1 // SPDX-License-Identifier: GPL-2.0-only
3 * Local APIC related interfaces to support IOAPIC, MSI, etc.
5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
6 * Moved from arch/x86/kernel/apic/io_apic.c.
7 * Jiang Liu <jiang.liu@linux.intel.com>
8 * Enable support of hierarchical irqdomains
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/seq_file.h>
13 #include <linux/init.h>
14 #include <linux/compiler.h>
15 #include <linux/slab.h>
16 #include <asm/irqdomain.h>
17 #include <asm/hw_irq.h>
18 #include <asm/traps.h>
20 #include <asm/i8259.h>
22 #include <asm/irq_remapping.h>
24 #include <asm/trace/irq_vectors.h>
26 struct apic_chip_data
{
27 struct irq_cfg hw_irq_cfg
;
29 unsigned int prev_vector
;
31 unsigned int prev_cpu
;
33 struct hlist_node clist
;
34 unsigned int move_in_progress
: 1,
40 struct irq_domain
*x86_vector_domain
;
41 EXPORT_SYMBOL_GPL(x86_vector_domain
);
42 static DEFINE_RAW_SPINLOCK(vector_lock
);
43 static cpumask_var_t vector_searchmask
;
44 static struct irq_chip lapic_controller
;
45 static struct irq_matrix
*vector_matrix
;
48 static void vector_cleanup_callback(struct timer_list
*tmr
);
50 struct vector_cleanup
{
51 struct hlist_head head
;
52 struct timer_list timer
;
55 static DEFINE_PER_CPU(struct vector_cleanup
, vector_cleanup
) = {
56 .head
= HLIST_HEAD_INIT
,
57 .timer
= __TIMER_INITIALIZER(vector_cleanup_callback
, TIMER_PINNED
),
61 void lock_vector_lock(void)
63 /* Used to the online set of cpus does not change
64 * during assign_irq_vector.
66 raw_spin_lock(&vector_lock
);
69 void unlock_vector_lock(void)
71 raw_spin_unlock(&vector_lock
);
74 void init_irq_alloc_info(struct irq_alloc_info
*info
,
75 const struct cpumask
*mask
)
77 memset(info
, 0, sizeof(*info
));
81 void copy_irq_alloc_info(struct irq_alloc_info
*dst
, struct irq_alloc_info
*src
)
86 memset(dst
, 0, sizeof(*dst
));
89 static struct apic_chip_data
*apic_chip_data(struct irq_data
*irqd
)
94 while (irqd
->parent_data
)
95 irqd
= irqd
->parent_data
;
97 return irqd
->chip_data
;
100 struct irq_cfg
*irqd_cfg(struct irq_data
*irqd
)
102 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
104 return apicd
? &apicd
->hw_irq_cfg
: NULL
;
106 EXPORT_SYMBOL_GPL(irqd_cfg
);
108 struct irq_cfg
*irq_cfg(unsigned int irq
)
110 return irqd_cfg(irq_get_irq_data(irq
));
113 static struct apic_chip_data
*alloc_apic_chip_data(int node
)
115 struct apic_chip_data
*apicd
;
117 apicd
= kzalloc_node(sizeof(*apicd
), GFP_KERNEL
, node
);
119 INIT_HLIST_NODE(&apicd
->clist
);
123 static void free_apic_chip_data(struct apic_chip_data
*apicd
)
128 static void apic_update_irq_cfg(struct irq_data
*irqd
, unsigned int vector
,
131 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
133 lockdep_assert_held(&vector_lock
);
135 apicd
->hw_irq_cfg
.vector
= vector
;
136 apicd
->hw_irq_cfg
.dest_apicid
= apic
->calc_dest_apicid(cpu
);
137 irq_data_update_effective_affinity(irqd
, cpumask_of(cpu
));
138 trace_vector_config(irqd
->irq
, vector
, cpu
,
139 apicd
->hw_irq_cfg
.dest_apicid
);
142 static void apic_update_vector(struct irq_data
*irqd
, unsigned int newvec
,
145 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
146 struct irq_desc
*desc
= irq_data_to_desc(irqd
);
147 bool managed
= irqd_affinity_is_managed(irqd
);
149 lockdep_assert_held(&vector_lock
);
151 trace_vector_update(irqd
->irq
, newvec
, newcpu
, apicd
->vector
,
155 * If there is no vector associated or if the associated vector is
156 * the shutdown vector, which is associated to make PCI/MSI
157 * shutdown mode work, then there is nothing to release. Clear out
158 * prev_vector for this and the offlined target case.
160 apicd
->prev_vector
= 0;
161 if (!apicd
->vector
|| apicd
->vector
== MANAGED_IRQ_SHUTDOWN_VECTOR
)
164 * If the target CPU of the previous vector is online, then mark
165 * the vector as move in progress and store it for cleanup when the
166 * first interrupt on the new vector arrives. If the target CPU is
167 * offline then the regular release mechanism via the cleanup
168 * vector is not possible and the vector can be immediately freed
169 * in the underlying matrix allocator.
171 if (cpu_online(apicd
->cpu
)) {
172 apicd
->move_in_progress
= true;
173 apicd
->prev_vector
= apicd
->vector
;
174 apicd
->prev_cpu
= apicd
->cpu
;
175 WARN_ON_ONCE(apicd
->cpu
== newcpu
);
177 irq_matrix_free(vector_matrix
, apicd
->cpu
, apicd
->vector
,
182 apicd
->vector
= newvec
;
184 BUG_ON(!IS_ERR_OR_NULL(per_cpu(vector_irq
, newcpu
)[newvec
]));
185 per_cpu(vector_irq
, newcpu
)[newvec
] = desc
;
188 static void vector_assign_managed_shutdown(struct irq_data
*irqd
)
190 unsigned int cpu
= cpumask_first(cpu_online_mask
);
192 apic_update_irq_cfg(irqd
, MANAGED_IRQ_SHUTDOWN_VECTOR
, cpu
);
195 static int reserve_managed_vector(struct irq_data
*irqd
)
197 const struct cpumask
*affmsk
= irq_data_get_affinity_mask(irqd
);
198 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
202 raw_spin_lock_irqsave(&vector_lock
, flags
);
203 apicd
->is_managed
= true;
204 ret
= irq_matrix_reserve_managed(vector_matrix
, affmsk
);
205 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
206 trace_vector_reserve_managed(irqd
->irq
, ret
);
210 static void reserve_irq_vector_locked(struct irq_data
*irqd
)
212 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
214 irq_matrix_reserve(vector_matrix
);
215 apicd
->can_reserve
= true;
216 apicd
->has_reserved
= true;
217 irqd_set_can_reserve(irqd
);
218 trace_vector_reserve(irqd
->irq
, 0);
219 vector_assign_managed_shutdown(irqd
);
222 static int reserve_irq_vector(struct irq_data
*irqd
)
226 raw_spin_lock_irqsave(&vector_lock
, flags
);
227 reserve_irq_vector_locked(irqd
);
228 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
233 assign_vector_locked(struct irq_data
*irqd
, const struct cpumask
*dest
)
235 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
236 bool resvd
= apicd
->has_reserved
;
237 unsigned int cpu
= apicd
->cpu
;
238 int vector
= apicd
->vector
;
240 lockdep_assert_held(&vector_lock
);
243 * If the current target CPU is online and in the new requested
244 * affinity mask, there is no point in moving the interrupt from
245 * one CPU to another.
247 if (vector
&& cpu_online(cpu
) && cpumask_test_cpu(cpu
, dest
))
251 * Careful here. @apicd might either have move_in_progress set or
252 * be enqueued for cleanup. Assigning a new vector would either
253 * leave a stale vector on some CPU around or in case of a pending
254 * cleanup corrupt the hlist.
256 if (apicd
->move_in_progress
|| !hlist_unhashed(&apicd
->clist
))
259 vector
= irq_matrix_alloc(vector_matrix
, dest
, resvd
, &cpu
);
260 trace_vector_alloc(irqd
->irq
, vector
, resvd
, vector
);
263 apic_update_vector(irqd
, vector
, cpu
);
264 apic_update_irq_cfg(irqd
, vector
, cpu
);
269 static int assign_irq_vector(struct irq_data
*irqd
, const struct cpumask
*dest
)
274 raw_spin_lock_irqsave(&vector_lock
, flags
);
275 cpumask_and(vector_searchmask
, dest
, cpu_online_mask
);
276 ret
= assign_vector_locked(irqd
, vector_searchmask
);
277 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
281 static int assign_irq_vector_any_locked(struct irq_data
*irqd
)
283 /* Get the affinity mask - either irq_default_affinity or (user) set */
284 const struct cpumask
*affmsk
= irq_data_get_affinity_mask(irqd
);
285 int node
= irq_data_get_node(irqd
);
287 if (node
!= NUMA_NO_NODE
) {
288 /* Try the intersection of @affmsk and node mask */
289 cpumask_and(vector_searchmask
, cpumask_of_node(node
), affmsk
);
290 if (!assign_vector_locked(irqd
, vector_searchmask
))
294 /* Try the full affinity mask */
295 cpumask_and(vector_searchmask
, affmsk
, cpu_online_mask
);
296 if (!assign_vector_locked(irqd
, vector_searchmask
))
299 if (node
!= NUMA_NO_NODE
) {
300 /* Try the node mask */
301 if (!assign_vector_locked(irqd
, cpumask_of_node(node
)))
305 /* Try the full online mask */
306 return assign_vector_locked(irqd
, cpu_online_mask
);
310 assign_irq_vector_policy(struct irq_data
*irqd
, struct irq_alloc_info
*info
)
312 if (irqd_affinity_is_managed(irqd
))
313 return reserve_managed_vector(irqd
);
315 return assign_irq_vector(irqd
, info
->mask
);
317 * Make only a global reservation with no guarantee. A real vector
318 * is associated at activation time.
320 return reserve_irq_vector(irqd
);
324 assign_managed_vector(struct irq_data
*irqd
, const struct cpumask
*dest
)
326 const struct cpumask
*affmsk
= irq_data_get_affinity_mask(irqd
);
327 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
330 cpumask_and(vector_searchmask
, dest
, affmsk
);
332 /* set_affinity might call here for nothing */
333 if (apicd
->vector
&& cpumask_test_cpu(apicd
->cpu
, vector_searchmask
))
335 vector
= irq_matrix_alloc_managed(vector_matrix
, vector_searchmask
,
337 trace_vector_alloc_managed(irqd
->irq
, vector
, vector
);
340 apic_update_vector(irqd
, vector
, cpu
);
341 apic_update_irq_cfg(irqd
, vector
, cpu
);
345 static void clear_irq_vector(struct irq_data
*irqd
)
347 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
348 bool managed
= irqd_affinity_is_managed(irqd
);
349 unsigned int vector
= apicd
->vector
;
351 lockdep_assert_held(&vector_lock
);
356 trace_vector_clear(irqd
->irq
, vector
, apicd
->cpu
, apicd
->prev_vector
,
359 per_cpu(vector_irq
, apicd
->cpu
)[vector
] = VECTOR_SHUTDOWN
;
360 irq_matrix_free(vector_matrix
, apicd
->cpu
, vector
, managed
);
363 /* Clean up move in progress */
364 vector
= apicd
->prev_vector
;
368 per_cpu(vector_irq
, apicd
->prev_cpu
)[vector
] = VECTOR_SHUTDOWN
;
369 irq_matrix_free(vector_matrix
, apicd
->prev_cpu
, vector
, managed
);
370 apicd
->prev_vector
= 0;
371 apicd
->move_in_progress
= 0;
372 hlist_del_init(&apicd
->clist
);
375 static void x86_vector_deactivate(struct irq_domain
*dom
, struct irq_data
*irqd
)
377 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
380 trace_vector_deactivate(irqd
->irq
, apicd
->is_managed
,
381 apicd
->can_reserve
, false);
383 /* Regular fixed assigned interrupt */
384 if (!apicd
->is_managed
&& !apicd
->can_reserve
)
386 /* If the interrupt has a global reservation, nothing to do */
387 if (apicd
->has_reserved
)
390 raw_spin_lock_irqsave(&vector_lock
, flags
);
391 clear_irq_vector(irqd
);
392 if (apicd
->can_reserve
)
393 reserve_irq_vector_locked(irqd
);
395 vector_assign_managed_shutdown(irqd
);
396 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
399 static int activate_reserved(struct irq_data
*irqd
)
401 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
404 ret
= assign_irq_vector_any_locked(irqd
);
406 apicd
->has_reserved
= false;
408 * Core might have disabled reservation mode after
409 * allocating the irq descriptor. Ideally this should
410 * happen before allocation time, but that would require
411 * completely convoluted ways of transporting that
414 if (!irqd_can_reserve(irqd
))
415 apicd
->can_reserve
= false;
419 * Check to ensure that the effective affinity mask is a subset
420 * the user supplied affinity mask, and warn the user if it is not
422 if (!cpumask_subset(irq_data_get_effective_affinity_mask(irqd
),
423 irq_data_get_affinity_mask(irqd
))) {
424 pr_warn("irq %u: Affinity broken due to vector space exhaustion.\n",
431 static int activate_managed(struct irq_data
*irqd
)
433 const struct cpumask
*dest
= irq_data_get_affinity_mask(irqd
);
436 cpumask_and(vector_searchmask
, dest
, cpu_online_mask
);
437 if (WARN_ON_ONCE(cpumask_empty(vector_searchmask
))) {
438 /* Something in the core code broke! Survive gracefully */
439 pr_err("Managed startup for irq %u, but no CPU\n", irqd
->irq
);
443 ret
= assign_managed_vector(irqd
, vector_searchmask
);
445 * This should not happen. The vector reservation got buggered. Handle
448 if (WARN_ON_ONCE(ret
< 0)) {
449 pr_err("Managed startup irq %u, no vector available\n",
455 static int x86_vector_activate(struct irq_domain
*dom
, struct irq_data
*irqd
,
458 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
462 trace_vector_activate(irqd
->irq
, apicd
->is_managed
,
463 apicd
->can_reserve
, reserve
);
465 raw_spin_lock_irqsave(&vector_lock
, flags
);
466 if (!apicd
->can_reserve
&& !apicd
->is_managed
)
467 assign_irq_vector_any_locked(irqd
);
468 else if (reserve
|| irqd_is_managed_and_shutdown(irqd
))
469 vector_assign_managed_shutdown(irqd
);
470 else if (apicd
->is_managed
)
471 ret
= activate_managed(irqd
);
472 else if (apicd
->has_reserved
)
473 ret
= activate_reserved(irqd
);
474 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
478 static void vector_free_reserved_and_managed(struct irq_data
*irqd
)
480 const struct cpumask
*dest
= irq_data_get_affinity_mask(irqd
);
481 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
483 trace_vector_teardown(irqd
->irq
, apicd
->is_managed
,
484 apicd
->has_reserved
);
486 if (apicd
->has_reserved
)
487 irq_matrix_remove_reserved(vector_matrix
);
488 if (apicd
->is_managed
)
489 irq_matrix_remove_managed(vector_matrix
, dest
);
492 static void x86_vector_free_irqs(struct irq_domain
*domain
,
493 unsigned int virq
, unsigned int nr_irqs
)
495 struct apic_chip_data
*apicd
;
496 struct irq_data
*irqd
;
500 for (i
= 0; i
< nr_irqs
; i
++) {
501 irqd
= irq_domain_get_irq_data(x86_vector_domain
, virq
+ i
);
502 if (irqd
&& irqd
->chip_data
) {
503 raw_spin_lock_irqsave(&vector_lock
, flags
);
504 clear_irq_vector(irqd
);
505 vector_free_reserved_and_managed(irqd
);
506 apicd
= irqd
->chip_data
;
507 irq_domain_reset_irq_data(irqd
);
508 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
509 free_apic_chip_data(apicd
);
514 static bool vector_configure_legacy(unsigned int virq
, struct irq_data
*irqd
,
515 struct apic_chip_data
*apicd
)
518 bool realloc
= false;
520 apicd
->vector
= ISA_IRQ_VECTOR(virq
);
523 raw_spin_lock_irqsave(&vector_lock
, flags
);
525 * If the interrupt is activated, then it must stay at this vector
526 * position. That's usually the timer interrupt (0).
528 if (irqd_is_activated(irqd
)) {
529 trace_vector_setup(virq
, true, 0);
530 apic_update_irq_cfg(irqd
, apicd
->vector
, apicd
->cpu
);
532 /* Release the vector */
533 apicd
->can_reserve
= true;
534 irqd_set_can_reserve(irqd
);
535 clear_irq_vector(irqd
);
538 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
542 static int x86_vector_alloc_irqs(struct irq_domain
*domain
, unsigned int virq
,
543 unsigned int nr_irqs
, void *arg
)
545 struct irq_alloc_info
*info
= arg
;
546 struct apic_chip_data
*apicd
;
547 struct irq_data
*irqd
;
550 if (apic_is_disabled
)
554 * Catch any attempt to touch the cascade interrupt on a PIC
557 if (WARN_ON_ONCE(info
->flags
& X86_IRQ_ALLOC_LEGACY
&&
558 virq
== PIC_CASCADE_IR
))
561 for (i
= 0; i
< nr_irqs
; i
++) {
562 irqd
= irq_domain_get_irq_data(domain
, virq
+ i
);
564 node
= irq_data_get_node(irqd
);
565 WARN_ON_ONCE(irqd
->chip_data
);
566 apicd
= alloc_apic_chip_data(node
);
572 apicd
->irq
= virq
+ i
;
573 irqd
->chip
= &lapic_controller
;
574 irqd
->chip_data
= apicd
;
575 irqd
->hwirq
= virq
+ i
;
576 irqd_set_single_target(irqd
);
578 * Prevent that any of these interrupts is invoked in
579 * non interrupt context via e.g. generic_handle_irq()
580 * as that can corrupt the affinity move state.
582 irqd_set_handle_enforce_irqctx(irqd
);
584 /* Don't invoke affinity setter on deactivated interrupts */
585 irqd_set_affinity_on_activate(irqd
);
588 * Legacy vectors are already assigned when the IOAPIC
589 * takes them over. They stay on the same vector. This is
590 * required for check_timer() to work correctly as it might
591 * switch back to legacy mode. Only update the hardware
594 if (info
->flags
& X86_IRQ_ALLOC_LEGACY
) {
595 if (!vector_configure_legacy(virq
+ i
, irqd
, apicd
))
599 err
= assign_irq_vector_policy(irqd
, info
);
600 trace_vector_setup(virq
+ i
, false, err
);
602 irqd
->chip_data
= NULL
;
603 free_apic_chip_data(apicd
);
611 x86_vector_free_irqs(domain
, virq
, i
);
615 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
616 static void x86_vector_debug_show(struct seq_file
*m
, struct irq_domain
*d
,
617 struct irq_data
*irqd
, int ind
)
619 struct apic_chip_data apicd
;
624 irq_matrix_debug_show(m
, vector_matrix
, ind
);
629 if (irq
< nr_legacy_irqs() && !test_bit(irq
, &io_apic_irqs
)) {
630 seq_printf(m
, "%*sVector: %5d\n", ind
, "", ISA_IRQ_VECTOR(irq
));
631 seq_printf(m
, "%*sTarget: Legacy PIC all CPUs\n", ind
, "");
635 if (!irqd
->chip_data
) {
636 seq_printf(m
, "%*sVector: Not assigned\n", ind
, "");
640 raw_spin_lock_irqsave(&vector_lock
, flags
);
641 memcpy(&apicd
, irqd
->chip_data
, sizeof(apicd
));
642 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
644 seq_printf(m
, "%*sVector: %5u\n", ind
, "", apicd
.vector
);
645 seq_printf(m
, "%*sTarget: %5u\n", ind
, "", apicd
.cpu
);
646 if (apicd
.prev_vector
) {
647 seq_printf(m
, "%*sPrevious vector: %5u\n", ind
, "", apicd
.prev_vector
);
648 seq_printf(m
, "%*sPrevious target: %5u\n", ind
, "", apicd
.prev_cpu
);
650 seq_printf(m
, "%*smove_in_progress: %u\n", ind
, "", apicd
.move_in_progress
? 1 : 0);
651 seq_printf(m
, "%*sis_managed: %u\n", ind
, "", apicd
.is_managed
? 1 : 0);
652 seq_printf(m
, "%*scan_reserve: %u\n", ind
, "", apicd
.can_reserve
? 1 : 0);
653 seq_printf(m
, "%*shas_reserved: %u\n", ind
, "", apicd
.has_reserved
? 1 : 0);
654 seq_printf(m
, "%*scleanup_pending: %u\n", ind
, "", !hlist_unhashed(&apicd
.clist
));
658 int x86_fwspec_is_ioapic(struct irq_fwspec
*fwspec
)
660 if (fwspec
->param_count
!= 1)
663 if (is_fwnode_irqchip(fwspec
->fwnode
)) {
664 const char *fwname
= fwnode_get_name(fwspec
->fwnode
);
665 return fwname
&& !strncmp(fwname
, "IO-APIC-", 8) &&
666 simple_strtol(fwname
+8, NULL
, 10) == fwspec
->param
[0];
668 return to_of_node(fwspec
->fwnode
) &&
669 of_device_is_compatible(to_of_node(fwspec
->fwnode
),
670 "intel,ce4100-ioapic");
673 int x86_fwspec_is_hpet(struct irq_fwspec
*fwspec
)
675 if (fwspec
->param_count
!= 1)
678 if (is_fwnode_irqchip(fwspec
->fwnode
)) {
679 const char *fwname
= fwnode_get_name(fwspec
->fwnode
);
680 return fwname
&& !strncmp(fwname
, "HPET-MSI-", 9) &&
681 simple_strtol(fwname
+9, NULL
, 10) == fwspec
->param
[0];
686 static int x86_vector_select(struct irq_domain
*d
, struct irq_fwspec
*fwspec
,
687 enum irq_domain_bus_token bus_token
)
690 * HPET and I/OAPIC cannot be parented in the vector domain
691 * if IRQ remapping is enabled. APIC IDs above 15 bits are
692 * only permitted if IRQ remapping is enabled, so check that.
694 if (apic_id_valid(32768))
697 return x86_fwspec_is_ioapic(fwspec
) || x86_fwspec_is_hpet(fwspec
);
700 static const struct irq_domain_ops x86_vector_domain_ops
= {
701 .select
= x86_vector_select
,
702 .alloc
= x86_vector_alloc_irqs
,
703 .free
= x86_vector_free_irqs
,
704 .activate
= x86_vector_activate
,
705 .deactivate
= x86_vector_deactivate
,
706 #ifdef CONFIG_GENERIC_IRQ_DEBUGFS
707 .debug_show
= x86_vector_debug_show
,
711 int __init
arch_probe_nr_irqs(void)
715 if (nr_irqs
> (NR_VECTORS
* nr_cpu_ids
))
716 nr_irqs
= NR_VECTORS
* nr_cpu_ids
;
718 nr
= (gsi_top
+ nr_legacy_irqs()) + 8 * nr_cpu_ids
;
719 #if defined(CONFIG_PCI_MSI)
721 * for MSI and HT dyn irq
723 if (gsi_top
<= NR_IRQS_LEGACY
)
724 nr
+= 8 * nr_cpu_ids
;
732 * We don't know if PIC is present at this point so we need to do
733 * probe() to get the right number of legacy IRQs.
735 return legacy_pic
->probe();
738 void lapic_assign_legacy_vector(unsigned int irq
, bool replace
)
741 * Use assign system here so it won't get accounted as allocated
742 * and movable in the cpu hotplug check and it prevents managed
743 * irq reservation from touching it.
745 irq_matrix_assign_system(vector_matrix
, ISA_IRQ_VECTOR(irq
), replace
);
748 void __init
lapic_update_legacy_vectors(void)
752 if (IS_ENABLED(CONFIG_X86_IO_APIC
) && nr_ioapics
> 0)
756 * If the IO/APIC is disabled via config, kernel command line or
757 * lack of enumeration then all legacy interrupts are routed
758 * through the PIC. Make sure that they are marked as legacy
759 * vectors. PIC_CASCADE_IRQ has already been marked in
760 * lapic_assign_system_vectors().
762 for (i
= 0; i
< nr_legacy_irqs(); i
++) {
763 if (i
!= PIC_CASCADE_IR
)
764 lapic_assign_legacy_vector(i
, true);
768 void __init
lapic_assign_system_vectors(void)
770 unsigned int i
, vector
;
772 for_each_set_bit(vector
, system_vectors
, NR_VECTORS
)
773 irq_matrix_assign_system(vector_matrix
, vector
, false);
775 if (nr_legacy_irqs() > 1)
776 lapic_assign_legacy_vector(PIC_CASCADE_IR
, false);
778 /* System vectors are reserved, online it */
779 irq_matrix_online(vector_matrix
);
781 /* Mark the preallocated legacy interrupts */
782 for (i
= 0; i
< nr_legacy_irqs(); i
++) {
784 * Don't touch the cascade interrupt. It's unusable
785 * on PIC equipped machines. See the large comment
786 * in the IO/APIC code.
788 if (i
!= PIC_CASCADE_IR
)
789 irq_matrix_assign(vector_matrix
, ISA_IRQ_VECTOR(i
));
793 int __init
arch_early_irq_init(void)
795 struct fwnode_handle
*fn
;
797 fn
= irq_domain_alloc_named_fwnode("VECTOR");
799 x86_vector_domain
= irq_domain_create_tree(fn
, &x86_vector_domain_ops
,
801 BUG_ON(x86_vector_domain
== NULL
);
802 irq_set_default_host(x86_vector_domain
);
804 BUG_ON(!alloc_cpumask_var(&vector_searchmask
, GFP_KERNEL
));
807 * Allocate the vector matrix allocator data structure and limit the
810 vector_matrix
= irq_alloc_matrix(NR_VECTORS
, FIRST_EXTERNAL_VECTOR
,
811 FIRST_SYSTEM_VECTOR
);
812 BUG_ON(!vector_matrix
);
814 return arch_early_ioapic_init();
819 static struct irq_desc
*__setup_vector_irq(int vector
)
821 int isairq
= vector
- ISA_IRQ_VECTOR(0);
823 /* Check whether the irq is in the legacy space */
824 if (isairq
< 0 || isairq
>= nr_legacy_irqs())
825 return VECTOR_UNUSED
;
826 /* Check whether the irq is handled by the IOAPIC */
827 if (test_bit(isairq
, &io_apic_irqs
))
828 return VECTOR_UNUSED
;
829 return irq_to_desc(isairq
);
832 /* Online the local APIC infrastructure and initialize the vectors */
833 void lapic_online(void)
837 lockdep_assert_held(&vector_lock
);
839 /* Online the vector matrix array for this CPU */
840 irq_matrix_online(vector_matrix
);
843 * The interrupt affinity logic never targets interrupts to offline
844 * CPUs. The exception are the legacy PIC interrupts. In general
845 * they are only targeted to CPU0, but depending on the platform
846 * they can be distributed to any online CPU in hardware. The
847 * kernel has no influence on that. So all active legacy vectors
848 * must be installed on all CPUs. All non legacy interrupts can be
851 for (vector
= 0; vector
< NR_VECTORS
; vector
++)
852 this_cpu_write(vector_irq
[vector
], __setup_vector_irq(vector
));
855 static void __vector_cleanup(struct vector_cleanup
*cl
, bool check_irr
);
857 void lapic_offline(void)
859 struct vector_cleanup
*cl
= this_cpu_ptr(&vector_cleanup
);
863 /* In case the vector cleanup timer has not expired */
864 __vector_cleanup(cl
, false);
866 irq_matrix_offline(vector_matrix
);
867 WARN_ON_ONCE(try_to_del_timer_sync(&cl
->timer
) < 0);
868 WARN_ON_ONCE(!hlist_empty(&cl
->head
));
870 unlock_vector_lock();
873 static int apic_set_affinity(struct irq_data
*irqd
,
874 const struct cpumask
*dest
, bool force
)
878 if (WARN_ON_ONCE(!irqd_is_activated(irqd
)))
881 raw_spin_lock(&vector_lock
);
882 cpumask_and(vector_searchmask
, dest
, cpu_online_mask
);
883 if (irqd_affinity_is_managed(irqd
))
884 err
= assign_managed_vector(irqd
, vector_searchmask
);
886 err
= assign_vector_locked(irqd
, vector_searchmask
);
887 raw_spin_unlock(&vector_lock
);
888 return err
? err
: IRQ_SET_MASK_OK
;
892 # define apic_set_affinity NULL
895 static int apic_retrigger_irq(struct irq_data
*irqd
)
897 struct apic_chip_data
*apicd
= apic_chip_data(irqd
);
900 raw_spin_lock_irqsave(&vector_lock
, flags
);
901 __apic_send_IPI(apicd
->cpu
, apicd
->vector
);
902 raw_spin_unlock_irqrestore(&vector_lock
, flags
);
907 void apic_ack_irq(struct irq_data
*irqd
)
913 void apic_ack_edge(struct irq_data
*irqd
)
915 irq_complete_move(irqd_cfg(irqd
));
919 static void x86_vector_msi_compose_msg(struct irq_data
*data
,
922 __irq_msi_compose_msg(irqd_cfg(data
), msg
, false);
925 static struct irq_chip lapic_controller
= {
927 .irq_ack
= apic_ack_edge
,
928 .irq_set_affinity
= apic_set_affinity
,
929 .irq_compose_msi_msg
= x86_vector_msi_compose_msg
,
930 .irq_retrigger
= apic_retrigger_irq
,
935 static void free_moved_vector(struct apic_chip_data
*apicd
)
937 unsigned int vector
= apicd
->prev_vector
;
938 unsigned int cpu
= apicd
->prev_cpu
;
939 bool managed
= apicd
->is_managed
;
942 * Managed interrupts are usually not migrated away
943 * from an online CPU, but CPU isolation 'managed_irq'
944 * can make that happen.
945 * 1) Activation does not take the isolation into account
946 * to keep the code simple
947 * 2) Migration away from an isolated CPU can happen when
948 * a non-isolated CPU which is in the calculated
949 * affinity mask comes online.
951 trace_vector_free_moved(apicd
->irq
, cpu
, vector
, managed
);
952 irq_matrix_free(vector_matrix
, cpu
, vector
, managed
);
953 per_cpu(vector_irq
, cpu
)[vector
] = VECTOR_UNUSED
;
954 hlist_del_init(&apicd
->clist
);
955 apicd
->prev_vector
= 0;
956 apicd
->move_in_progress
= 0;
959 static void __vector_cleanup(struct vector_cleanup
*cl
, bool check_irr
)
961 struct apic_chip_data
*apicd
;
962 struct hlist_node
*tmp
;
965 lockdep_assert_held(&vector_lock
);
967 hlist_for_each_entry_safe(apicd
, tmp
, &cl
->head
, clist
) {
968 unsigned int vector
= apicd
->prev_vector
;
971 * Paranoia: Check if the vector that needs to be cleaned
972 * up is registered at the APICs IRR. That's clearly a
973 * hardware issue if the vector arrived on the old target
974 * _after_ interrupts were disabled above. Keep @apicd
975 * on the list and schedule the timer again to give the CPU
976 * a chance to handle the pending interrupt.
978 * Do not check IRR when called from lapic_offline(), because
979 * fixup_irqs() was just called to scan IRR for set bits and
980 * forward them to new destination CPUs via IPIs.
982 if (check_irr
&& is_vector_pending(vector
)) {
983 pr_warn_once("Moved interrupt pending in old target APIC %u\n", apicd
->irq
);
987 free_moved_vector(apicd
);
991 * Must happen under vector_lock to make the timer_pending() check
992 * in __vector_schedule_cleanup() race free against the rearm here.
995 mod_timer(&cl
->timer
, jiffies
+ 1);
998 static void vector_cleanup_callback(struct timer_list
*tmr
)
1000 struct vector_cleanup
*cl
= container_of(tmr
, typeof(*cl
), timer
);
1002 /* Prevent vectors vanishing under us */
1003 raw_spin_lock_irq(&vector_lock
);
1004 __vector_cleanup(cl
, true);
1005 raw_spin_unlock_irq(&vector_lock
);
1008 static void __vector_schedule_cleanup(struct apic_chip_data
*apicd
)
1010 unsigned int cpu
= apicd
->prev_cpu
;
1012 raw_spin_lock(&vector_lock
);
1013 apicd
->move_in_progress
= 0;
1014 if (cpu_online(cpu
)) {
1015 struct vector_cleanup
*cl
= per_cpu_ptr(&vector_cleanup
, cpu
);
1017 hlist_add_head(&apicd
->clist
, &cl
->head
);
1020 * The lockless timer_pending() check is safe here. If it
1021 * returns true, then the callback will observe this new
1022 * apic data in the hlist as everything is serialized by
1025 * If it returns false then the timer is either not armed
1026 * or the other CPU executes the callback, which again
1027 * would be blocked on vector lock. Rearming it in the
1028 * latter case makes it fire for nothing.
1030 * This is also safe against the callback rearming the timer
1031 * because that's serialized via vector lock too.
1033 if (!timer_pending(&cl
->timer
)) {
1034 cl
->timer
.expires
= jiffies
+ 1;
1035 add_timer_on(&cl
->timer
, cpu
);
1038 pr_warn("IRQ %u schedule cleanup for offline CPU %u\n", apicd
->irq
, cpu
);
1039 free_moved_vector(apicd
);
1041 raw_spin_unlock(&vector_lock
);
1044 void vector_schedule_cleanup(struct irq_cfg
*cfg
)
1046 struct apic_chip_data
*apicd
;
1048 apicd
= container_of(cfg
, struct apic_chip_data
, hw_irq_cfg
);
1049 if (apicd
->move_in_progress
)
1050 __vector_schedule_cleanup(apicd
);
1053 void irq_complete_move(struct irq_cfg
*cfg
)
1055 struct apic_chip_data
*apicd
;
1057 apicd
= container_of(cfg
, struct apic_chip_data
, hw_irq_cfg
);
1058 if (likely(!apicd
->move_in_progress
))
1062 * If the interrupt arrived on the new target CPU, cleanup the
1063 * vector on the old target CPU. A vector check is not required
1064 * because an interrupt can never move from one vector to another
1067 if (apicd
->cpu
== smp_processor_id())
1068 __vector_schedule_cleanup(apicd
);
1072 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
1074 void irq_force_complete_move(struct irq_desc
*desc
)
1076 unsigned int cpu
= smp_processor_id();
1077 struct apic_chip_data
*apicd
;
1078 struct irq_data
*irqd
;
1079 unsigned int vector
;
1082 * The function is called for all descriptors regardless of which
1083 * irqdomain they belong to. For example if an IRQ is provided by
1084 * an irq_chip as part of a GPIO driver, the chip data for that
1085 * descriptor is specific to the irq_chip in question.
1087 * Check first that the chip_data is what we expect
1088 * (apic_chip_data) before touching it any further.
1090 irqd
= irq_domain_get_irq_data(x86_vector_domain
,
1091 irq_desc_get_irq(desc
));
1095 raw_spin_lock(&vector_lock
);
1096 apicd
= apic_chip_data(irqd
);
1101 * If prev_vector is empty or the descriptor is neither currently
1102 * nor previously on the outgoing CPU no action required.
1104 vector
= apicd
->prev_vector
;
1105 if (!vector
|| (apicd
->cpu
!= cpu
&& apicd
->prev_cpu
!= cpu
))
1109 * This is tricky. If the cleanup of the old vector has not been
1110 * done yet, then the following setaffinity call will fail with
1111 * -EBUSY. This can leave the interrupt in a stale state.
1113 * All CPUs are stuck in stop machine with interrupts disabled so
1114 * calling __irq_complete_move() would be completely pointless.
1116 * 1) The interrupt is in move_in_progress state. That means that we
1117 * have not seen an interrupt since the io_apic was reprogrammed to
1120 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
1121 * have not been processed yet.
1123 if (apicd
->move_in_progress
) {
1125 * In theory there is a race:
1127 * set_ioapic(new_vector) <-- Interrupt is raised before update
1128 * is effective, i.e. it's raised on
1131 * So if the target cpu cannot handle that interrupt before
1132 * the old vector is cleaned up, we get a spurious interrupt
1133 * and in the worst case the ioapic irq line becomes stale.
1135 * But in case of cpu hotplug this should be a non issue
1136 * because if the affinity update happens right before all
1137 * cpus rendezvous in stop machine, there is no way that the
1138 * interrupt can be blocked on the target cpu because all cpus
1139 * loops first with interrupts enabled in stop machine, so the
1140 * old vector is not yet cleaned up when the interrupt fires.
1142 * So the only way to run into this issue is if the delivery
1143 * of the interrupt on the apic/system bus would be delayed
1144 * beyond the point where the target cpu disables interrupts
1145 * in stop machine. I doubt that it can happen, but at least
1146 * there is a theoretical chance. Virtualization might be
1147 * able to expose this, but AFAICT the IOAPIC emulation is not
1148 * as stupid as the real hardware.
1150 * Anyway, there is nothing we can do about that at this point
1151 * w/o refactoring the whole fixup_irq() business completely.
1152 * We print at least the irq number and the old vector number,
1153 * so we have the necessary information when a problem in that
1156 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
1159 free_moved_vector(apicd
);
1161 raw_spin_unlock(&vector_lock
);
1164 #ifdef CONFIG_HOTPLUG_CPU
1166 * Note, this is not accurate accounting, but at least good enough to
1167 * prevent that the actual interrupt move will run out of vectors.
1169 int lapic_can_unplug_cpu(void)
1171 unsigned int rsvd
, avl
, tomove
, cpu
= smp_processor_id();
1174 raw_spin_lock(&vector_lock
);
1175 tomove
= irq_matrix_allocated(vector_matrix
);
1176 avl
= irq_matrix_available(vector_matrix
, true);
1178 pr_warn("CPU %u has %u vectors, %u available. Cannot disable CPU\n",
1183 rsvd
= irq_matrix_reserved(vector_matrix
);
1185 pr_warn("Reserved vectors %u > available %u. IRQ request may fail\n",
1189 raw_spin_unlock(&vector_lock
);
1192 #endif /* HOTPLUG_CPU */
1195 static void __init
print_APIC_field(int base
)
1201 for (i
= 0; i
< 8; i
++)
1202 pr_cont("%08x", apic_read(base
+ i
*0x10));
1207 static void __init
print_local_APIC(void *dummy
)
1209 unsigned int i
, v
, ver
, maxlvt
;
1212 pr_debug("printing local APIC contents on CPU#%d/%d:\n",
1213 smp_processor_id(), read_apic_id());
1214 v
= apic_read(APIC_ID
);
1215 pr_info("... APIC ID: %08x (%01x)\n", v
, read_apic_id());
1216 v
= apic_read(APIC_LVR
);
1217 pr_info("... APIC VERSION: %08x\n", v
);
1218 ver
= GET_APIC_VERSION(v
);
1219 maxlvt
= lapic_get_maxlvt();
1221 v
= apic_read(APIC_TASKPRI
);
1222 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v
, v
& APIC_TPRI_MASK
);
1225 if (APIC_INTEGRATED(ver
)) {
1226 if (!APIC_XAPIC(ver
)) {
1227 v
= apic_read(APIC_ARBPRI
);
1228 pr_debug("... APIC ARBPRI: %08x (%02x)\n",
1229 v
, v
& APIC_ARBPRI_MASK
);
1231 v
= apic_read(APIC_PROCPRI
);
1232 pr_debug("... APIC PROCPRI: %08x\n", v
);
1236 * Remote read supported only in the 82489DX and local APIC for
1237 * Pentium processors.
1239 if (!APIC_INTEGRATED(ver
) || maxlvt
== 3) {
1240 v
= apic_read(APIC_RRR
);
1241 pr_debug("... APIC RRR: %08x\n", v
);
1244 v
= apic_read(APIC_LDR
);
1245 pr_debug("... APIC LDR: %08x\n", v
);
1246 if (!x2apic_enabled()) {
1247 v
= apic_read(APIC_DFR
);
1248 pr_debug("... APIC DFR: %08x\n", v
);
1250 v
= apic_read(APIC_SPIV
);
1251 pr_debug("... APIC SPIV: %08x\n", v
);
1253 pr_debug("... APIC ISR field:\n");
1254 print_APIC_field(APIC_ISR
);
1255 pr_debug("... APIC TMR field:\n");
1256 print_APIC_field(APIC_TMR
);
1257 pr_debug("... APIC IRR field:\n");
1258 print_APIC_field(APIC_IRR
);
1261 if (APIC_INTEGRATED(ver
)) {
1262 /* Due to the Pentium erratum 3AP. */
1264 apic_write(APIC_ESR
, 0);
1266 v
= apic_read(APIC_ESR
);
1267 pr_debug("... APIC ESR: %08x\n", v
);
1270 icr
= apic_icr_read();
1271 pr_debug("... APIC ICR: %08x\n", (u32
)icr
);
1272 pr_debug("... APIC ICR2: %08x\n", (u32
)(icr
>> 32));
1274 v
= apic_read(APIC_LVTT
);
1275 pr_debug("... APIC LVTT: %08x\n", v
);
1279 v
= apic_read(APIC_LVTPC
);
1280 pr_debug("... APIC LVTPC: %08x\n", v
);
1282 v
= apic_read(APIC_LVT0
);
1283 pr_debug("... APIC LVT0: %08x\n", v
);
1284 v
= apic_read(APIC_LVT1
);
1285 pr_debug("... APIC LVT1: %08x\n", v
);
1289 v
= apic_read(APIC_LVTERR
);
1290 pr_debug("... APIC LVTERR: %08x\n", v
);
1293 v
= apic_read(APIC_TMICT
);
1294 pr_debug("... APIC TMICT: %08x\n", v
);
1295 v
= apic_read(APIC_TMCCT
);
1296 pr_debug("... APIC TMCCT: %08x\n", v
);
1297 v
= apic_read(APIC_TDCR
);
1298 pr_debug("... APIC TDCR: %08x\n", v
);
1300 if (boot_cpu_has(X86_FEATURE_EXTAPIC
)) {
1301 v
= apic_read(APIC_EFEAT
);
1302 maxlvt
= (v
>> 16) & 0xff;
1303 pr_debug("... APIC EFEAT: %08x\n", v
);
1304 v
= apic_read(APIC_ECTRL
);
1305 pr_debug("... APIC ECTRL: %08x\n", v
);
1306 for (i
= 0; i
< maxlvt
; i
++) {
1307 v
= apic_read(APIC_EILVTn(i
));
1308 pr_debug("... APIC EILVT%d: %08x\n", i
, v
);
1314 static void __init
print_local_APICs(int maxcpu
)
1322 for_each_online_cpu(cpu
) {
1325 smp_call_function_single(cpu
, print_local_APIC
, NULL
, 1);
1330 static void __init
print_PIC(void)
1333 unsigned long flags
;
1335 if (!nr_legacy_irqs())
1338 pr_debug("\nprinting PIC contents\n");
1340 raw_spin_lock_irqsave(&i8259A_lock
, flags
);
1342 v
= inb(0xa1) << 8 | inb(0x21);
1343 pr_debug("... PIC IMR: %04x\n", v
);
1345 v
= inb(0xa0) << 8 | inb(0x20);
1346 pr_debug("... PIC IRR: %04x\n", v
);
1350 v
= inb(0xa0) << 8 | inb(0x20);
1354 raw_spin_unlock_irqrestore(&i8259A_lock
, flags
);
1356 pr_debug("... PIC ISR: %04x\n", v
);
1358 v
= inb(PIC_ELCR2
) << 8 | inb(PIC_ELCR1
);
1359 pr_debug("... PIC ELCR: %04x\n", v
);
1362 static int show_lapic __initdata
= 1;
1363 static __init
int setup_show_lapic(char *arg
)
1367 if (strcmp(arg
, "all") == 0) {
1368 show_lapic
= CONFIG_NR_CPUS
;
1370 get_option(&arg
, &num
);
1377 __setup("show_lapic=", setup_show_lapic
);
1379 static int __init
print_ICs(void)
1381 if (apic_verbosity
== APIC_QUIET
)
1386 /* don't print out if apic is not there */
1387 if (!boot_cpu_has(X86_FEATURE_APIC
) && !apic_from_smp_config())
1390 print_local_APICs(show_lapic
);
1396 late_initcall(print_ICs
);