1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1994 Linus Torvalds
5 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
6 * stack - Manfred Spraul <manfred@colorfullife.com>
8 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
9 * them correctly. Now the emulation will be in a
10 * consistent state after stackfaults - Kasper Dupont
11 * <kasperd@daimi.au.dk>
13 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
14 * <kasperd@daimi.au.dk>
16 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
17 * caused by Kasper Dupont's changes - Stas Sergeev
19 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
20 * Kasper Dupont <kasperd@daimi.au.dk>
22 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
23 * Kasper Dupont <kasperd@daimi.au.dk>
25 * 9 apr 2002 - Changed stack access macros to jump to a label
26 * instead of returning to userspace. This simplifies
27 * do_int, and is needed by handle_vm6_fault. Kasper
28 * Dupont <kasperd@daimi.au.dk>
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/capability.h>
35 #include <linux/errno.h>
36 #include <linux/interrupt.h>
37 #include <linux/syscalls.h>
38 #include <linux/sched.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/kernel.h>
41 #include <linux/signal.h>
42 #include <linux/string.h>
44 #include <linux/smp.h>
45 #include <linux/highmem.h>
46 #include <linux/ptrace.h>
47 #include <linux/audit.h>
48 #include <linux/stddef.h>
49 #include <linux/slab.h>
50 #include <linux/security.h>
52 #include <linux/uaccess.h>
54 #include <asm/tlbflush.h>
56 #include <asm/traps.h>
58 #include <asm/switch_to.h>
63 * Interrupt handling is not guaranteed:
64 * - a real x86 will disable all interrupts for one instruction
65 * after a "mov ss,xx" to make stack handling atomic even without
66 * the 'lss' instruction. We can't guarantee this in v86 mode,
67 * as the next instruction might result in a page fault or similar.
68 * - a real x86 will have interrupts disabled for one instruction
69 * past the 'sti' that enables them. We don't bother with all the
72 * Let's hope these problems do not actually matter for anything.
77 * 8- and 16-bit register defines..
79 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
80 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
81 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
82 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
85 * virtual flags (16 and 32-bit versions)
87 #define VFLAGS (*(unsigned short *)&(current->thread.vm86->veflags))
88 #define VEFLAGS (current->thread.vm86->veflags)
90 #define set_flags(X, new, mask) \
91 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
93 #define SAFE_MASK (0xDD5)
94 #define RETURN_MASK (0xDFF)
96 void save_v86_state(struct kernel_vm86_regs
*regs
, int retval
)
98 struct task_struct
*tsk
= current
;
99 struct vm86plus_struct __user
*user
;
100 struct vm86
*vm86
= current
->thread
.vm86
;
103 * This gets called from entry.S with interrupts disabled, but
104 * from process context. Enable interrupts here, before trying
105 * to access user space.
111 set_flags(regs
->pt
.flags
, VEFLAGS
, X86_EFLAGS_VIF
| vm86
->veflags_mask
);
112 user
= vm86
->user_vm86
;
114 if (!user_access_begin(user
, vm86
->vm86plus
.is_vm86pus
?
115 sizeof(struct vm86plus_struct
) :
116 sizeof(struct vm86_struct
)))
119 unsafe_put_user(regs
->pt
.bx
, &user
->regs
.ebx
, Efault_end
);
120 unsafe_put_user(regs
->pt
.cx
, &user
->regs
.ecx
, Efault_end
);
121 unsafe_put_user(regs
->pt
.dx
, &user
->regs
.edx
, Efault_end
);
122 unsafe_put_user(regs
->pt
.si
, &user
->regs
.esi
, Efault_end
);
123 unsafe_put_user(regs
->pt
.di
, &user
->regs
.edi
, Efault_end
);
124 unsafe_put_user(regs
->pt
.bp
, &user
->regs
.ebp
, Efault_end
);
125 unsafe_put_user(regs
->pt
.ax
, &user
->regs
.eax
, Efault_end
);
126 unsafe_put_user(regs
->pt
.ip
, &user
->regs
.eip
, Efault_end
);
127 unsafe_put_user(regs
->pt
.cs
, &user
->regs
.cs
, Efault_end
);
128 unsafe_put_user(regs
->pt
.flags
, &user
->regs
.eflags
, Efault_end
);
129 unsafe_put_user(regs
->pt
.sp
, &user
->regs
.esp
, Efault_end
);
130 unsafe_put_user(regs
->pt
.ss
, &user
->regs
.ss
, Efault_end
);
131 unsafe_put_user(regs
->es
, &user
->regs
.es
, Efault_end
);
132 unsafe_put_user(regs
->ds
, &user
->regs
.ds
, Efault_end
);
133 unsafe_put_user(regs
->fs
, &user
->regs
.fs
, Efault_end
);
134 unsafe_put_user(regs
->gs
, &user
->regs
.gs
, Efault_end
);
137 * Don't write screen_bitmap in case some user had a value there
138 * and expected it to remain unchanged.
145 tsk
->thread
.sp0
= vm86
->saved_sp0
;
146 tsk
->thread
.sysenter_cs
= __KERNEL_CS
;
147 update_task_stack(tsk
);
148 refresh_sysenter_cs(&tsk
->thread
);
152 memcpy(®s
->pt
, &vm86
->regs32
, sizeof(struct pt_regs
));
154 loadsegment(gs
, vm86
->regs32
.gs
);
156 regs
->pt
.ax
= retval
;
162 pr_alert("could not access userspace vm86 info\n");
163 force_exit_sig(SIGSEGV
);
167 static int do_vm86_irq_handling(int subfunction
, int irqnumber
);
168 static long do_sys_vm86(struct vm86plus_struct __user
*user_vm86
, bool plus
);
170 SYSCALL_DEFINE1(vm86old
, struct vm86_struct __user
*, user_vm86
)
172 return do_sys_vm86((struct vm86plus_struct __user
*) user_vm86
, false);
176 SYSCALL_DEFINE2(vm86
, unsigned long, cmd
, unsigned long, arg
)
179 case VM86_REQUEST_IRQ
:
181 case VM86_GET_IRQ_BITS
:
182 case VM86_GET_AND_RESET_IRQ
:
183 return do_vm86_irq_handling(cmd
, (int)arg
);
184 case VM86_PLUS_INSTALL_CHECK
:
186 * NOTE: on old vm86 stuff this will return the error
187 * from access_ok(), because the subfunction is
188 * interpreted as (invalid) address to vm86_struct.
189 * So the installation check works.
194 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
195 return do_sys_vm86((struct vm86plus_struct __user
*) arg
, true);
199 static long do_sys_vm86(struct vm86plus_struct __user
*user_vm86
, bool plus
)
201 struct task_struct
*tsk
= current
;
202 struct vm86
*vm86
= tsk
->thread
.vm86
;
203 struct kernel_vm86_regs vm86regs
;
204 struct pt_regs
*regs
= current_pt_regs();
205 unsigned long err
= 0;
206 struct vm86_struct v
;
208 err
= security_mmap_addr(0);
211 * vm86 cannot virtualize the address space, so vm86 users
212 * need to manage the low 1MB themselves using mmap. Given
213 * that BIOS places important data in the first page, vm86
214 * is essentially useless if mmap_min_addr != 0. DOSEMU,
215 * for example, won't even bother trying to use vm86 if it
216 * can't map a page at virtual address 0.
218 * To reduce the available kernel attack surface, simply
219 * disallow vm86(old) for users who cannot mmap at va 0.
221 * The implementation of security_mmap_addr will allow
222 * suitably privileged users to map va 0 even if
223 * vm.mmap_min_addr is set above 0, and we want this
224 * behavior for vm86 as well, as it ensures that legacy
225 * tools like vbetool will not fail just because of
228 pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d). Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
229 current
->comm
, task_pid_nr(current
),
230 from_kuid_munged(&init_user_ns
, current_uid()));
235 if (!(vm86
= kzalloc(sizeof(*vm86
), GFP_KERNEL
)))
237 tsk
->thread
.vm86
= vm86
;
242 if (copy_from_user(&v
, user_vm86
,
243 offsetof(struct vm86_struct
, int_revectored
)))
247 /* VM86_SCREEN_BITMAP had numerous bugs and appears to have no users. */
248 if (v
.flags
& VM86_SCREEN_BITMAP
) {
249 char comm
[TASK_COMM_LEN
];
251 pr_info_once("vm86: '%s' uses VM86_SCREEN_BITMAP, which is no longer supported\n", get_task_comm(comm
, current
));
255 memset(&vm86regs
, 0, sizeof(vm86regs
));
257 vm86regs
.pt
.bx
= v
.regs
.ebx
;
258 vm86regs
.pt
.cx
= v
.regs
.ecx
;
259 vm86regs
.pt
.dx
= v
.regs
.edx
;
260 vm86regs
.pt
.si
= v
.regs
.esi
;
261 vm86regs
.pt
.di
= v
.regs
.edi
;
262 vm86regs
.pt
.bp
= v
.regs
.ebp
;
263 vm86regs
.pt
.ax
= v
.regs
.eax
;
264 vm86regs
.pt
.ip
= v
.regs
.eip
;
265 vm86regs
.pt
.cs
= v
.regs
.cs
;
266 vm86regs
.pt
.flags
= v
.regs
.eflags
;
267 vm86regs
.pt
.sp
= v
.regs
.esp
;
268 vm86regs
.pt
.ss
= v
.regs
.ss
;
269 vm86regs
.es
= v
.regs
.es
;
270 vm86regs
.ds
= v
.regs
.ds
;
271 vm86regs
.fs
= v
.regs
.fs
;
272 vm86regs
.gs
= v
.regs
.gs
;
274 vm86
->flags
= v
.flags
;
275 vm86
->cpu_type
= v
.cpu_type
;
277 if (copy_from_user(&vm86
->int_revectored
,
278 &user_vm86
->int_revectored
,
279 sizeof(struct revectored_struct
)))
281 if (copy_from_user(&vm86
->int21_revectored
,
282 &user_vm86
->int21_revectored
,
283 sizeof(struct revectored_struct
)))
286 if (copy_from_user(&vm86
->vm86plus
, &user_vm86
->vm86plus
,
287 sizeof(struct vm86plus_info_struct
)))
289 vm86
->vm86plus
.is_vm86pus
= 1;
291 memset(&vm86
->vm86plus
, 0,
292 sizeof(struct vm86plus_info_struct
));
294 memcpy(&vm86
->regs32
, regs
, sizeof(struct pt_regs
));
295 vm86
->user_vm86
= user_vm86
;
298 * The flags register is also special: we cannot trust that the user
299 * has set it up safely, so this makes sure interrupt etc flags are
300 * inherited from protected mode.
302 VEFLAGS
= vm86regs
.pt
.flags
;
303 vm86regs
.pt
.flags
&= SAFE_MASK
;
304 vm86regs
.pt
.flags
|= regs
->flags
& ~SAFE_MASK
;
305 vm86regs
.pt
.flags
|= X86_VM_MASK
;
307 vm86regs
.pt
.orig_ax
= regs
->orig_ax
;
309 switch (vm86
->cpu_type
) {
311 vm86
->veflags_mask
= 0;
314 vm86
->veflags_mask
= X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
317 vm86
->veflags_mask
= X86_EFLAGS_AC
| X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
320 vm86
->veflags_mask
= X86_EFLAGS_ID
| X86_EFLAGS_AC
| X86_EFLAGS_NT
| X86_EFLAGS_IOPL
;
327 vm86
->saved_sp0
= tsk
->thread
.sp0
;
328 savesegment(gs
, vm86
->regs32
.gs
);
330 /* make room for real-mode segments */
332 tsk
->thread
.sp0
+= 16;
334 if (boot_cpu_has(X86_FEATURE_SEP
)) {
335 tsk
->thread
.sysenter_cs
= 0;
336 refresh_sysenter_cs(&tsk
->thread
);
339 update_task_stack(tsk
);
342 memcpy((struct kernel_vm86_regs
*)regs
, &vm86regs
, sizeof(vm86regs
));
346 static inline void set_IF(struct kernel_vm86_regs
*regs
)
348 VEFLAGS
|= X86_EFLAGS_VIF
;
351 static inline void clear_IF(struct kernel_vm86_regs
*regs
)
353 VEFLAGS
&= ~X86_EFLAGS_VIF
;
356 static inline void clear_TF(struct kernel_vm86_regs
*regs
)
358 regs
->pt
.flags
&= ~X86_EFLAGS_TF
;
361 static inline void clear_AC(struct kernel_vm86_regs
*regs
)
363 regs
->pt
.flags
&= ~X86_EFLAGS_AC
;
367 * It is correct to call set_IF(regs) from the set_vflags_*
368 * functions. However someone forgot to call clear_IF(regs)
369 * in the opposite case.
370 * After the command sequence CLI PUSHF STI POPF you should
371 * end up with interrupts disabled, but you ended up with
372 * interrupts enabled.
373 * ( I was testing my own changes, but the only bug I
374 * could find was in a function I had not changed. )
378 static inline void set_vflags_long(unsigned long flags
, struct kernel_vm86_regs
*regs
)
380 set_flags(VEFLAGS
, flags
, current
->thread
.vm86
->veflags_mask
);
381 set_flags(regs
->pt
.flags
, flags
, SAFE_MASK
);
382 if (flags
& X86_EFLAGS_IF
)
388 static inline void set_vflags_short(unsigned short flags
, struct kernel_vm86_regs
*regs
)
390 set_flags(VFLAGS
, flags
, current
->thread
.vm86
->veflags_mask
);
391 set_flags(regs
->pt
.flags
, flags
, SAFE_MASK
);
392 if (flags
& X86_EFLAGS_IF
)
398 static inline unsigned long get_vflags(struct kernel_vm86_regs
*regs
)
400 unsigned long flags
= regs
->pt
.flags
& RETURN_MASK
;
402 if (VEFLAGS
& X86_EFLAGS_VIF
)
403 flags
|= X86_EFLAGS_IF
;
404 flags
|= X86_EFLAGS_IOPL
;
405 return flags
| (VEFLAGS
& current
->thread
.vm86
->veflags_mask
);
408 static inline int is_revectored(int nr
, struct revectored_struct
*bitmap
)
410 return test_bit(nr
, bitmap
->__map
);
413 #define val_byte(val, n) (((__u8 *)&val)[n])
415 #define pushb(base, ptr, val, err_label) \
419 if (put_user(__val, base + ptr) < 0) \
423 #define pushw(base, ptr, val, err_label) \
427 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
430 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
434 #define pushl(base, ptr, val, err_label) \
438 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
441 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
444 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
447 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
451 #define popb(base, ptr, err_label) \
454 if (get_user(__res, base + ptr) < 0) \
460 #define popw(base, ptr, err_label) \
463 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
466 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
472 #define popl(base, ptr, err_label) \
475 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
478 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
481 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
484 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
490 /* There are so many possible reasons for this function to return
491 * VM86_INTx, so adding another doesn't bother me. We can expect
492 * userspace programs to be able to handle it. (Getting a problem
493 * in userspace is always better than an Oops anyway.) [KD]
495 static void do_int(struct kernel_vm86_regs
*regs
, int i
,
496 unsigned char __user
*ssp
, unsigned short sp
)
498 unsigned long __user
*intr_ptr
;
499 unsigned long segoffs
;
500 struct vm86
*vm86
= current
->thread
.vm86
;
502 if (regs
->pt
.cs
== BIOSSEG
)
504 if (is_revectored(i
, &vm86
->int_revectored
))
506 if (i
== 0x21 && is_revectored(AH(regs
), &vm86
->int21_revectored
))
508 intr_ptr
= (unsigned long __user
*) (i
<< 2);
509 if (get_user(segoffs
, intr_ptr
))
511 if ((segoffs
>> 16) == BIOSSEG
)
513 pushw(ssp
, sp
, get_vflags(regs
), cannot_handle
);
514 pushw(ssp
, sp
, regs
->pt
.cs
, cannot_handle
);
515 pushw(ssp
, sp
, IP(regs
), cannot_handle
);
516 regs
->pt
.cs
= segoffs
>> 16;
518 IP(regs
) = segoffs
& 0xffff;
525 save_v86_state(regs
, VM86_INTx
+ (i
<< 8));
528 int handle_vm86_trap(struct kernel_vm86_regs
*regs
, long error_code
, int trapno
)
530 struct vm86
*vm86
= current
->thread
.vm86
;
532 if (vm86
->vm86plus
.is_vm86pus
) {
533 if ((trapno
== 3) || (trapno
== 1)) {
534 save_v86_state(regs
, VM86_TRAP
+ (trapno
<< 8));
537 do_int(regs
, trapno
, (unsigned char __user
*) (regs
->pt
.ss
<< 4), SP(regs
));
541 return 1; /* we let this handle by the calling routine */
542 current
->thread
.trap_nr
= trapno
;
543 current
->thread
.error_code
= error_code
;
548 void handle_vm86_fault(struct kernel_vm86_regs
*regs
, long error_code
)
550 unsigned char opcode
;
551 unsigned char __user
*csp
;
552 unsigned char __user
*ssp
;
553 unsigned short ip
, sp
, orig_flags
;
554 int data32
, pref_done
;
555 struct vm86plus_info_struct
*vmpi
= ¤t
->thread
.vm86
->vm86plus
;
557 #define CHECK_IF_IN_TRAP \
558 if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
559 newflags |= X86_EFLAGS_TF
561 orig_flags
= *(unsigned short *)®s
->pt
.flags
;
563 csp
= (unsigned char __user
*) (regs
->pt
.cs
<< 4);
564 ssp
= (unsigned char __user
*) (regs
->pt
.ss
<< 4);
571 switch (opcode
= popb(csp
, ip
, simulate_sigsegv
)) {
572 case 0x66: /* 32-bit data */ data32
= 1; break;
573 case 0x67: /* 32-bit address */ break;
574 case 0x2e: /* CS */ break;
575 case 0x3e: /* DS */ break;
576 case 0x26: /* ES */ break;
577 case 0x36: /* SS */ break;
578 case 0x65: /* GS */ break;
579 case 0x64: /* FS */ break;
580 case 0xf2: /* repnz */ break;
581 case 0xf3: /* rep */ break;
582 default: pref_done
= 1;
584 } while (!pref_done
);
591 pushl(ssp
, sp
, get_vflags(regs
), simulate_sigsegv
);
594 pushw(ssp
, sp
, get_vflags(regs
), simulate_sigsegv
);
598 goto vm86_fault_return
;
603 unsigned long newflags
;
605 newflags
= popl(ssp
, sp
, simulate_sigsegv
);
608 newflags
= popw(ssp
, sp
, simulate_sigsegv
);
614 set_vflags_long(newflags
, regs
);
616 set_vflags_short(newflags
, regs
);
623 int intno
= popb(csp
, ip
, simulate_sigsegv
);
625 if (vmpi
->vm86dbg_active
) {
626 if ((1 << (intno
& 7)) & vmpi
->vm86dbg_intxxtab
[intno
>> 3]) {
627 save_v86_state(regs
, VM86_INTx
+ (intno
<< 8));
631 do_int(regs
, intno
, ssp
, sp
);
640 unsigned long newflags
;
642 newip
= popl(ssp
, sp
, simulate_sigsegv
);
643 newcs
= popl(ssp
, sp
, simulate_sigsegv
);
644 newflags
= popl(ssp
, sp
, simulate_sigsegv
);
647 newip
= popw(ssp
, sp
, simulate_sigsegv
);
648 newcs
= popw(ssp
, sp
, simulate_sigsegv
);
649 newflags
= popw(ssp
, sp
, simulate_sigsegv
);
656 set_vflags_long(newflags
, regs
);
658 set_vflags_short(newflags
, regs
);
667 goto vm86_fault_return
;
671 * Damn. This is incorrect: the 'sti' instruction should actually
672 * enable interrupts after the /next/ instruction. Not good.
674 * Probably needs some horsing around with the TF flag. Aiee..
682 save_v86_state(regs
, VM86_UNKNOWN
);
688 if ((VEFLAGS
& (X86_EFLAGS_VIP
| X86_EFLAGS_VIF
)) ==
689 (X86_EFLAGS_VIP
| X86_EFLAGS_VIF
)) {
690 save_v86_state(regs
, VM86_STI
);
695 if (vmpi
->force_return_for_pic
&& (VEFLAGS
& (X86_EFLAGS_IF
| X86_EFLAGS_VIF
))) {
696 save_v86_state(regs
, VM86_PICRETURN
);
699 if (orig_flags
& X86_EFLAGS_TF
)
700 handle_vm86_trap(regs
, 0, X86_TRAP_DB
);
704 /* FIXME: After a long discussion with Stas we finally
705 * agreed, that this is wrong. Here we should
706 * really send a SIGSEGV to the user program.
707 * But how do we create the correct context? We
708 * are inside a general protection fault handler
709 * and has just returned from a page fault handler.
710 * The correct context for the signal handler
711 * should be a mixture of the two, but how do we
712 * get the information? [KD]
714 save_v86_state(regs
, VM86_UNKNOWN
);
717 /* ---------------- vm86 special IRQ passing stuff ----------------- */
719 #define VM86_IRQNAME "vm86irq"
721 static struct vm86_irqs
{
722 struct task_struct
*tsk
;
726 static DEFINE_SPINLOCK(irqbits_lock
);
729 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
730 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
733 static irqreturn_t
irq_handler(int intno
, void *dev_id
)
738 spin_lock_irqsave(&irqbits_lock
, flags
);
739 irq_bit
= 1 << intno
;
740 if ((irqbits
& irq_bit
) || !vm86_irqs
[intno
].tsk
)
743 if (vm86_irqs
[intno
].sig
)
744 send_sig(vm86_irqs
[intno
].sig
, vm86_irqs
[intno
].tsk
, 1);
746 * IRQ will be re-enabled when user asks for the irq (whether
747 * polling or as a result of the signal)
749 disable_irq_nosync(intno
);
750 spin_unlock_irqrestore(&irqbits_lock
, flags
);
754 spin_unlock_irqrestore(&irqbits_lock
, flags
);
758 static inline void free_vm86_irq(int irqnumber
)
762 free_irq(irqnumber
, NULL
);
763 vm86_irqs
[irqnumber
].tsk
= NULL
;
765 spin_lock_irqsave(&irqbits_lock
, flags
);
766 irqbits
&= ~(1 << irqnumber
);
767 spin_unlock_irqrestore(&irqbits_lock
, flags
);
770 void release_vm86_irqs(struct task_struct
*task
)
773 for (i
= FIRST_VM86_IRQ
; i
<= LAST_VM86_IRQ
; i
++)
774 if (vm86_irqs
[i
].tsk
== task
)
778 static inline int get_and_reset_irq(int irqnumber
)
784 if (invalid_vm86_irq(irqnumber
)) return 0;
785 if (vm86_irqs
[irqnumber
].tsk
!= current
) return 0;
786 spin_lock_irqsave(&irqbits_lock
, flags
);
787 bit
= irqbits
& (1 << irqnumber
);
790 enable_irq(irqnumber
);
794 spin_unlock_irqrestore(&irqbits_lock
, flags
);
799 static int do_vm86_irq_handling(int subfunction
, int irqnumber
)
802 switch (subfunction
) {
803 case VM86_GET_AND_RESET_IRQ
: {
804 return get_and_reset_irq(irqnumber
);
806 case VM86_GET_IRQ_BITS
: {
809 case VM86_REQUEST_IRQ
: {
810 int sig
= irqnumber
>> 8;
811 int irq
= irqnumber
& 255;
812 if (!capable(CAP_SYS_ADMIN
)) return -EPERM
;
813 if (!((1 << sig
) & ALLOWED_SIGS
)) return -EPERM
;
814 if (invalid_vm86_irq(irq
)) return -EPERM
;
815 if (vm86_irqs
[irq
].tsk
) return -EPERM
;
816 ret
= request_irq(irq
, &irq_handler
, 0, VM86_IRQNAME
, NULL
);
818 vm86_irqs
[irq
].sig
= sig
;
819 vm86_irqs
[irq
].tsk
= current
;
822 case VM86_FREE_IRQ
: {
823 if (invalid_vm86_irq(irqnumber
)) return -EPERM
;
824 if (!vm86_irqs
[irqnumber
].tsk
) return 0;
825 if (vm86_irqs
[irqnumber
].tsk
!= current
) return -EPERM
;
826 free_vm86_irq(irqnumber
);