.arch_data.vector;
1767 /* Delivery mode (for DMAR/IR all 0) */
1768 entry->delivery_mode = msg.arch_data.delivery_mode;
1769 /* Destination mode or DMAR/IR index bit 15 */
1770 entry->dest_mode_logical = msg.arch_addr_lo.dest_mode_logical;
1771 /* DMAR/IR: 1, 0 for all other modes */
1772 entry->ir_format = msg.arch_addr_lo.dmar_format;
1774 * - DMAR/IR: index bit 0-14.
1776 * - Virt: If the host supports x2apic without a virtualized IR
1777 * unit then bit 0-6 of dmar_index_0_14 are providing bit
1778 * 8-14 of the destination id.
1780 * All other modes have bit 0-6 of dmar_index_0_14 cleared and the
1781 * topmost 8 bits are destination id bit 0-7 (entry::destid_0_7).
1783 entry->ir_index_0_14 = msg.arch_addr_lo.dmar_index_0_14;
1786 static void ioapic_configure_entry(struct irq_data *irqd)
1788 struct mp_chip_data *mpd = irqd->chip_data;
1789 struct irq_pin_list *entry;
1791 ioapic_setup_msg_from_msi(irqd, &mpd->entry);
1793 for_each_irq_pin(entry, mpd->irq_2_pin)
1794 __ioapic_write_entry(entry->apic, entry->pin, mpd->entry);
1797 static int ioapic_set_affinity(struct irq_data *irq_data, const struct cpumask *mask, bool force)
1799 struct irq_data *parent = irq_data->parent_data;
1800 int ret;
1802 ret = parent->chip->irq_set_affinity(parent, mask, force);
1804 guard(raw_spinlock_irqsave)(&ioapic_lock);
1805 if (ret >= 0 && ret != IRQ_SET_MASK_OK_DONE)
1806 ioapic_configure_entry(irq_data);
1808 return ret;
1812 * Interrupt shutdown masks the ioapic pin, but the interrupt might already
1813 * be in flight, but not yet serviced by the target CPU. That means
1814 * __synchronize_hardirq() would return and claim that everything is calmed
1815 * down. So free_irq() would proceed and deactivate the interrupt and free
1816 * resources.
1818 * Once the target CPU comes around to service it it will find a cleared
1819 * vector and complain. While the spurious interrupt is harmless, the full
1820 * release of resources might prevent the interrupt from being acknowledged
1821 * which keeps the hardware in a weird state.
1823 * Verify that the corresponding Remote-IRR bits are clear.
1825 static int ioapic_irq_get_chip_state(struct irq_data *irqd, enum irqchip_irq_state which,
1826 bool *state)
1828 struct mp_chip_data *mcd = irqd->chip_data;
1829 struct IO_APIC_route_entry rentry;
1830 struct irq_pin_list *p;
1832 if (which != IRQCHIP_STATE_ACTIVE)
1833 return -EINVAL;
1835 *state = false;
1837 guard(raw_spinlock)(&ioapic_lock);
1838 for_each_irq_pin(p, mcd->irq_2_pin) {
1839 rentry = __ioapic_read_entry(p->apic, p->pin);
1841 * The remote IRR is only valid in level trigger mode. It's
1842 * meaning is undefined for edge triggered interrupts and
1843 * irrelevant because the IO-APIC treats them as fire and
1844 * forget.
1846 if (rentry.irr && rentry.is_level) {
1847 *state = true;
1848 break;
1851 return 0;
1854 static struct irq_chip ioapic_chip __read_mostly = {
1855 .name = "IO-APIC",
1856 .irq_startup = startup_ioapic_irq,
1857 .irq_mask = mask_ioapic_irq,
1858 .irq_unmask = unmask_ioapic_irq,
1859 .irq_ack = irq_chip_ack_parent,
1860 .irq_eoi = ioapic_ack_level,
1861 .irq_set_affinity = ioapic_set_affinity,
1862 .irq_retrigger = irq_chip_retrigger_hierarchy,
1863 .irq_get_irqchip_state = ioapic_irq_get_chip_state,
1864 .flags = IRQCHIP_SKIP_SET_WAKE |
1865 IRQCHIP_AFFINITY_PRE_STARTUP,
1868 static struct irq_chip ioapic_ir_chip __read_mostly = {
1869 .name = "IR-IO-APIC",
1870 .irq_startup = startup_ioapic_irq,
1871 .irq_mask = mask_ioapic_irq,
1872 .irq_unmask = unmask_ioapic_irq,
1873 .irq_ack = irq_chip_ack_parent,
1874 .irq_eoi = ioapic_ir_ack_level,
1875 .irq_set_affinity = ioapic_set_affinity,
1876 .irq_retrigger = irq_chip_retrigger_hierarchy,
1877 .irq_get_irqchip_state = ioapic_irq_get_chip_state,
1878 .flags = IRQCHIP_SKIP_SET_WAKE |
1879 IRQCHIP_AFFINITY_PRE_STARTUP,
1882 static inline void init_IO_APIC_traps(void)
1884 struct irq_cfg *cfg;
1885 unsigned int irq;
1887 for_each_active_irq(irq) {
1888 cfg = irq_cfg(irq);
1889 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
1891 * Hmm.. We don't have an entry for this, so
1892 * default to an old-fashioned 8259 interrupt if we
1893 * can. Otherwise set the dummy interrupt chip.
1895 if (irq < nr_legacy_irqs())
1896 legacy_pic->make_irq(irq);
1897 else
1898 irq_set_chip(irq, &no_irq_chip);
1904 * The local APIC irq-chip implementation:
1906 static void mask_lapic_irq(struct irq_data *data)
1908 unsigned long v = apic_read(APIC_LVT0);
1910 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
1913 static void unmask_lapic_irq(struct irq_data *data)
1915 unsigned long v = apic_read(APIC_LVT0);
1917 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
1920 static void ack_lapic_irq(struct irq_data *data)
1922 apic_eoi();
1925 static struct irq_chip lapic_chip __read_mostly = {
1926 .name = "local-APIC",
1927 .irq_mask = mask_lapic_irq,
1928 .irq_unmask = unmask_lapic_irq,
1929 .irq_ack = ack_lapic_irq,
1932 static void lapic_register_intr(int irq)
1934 irq_clear_status_flags(irq, IRQ_LEVEL);
1935 irq_set_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq, "edge");
1939 * This looks a bit hackish but it's about the only one way of sending
1940 * a few INTA cycles to 8259As and any associated glue logic. ICR does
1941 * not support the ExtINT mode, unfortunately. We need to send these
1942 * cycles as some i82489DX-based boards have glue logic that keeps the
1943 * 8259A interrupt line asserted until INTA. --macro
1945 static inline void __init unlock_ExtINT_logic(void)
1947 unsigned char save_control, save_freq_select;
1948 struct IO_APIC_route_entry entry0, entry1;
1949 int apic, pin, i;
1950 u32 apic_id;
1952 pin = find_isa_irq_pin(8, mp_INT);
1953 if (pin == -1) {
1954 WARN_ON_ONCE(1);
1955 return;
1957 apic = find_isa_irq_apic(8, mp_INT);
1958 if (apic == -1) {
1959 WARN_ON_ONCE(1);
1960 return;
1963 entry0 = ioapic_read_entry(apic, pin);
1964 clear_IO_APIC_pin(apic, pin);
1966 apic_id = read_apic_id();
1967 memset(&entry1, 0, sizeof(entry1));
1969 entry1.dest_mode_logical = true;
1970 entry1.masked = false;
1971 entry1.destid_0_7 = apic_id & 0xFF;
1972 entry1.virt_destid_8_14 = apic_id >> 8;
1973 entry1.delivery_mode = APIC_DELIVERY_MODE_EXTINT;
1974 entry1.active_low = entry0.active_low;
1975 entry1.is_level = false;
1976 entry1.vector = 0;
1978 ioapic_write_entry(apic, pin, entry1);
1980 save_control = CMOS_READ(RTC_CONTROL);
1981 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1982 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
1983 RTC_FREQ_SELECT);
1984 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
1986 i = 100;
1987 while (i-- > 0) {
1988 mdelay(10);
1989 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
1990 i -= 10;
1993 CMOS_WRITE(save_control, RTC_CONTROL);
1994 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1995 clear_IO_APIC_pin(apic, pin);
1997 ioapic_write_entry(apic, pin, entry0);
2000 static int disable_timer_pin_1 __initdata;
2001 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2002 static int __init disable_timer_pin_setup(char *arg)
2004 disable_timer_pin_1 = 1;
2005 return 0;
2007 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2009 static int __init mp_alloc_timer_irq(int ioapic, int pin)
2011 struct irq_domain *domain = mp_ioapic_irqdomain(ioapic);
2012 int irq = -1;
2014 if (domain) {
2015 struct irq_alloc_info info;
2017 ioapic_set_alloc_attr(&info, NUMA_NO_NODE, 0, 0);
2018 info.devid = mpc_ioapic_id(ioapic);
2019 info.ioapic.pin = pin;
2020 guard(mutex)(&ioapic_mutex);
2021 irq = alloc_isa_irq_from_domain(domain, 0, ioapic, pin, &info);
2024 return irq;
2027 static void __init replace_pin_at_irq_node(struct mp_chip_data *data, int node,
2028 int oldapic, int oldpin,
2029 int newapic, int newpin)
2031 struct irq_pin_list *entry;
2033 for_each_irq_pin(entry, data->irq_2_pin) {
2034 if (entry->apic == oldapic && entry->pin == oldpin) {
2035 entry->apic = newapic;
2036 entry->pin = newpin;
2037 return;
2041 /* Old apic/pin didn't exist, so just add a new one */
2042 add_pin_to_irq_node(data, node, newapic, newpin);
2046 * This code may look a bit paranoid, but it's supposed to cooperate with
2047 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2048 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2049 * fanatically on his truly buggy board.
2051 static inline void __init check_timer(void)
2053 struct irq_data *irq_data = irq_get_irq_data(0);
2054 struct mp_chip_data *data = irq_data->chip_data;
2055 struct irq_cfg *cfg = irqd_cfg(irq_data);
2056 int node = cpu_to_node(0);
2057 int apic1, pin1, apic2, pin2;
2058 int no_pin1 = 0;
2060 if (!global_clock_event)
2061 return;
2063 local_irq_disable();
2066 * get/set the timer IRQ vector:
2068 legacy_pic->mask(0);
2071 * As IRQ0 is to be enabled in the 8259A, the virtual
2072 * wire has to be disabled in the local APIC. Also
2073 * timer interrupts need to be acknowledged manually in
2074 * the 8259A for the i82489DX when using the NMI
2075 * watchdog as that APIC treats NMIs as level-triggered.
2076 * The AEOI mode will finish them in the 8259A
2077 * automatically.
2079 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2080 legacy_pic->init(1);
2082 pin1 = find_isa_irq_pin(0, mp_INT);
2083 apic1 = find_isa_irq_apic(0, mp_INT);
2084 pin2 = ioapic_i8259.pin;
2085 apic2 = ioapic_i8259.apic;
2087 pr_info("..TIMER: vector=0x%02X apic1=%d pin1=%d apic2=%d pin2=%d\n",
2088 cfg->vector, apic1, pin1, apic2, pin2);
2091 * Some BIOS writers are clueless and report the ExtINTA
2092 * I/O APIC input from the cascaded 8259A as the timer
2093 * interrupt input. So just in case, if only one pin
2094 * was found above, try it both directly and through the
2095 * 8259A.
2097 if (pin1 == -1) {
2098 panic_if_irq_remap(FW_BUG "Timer not connected to IO-APIC");
2099 pin1 = pin2;
2100 apic1 = apic2;
2101 no_pin1 = 1;
2102 } else if (pin2 == -1) {
2103 pin2 = pin1;
2104 apic2 = apic1;
2107 if (pin1 != -1) {
2108 /* Ok, does IRQ0 through the IOAPIC work? */
2109 if (no_pin1) {
2110 mp_alloc_timer_irq(apic1, pin1);
2111 } else {
2113 * for edge trigger, it's already unmasked,
2114 * so only need to unmask if it is level-trigger
2115 * do we really have level trigger timer?
2117 int idx = find_irq_entry(apic1, pin1, mp_INT);
2119 if (idx != -1 && irq_is_level(idx))
2120 unmask_ioapic_irq(irq_get_irq_data(0));
2122 irq_domain_deactivate_irq(irq_data);
2123 irq_domain_activate_irq(irq_data, false);
2124 if (timer_irq_works()) {
2125 if (disable_timer_pin_1 > 0)
2126 clear_IO_APIC_pin(0, pin1);
2127 goto out;
2129 panic_if_irq_remap("timer doesn't work through Interrupt-remapped IO-APIC");
2130 clear_IO_APIC_pin(apic1, pin1);
2131 if (!no_pin1)
2132 pr_err("..MP-BIOS bug: 8254 timer not connected to IO-APIC\n");
2134 pr_info("...trying to set up timer (IRQ0) through the 8259A ...\n");
2135 pr_info("..... (found apic %d pin %d) ...\n", apic2, pin2);
2137 * legacy devices should be connected to IO APIC #0
2139 replace_pin_at_irq_node(data, node, apic1, pin1, apic2, pin2);
2140 irq_domain_deactivate_irq(irq_data);
2141 irq_domain_activate_irq(irq_data, false);
2142 legacy_pic->unmask(0);
2143 if (timer_irq_works()) {
2144 pr_info("....... works.\n");
2145 goto out;
2148 * Cleanup, just in case ...
2150 legacy_pic->mask(0);
2151 clear_IO_APIC_pin(apic2, pin2);
2152 pr_info("....... failed.\n");
2155 pr_info("...trying to set up timer as Virtual Wire IRQ...\n");
2157 lapic_register_intr(0);
2158 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2159 legacy_pic->unmask(0);
2161 if (timer_irq_works()) {
2162 pr_info("..... works.\n");
2163 goto out;
2165 legacy_pic->mask(0);
2166 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2167 pr_info("..... failed.\n");
2169 pr_info("...trying to set up timer as ExtINT IRQ...\n");
2171 legacy_pic->init(0);
2172 legacy_pic->make_irq(0);
2173 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2174 legacy_pic->unmask(0);
2176 unlock_ExtINT_logic();
2178 if (timer_irq_works()) {
2179 pr_info("..... works.\n");
2180 goto out;
2183 pr_info("..... failed :\n");
2184 if (apic_is_x2apic_enabled()) {
2185 pr_info("Perhaps problem with the pre-enabled x2apic mode\n"
2186 "Try booting with x2apic and interrupt-remapping disabled in the bios.\n");
2188 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2189 "report. Then try booting with the 'noapic' option.\n");
2190 out:
2191 local_irq_enable();
2195 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2196 * to devices. However there may be an I/O APIC pin available for
2197 * this interrupt regardless. The pin may be left unconnected, but
2198 * typically it will be reused as an ExtINT cascade interrupt for
2199 * the master 8259A. In the MPS case such a pin will normally be
2200 * reported as an ExtINT interrupt in the MP table. With ACPI
2201 * there is no provision for ExtINT interrupts, and in the absence
2202 * of an override it would be treated as an ordinary ISA I/O APIC
2203 * interrupt, that is edge-triggered and unmasked by default. We
2204 * used to do this, but it caused problems on some systems because
2205 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2206 * the same ExtINT cascade interrupt to drive the local APIC of the
2207 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2208 * the I/O APIC in all cases now. No actual device should request
2209 * it anyway. --macro
2211 #define PIC_IRQS (1UL << PIC_CASCADE_IR)
2213 static int mp_irqdomain_create(int ioapic)
2215 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(ioapic);
2216 int hwirqs = mp_ioapic_pin_count(ioapic);
2217 struct ioapic *ip = &ioapics[ioapic];
2218 struct ioapic_domain_cfg *cfg = &ip->irqdomain_cfg;
2219 struct irq_domain *parent;
2220 struct fwnode_handle *fn;
2221 struct irq_fwspec fwspec;
2223 if (cfg->type == IOAPIC_DOMAIN_INVALID)
2224 return 0;
2226 /* Handle device tree enumerated APICs proper */
2227 if (cfg->dev) {
2228 fn = of_node_to_fwnode(cfg->dev);
2229 } else {
2230 fn = irq_domain_alloc_named_id_fwnode("IO-APIC", mpc_ioapic_id(ioapic));
2231 if (!fn)
2232 return -ENOMEM;
2235 fwspec.fwnode = fn;
2236 fwspec.param_count = 1;
2237 fwspec.param[0] = mpc_ioapic_id(ioapic);
2239 parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
2240 if (!parent) {
2241 if (!cfg->dev)
2242 irq_domain_free_fwnode(fn);
2243 return -ENODEV;
2246 ip->irqdomain = irq_domain_create_hierarchy(parent, 0, hwirqs, fn, cfg->ops,
2247 (void *)(long)ioapic);
2248 if (!ip->irqdomain) {
2249 /* Release fw handle if it was allocated above */
2250 if (!cfg->dev)
2251 irq_domain_free_fwnode(fn);
2252 return -ENOMEM;
2255 if (cfg->type == IOAPIC_DOMAIN_LEGACY || cfg->type == IOAPIC_DOMAIN_STRICT)
2256 ioapic_dynirq_base = max(ioapic_dynirq_base, gsi_cfg->gsi_end + 1);
2258 return 0;
2261 static void ioapic_destroy_irqdomain(int idx)
2263 struct ioapic_domain_cfg *cfg = &ioapics[idx].irqdomain_cfg;
2264 struct fwnode_handle *fn = ioapics[idx].irqdomain->fwnode;
2266 if (ioapics[idx].irqdomain) {
2267 irq_domain_remove(ioapics[idx].irqdomain);
2268 if (!cfg->dev)
2269 irq_domain_free_fwnode(fn);
2270 ioapics[idx].irqdomain = NULL;
2274 void __init setup_IO_APIC(void)
2276 int ioapic;
2278 if (ioapic_is_disabled || !nr_ioapics)
2279 return;
2281 io_apic_irqs = nr_legacy_irqs() ? ~PIC_IRQS : ~0UL;
2283 apic_pr_verbose("ENABLING IO-APIC IRQs\n");
2284 for_each_ioapic(ioapic)
2285 BUG_ON(mp_irqdomain_create(ioapic));
2287 /* Set up IO-APIC IRQ routing. */
2288 x86_init.mpparse.setup_ioapic_ids();
2290 sync_Arb_IDs();
2291 setup_IO_APIC_irqs();
2292 init_IO_APIC_traps();
2293 if (nr_legacy_irqs())
2294 check_timer();
2296 ioapic_initialized = 1;
2299 static void resume_ioapic_id(int ioapic_idx)
2301 union IO_APIC_reg_00 reg_00;
2303 guard(raw_spinlock_irqsave)(&ioapic_lock);
2304 reg_00.raw = io_apic_read(ioapic_idx, 0);
2305 if (reg_00.bits.ID != mpc_ioapic_id(ioapic_idx)) {
2306 reg_00.bits.ID = mpc_ioapic_id(ioapic_idx);
2307 io_apic_write(ioapic_idx, 0, reg_00.raw);
2311 static void ioapic_resume(void)
2313 int ioapic_idx;
2315 for_each_ioapic_reverse(ioapic_idx)
2316 resume_ioapic_id(ioapic_idx);
2318 restore_ioapic_entries();
2321 static struct syscore_ops ioapic_syscore_ops = {
2322 .suspend = save_ioapic_entries,
2323 .resume = ioapic_resume,
2326 static int __init ioapic_init_ops(void)
2328 register_syscore_ops(&ioapic_syscore_ops);
2330 return 0;
2333 device_initcall(ioapic_init_ops);
2335 static int io_apic_get_redir_entries(int ioapic)
2337 union IO_APIC_reg_01 reg_01;
2339 guard(raw_spinlock_irqsave)(&ioapic_lock);
2340 reg_01.raw = io_apic_read(ioapic, 1);
2343 * The register returns the maximum index redir index supported,
2344 * which is one less than the total number of redir entries.
2346 return reg_01.bits.entries + 1;
2349 unsigned int arch_dynirq_lower_bound(unsigned int from)
2351 unsigned int ret;
2354 * dmar_alloc_hwirq() may be called before setup_IO_APIC(), so use
2355 * gsi_top if ioapic_dynirq_base hasn't been initialized yet.
2357 ret = ioapic_dynirq_base ? : gsi_top;
2360 * For DT enabled machines ioapic_dynirq_base is irrelevant and
2361 * always 0. gsi_top can be 0 if there is no IO/APIC registered.
2362 * 0 is an invalid interrupt number for dynamic allocations. Return
2363 * @from instead.
2365 return ret ? : from;
2368 #ifdef CONFIG_X86_32
2369 static int io_apic_get_unique_id(int ioapic, int apic_id)
2371 static DECLARE_BITMAP(apic_id_map, MAX_LOCAL_APIC);
2372 const u32 broadcast_id = 0xF;
2373 union IO_APIC_reg_00 reg_00;
2374 int i = 0;
2376 /* Initialize the ID map */
2377 if (bitmap_empty(apic_id_map, MAX_LOCAL_APIC))
2378 copy_phys_cpu_present_map(apic_id_map);
2380 scoped_guard (raw_spinlock_irqsave, &ioapic_lock)
2381 reg_00.raw = io_apic_read(ioapic, 0);
2383 if (apic_id >= broadcast_id) {
2384 pr_warn("IOAPIC[%d]: Invalid apic_id %d, trying %d\n",
2385 ioapic, apic_id, reg_00.bits.ID);
2386 apic_id = reg_00.bits.ID;
2389 /* Every APIC in a system must have a unique ID */
2390 if (test_bit(apic_id, apic_id_map)) {
2391 for (i = 0; i < broadcast_id; i++) {
2392 if (!test_bit(i, apic_id_map))
2393 break;
2396 if (i == broadcast_id)
2397 panic("Max apic_id exceeded!\n");
2399 pr_warn("IOAPIC[%d]: apic_id %d already used, trying %d\n", ioapic, apic_id, i);
2400 apic_id = i;
2403 set_bit(apic_id, apic_id_map);
2405 if (reg_00.bits.ID != apic_id) {
2406 reg_00.bits.ID = apic_id;
2408 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) {
2409 io_apic_write(ioapic, 0, reg_00.raw);
2410 reg_00.raw = io_apic_read(ioapic, 0);
2413 /* Sanity check */
2414 if (reg_00.bits.ID != apic_id) {
2415 pr_err("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
2416 return -1;
2420 apic_pr_verbose("IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
2422 return apic_id;
2425 static u8 io_apic_unique_id(int idx, u8 id)
2427 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && !APIC_XAPIC(boot_cpu_apic_version))
2428 return io_apic_get_unique_id(idx, id);
2429 return id;
2431 #else
2432 static u8 io_apic_unique_id(int idx, u8 id)
2434 union IO_APIC_reg_00 reg_00;
2435 DECLARE_BITMAP(used, 256);
2436 u8 new_id;
2437 int i;
2439 bitmap_zero(used, 256);
2440 for_each_ioapic(i)
2441 __set_bit(mpc_ioapic_id(i), used);
2443 /* Hand out the requested id if available */
2444 if (!test_bit(id, used))
2445 return id;
2448 * Read the current id from the ioapic and keep it if
2449 * available.
2451 scoped_guard (raw_spinlock_irqsave, &ioapic_lock)
2452 reg_00.raw = io_apic_read(idx, 0);
2454 new_id = reg_00.bits.ID;
2455 if (!test_bit(new_id, used)) {
2456 apic_pr_verbose("IOAPIC[%d]: Using reg apic_id %d instead of %d\n",
2457 idx, new_id, id);
2458 return new_id;
2461 /* Get the next free id and write it to the ioapic. */
2462 new_id = find_first_zero_bit(used, 256);
2463 reg_00.bits.ID = new_id;
2464 scoped_guard (raw_spinlock_irqsave, &ioapic_lock) {
2465 io_apic_write(idx, 0, reg_00.raw);
2466 reg_00.raw = io_apic_read(idx, 0);
2468 /* Sanity check */
2469 BUG_ON(reg_00.bits.ID != new_id);
2471 return new_id;
2473 #endif
2475 static int io_apic_get_version(int ioapic)
2477 union IO_APIC_reg_01 reg_01;
2479 guard(raw_spinlock_irqsave)(&ioapic_lock);
2480 reg_01.raw = io_apic_read(ioapic, 1);
2482 return reg_01.bits.version;
2486 * This function updates target affinity of IOAPIC interrupts to include
2487 * the CPUs which came online during SMP bringup.
2489 #define IOAPIC_RESOURCE_NAME_SIZE 11
2491 static struct resource *ioapic_resources;
2493 static struct resource * __init ioapic_setup_resources(void)
2495 struct resource *res;
2496 unsigned long n;
2497 char *mem;
2498 int i;
2500 if (nr_ioapics == 0)
2501 return NULL;
2503 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
2504 n *= nr_ioapics;
2506 mem = memblock_alloc(n, SMP_CACHE_BYTES);
2507 if (!mem)
2508 panic("%s: Failed to allocate %lu bytes\n", __func__, n);
2509 res = (void *)mem;
2511 mem += sizeof(struct resource) * nr_ioapics;
2513 for_each_ioapic(i) {
2514 res[i].name = mem;
2515 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
2516 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
2517 mem += IOAPIC_RESOURCE_NAME_SIZE;
2518 ioapics[i].iomem_res = &res[i];
2521 ioapic_resources = res;
2523 return res;
2526 static void io_apic_set_fixmap(enum fixed_addresses idx, phys_addr_t phys)
2528 pgprot_t flags = FIXMAP_PAGE_NOCACHE;
2531 * Ensure fixmaps for IO-APIC MMIO respect memory encryption pgprot
2532 * bits, just like normal ioremap():
2534 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
2535 if (x86_platform.hyper.is_private_mmio(phys))
2536 flags = pgprot_encrypted(flags);
2537 else
2538 flags = pgprot_decrypted(flags);
2541 __set_fixmap(idx, phys, flags);
2544 void __init io_apic_init_mappings(void)
2546 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
2547 struct resource *ioapic_res;
2548 int i;
2550 ioapic_res = ioapic_setup_resources();
2551 for_each_ioapic(i) {
2552 if (smp_found_config) {
2553 ioapic_phys = mpc_ioapic_addr(i);
2554 #ifdef CONFIG_X86_32
2555 if (!ioapic_phys) {
2556 pr_err("WARNING: bogus zero IO-APIC address found in MPTABLE, "
2557 "disabling IO/APIC support!\n");
2558 smp_found_config = 0;
2559 ioapic_is_disabled = true;
2560 goto fake_ioapic_page;
2562 #endif
2563 } else {
2564 #ifdef CONFIG_X86_32
2565 fake_ioapic_page:
2566 #endif
2567 ioapic_phys = (unsigned long)memblock_alloc(PAGE_SIZE,
2568 PAGE_SIZE);
2569 if (!ioapic_phys)
2570 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
2571 __func__, PAGE_SIZE, PAGE_SIZE);
2572 ioapic_phys = __pa(ioapic_phys);
2574 io_apic_set_fixmap(idx, ioapic_phys);
2575 apic_pr_verbose("mapped IOAPIC to %08lx (%08lx)\n",
2576 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK), ioapic_phys);
2577 idx++;
2579 ioapic_res->start = ioapic_phys;
2580 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
2581 ioapic_res++;
2585 void __init ioapic_insert_resources(void)
2587 struct resource *r = ioapic_resources;
2588 int i;
2590 if (!r) {
2591 if (nr_ioapics > 0)
2592 pr_err("IO APIC resources couldn't be allocated.\n");
2593 return;
2596 for_each_ioapic(i) {
2597 insert_resource(&iomem_resource, r);
2598 r++;
2602 int mp_find_ioapic(u32 gsi)
2604 int i;
2606 if (nr_ioapics == 0)
2607 return -1;
2609 /* Find the IOAPIC that manages this GSI. */
2610 for_each_ioapic(i) {
2611 struct mp_ioapic_gsi *gsi_cfg = mp_ioapic_gsi_routing(i);
2613 if (gsi >= gsi_cfg->gsi_base && gsi <= gsi_cfg->gsi_end)
2614 return i;
2617 pr_err("ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
2618 return -1;
2621 int mp_find_ioapic_pin(int ioapic, u32 gsi)
2623 struct mp_ioapic_gsi *gsi_cfg;
2625 if (WARN_ON(ioapic < 0))
2626 return -1;
2628 gsi_cfg = mp_ioapic_gsi_routing(ioapic);
2629 if (WARN_ON(gsi > gsi_cfg->gsi_end))
2630 return -1;
2632 return gsi - gsi_cfg->gsi_base;
2635 static int bad_ioapic_register(int idx)
2637 union IO_APIC_reg_00 reg_00;
2638 union IO_APIC_reg_01 reg_01;
2639 union IO_APIC_reg_02 reg_02;
2641 reg_00.raw = io_apic_read(idx, 0);
2642 reg_01.raw = io_apic_read(idx, 1);
2643 reg_02.raw = io_apic_read(idx, 2);
2645 if (reg_00.raw == -1 && reg_01.raw == -1 && reg_02.raw == -1) {
2646 pr_warn("I/O APIC 0x%x registers return all ones, skipping!\n",
2647 mpc_ioapic_addr(idx));
2648 return 1;
2651 return 0;
2654 static int find_free_ioapic_entry(void)
2656 for (int idx = 0; idx < MAX_IO_APICS; idx++) {
2657 if (ioapics[idx].nr_registers == 0)
2658 return idx;
2660 return MAX_IO_APICS;
2664 * mp_register_ioapic - Register an IOAPIC device
2665 * @id: hardware IOAPIC ID
2666 * @address: physical address of IOAPIC register area
2667 * @gsi_base: base of GSI associated with the IOAPIC
2668 * @cfg: configuration information for the IOAPIC
2670 int mp_register_ioapic(int id, u32 address, u32 gsi_base, struct ioapic_domain_cfg *cfg)
2672 bool hotplug = !!ioapic_initialized;
2673 struct mp_ioapic_gsi *gsi_cfg;
2674 int idx, ioapic, entries;
2675 u32 gsi_end;
2677 if (!address) {
2678 pr_warn("Bogus (zero) I/O APIC address found, skipping!\n");
2679 return -EINVAL;
2682 for_each_ioapic(ioapic) {
2683 if (ioapics[ioapic].mp_config.apicaddr == address) {
2684 pr_warn("address 0x%x conflicts with IOAPIC%d\n", address, ioapic);
2685 return -EEXIST;
2689 idx = find_free_ioapic_entry();
2690 if (idx >= MAX_IO_APICS) {
2691 pr_warn("Max # of I/O APICs (%d) exceeded (found %d), skipping\n",
2692 MAX_IO_APICS, idx);
2693 return -ENOSPC;
2696 ioapics[idx].mp_config.type = MP_IOAPIC;
2697 ioapics[idx].mp_config.flags = MPC_APIC_USABLE;
2698 ioapics[idx].mp_config.apicaddr = address;
2700 io_apic_set_fixmap(FIX_IO_APIC_BASE_0 + idx, address);
2701 if (bad_ioapic_register(idx)) {
2702 clear_fixmap(FIX_IO_APIC_BASE_0 + idx);
2703 return -ENODEV;
2706 ioapics[idx].mp_config.apicid = io_apic_unique_id(idx, id);
2707 ioapics[idx].mp_config.apicver = io_apic_get_version(idx);
2710 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
2711 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
2713 entries = io_apic_get_redir_entries(idx);
2714 gsi_end = gsi_base + entries - 1;
2715 for_each_ioapic(ioapic) {
2716 gsi_cfg = mp_ioapic_gsi_routing(ioapic);
2717 if ((gsi_base >= gsi_cfg->gsi_base &&
2718 gsi_base <= gsi_cfg->gsi_end) ||
2719 (gsi_end >= gsi_cfg->gsi_base &&
2720 gsi_end <= gsi_cfg->gsi_end)) {
2721 pr_warn("GSI range [%u-%u] for new IOAPIC conflicts with GSI[%u-%u]\n",
2722 gsi_base, gsi_end, gsi_cfg->gsi_base, gsi_cfg->gsi_end);
2723 clear_fixmap(FIX_IO_APIC_BASE_0 + idx);
2724 return -ENOSPC;
2727 gsi_cfg = mp_ioapic_gsi_routing(idx);
2728 gsi_cfg->gsi_base = gsi_base;
2729 gsi_cfg->gsi_end = gsi_end;
2731 ioapics[idx].irqdomain = NULL;
2732 ioapics[idx].irqdomain_cfg = *cfg;
2735 * If mp_register_ioapic() is called during early boot stage when
2736 * walking ACPI/DT tables, it's too early to create irqdomain,
2737 * we are still using bootmem allocator. So delay it to setup_IO_APIC().
2739 if (hotplug) {
2740 if (mp_irqdomain_create(idx)) {
2741 clear_fixmap(FIX_IO_APIC_BASE_0 + idx);
2742 return -ENOMEM;
2744 alloc_ioapic_saved_registers(idx);
2747 if (gsi_cfg->gsi_end >= gsi_top)
2748 gsi_top = gsi_cfg->gsi_end + 1;
2749 if (nr_ioapics <= idx)
2750 nr_ioapics = idx + 1;
2752 /* Set nr_registers to mark entry present */
2753 ioapics[idx].nr_registers = entries;
2755 pr_info("IOAPIC[%d]: apic_id %d, version %d, address 0x%x, GSI %d-%d\n",
2756 idx, mpc_ioapic_id(idx), mpc_ioapic_ver(idx), mpc_ioapic_addr(idx),
2757 gsi_cfg->gsi_base, gsi_cfg->gsi_end);
2759 return 0;
2762 int mp_unregister_ioapic(u32 gsi_base)
2764 int ioapic, pin;
2765 int found = 0;
2767 for_each_ioapic(ioapic) {
2768 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base) {
2769 found = 1;
2770 break;
2774 if (!found) {
2775 pr_warn("can't find IOAPIC for GSI %d\n", gsi_base);
2776 return -ENODEV;
2779 for_each_pin(ioapic, pin) {
2780 u32 gsi = mp_pin_to_gsi(ioapic, pin);
2781 int irq = mp_map_gsi_to_irq(gsi, 0, NULL);
2782 struct mp_chip_data *data;
2784 if (irq >= 0) {
2785 data = irq_get_chip_data(irq);
2786 if (data && data->count) {
2787 pr_warn("pin%d on IOAPIC%d is still in use.\n", pin, ioapic);
2788 return -EBUSY;
2793 /* Mark entry not present */
2794 ioapics[ioapic].nr_registers = 0;
2795 ioapic_destroy_irqdomain(ioapic);
2796 free_ioapic_saved_registers(ioapic);
2797 if (ioapics[ioapic].iomem_res)
2798 release_resource(ioapics[ioapic].iomem_res);
2799 clear_fixmap(FIX_IO_APIC_BASE_0 + ioapic);
2800 memset(&ioapics[ioapic], 0, sizeof(ioapics[ioapic]));
2802 return 0;
2805 int mp_ioapic_registered(u32 gsi_base)
2807 int ioapic;
2809 for_each_ioapic(ioapic)
2810 if (ioapics[ioapic].gsi_config.gsi_base == gsi_base)
2811 return 1;
2813 return 0;
2816 static void mp_irqdomain_get_attr(u32 gsi, struct mp_chip_data *data,
2817 struct irq_alloc_info *info)
2819 if (info && info->ioapic.valid) {
2820 data->is_level = info->ioapic.is_level;
2821 data->active_low = info->ioapic.active_low;
2822 } else if (__acpi_get_override_irq(gsi, &data->is_level, &data->active_low) < 0) {
2823 /* PCI interrupts are always active low level triggered. */
2824 data->is_level = true;
2825 data->active_low = true;
2830 * Configure the I/O-APIC specific fields in the routing entry.
2832 * This is important to setup the I/O-APIC specific bits (is_level,
2833 * active_low, masked) because the underlying parent domain will only
2834 * provide the routing information and is oblivious of the I/O-APIC
2835 * specific bits.
2837 * The entry is just preconfigured at this point and not written into the
2838 * RTE. This happens later during activation which will fill in the actual
2839 * routing information.
2841 static void mp_preconfigure_entry(struct mp_chip_data *data)
2843 struct IO_APIC_route_entry *entry = &data->entry;
2845 memset(entry, 0, sizeof(*entry));
2846 entry->is_level = data->is_level;
2847 entry->active_low = data->active_low;
2849 * Mask level triggered irqs. Edge triggered irqs are masked
2850 * by the irq core code in case they fire.
2852 entry->masked = data->is_level;
2855 int mp_irqdomain_alloc(struct irq_domain *domain, unsigned int virq,
2856 unsigned int nr_irqs, void *arg)
2858 struct irq_alloc_info *info = arg;
2859 struct mp_chip_data *data;
2860 struct irq_data *irq_data;
2861 int ret, ioapic, pin;
2862 unsigned long flags;
2864 if (!info || nr_irqs > 1)
2865 return -EINVAL;
2866 irq_data = irq_domain_get_irq_data(domain, virq);
2867 if (!irq_data)
2868 return -EINVAL;
2870 ioapic = mp_irqdomain_ioapic_idx(domain);
2871 pin = info->ioapic.pin;
2872 if (irq_find_mapping(domain, (irq_hw_number_t)pin) > 0)
2873 return -EEXIST;
2875 data = kzalloc(sizeof(*data), GFP_KERNEL);
2876 if (!data)
2877 return -ENOMEM;
2879 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, info);
2880 if (ret < 0)
2881 goto free_data;
2883 INIT_LIST_HEAD(&data->irq_2_pin);
2884 irq_data->hwirq = info->ioapic.pin;
2885 irq_data->chip = (domain->parent == x86_vector_domain) ?
2886 &ioapic_chip : &ioapic_ir_chip;
2887 irq_data->chip_data = data;
2888 mp_irqdomain_get_attr(mp_pin_to_gsi(ioapic, pin), data, info);
2890 if (!add_pin_to_irq_node(data, ioapic_alloc_attr_node(info), ioapic, pin)) {
2891 ret = -ENOMEM;
2892 goto free_irqs;
2895 mp_preconfigure_entry(data);
2896 mp_register_handler(virq, data->is_level);
2898 local_irq_save(flags);
2899 if (virq < nr_legacy_irqs())
2900 legacy_pic->mask(virq);
2901 local_irq_restore(flags);
2903 apic_pr_verbose("IOAPIC[%d]: Preconfigured routing entry (%d-%d -> IRQ %d Level:%i ActiveLow:%i)\n",
2904 ioapic, mpc_ioapic_id(ioapic), pin, virq, data->is_level, data->active_low);
2905 return 0;
2907 free_irqs:
2908 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2909 free_data:
2910 kfree(data);
2911 return ret;
2914 void mp_irqdomain_free(struct irq_domain *domain, unsigned int virq,
2915 unsigned int nr_irqs)
2917 struct irq_data *irq_data;
2918 struct mp_chip_data *data;
2920 BUG_ON(nr_irqs != 1);
2921 irq_data = irq_domain_get_irq_data(domain, virq);
2922 if (irq_data && irq_data->chip_data) {
2923 data = irq_data->chip_data;
2924 __remove_pin_from_irq(data, mp_irqdomain_ioapic_idx(domain), (int)irq_data->hwirq);
2925 WARN_ON(!list_empty(&data->irq_2_pin));
2926 kfree(irq_data->chip_data);
2928 irq_domain_free_irqs_top(domain, virq, nr_irqs);
2931 int mp_irqdomain_activate(struct irq_domain *domain, struct irq_data *irq_data, bool reserve)
2933 guard(raw_spinlock_irqsave)(&ioapic_lock);
2934 ioapic_configure_entry(irq_data);
2935 return 0;
2938 void mp_irqdomain_deactivate(struct irq_domain *domain,
2939 struct irq_data *irq_data)
2941 /* It won't be called for IRQ with multiple IOAPIC pins associated */
2942 ioapic_mask_entry(mp_irqdomain_ioapic_idx(domain), (int)irq_data->hwirq);
2945 int mp_irqdomain_ioapic_idx(struct irq_domain *domain)
2947 return (int)(long)domain->host_data;
2950 const struct irq_domain_ops mp_ioapic_irqdomain_ops = {
2951 .alloc = mp_irqdomain_alloc,
2952 .free = mp_irqdomain_free,
2953 .activate = mp_irqdomain_activate,
2954 .deactivate = mp_irqdomain_deactivate,