1 // SPDX-License-Identifier: GPL-2.0-only
4 * Local APIC virtualization
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2007 Novell
8 * Copyright (C) 2007 Intel
9 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
12 * Dor Laor <dor.laor@qumranet.com>
13 * Gregory Haskins <ghaskins@novell.com>
14 * Yaozu (Eddie) Dong <eddie.dong@intel.com>
16 * Based on Xen 3.1 code, Copyright (c) 2004, Intel Corporation.
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
23 #include <linux/highmem.h>
24 #include <linux/smp.h>
25 #include <linux/hrtimer.h>
27 #include <linux/export.h>
28 #include <linux/math64.h>
29 #include <linux/slab.h>
30 #include <asm/processor.h>
34 #include <asm/current.h>
35 #include <asm/apicdef.h>
36 #include <asm/delay.h>
37 #include <linux/atomic.h>
38 #include <linux/jump_label.h>
39 #include "kvm_cache_regs.h"
50 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
52 #define mod_64(x, y) ((x) % (y))
55 /* 14 is the version for Xeon and Pentium 8.4.8*/
56 #define APIC_VERSION 0x14UL
57 #define LAPIC_MMIO_LENGTH (1 << 12)
58 /* followed define is not in apicdef.h */
59 #define MAX_APIC_VECTOR 256
60 #define APIC_VECTORS_PER_REG 32
63 * Enable local APIC timer advancement (tscdeadline mode only) with adaptive
64 * tuning. When enabled, KVM programs the host timer event to fire early, i.e.
65 * before the deadline expires, to account for the delay between taking the
66 * VM-Exit (to inject the guest event) and the subsequent VM-Enter to resume
67 * the guest, i.e. so that the interrupt arrives in the guest with minimal
68 * latency relative to the deadline programmed by the guest.
70 static bool lapic_timer_advance __read_mostly
= true;
71 module_param(lapic_timer_advance
, bool, 0444);
73 #define LAPIC_TIMER_ADVANCE_ADJUST_MIN 100 /* clock cycles */
74 #define LAPIC_TIMER_ADVANCE_ADJUST_MAX 10000 /* clock cycles */
75 #define LAPIC_TIMER_ADVANCE_NS_INIT 1000
76 #define LAPIC_TIMER_ADVANCE_NS_MAX 5000
77 /* step-by-step approximation to mitigate fluctuation */
78 #define LAPIC_TIMER_ADVANCE_ADJUST_STEP 8
79 static int kvm_lapic_msr_read(struct kvm_lapic
*apic
, u32 reg
, u64
*data
);
80 static int kvm_lapic_msr_write(struct kvm_lapic
*apic
, u32 reg
, u64 data
);
82 static inline void __kvm_lapic_set_reg(char *regs
, int reg_off
, u32 val
)
84 *((u32
*) (regs
+ reg_off
)) = val
;
87 static inline void kvm_lapic_set_reg(struct kvm_lapic
*apic
, int reg_off
, u32 val
)
89 __kvm_lapic_set_reg(apic
->regs
, reg_off
, val
);
92 static __always_inline u64
__kvm_lapic_get_reg64(char *regs
, int reg
)
94 BUILD_BUG_ON(reg
!= APIC_ICR
);
95 return *((u64
*) (regs
+ reg
));
98 static __always_inline u64
kvm_lapic_get_reg64(struct kvm_lapic
*apic
, int reg
)
100 return __kvm_lapic_get_reg64(apic
->regs
, reg
);
103 static __always_inline
void __kvm_lapic_set_reg64(char *regs
, int reg
, u64 val
)
105 BUILD_BUG_ON(reg
!= APIC_ICR
);
106 *((u64
*) (regs
+ reg
)) = val
;
109 static __always_inline
void kvm_lapic_set_reg64(struct kvm_lapic
*apic
,
112 __kvm_lapic_set_reg64(apic
->regs
, reg
, val
);
115 static inline int apic_test_vector(int vec
, void *bitmap
)
117 return test_bit(VEC_POS(vec
), (bitmap
) + REG_POS(vec
));
120 bool kvm_apic_pending_eoi(struct kvm_vcpu
*vcpu
, int vector
)
122 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
124 return apic_test_vector(vector
, apic
->regs
+ APIC_ISR
) ||
125 apic_test_vector(vector
, apic
->regs
+ APIC_IRR
);
128 static inline int __apic_test_and_set_vector(int vec
, void *bitmap
)
130 return __test_and_set_bit(VEC_POS(vec
), (bitmap
) + REG_POS(vec
));
133 static inline int __apic_test_and_clear_vector(int vec
, void *bitmap
)
135 return __test_and_clear_bit(VEC_POS(vec
), (bitmap
) + REG_POS(vec
));
138 __read_mostly
DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu
);
139 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu
);
141 __read_mostly
DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_hw_disabled
, HZ
);
142 __read_mostly
DEFINE_STATIC_KEY_DEFERRED_FALSE(apic_sw_disabled
, HZ
);
144 static inline int apic_enabled(struct kvm_lapic
*apic
)
146 return kvm_apic_sw_enabled(apic
) && kvm_apic_hw_enabled(apic
);
150 (APIC_LVT_MASKED | APIC_SEND_PENDING | APIC_VECTOR_MASK)
153 (LVT_MASK | APIC_MODE_MASK | APIC_INPUT_POLARITY | \
154 APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER)
156 static inline u32
kvm_x2apic_id(struct kvm_lapic
*apic
)
158 return apic
->vcpu
->vcpu_id
;
161 static bool kvm_can_post_timer_interrupt(struct kvm_vcpu
*vcpu
)
163 return pi_inject_timer
&& kvm_vcpu_apicv_active(vcpu
) &&
164 (kvm_mwait_in_guest(vcpu
->kvm
) || kvm_hlt_in_guest(vcpu
->kvm
));
167 bool kvm_can_use_hv_timer(struct kvm_vcpu
*vcpu
)
169 return kvm_x86_ops
.set_hv_timer
170 && !(kvm_mwait_in_guest(vcpu
->kvm
) ||
171 kvm_can_post_timer_interrupt(vcpu
));
174 static bool kvm_use_posted_timer_interrupt(struct kvm_vcpu
*vcpu
)
176 return kvm_can_post_timer_interrupt(vcpu
) && vcpu
->mode
== IN_GUEST_MODE
;
179 static inline u32
kvm_apic_calc_x2apic_ldr(u32 id
)
181 return ((id
>> 4) << 16) | (1 << (id
& 0xf));
184 static inline bool kvm_apic_map_get_logical_dest(struct kvm_apic_map
*map
,
185 u32 dest_id
, struct kvm_lapic
***cluster
, u16
*mask
) {
186 switch (map
->logical_mode
) {
187 case KVM_APIC_MODE_SW_DISABLED
:
188 /* Arbitrarily use the flat map so that @cluster isn't NULL. */
189 *cluster
= map
->xapic_flat_map
;
192 case KVM_APIC_MODE_X2APIC
: {
193 u32 offset
= (dest_id
>> 16) * 16;
194 u32 max_apic_id
= map
->max_apic_id
;
196 if (offset
<= max_apic_id
) {
197 u8 cluster_size
= min(max_apic_id
- offset
+ 1, 16U);
199 offset
= array_index_nospec(offset
, map
->max_apic_id
+ 1);
200 *cluster
= &map
->phys_map
[offset
];
201 *mask
= dest_id
& (0xffff >> (16 - cluster_size
));
208 case KVM_APIC_MODE_XAPIC_FLAT
:
209 *cluster
= map
->xapic_flat_map
;
210 *mask
= dest_id
& 0xff;
212 case KVM_APIC_MODE_XAPIC_CLUSTER
:
213 *cluster
= map
->xapic_cluster_map
[(dest_id
>> 4) & 0xf];
214 *mask
= dest_id
& 0xf;
216 case KVM_APIC_MODE_MAP_DISABLED
:
224 static void kvm_apic_map_free(struct rcu_head
*rcu
)
226 struct kvm_apic_map
*map
= container_of(rcu
, struct kvm_apic_map
, rcu
);
231 static int kvm_recalculate_phys_map(struct kvm_apic_map
*new,
232 struct kvm_vcpu
*vcpu
,
233 bool *xapic_id_mismatch
)
235 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
236 u32 x2apic_id
= kvm_x2apic_id(apic
);
237 u32 xapic_id
= kvm_xapic_id(apic
);
241 * For simplicity, KVM always allocates enough space for all possible
242 * xAPIC IDs. Yell, but don't kill the VM, as KVM can continue on
243 * without the optimized map.
245 if (WARN_ON_ONCE(xapic_id
> new->max_apic_id
))
249 * Bail if a vCPU was added and/or enabled its APIC between allocating
250 * the map and doing the actual calculations for the map. Note, KVM
251 * hardcodes the x2APIC ID to vcpu_id, i.e. there's no TOCTOU bug if
252 * the compiler decides to reload x2apic_id after this check.
254 if (x2apic_id
> new->max_apic_id
)
258 * Deliberately truncate the vCPU ID when detecting a mismatched APIC
259 * ID to avoid false positives if the vCPU ID, i.e. x2APIC ID, is a
260 * 32-bit value. Any unwanted aliasing due to truncation results will
263 if (!apic_x2apic_mode(apic
) && xapic_id
!= (u8
)vcpu
->vcpu_id
)
264 *xapic_id_mismatch
= true;
267 * Apply KVM's hotplug hack if userspace has enable 32-bit APIC IDs.
268 * Allow sending events to vCPUs by their x2APIC ID even if the target
269 * vCPU is in legacy xAPIC mode, and silently ignore aliased xAPIC IDs
270 * (the x2APIC ID is truncated to 8 bits, causing IDs > 0xff to wrap
273 * Honor the architectural (and KVM's non-optimized) behavior if
274 * userspace has not enabled 32-bit x2APIC IDs. Each APIC is supposed
275 * to process messages independently. If multiple vCPUs have the same
276 * effective APIC ID, e.g. due to the x2APIC wrap or because the guest
277 * manually modified its xAPIC IDs, events targeting that ID are
278 * supposed to be recognized by all vCPUs with said ID.
280 if (vcpu
->kvm
->arch
.x2apic_format
) {
281 /* See also kvm_apic_match_physical_addr(). */
282 if (apic_x2apic_mode(apic
) || x2apic_id
> 0xff)
283 new->phys_map
[x2apic_id
] = apic
;
285 if (!apic_x2apic_mode(apic
) && !new->phys_map
[xapic_id
])
286 new->phys_map
[xapic_id
] = apic
;
289 * Disable the optimized map if the physical APIC ID is already
290 * mapped, i.e. is aliased to multiple vCPUs. The optimized
291 * map requires a strict 1:1 mapping between IDs and vCPUs.
293 if (apic_x2apic_mode(apic
))
294 physical_id
= x2apic_id
;
296 physical_id
= xapic_id
;
298 if (new->phys_map
[physical_id
])
301 new->phys_map
[physical_id
] = apic
;
307 static void kvm_recalculate_logical_map(struct kvm_apic_map
*new,
308 struct kvm_vcpu
*vcpu
)
310 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
311 enum kvm_apic_logical_mode logical_mode
;
312 struct kvm_lapic
**cluster
;
316 if (new->logical_mode
== KVM_APIC_MODE_MAP_DISABLED
)
319 if (!kvm_apic_sw_enabled(apic
))
322 ldr
= kvm_lapic_get_reg(apic
, APIC_LDR
);
326 if (apic_x2apic_mode(apic
)) {
327 logical_mode
= KVM_APIC_MODE_X2APIC
;
329 ldr
= GET_APIC_LOGICAL_ID(ldr
);
330 if (kvm_lapic_get_reg(apic
, APIC_DFR
) == APIC_DFR_FLAT
)
331 logical_mode
= KVM_APIC_MODE_XAPIC_FLAT
;
333 logical_mode
= KVM_APIC_MODE_XAPIC_CLUSTER
;
337 * To optimize logical mode delivery, all software-enabled APICs must
338 * be configured for the same mode.
340 if (new->logical_mode
== KVM_APIC_MODE_SW_DISABLED
) {
341 new->logical_mode
= logical_mode
;
342 } else if (new->logical_mode
!= logical_mode
) {
343 new->logical_mode
= KVM_APIC_MODE_MAP_DISABLED
;
348 * In x2APIC mode, the LDR is read-only and derived directly from the
349 * x2APIC ID, thus is guaranteed to be addressable. KVM reuses
350 * kvm_apic_map.phys_map to optimize logical mode x2APIC interrupts by
351 * reversing the LDR calculation to get cluster of APICs, i.e. no
352 * additional work is required.
354 if (apic_x2apic_mode(apic
))
357 if (WARN_ON_ONCE(!kvm_apic_map_get_logical_dest(new, ldr
,
359 new->logical_mode
= KVM_APIC_MODE_MAP_DISABLED
;
367 if (!is_power_of_2(mask
) || cluster
[ldr
])
368 new->logical_mode
= KVM_APIC_MODE_MAP_DISABLED
;
374 * CLEAN -> DIRTY and UPDATE_IN_PROGRESS -> DIRTY changes happen without a lock.
376 * DIRTY -> UPDATE_IN_PROGRESS and UPDATE_IN_PROGRESS -> CLEAN happen with
377 * apic_map_lock_held.
385 void kvm_recalculate_apic_map(struct kvm
*kvm
)
387 struct kvm_apic_map
*new, *old
= NULL
;
388 struct kvm_vcpu
*vcpu
;
390 u32 max_id
= 255; /* enough space for any xAPIC ID */
391 bool xapic_id_mismatch
;
394 /* Read kvm->arch.apic_map_dirty before kvm->arch.apic_map. */
395 if (atomic_read_acquire(&kvm
->arch
.apic_map_dirty
) == CLEAN
)
398 WARN_ONCE(!irqchip_in_kernel(kvm
),
399 "Dirty APIC map without an in-kernel local APIC");
401 mutex_lock(&kvm
->arch
.apic_map_lock
);
405 * Read kvm->arch.apic_map_dirty before kvm->arch.apic_map (if clean)
406 * or the APIC registers (if dirty). Note, on retry the map may have
407 * not yet been marked dirty by whatever task changed a vCPU's x2APIC
408 * ID, i.e. the map may still show up as in-progress. In that case
409 * this task still needs to retry and complete its calculation.
411 if (atomic_cmpxchg_acquire(&kvm
->arch
.apic_map_dirty
,
412 DIRTY
, UPDATE_IN_PROGRESS
) == CLEAN
) {
413 /* Someone else has updated the map. */
414 mutex_unlock(&kvm
->arch
.apic_map_lock
);
419 * Reset the mismatch flag between attempts so that KVM does the right
420 * thing if a vCPU changes its xAPIC ID, but do NOT reset max_id, i.e.
421 * keep max_id strictly increasing. Disallowing max_id from shrinking
422 * ensures KVM won't get stuck in an infinite loop, e.g. if the vCPU
423 * with the highest x2APIC ID is toggling its APIC on and off.
425 xapic_id_mismatch
= false;
427 kvm_for_each_vcpu(i
, vcpu
, kvm
)
428 if (kvm_apic_present(vcpu
))
429 max_id
= max(max_id
, kvm_x2apic_id(vcpu
->arch
.apic
));
431 new = kvzalloc(sizeof(struct kvm_apic_map
) +
432 sizeof(struct kvm_lapic
*) * ((u64
)max_id
+ 1),
438 new->max_apic_id
= max_id
;
439 new->logical_mode
= KVM_APIC_MODE_SW_DISABLED
;
441 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
442 if (!kvm_apic_present(vcpu
))
445 r
= kvm_recalculate_phys_map(new, vcpu
, &xapic_id_mismatch
);
457 kvm_recalculate_logical_map(new, vcpu
);
461 * The optimized map is effectively KVM's internal version of APICv,
462 * and all unwanted aliasing that results in disabling the optimized
463 * map also applies to APICv.
466 kvm_set_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED
);
468 kvm_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED
);
470 if (!new || new->logical_mode
== KVM_APIC_MODE_MAP_DISABLED
)
471 kvm_set_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED
);
473 kvm_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED
);
475 if (xapic_id_mismatch
)
476 kvm_set_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_APIC_ID_MODIFIED
);
478 kvm_clear_apicv_inhibit(kvm
, APICV_INHIBIT_REASON_APIC_ID_MODIFIED
);
480 old
= rcu_dereference_protected(kvm
->arch
.apic_map
,
481 lockdep_is_held(&kvm
->arch
.apic_map_lock
));
482 rcu_assign_pointer(kvm
->arch
.apic_map
, new);
484 * Write kvm->arch.apic_map before clearing apic->apic_map_dirty.
485 * If another update has come in, leave it DIRTY.
487 atomic_cmpxchg_release(&kvm
->arch
.apic_map_dirty
,
488 UPDATE_IN_PROGRESS
, CLEAN
);
489 mutex_unlock(&kvm
->arch
.apic_map_lock
);
492 call_rcu(&old
->rcu
, kvm_apic_map_free
);
494 kvm_make_scan_ioapic_request(kvm
);
497 static inline void apic_set_spiv(struct kvm_lapic
*apic
, u32 val
)
499 bool enabled
= val
& APIC_SPIV_APIC_ENABLED
;
501 kvm_lapic_set_reg(apic
, APIC_SPIV
, val
);
503 if (enabled
!= apic
->sw_enabled
) {
504 apic
->sw_enabled
= enabled
;
506 static_branch_slow_dec_deferred(&apic_sw_disabled
);
508 static_branch_inc(&apic_sw_disabled
.key
);
510 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
513 /* Check if there are APF page ready requests pending */
515 kvm_make_request(KVM_REQ_APF_READY
, apic
->vcpu
);
516 kvm_xen_sw_enable_lapic(apic
->vcpu
);
520 static inline void kvm_apic_set_xapic_id(struct kvm_lapic
*apic
, u8 id
)
522 kvm_lapic_set_reg(apic
, APIC_ID
, id
<< 24);
523 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
526 static inline void kvm_apic_set_ldr(struct kvm_lapic
*apic
, u32 id
)
528 kvm_lapic_set_reg(apic
, APIC_LDR
, id
);
529 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
532 static inline void kvm_apic_set_dfr(struct kvm_lapic
*apic
, u32 val
)
534 kvm_lapic_set_reg(apic
, APIC_DFR
, val
);
535 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
538 static inline void kvm_apic_set_x2apic_id(struct kvm_lapic
*apic
, u32 id
)
540 u32 ldr
= kvm_apic_calc_x2apic_ldr(id
);
542 WARN_ON_ONCE(id
!= apic
->vcpu
->vcpu_id
);
544 kvm_lapic_set_reg(apic
, APIC_ID
, id
);
545 kvm_lapic_set_reg(apic
, APIC_LDR
, ldr
);
546 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
549 static inline int apic_lvt_enabled(struct kvm_lapic
*apic
, int lvt_type
)
551 return !(kvm_lapic_get_reg(apic
, lvt_type
) & APIC_LVT_MASKED
);
554 static inline int apic_lvtt_oneshot(struct kvm_lapic
*apic
)
556 return apic
->lapic_timer
.timer_mode
== APIC_LVT_TIMER_ONESHOT
;
559 static inline int apic_lvtt_period(struct kvm_lapic
*apic
)
561 return apic
->lapic_timer
.timer_mode
== APIC_LVT_TIMER_PERIODIC
;
564 static inline int apic_lvtt_tscdeadline(struct kvm_lapic
*apic
)
566 return apic
->lapic_timer
.timer_mode
== APIC_LVT_TIMER_TSCDEADLINE
;
569 static inline int apic_lvt_nmi_mode(u32 lvt_val
)
571 return (lvt_val
& (APIC_MODE_MASK
| APIC_LVT_MASKED
)) == APIC_DM_NMI
;
574 static inline bool kvm_lapic_lvt_supported(struct kvm_lapic
*apic
, int lvt_index
)
576 return apic
->nr_lvt_entries
> lvt_index
;
579 static inline int kvm_apic_calc_nr_lvt_entries(struct kvm_vcpu
*vcpu
)
581 return KVM_APIC_MAX_NR_LVT_ENTRIES
- !(vcpu
->arch
.mcg_cap
& MCG_CMCI_P
);
584 void kvm_apic_set_version(struct kvm_vcpu
*vcpu
)
586 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
589 if (!lapic_in_kernel(vcpu
))
592 v
= APIC_VERSION
| ((apic
->nr_lvt_entries
- 1) << 16);
595 * KVM emulates 82093AA datasheet (with in-kernel IOAPIC implementation)
596 * which doesn't have EOI register; Some buggy OSes (e.g. Windows with
597 * Hyper-V role) disable EOI broadcast in lapic not checking for IOAPIC
598 * version first and level-triggered interrupts never get EOIed in
601 if (guest_cpuid_has(vcpu
, X86_FEATURE_X2APIC
) &&
602 !ioapic_in_kernel(vcpu
->kvm
))
603 v
|= APIC_LVR_DIRECTED_EOI
;
604 kvm_lapic_set_reg(apic
, APIC_LVR
, v
);
607 void kvm_apic_after_set_mcg_cap(struct kvm_vcpu
*vcpu
)
609 int nr_lvt_entries
= kvm_apic_calc_nr_lvt_entries(vcpu
);
610 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
613 if (!lapic_in_kernel(vcpu
) || nr_lvt_entries
== apic
->nr_lvt_entries
)
616 /* Initialize/mask any "new" LVT entries. */
617 for (i
= apic
->nr_lvt_entries
; i
< nr_lvt_entries
; i
++)
618 kvm_lapic_set_reg(apic
, APIC_LVTx(i
), APIC_LVT_MASKED
);
620 apic
->nr_lvt_entries
= nr_lvt_entries
;
622 /* The number of LVT entries is reflected in the version register. */
623 kvm_apic_set_version(vcpu
);
626 static const unsigned int apic_lvt_mask
[KVM_APIC_MAX_NR_LVT_ENTRIES
] = {
627 [LVT_TIMER
] = LVT_MASK
, /* timer mode mask added at runtime */
628 [LVT_THERMAL_MONITOR
] = LVT_MASK
| APIC_MODE_MASK
,
629 [LVT_PERFORMANCE_COUNTER
] = LVT_MASK
| APIC_MODE_MASK
,
630 [LVT_LINT0
] = LINT_MASK
,
631 [LVT_LINT1
] = LINT_MASK
,
632 [LVT_ERROR
] = LVT_MASK
,
633 [LVT_CMCI
] = LVT_MASK
| APIC_MODE_MASK
636 static int find_highest_vector(void *bitmap
)
641 for (vec
= MAX_APIC_VECTOR
- APIC_VECTORS_PER_REG
;
642 vec
>= 0; vec
-= APIC_VECTORS_PER_REG
) {
643 reg
= bitmap
+ REG_POS(vec
);
645 return __fls(*reg
) + vec
;
651 static u8
count_vectors(void *bitmap
)
657 for (vec
= 0; vec
< MAX_APIC_VECTOR
; vec
+= APIC_VECTORS_PER_REG
) {
658 reg
= bitmap
+ REG_POS(vec
);
659 count
+= hweight32(*reg
);
665 bool __kvm_apic_update_irr(u32
*pir
, void *regs
, int *max_irr
)
668 u32 pir_val
, irr_val
, prev_irr_val
;
671 max_updated_irr
= -1;
674 for (i
= vec
= 0; i
<= 7; i
++, vec
+= 32) {
675 u32
*p_irr
= (u32
*)(regs
+ APIC_IRR
+ i
* 0x10);
678 pir_val
= READ_ONCE(pir
[i
]);
681 pir_val
= xchg(&pir
[i
], 0);
683 prev_irr_val
= irr_val
;
685 irr_val
= prev_irr_val
| pir_val
;
686 } while (prev_irr_val
!= irr_val
&&
687 !try_cmpxchg(p_irr
, &prev_irr_val
, irr_val
));
689 if (prev_irr_val
!= irr_val
)
690 max_updated_irr
= __fls(irr_val
^ prev_irr_val
) + vec
;
693 *max_irr
= __fls(irr_val
) + vec
;
696 return ((max_updated_irr
!= -1) &&
697 (max_updated_irr
== *max_irr
));
699 EXPORT_SYMBOL_GPL(__kvm_apic_update_irr
);
701 bool kvm_apic_update_irr(struct kvm_vcpu
*vcpu
, u32
*pir
, int *max_irr
)
703 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
704 bool irr_updated
= __kvm_apic_update_irr(pir
, apic
->regs
, max_irr
);
706 if (unlikely(!apic
->apicv_active
&& irr_updated
))
707 apic
->irr_pending
= true;
710 EXPORT_SYMBOL_GPL(kvm_apic_update_irr
);
712 static inline int apic_search_irr(struct kvm_lapic
*apic
)
714 return find_highest_vector(apic
->regs
+ APIC_IRR
);
717 static inline int apic_find_highest_irr(struct kvm_lapic
*apic
)
722 * Note that irr_pending is just a hint. It will be always
723 * true with virtual interrupt delivery enabled.
725 if (!apic
->irr_pending
)
728 result
= apic_search_irr(apic
);
729 ASSERT(result
== -1 || result
>= 16);
734 static inline void apic_clear_irr(int vec
, struct kvm_lapic
*apic
)
736 if (unlikely(apic
->apicv_active
)) {
737 /* need to update RVI */
738 kvm_lapic_clear_vector(vec
, apic
->regs
+ APIC_IRR
);
739 kvm_x86_call(hwapic_irr_update
)(apic
->vcpu
,
740 apic_find_highest_irr(apic
));
742 apic
->irr_pending
= false;
743 kvm_lapic_clear_vector(vec
, apic
->regs
+ APIC_IRR
);
744 if (apic_search_irr(apic
) != -1)
745 apic
->irr_pending
= true;
749 void kvm_apic_clear_irr(struct kvm_vcpu
*vcpu
, int vec
)
751 apic_clear_irr(vec
, vcpu
->arch
.apic
);
753 EXPORT_SYMBOL_GPL(kvm_apic_clear_irr
);
755 static inline void apic_set_isr(int vec
, struct kvm_lapic
*apic
)
757 if (__apic_test_and_set_vector(vec
, apic
->regs
+ APIC_ISR
))
761 * With APIC virtualization enabled, all caching is disabled
762 * because the processor can modify ISR under the hood. Instead
765 if (unlikely(apic
->apicv_active
))
766 kvm_x86_call(hwapic_isr_update
)(vec
);
769 BUG_ON(apic
->isr_count
> MAX_APIC_VECTOR
);
771 * ISR (in service register) bit is set when injecting an interrupt.
772 * The highest vector is injected. Thus the latest bit set matches
773 * the highest bit in ISR.
775 apic
->highest_isr_cache
= vec
;
779 static inline int apic_find_highest_isr(struct kvm_lapic
*apic
)
784 * Note that isr_count is always 1, and highest_isr_cache
785 * is always -1, with APIC virtualization enabled.
787 if (!apic
->isr_count
)
789 if (likely(apic
->highest_isr_cache
!= -1))
790 return apic
->highest_isr_cache
;
792 result
= find_highest_vector(apic
->regs
+ APIC_ISR
);
793 ASSERT(result
== -1 || result
>= 16);
798 static inline void apic_clear_isr(int vec
, struct kvm_lapic
*apic
)
800 if (!__apic_test_and_clear_vector(vec
, apic
->regs
+ APIC_ISR
))
804 * We do get here for APIC virtualization enabled if the guest
805 * uses the Hyper-V APIC enlightenment. In this case we may need
806 * to trigger a new interrupt delivery by writing the SVI field;
807 * on the other hand isr_count and highest_isr_cache are unused
808 * and must be left alone.
810 if (unlikely(apic
->apicv_active
))
811 kvm_x86_call(hwapic_isr_update
)(apic_find_highest_isr(apic
));
814 BUG_ON(apic
->isr_count
< 0);
815 apic
->highest_isr_cache
= -1;
819 int kvm_lapic_find_highest_irr(struct kvm_vcpu
*vcpu
)
821 /* This may race with setting of irr in __apic_accept_irq() and
822 * value returned may be wrong, but kvm_vcpu_kick() in __apic_accept_irq
823 * will cause vmexit immediately and the value will be recalculated
824 * on the next vmentry.
826 return apic_find_highest_irr(vcpu
->arch
.apic
);
828 EXPORT_SYMBOL_GPL(kvm_lapic_find_highest_irr
);
830 static int __apic_accept_irq(struct kvm_lapic
*apic
, int delivery_mode
,
831 int vector
, int level
, int trig_mode
,
832 struct dest_map
*dest_map
);
834 int kvm_apic_set_irq(struct kvm_vcpu
*vcpu
, struct kvm_lapic_irq
*irq
,
835 struct dest_map
*dest_map
)
837 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
839 return __apic_accept_irq(apic
, irq
->delivery_mode
, irq
->vector
,
840 irq
->level
, irq
->trig_mode
, dest_map
);
843 static int __pv_send_ipi(unsigned long *ipi_bitmap
, struct kvm_apic_map
*map
,
844 struct kvm_lapic_irq
*irq
, u32 min
)
847 struct kvm_vcpu
*vcpu
;
849 if (min
> map
->max_apic_id
)
852 for_each_set_bit(i
, ipi_bitmap
,
853 min((u32
)BITS_PER_LONG
, (map
->max_apic_id
- min
+ 1))) {
854 if (map
->phys_map
[min
+ i
]) {
855 vcpu
= map
->phys_map
[min
+ i
]->vcpu
;
856 count
+= kvm_apic_set_irq(vcpu
, irq
, NULL
);
863 int kvm_pv_send_ipi(struct kvm
*kvm
, unsigned long ipi_bitmap_low
,
864 unsigned long ipi_bitmap_high
, u32 min
,
865 unsigned long icr
, int op_64_bit
)
867 struct kvm_apic_map
*map
;
868 struct kvm_lapic_irq irq
= {0};
869 int cluster_size
= op_64_bit
? 64 : 32;
872 if (icr
& (APIC_DEST_MASK
| APIC_SHORT_MASK
))
875 irq
.vector
= icr
& APIC_VECTOR_MASK
;
876 irq
.delivery_mode
= icr
& APIC_MODE_MASK
;
877 irq
.level
= (icr
& APIC_INT_ASSERT
) != 0;
878 irq
.trig_mode
= icr
& APIC_INT_LEVELTRIG
;
881 map
= rcu_dereference(kvm
->arch
.apic_map
);
885 count
= __pv_send_ipi(&ipi_bitmap_low
, map
, &irq
, min
);
887 count
+= __pv_send_ipi(&ipi_bitmap_high
, map
, &irq
, min
);
894 static int pv_eoi_put_user(struct kvm_vcpu
*vcpu
, u8 val
)
897 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.pv_eoi
.data
, &val
,
901 static int pv_eoi_get_user(struct kvm_vcpu
*vcpu
, u8
*val
)
904 return kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.pv_eoi
.data
, val
,
908 static inline bool pv_eoi_enabled(struct kvm_vcpu
*vcpu
)
910 return vcpu
->arch
.pv_eoi
.msr_val
& KVM_MSR_ENABLED
;
913 static void pv_eoi_set_pending(struct kvm_vcpu
*vcpu
)
915 if (pv_eoi_put_user(vcpu
, KVM_PV_EOI_ENABLED
) < 0)
918 __set_bit(KVM_APIC_PV_EOI_PENDING
, &vcpu
->arch
.apic_attention
);
921 static bool pv_eoi_test_and_clr_pending(struct kvm_vcpu
*vcpu
)
925 if (pv_eoi_get_user(vcpu
, &val
) < 0)
928 val
&= KVM_PV_EOI_ENABLED
;
930 if (val
&& pv_eoi_put_user(vcpu
, KVM_PV_EOI_DISABLED
) < 0)
934 * Clear pending bit in any case: it will be set again on vmentry.
935 * While this might not be ideal from performance point of view,
936 * this makes sure pv eoi is only enabled when we know it's safe.
938 __clear_bit(KVM_APIC_PV_EOI_PENDING
, &vcpu
->arch
.apic_attention
);
943 static int apic_has_interrupt_for_ppr(struct kvm_lapic
*apic
, u32 ppr
)
946 if (kvm_x86_ops
.sync_pir_to_irr
)
947 highest_irr
= kvm_x86_call(sync_pir_to_irr
)(apic
->vcpu
);
949 highest_irr
= apic_find_highest_irr(apic
);
950 if (highest_irr
== -1 || (highest_irr
& 0xF0) <= ppr
)
955 static bool __apic_update_ppr(struct kvm_lapic
*apic
, u32
*new_ppr
)
957 u32 tpr
, isrv
, ppr
, old_ppr
;
960 old_ppr
= kvm_lapic_get_reg(apic
, APIC_PROCPRI
);
961 tpr
= kvm_lapic_get_reg(apic
, APIC_TASKPRI
);
962 isr
= apic_find_highest_isr(apic
);
963 isrv
= (isr
!= -1) ? isr
: 0;
965 if ((tpr
& 0xf0) >= (isrv
& 0xf0))
972 kvm_lapic_set_reg(apic
, APIC_PROCPRI
, ppr
);
974 return ppr
< old_ppr
;
977 static void apic_update_ppr(struct kvm_lapic
*apic
)
981 if (__apic_update_ppr(apic
, &ppr
) &&
982 apic_has_interrupt_for_ppr(apic
, ppr
) != -1)
983 kvm_make_request(KVM_REQ_EVENT
, apic
->vcpu
);
986 void kvm_apic_update_ppr(struct kvm_vcpu
*vcpu
)
988 apic_update_ppr(vcpu
->arch
.apic
);
990 EXPORT_SYMBOL_GPL(kvm_apic_update_ppr
);
992 static void apic_set_tpr(struct kvm_lapic
*apic
, u32 tpr
)
994 kvm_lapic_set_reg(apic
, APIC_TASKPRI
, tpr
);
995 apic_update_ppr(apic
);
998 static bool kvm_apic_broadcast(struct kvm_lapic
*apic
, u32 mda
)
1000 return mda
== (apic_x2apic_mode(apic
) ?
1001 X2APIC_BROADCAST
: APIC_BROADCAST
);
1004 static bool kvm_apic_match_physical_addr(struct kvm_lapic
*apic
, u32 mda
)
1006 if (kvm_apic_broadcast(apic
, mda
))
1010 * Hotplug hack: Accept interrupts for vCPUs in xAPIC mode as if they
1011 * were in x2APIC mode if the target APIC ID can't be encoded as an
1012 * xAPIC ID. This allows unique addressing of hotplugged vCPUs (which
1013 * start in xAPIC mode) with an APIC ID that is unaddressable in xAPIC
1014 * mode. Match the x2APIC ID if and only if the target APIC ID can't
1015 * be encoded in xAPIC to avoid spurious matches against a vCPU that
1016 * changed its (addressable) xAPIC ID (which is writable).
1018 if (apic_x2apic_mode(apic
) || mda
> 0xff)
1019 return mda
== kvm_x2apic_id(apic
);
1021 return mda
== kvm_xapic_id(apic
);
1024 static bool kvm_apic_match_logical_addr(struct kvm_lapic
*apic
, u32 mda
)
1028 if (kvm_apic_broadcast(apic
, mda
))
1031 logical_id
= kvm_lapic_get_reg(apic
, APIC_LDR
);
1033 if (apic_x2apic_mode(apic
))
1034 return ((logical_id
>> 16) == (mda
>> 16))
1035 && (logical_id
& mda
& 0xffff) != 0;
1037 logical_id
= GET_APIC_LOGICAL_ID(logical_id
);
1039 switch (kvm_lapic_get_reg(apic
, APIC_DFR
)) {
1041 return (logical_id
& mda
) != 0;
1042 case APIC_DFR_CLUSTER
:
1043 return ((logical_id
>> 4) == (mda
>> 4))
1044 && (logical_id
& mda
& 0xf) != 0;
1050 /* The KVM local APIC implementation has two quirks:
1052 * - Real hardware delivers interrupts destined to x2APIC ID > 0xff to LAPICs
1053 * in xAPIC mode if the "destination & 0xff" matches its xAPIC ID.
1054 * KVM doesn't do that aliasing.
1056 * - in-kernel IOAPIC messages have to be delivered directly to
1057 * x2APIC, because the kernel does not support interrupt remapping.
1058 * In order to support broadcast without interrupt remapping, x2APIC
1059 * rewrites the destination of non-IPI messages from APIC_BROADCAST
1060 * to X2APIC_BROADCAST.
1062 * The broadcast quirk can be disabled with KVM_CAP_X2APIC_API. This is
1063 * important when userspace wants to use x2APIC-format MSIs, because
1064 * APIC_BROADCAST (0xff) is a legal route for "cluster 0, CPUs 0-7".
1066 static u32
kvm_apic_mda(struct kvm_vcpu
*vcpu
, unsigned int dest_id
,
1067 struct kvm_lapic
*source
, struct kvm_lapic
*target
)
1069 bool ipi
= source
!= NULL
;
1071 if (!vcpu
->kvm
->arch
.x2apic_broadcast_quirk_disabled
&&
1072 !ipi
&& dest_id
== APIC_BROADCAST
&& apic_x2apic_mode(target
))
1073 return X2APIC_BROADCAST
;
1078 bool kvm_apic_match_dest(struct kvm_vcpu
*vcpu
, struct kvm_lapic
*source
,
1079 int shorthand
, unsigned int dest
, int dest_mode
)
1081 struct kvm_lapic
*target
= vcpu
->arch
.apic
;
1082 u32 mda
= kvm_apic_mda(vcpu
, dest
, source
, target
);
1085 switch (shorthand
) {
1086 case APIC_DEST_NOSHORT
:
1087 if (dest_mode
== APIC_DEST_PHYSICAL
)
1088 return kvm_apic_match_physical_addr(target
, mda
);
1090 return kvm_apic_match_logical_addr(target
, mda
);
1091 case APIC_DEST_SELF
:
1092 return target
== source
;
1093 case APIC_DEST_ALLINC
:
1095 case APIC_DEST_ALLBUT
:
1096 return target
!= source
;
1101 EXPORT_SYMBOL_GPL(kvm_apic_match_dest
);
1103 int kvm_vector_to_index(u32 vector
, u32 dest_vcpus
,
1104 const unsigned long *bitmap
, u32 bitmap_size
)
1109 mod
= vector
% dest_vcpus
;
1111 for (i
= 0; i
<= mod
; i
++) {
1112 idx
= find_next_bit(bitmap
, bitmap_size
, idx
+ 1);
1113 BUG_ON(idx
== bitmap_size
);
1119 static void kvm_apic_disabled_lapic_found(struct kvm
*kvm
)
1121 if (!kvm
->arch
.disabled_lapic_found
) {
1122 kvm
->arch
.disabled_lapic_found
= true;
1123 pr_info("Disabled LAPIC found during irq injection\n");
1127 static bool kvm_apic_is_broadcast_dest(struct kvm
*kvm
, struct kvm_lapic
**src
,
1128 struct kvm_lapic_irq
*irq
, struct kvm_apic_map
*map
)
1130 if (kvm
->arch
.x2apic_broadcast_quirk_disabled
) {
1131 if ((irq
->dest_id
== APIC_BROADCAST
&&
1132 map
->logical_mode
!= KVM_APIC_MODE_X2APIC
))
1134 if (irq
->dest_id
== X2APIC_BROADCAST
)
1137 bool x2apic_ipi
= src
&& *src
&& apic_x2apic_mode(*src
);
1138 if (irq
->dest_id
== (x2apic_ipi
?
1139 X2APIC_BROADCAST
: APIC_BROADCAST
))
1146 /* Return true if the interrupt can be handled by using *bitmap as index mask
1147 * for valid destinations in *dst array.
1148 * Return false if kvm_apic_map_get_dest_lapic did nothing useful.
1149 * Note: we may have zero kvm_lapic destinations when we return true, which
1150 * means that the interrupt should be dropped. In this case, *bitmap would be
1151 * zero and *dst undefined.
1153 static inline bool kvm_apic_map_get_dest_lapic(struct kvm
*kvm
,
1154 struct kvm_lapic
**src
, struct kvm_lapic_irq
*irq
,
1155 struct kvm_apic_map
*map
, struct kvm_lapic
***dst
,
1156 unsigned long *bitmap
)
1160 if (irq
->shorthand
== APIC_DEST_SELF
&& src
) {
1164 } else if (irq
->shorthand
)
1167 if (!map
|| kvm_apic_is_broadcast_dest(kvm
, src
, irq
, map
))
1170 if (irq
->dest_mode
== APIC_DEST_PHYSICAL
) {
1171 if (irq
->dest_id
> map
->max_apic_id
) {
1174 u32 dest_id
= array_index_nospec(irq
->dest_id
, map
->max_apic_id
+ 1);
1175 *dst
= &map
->phys_map
[dest_id
];
1182 if (!kvm_apic_map_get_logical_dest(map
, irq
->dest_id
, dst
,
1186 if (!kvm_lowest_prio_delivery(irq
))
1189 if (!kvm_vector_hashing_enabled()) {
1191 for_each_set_bit(i
, bitmap
, 16) {
1196 else if (kvm_apic_compare_prio((*dst
)[i
]->vcpu
,
1197 (*dst
)[lowest
]->vcpu
) < 0)
1204 lowest
= kvm_vector_to_index(irq
->vector
, hweight16(*bitmap
),
1207 if (!(*dst
)[lowest
]) {
1208 kvm_apic_disabled_lapic_found(kvm
);
1214 *bitmap
= (lowest
>= 0) ? 1 << lowest
: 0;
1219 bool kvm_irq_delivery_to_apic_fast(struct kvm
*kvm
, struct kvm_lapic
*src
,
1220 struct kvm_lapic_irq
*irq
, int *r
, struct dest_map
*dest_map
)
1222 struct kvm_apic_map
*map
;
1223 unsigned long bitmap
;
1224 struct kvm_lapic
**dst
= NULL
;
1230 if (irq
->shorthand
== APIC_DEST_SELF
) {
1231 if (KVM_BUG_ON(!src
, kvm
)) {
1235 *r
= kvm_apic_set_irq(src
->vcpu
, irq
, dest_map
);
1240 map
= rcu_dereference(kvm
->arch
.apic_map
);
1242 ret
= kvm_apic_map_get_dest_lapic(kvm
, &src
, irq
, map
, &dst
, &bitmap
);
1245 for_each_set_bit(i
, &bitmap
, 16) {
1248 *r
+= kvm_apic_set_irq(dst
[i
]->vcpu
, irq
, dest_map
);
1257 * This routine tries to handle interrupts in posted mode, here is how
1258 * it deals with different cases:
1259 * - For single-destination interrupts, handle it in posted mode
1260 * - Else if vector hashing is enabled and it is a lowest-priority
1261 * interrupt, handle it in posted mode and use the following mechanism
1262 * to find the destination vCPU.
1263 * 1. For lowest-priority interrupts, store all the possible
1264 * destination vCPUs in an array.
1265 * 2. Use "guest vector % max number of destination vCPUs" to find
1266 * the right destination vCPU in the array for the lowest-priority
1268 * - Otherwise, use remapped mode to inject the interrupt.
1270 bool kvm_intr_is_single_vcpu_fast(struct kvm
*kvm
, struct kvm_lapic_irq
*irq
,
1271 struct kvm_vcpu
**dest_vcpu
)
1273 struct kvm_apic_map
*map
;
1274 unsigned long bitmap
;
1275 struct kvm_lapic
**dst
= NULL
;
1282 map
= rcu_dereference(kvm
->arch
.apic_map
);
1284 if (kvm_apic_map_get_dest_lapic(kvm
, NULL
, irq
, map
, &dst
, &bitmap
) &&
1285 hweight16(bitmap
) == 1) {
1286 unsigned long i
= find_first_bit(&bitmap
, 16);
1289 *dest_vcpu
= dst
[i
]->vcpu
;
1299 * Add a pending IRQ into lapic.
1300 * Return 1 if successfully added and 0 if discarded.
1302 static int __apic_accept_irq(struct kvm_lapic
*apic
, int delivery_mode
,
1303 int vector
, int level
, int trig_mode
,
1304 struct dest_map
*dest_map
)
1307 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
1309 trace_kvm_apic_accept_irq(vcpu
->vcpu_id
, delivery_mode
,
1311 switch (delivery_mode
) {
1312 case APIC_DM_LOWEST
:
1313 vcpu
->arch
.apic_arb_prio
++;
1316 if (unlikely(trig_mode
&& !level
))
1319 /* FIXME add logic for vcpu on reset */
1320 if (unlikely(!apic_enabled(apic
)))
1326 __set_bit(vcpu
->vcpu_id
, dest_map
->map
);
1327 dest_map
->vectors
[vcpu
->vcpu_id
] = vector
;
1330 if (apic_test_vector(vector
, apic
->regs
+ APIC_TMR
) != !!trig_mode
) {
1332 kvm_lapic_set_vector(vector
,
1333 apic
->regs
+ APIC_TMR
);
1335 kvm_lapic_clear_vector(vector
,
1336 apic
->regs
+ APIC_TMR
);
1339 kvm_x86_call(deliver_interrupt
)(apic
, delivery_mode
,
1345 vcpu
->arch
.pv
.pv_unhalted
= 1;
1346 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
1347 kvm_vcpu_kick(vcpu
);
1351 if (!kvm_inject_smi(vcpu
)) {
1352 kvm_vcpu_kick(vcpu
);
1359 kvm_inject_nmi(vcpu
);
1360 kvm_vcpu_kick(vcpu
);
1364 if (!trig_mode
|| level
) {
1366 /* assumes that there are only KVM_APIC_INIT/SIPI */
1367 apic
->pending_events
= (1UL << KVM_APIC_INIT
);
1368 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
1369 kvm_vcpu_kick(vcpu
);
1373 case APIC_DM_STARTUP
:
1375 apic
->sipi_vector
= vector
;
1376 /* make sure sipi_vector is visible for the receiver */
1378 set_bit(KVM_APIC_SIPI
, &apic
->pending_events
);
1379 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
1380 kvm_vcpu_kick(vcpu
);
1383 case APIC_DM_EXTINT
:
1385 * Should only be called by kvm_apic_local_deliver() with LVT0,
1386 * before NMI watchdog was enabled. Already handled by
1387 * kvm_apic_accept_pic_intr().
1392 printk(KERN_ERR
"TODO: unsupported delivery mode %x\n",
1400 * This routine identifies the destination vcpus mask meant to receive the
1401 * IOAPIC interrupts. It either uses kvm_apic_map_get_dest_lapic() to find
1402 * out the destination vcpus array and set the bitmap or it traverses to
1403 * each available vcpu to identify the same.
1405 void kvm_bitmap_or_dest_vcpus(struct kvm
*kvm
, struct kvm_lapic_irq
*irq
,
1406 unsigned long *vcpu_bitmap
)
1408 struct kvm_lapic
**dest_vcpu
= NULL
;
1409 struct kvm_lapic
*src
= NULL
;
1410 struct kvm_apic_map
*map
;
1411 struct kvm_vcpu
*vcpu
;
1412 unsigned long bitmap
, i
;
1417 map
= rcu_dereference(kvm
->arch
.apic_map
);
1419 ret
= kvm_apic_map_get_dest_lapic(kvm
, &src
, irq
, map
, &dest_vcpu
,
1422 for_each_set_bit(i
, &bitmap
, 16) {
1425 vcpu_idx
= dest_vcpu
[i
]->vcpu
->vcpu_idx
;
1426 __set_bit(vcpu_idx
, vcpu_bitmap
);
1429 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1430 if (!kvm_apic_present(vcpu
))
1432 if (!kvm_apic_match_dest(vcpu
, NULL
,
1437 __set_bit(i
, vcpu_bitmap
);
1443 int kvm_apic_compare_prio(struct kvm_vcpu
*vcpu1
, struct kvm_vcpu
*vcpu2
)
1445 return vcpu1
->arch
.apic_arb_prio
- vcpu2
->arch
.apic_arb_prio
;
1448 static bool kvm_ioapic_handles_vector(struct kvm_lapic
*apic
, int vector
)
1450 return test_bit(vector
, apic
->vcpu
->arch
.ioapic_handled_vectors
);
1453 static void kvm_ioapic_send_eoi(struct kvm_lapic
*apic
, int vector
)
1457 /* Eoi the ioapic only if the ioapic doesn't own the vector. */
1458 if (!kvm_ioapic_handles_vector(apic
, vector
))
1461 /* Request a KVM exit to inform the userspace IOAPIC. */
1462 if (irqchip_split(apic
->vcpu
->kvm
)) {
1463 apic
->vcpu
->arch
.pending_ioapic_eoi
= vector
;
1464 kvm_make_request(KVM_REQ_IOAPIC_EOI_EXIT
, apic
->vcpu
);
1468 if (apic_test_vector(vector
, apic
->regs
+ APIC_TMR
))
1469 trigger_mode
= IOAPIC_LEVEL_TRIG
;
1471 trigger_mode
= IOAPIC_EDGE_TRIG
;
1473 kvm_ioapic_update_eoi(apic
->vcpu
, vector
, trigger_mode
);
1476 static int apic_set_eoi(struct kvm_lapic
*apic
)
1478 int vector
= apic_find_highest_isr(apic
);
1480 trace_kvm_eoi(apic
, vector
);
1483 * Not every write EOI will has corresponding ISR,
1484 * one example is when Kernel check timer on setup_IO_APIC
1489 apic_clear_isr(vector
, apic
);
1490 apic_update_ppr(apic
);
1492 if (kvm_hv_synic_has_vector(apic
->vcpu
, vector
))
1493 kvm_hv_synic_send_eoi(apic
->vcpu
, vector
);
1495 kvm_ioapic_send_eoi(apic
, vector
);
1496 kvm_make_request(KVM_REQ_EVENT
, apic
->vcpu
);
1501 * this interface assumes a trap-like exit, which has already finished
1502 * desired side effect including vISR and vPPR update.
1504 void kvm_apic_set_eoi_accelerated(struct kvm_vcpu
*vcpu
, int vector
)
1506 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
1508 trace_kvm_eoi(apic
, vector
);
1510 kvm_ioapic_send_eoi(apic
, vector
);
1511 kvm_make_request(KVM_REQ_EVENT
, apic
->vcpu
);
1513 EXPORT_SYMBOL_GPL(kvm_apic_set_eoi_accelerated
);
1515 void kvm_apic_send_ipi(struct kvm_lapic
*apic
, u32 icr_low
, u32 icr_high
)
1517 struct kvm_lapic_irq irq
;
1519 /* KVM has no delay and should always clear the BUSY/PENDING flag. */
1520 WARN_ON_ONCE(icr_low
& APIC_ICR_BUSY
);
1522 irq
.vector
= icr_low
& APIC_VECTOR_MASK
;
1523 irq
.delivery_mode
= icr_low
& APIC_MODE_MASK
;
1524 irq
.dest_mode
= icr_low
& APIC_DEST_MASK
;
1525 irq
.level
= (icr_low
& APIC_INT_ASSERT
) != 0;
1526 irq
.trig_mode
= icr_low
& APIC_INT_LEVELTRIG
;
1527 irq
.shorthand
= icr_low
& APIC_SHORT_MASK
;
1528 irq
.msi_redir_hint
= false;
1529 if (apic_x2apic_mode(apic
))
1530 irq
.dest_id
= icr_high
;
1532 irq
.dest_id
= GET_XAPIC_DEST_FIELD(icr_high
);
1534 trace_kvm_apic_ipi(icr_low
, irq
.dest_id
);
1536 kvm_irq_delivery_to_apic(apic
->vcpu
->kvm
, apic
, &irq
, NULL
);
1538 EXPORT_SYMBOL_GPL(kvm_apic_send_ipi
);
1540 static u32
apic_get_tmcct(struct kvm_lapic
*apic
)
1542 ktime_t remaining
, now
;
1545 ASSERT(apic
!= NULL
);
1547 /* if initial count is 0, current count should also be 0 */
1548 if (kvm_lapic_get_reg(apic
, APIC_TMICT
) == 0 ||
1549 apic
->lapic_timer
.period
== 0)
1553 remaining
= ktime_sub(apic
->lapic_timer
.target_expiration
, now
);
1554 if (ktime_to_ns(remaining
) < 0)
1557 ns
= mod_64(ktime_to_ns(remaining
), apic
->lapic_timer
.period
);
1558 return div64_u64(ns
, (apic
->vcpu
->kvm
->arch
.apic_bus_cycle_ns
*
1559 apic
->divide_count
));
1562 static void __report_tpr_access(struct kvm_lapic
*apic
, bool write
)
1564 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
1565 struct kvm_run
*run
= vcpu
->run
;
1567 kvm_make_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
);
1568 run
->tpr_access
.rip
= kvm_rip_read(vcpu
);
1569 run
->tpr_access
.is_write
= write
;
1572 static inline void report_tpr_access(struct kvm_lapic
*apic
, bool write
)
1574 if (apic
->vcpu
->arch
.tpr_access_reporting
)
1575 __report_tpr_access(apic
, write
);
1578 static u32
__apic_read(struct kvm_lapic
*apic
, unsigned int offset
)
1582 if (offset
>= LAPIC_MMIO_LENGTH
)
1589 case APIC_TMCCT
: /* Timer CCR */
1590 if (apic_lvtt_tscdeadline(apic
))
1593 val
= apic_get_tmcct(apic
);
1596 apic_update_ppr(apic
);
1597 val
= kvm_lapic_get_reg(apic
, offset
);
1600 report_tpr_access(apic
, false);
1603 val
= kvm_lapic_get_reg(apic
, offset
);
1610 static inline struct kvm_lapic
*to_lapic(struct kvm_io_device
*dev
)
1612 return container_of(dev
, struct kvm_lapic
, dev
);
1615 #define APIC_REG_MASK(reg) (1ull << ((reg) >> 4))
1616 #define APIC_REGS_MASK(first, count) \
1617 (APIC_REG_MASK(first) * ((1ull << (count)) - 1))
1619 u64
kvm_lapic_readable_reg_mask(struct kvm_lapic
*apic
)
1621 /* Leave bits '0' for reserved and write-only registers. */
1622 u64 valid_reg_mask
=
1623 APIC_REG_MASK(APIC_ID
) |
1624 APIC_REG_MASK(APIC_LVR
) |
1625 APIC_REG_MASK(APIC_TASKPRI
) |
1626 APIC_REG_MASK(APIC_PROCPRI
) |
1627 APIC_REG_MASK(APIC_LDR
) |
1628 APIC_REG_MASK(APIC_SPIV
) |
1629 APIC_REGS_MASK(APIC_ISR
, APIC_ISR_NR
) |
1630 APIC_REGS_MASK(APIC_TMR
, APIC_ISR_NR
) |
1631 APIC_REGS_MASK(APIC_IRR
, APIC_ISR_NR
) |
1632 APIC_REG_MASK(APIC_ESR
) |
1633 APIC_REG_MASK(APIC_ICR
) |
1634 APIC_REG_MASK(APIC_LVTT
) |
1635 APIC_REG_MASK(APIC_LVTTHMR
) |
1636 APIC_REG_MASK(APIC_LVTPC
) |
1637 APIC_REG_MASK(APIC_LVT0
) |
1638 APIC_REG_MASK(APIC_LVT1
) |
1639 APIC_REG_MASK(APIC_LVTERR
) |
1640 APIC_REG_MASK(APIC_TMICT
) |
1641 APIC_REG_MASK(APIC_TMCCT
) |
1642 APIC_REG_MASK(APIC_TDCR
);
1644 if (kvm_lapic_lvt_supported(apic
, LVT_CMCI
))
1645 valid_reg_mask
|= APIC_REG_MASK(APIC_LVTCMCI
);
1647 /* ARBPRI, DFR, and ICR2 are not valid in x2APIC mode. */
1648 if (!apic_x2apic_mode(apic
))
1649 valid_reg_mask
|= APIC_REG_MASK(APIC_ARBPRI
) |
1650 APIC_REG_MASK(APIC_DFR
) |
1651 APIC_REG_MASK(APIC_ICR2
);
1653 return valid_reg_mask
;
1655 EXPORT_SYMBOL_GPL(kvm_lapic_readable_reg_mask
);
1657 static int kvm_lapic_reg_read(struct kvm_lapic
*apic
, u32 offset
, int len
,
1660 unsigned char alignment
= offset
& 0xf;
1664 * WARN if KVM reads ICR in x2APIC mode, as it's an 8-byte register in
1665 * x2APIC and needs to be manually handled by the caller.
1667 WARN_ON_ONCE(apic_x2apic_mode(apic
) && offset
== APIC_ICR
);
1669 if (alignment
+ len
> 4)
1672 if (offset
> 0x3f0 ||
1673 !(kvm_lapic_readable_reg_mask(apic
) & APIC_REG_MASK(offset
)))
1676 result
= __apic_read(apic
, offset
& ~0xf);
1678 trace_kvm_apic_read(offset
, result
);
1684 memcpy(data
, (char *)&result
+ alignment
, len
);
1687 printk(KERN_ERR
"Local APIC read with len = %x, "
1688 "should be 1,2, or 4 instead\n", len
);
1694 static int apic_mmio_in_range(struct kvm_lapic
*apic
, gpa_t addr
)
1696 return addr
>= apic
->base_address
&&
1697 addr
< apic
->base_address
+ LAPIC_MMIO_LENGTH
;
1700 static int apic_mmio_read(struct kvm_vcpu
*vcpu
, struct kvm_io_device
*this,
1701 gpa_t address
, int len
, void *data
)
1703 struct kvm_lapic
*apic
= to_lapic(this);
1704 u32 offset
= address
- apic
->base_address
;
1706 if (!apic_mmio_in_range(apic
, address
))
1709 if (!kvm_apic_hw_enabled(apic
) || apic_x2apic_mode(apic
)) {
1710 if (!kvm_check_has_quirk(vcpu
->kvm
,
1711 KVM_X86_QUIRK_LAPIC_MMIO_HOLE
))
1714 memset(data
, 0xff, len
);
1718 kvm_lapic_reg_read(apic
, offset
, len
, data
);
1723 static void update_divide_count(struct kvm_lapic
*apic
)
1725 u32 tmp1
, tmp2
, tdcr
;
1727 tdcr
= kvm_lapic_get_reg(apic
, APIC_TDCR
);
1729 tmp2
= ((tmp1
& 0x3) | ((tmp1
& 0x8) >> 1)) + 1;
1730 apic
->divide_count
= 0x1 << (tmp2
& 0x7);
1733 static void limit_periodic_timer_frequency(struct kvm_lapic
*apic
)
1736 * Do not allow the guest to program periodic timers with small
1737 * interval, since the hrtimers are not throttled by the host
1740 if (apic_lvtt_period(apic
) && apic
->lapic_timer
.period
) {
1741 s64 min_period
= min_timer_period_us
* 1000LL;
1743 if (apic
->lapic_timer
.period
< min_period
) {
1745 "vcpu %i: requested %lld ns "
1746 "lapic timer period limited to %lld ns\n",
1747 apic
->vcpu
->vcpu_id
,
1748 apic
->lapic_timer
.period
, min_period
);
1749 apic
->lapic_timer
.period
= min_period
;
1754 static void cancel_hv_timer(struct kvm_lapic
*apic
);
1756 static void cancel_apic_timer(struct kvm_lapic
*apic
)
1758 hrtimer_cancel(&apic
->lapic_timer
.timer
);
1760 if (apic
->lapic_timer
.hv_timer_in_use
)
1761 cancel_hv_timer(apic
);
1763 atomic_set(&apic
->lapic_timer
.pending
, 0);
1766 static void apic_update_lvtt(struct kvm_lapic
*apic
)
1768 u32 timer_mode
= kvm_lapic_get_reg(apic
, APIC_LVTT
) &
1769 apic
->lapic_timer
.timer_mode_mask
;
1771 if (apic
->lapic_timer
.timer_mode
!= timer_mode
) {
1772 if (apic_lvtt_tscdeadline(apic
) != (timer_mode
==
1773 APIC_LVT_TIMER_TSCDEADLINE
)) {
1774 cancel_apic_timer(apic
);
1775 kvm_lapic_set_reg(apic
, APIC_TMICT
, 0);
1776 apic
->lapic_timer
.period
= 0;
1777 apic
->lapic_timer
.tscdeadline
= 0;
1779 apic
->lapic_timer
.timer_mode
= timer_mode
;
1780 limit_periodic_timer_frequency(apic
);
1785 * On APICv, this test will cause a busy wait
1786 * during a higher-priority task.
1789 static bool lapic_timer_int_injected(struct kvm_vcpu
*vcpu
)
1791 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
1792 u32 reg
= kvm_lapic_get_reg(apic
, APIC_LVTT
);
1794 if (kvm_apic_hw_enabled(apic
)) {
1795 int vec
= reg
& APIC_VECTOR_MASK
;
1796 void *bitmap
= apic
->regs
+ APIC_ISR
;
1798 if (apic
->apicv_active
)
1799 bitmap
= apic
->regs
+ APIC_IRR
;
1801 if (apic_test_vector(vec
, bitmap
))
1807 static inline void __wait_lapic_expire(struct kvm_vcpu
*vcpu
, u64 guest_cycles
)
1809 u64 timer_advance_ns
= vcpu
->arch
.apic
->lapic_timer
.timer_advance_ns
;
1812 * If the guest TSC is running at a different ratio than the host, then
1813 * convert the delay to nanoseconds to achieve an accurate delay. Note
1814 * that __delay() uses delay_tsc whenever the hardware has TSC, thus
1815 * always for VMX enabled hardware.
1817 if (vcpu
->arch
.tsc_scaling_ratio
== kvm_caps
.default_tsc_scaling_ratio
) {
1818 __delay(min(guest_cycles
,
1819 nsec_to_cycles(vcpu
, timer_advance_ns
)));
1821 u64 delay_ns
= guest_cycles
* 1000000ULL;
1822 do_div(delay_ns
, vcpu
->arch
.virtual_tsc_khz
);
1823 ndelay(min_t(u32
, delay_ns
, timer_advance_ns
));
1827 static inline void adjust_lapic_timer_advance(struct kvm_vcpu
*vcpu
,
1828 s64 advance_expire_delta
)
1830 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
1831 u32 timer_advance_ns
= apic
->lapic_timer
.timer_advance_ns
;
1834 /* Do not adjust for tiny fluctuations or large random spikes. */
1835 if (abs(advance_expire_delta
) > LAPIC_TIMER_ADVANCE_ADJUST_MAX
||
1836 abs(advance_expire_delta
) < LAPIC_TIMER_ADVANCE_ADJUST_MIN
)
1840 if (advance_expire_delta
< 0) {
1841 ns
= -advance_expire_delta
* 1000000ULL;
1842 do_div(ns
, vcpu
->arch
.virtual_tsc_khz
);
1843 timer_advance_ns
-= ns
/LAPIC_TIMER_ADVANCE_ADJUST_STEP
;
1846 ns
= advance_expire_delta
* 1000000ULL;
1847 do_div(ns
, vcpu
->arch
.virtual_tsc_khz
);
1848 timer_advance_ns
+= ns
/LAPIC_TIMER_ADVANCE_ADJUST_STEP
;
1851 if (unlikely(timer_advance_ns
> LAPIC_TIMER_ADVANCE_NS_MAX
))
1852 timer_advance_ns
= LAPIC_TIMER_ADVANCE_NS_INIT
;
1853 apic
->lapic_timer
.timer_advance_ns
= timer_advance_ns
;
1856 static void __kvm_wait_lapic_expire(struct kvm_vcpu
*vcpu
)
1858 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
1859 u64 guest_tsc
, tsc_deadline
;
1861 tsc_deadline
= apic
->lapic_timer
.expired_tscdeadline
;
1862 apic
->lapic_timer
.expired_tscdeadline
= 0;
1863 guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
1864 trace_kvm_wait_lapic_expire(vcpu
->vcpu_id
, guest_tsc
- tsc_deadline
);
1866 adjust_lapic_timer_advance(vcpu
, guest_tsc
- tsc_deadline
);
1869 * If the timer fired early, reread the TSC to account for the overhead
1870 * of the above adjustment to avoid waiting longer than is necessary.
1872 if (guest_tsc
< tsc_deadline
)
1873 guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
1875 if (guest_tsc
< tsc_deadline
)
1876 __wait_lapic_expire(vcpu
, tsc_deadline
- guest_tsc
);
1879 void kvm_wait_lapic_expire(struct kvm_vcpu
*vcpu
)
1881 if (lapic_in_kernel(vcpu
) &&
1882 vcpu
->arch
.apic
->lapic_timer
.expired_tscdeadline
&&
1883 vcpu
->arch
.apic
->lapic_timer
.timer_advance_ns
&&
1884 lapic_timer_int_injected(vcpu
))
1885 __kvm_wait_lapic_expire(vcpu
);
1887 EXPORT_SYMBOL_GPL(kvm_wait_lapic_expire
);
1889 static void kvm_apic_inject_pending_timer_irqs(struct kvm_lapic
*apic
)
1891 struct kvm_timer
*ktimer
= &apic
->lapic_timer
;
1893 kvm_apic_local_deliver(apic
, APIC_LVTT
);
1894 if (apic_lvtt_tscdeadline(apic
)) {
1895 ktimer
->tscdeadline
= 0;
1896 } else if (apic_lvtt_oneshot(apic
)) {
1897 ktimer
->tscdeadline
= 0;
1898 ktimer
->target_expiration
= 0;
1902 static void apic_timer_expired(struct kvm_lapic
*apic
, bool from_timer_fn
)
1904 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
1905 struct kvm_timer
*ktimer
= &apic
->lapic_timer
;
1907 if (atomic_read(&apic
->lapic_timer
.pending
))
1910 if (apic_lvtt_tscdeadline(apic
) || ktimer
->hv_timer_in_use
)
1911 ktimer
->expired_tscdeadline
= ktimer
->tscdeadline
;
1913 if (!from_timer_fn
&& apic
->apicv_active
) {
1914 WARN_ON(kvm_get_running_vcpu() != vcpu
);
1915 kvm_apic_inject_pending_timer_irqs(apic
);
1919 if (kvm_use_posted_timer_interrupt(apic
->vcpu
)) {
1921 * Ensure the guest's timer has truly expired before posting an
1922 * interrupt. Open code the relevant checks to avoid querying
1923 * lapic_timer_int_injected(), which will be false since the
1924 * interrupt isn't yet injected. Waiting until after injecting
1925 * is not an option since that won't help a posted interrupt.
1927 if (vcpu
->arch
.apic
->lapic_timer
.expired_tscdeadline
&&
1928 vcpu
->arch
.apic
->lapic_timer
.timer_advance_ns
)
1929 __kvm_wait_lapic_expire(vcpu
);
1930 kvm_apic_inject_pending_timer_irqs(apic
);
1934 atomic_inc(&apic
->lapic_timer
.pending
);
1935 kvm_make_request(KVM_REQ_UNBLOCK
, vcpu
);
1937 kvm_vcpu_kick(vcpu
);
1940 static void start_sw_tscdeadline(struct kvm_lapic
*apic
)
1942 struct kvm_timer
*ktimer
= &apic
->lapic_timer
;
1943 u64 guest_tsc
, tscdeadline
= ktimer
->tscdeadline
;
1946 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
1947 u32 this_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1948 unsigned long flags
;
1951 if (unlikely(!tscdeadline
|| !this_tsc_khz
))
1954 local_irq_save(flags
);
1957 guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
1959 ns
= (tscdeadline
- guest_tsc
) * 1000000ULL;
1960 do_div(ns
, this_tsc_khz
);
1962 if (likely(tscdeadline
> guest_tsc
) &&
1963 likely(ns
> apic
->lapic_timer
.timer_advance_ns
)) {
1964 expire
= ktime_add_ns(now
, ns
);
1965 expire
= ktime_sub_ns(expire
, ktimer
->timer_advance_ns
);
1966 hrtimer_start(&ktimer
->timer
, expire
, HRTIMER_MODE_ABS_HARD
);
1968 apic_timer_expired(apic
, false);
1970 local_irq_restore(flags
);
1973 static inline u64
tmict_to_ns(struct kvm_lapic
*apic
, u32 tmict
)
1975 return (u64
)tmict
* apic
->vcpu
->kvm
->arch
.apic_bus_cycle_ns
*
1976 (u64
)apic
->divide_count
;
1979 static void update_target_expiration(struct kvm_lapic
*apic
, uint32_t old_divisor
)
1981 ktime_t now
, remaining
;
1982 u64 ns_remaining_old
, ns_remaining_new
;
1984 apic
->lapic_timer
.period
=
1985 tmict_to_ns(apic
, kvm_lapic_get_reg(apic
, APIC_TMICT
));
1986 limit_periodic_timer_frequency(apic
);
1989 remaining
= ktime_sub(apic
->lapic_timer
.target_expiration
, now
);
1990 if (ktime_to_ns(remaining
) < 0)
1993 ns_remaining_old
= ktime_to_ns(remaining
);
1994 ns_remaining_new
= mul_u64_u32_div(ns_remaining_old
,
1995 apic
->divide_count
, old_divisor
);
1997 apic
->lapic_timer
.tscdeadline
+=
1998 nsec_to_cycles(apic
->vcpu
, ns_remaining_new
) -
1999 nsec_to_cycles(apic
->vcpu
, ns_remaining_old
);
2000 apic
->lapic_timer
.target_expiration
= ktime_add_ns(now
, ns_remaining_new
);
2003 static bool set_target_expiration(struct kvm_lapic
*apic
, u32 count_reg
)
2010 apic
->lapic_timer
.period
=
2011 tmict_to_ns(apic
, kvm_lapic_get_reg(apic
, APIC_TMICT
));
2013 if (!apic
->lapic_timer
.period
) {
2014 apic
->lapic_timer
.tscdeadline
= 0;
2018 limit_periodic_timer_frequency(apic
);
2019 deadline
= apic
->lapic_timer
.period
;
2021 if (apic_lvtt_period(apic
) || apic_lvtt_oneshot(apic
)) {
2022 if (unlikely(count_reg
!= APIC_TMICT
)) {
2023 deadline
= tmict_to_ns(apic
,
2024 kvm_lapic_get_reg(apic
, count_reg
));
2025 if (unlikely(deadline
<= 0)) {
2026 if (apic_lvtt_period(apic
))
2027 deadline
= apic
->lapic_timer
.period
;
2031 else if (unlikely(deadline
> apic
->lapic_timer
.period
)) {
2032 pr_info_ratelimited(
2033 "vcpu %i: requested lapic timer restore with "
2034 "starting count register %#x=%u (%lld ns) > initial count (%lld ns). "
2035 "Using initial count to start timer.\n",
2036 apic
->vcpu
->vcpu_id
,
2038 kvm_lapic_get_reg(apic
, count_reg
),
2039 deadline
, apic
->lapic_timer
.period
);
2040 kvm_lapic_set_reg(apic
, count_reg
, 0);
2041 deadline
= apic
->lapic_timer
.period
;
2046 apic
->lapic_timer
.tscdeadline
= kvm_read_l1_tsc(apic
->vcpu
, tscl
) +
2047 nsec_to_cycles(apic
->vcpu
, deadline
);
2048 apic
->lapic_timer
.target_expiration
= ktime_add_ns(now
, deadline
);
2053 static void advance_periodic_target_expiration(struct kvm_lapic
*apic
)
2055 ktime_t now
= ktime_get();
2060 * Synchronize both deadlines to the same time source or
2061 * differences in the periods (caused by differences in the
2062 * underlying clocks or numerical approximation errors) will
2063 * cause the two to drift apart over time as the errors
2066 apic
->lapic_timer
.target_expiration
=
2067 ktime_add_ns(apic
->lapic_timer
.target_expiration
,
2068 apic
->lapic_timer
.period
);
2069 delta
= ktime_sub(apic
->lapic_timer
.target_expiration
, now
);
2070 apic
->lapic_timer
.tscdeadline
= kvm_read_l1_tsc(apic
->vcpu
, tscl
) +
2071 nsec_to_cycles(apic
->vcpu
, delta
);
2074 static void start_sw_period(struct kvm_lapic
*apic
)
2076 if (!apic
->lapic_timer
.period
)
2079 if (ktime_after(ktime_get(),
2080 apic
->lapic_timer
.target_expiration
)) {
2081 apic_timer_expired(apic
, false);
2083 if (apic_lvtt_oneshot(apic
))
2086 advance_periodic_target_expiration(apic
);
2089 hrtimer_start(&apic
->lapic_timer
.timer
,
2090 apic
->lapic_timer
.target_expiration
,
2091 HRTIMER_MODE_ABS_HARD
);
2094 bool kvm_lapic_hv_timer_in_use(struct kvm_vcpu
*vcpu
)
2096 if (!lapic_in_kernel(vcpu
))
2099 return vcpu
->arch
.apic
->lapic_timer
.hv_timer_in_use
;
2102 static void cancel_hv_timer(struct kvm_lapic
*apic
)
2104 WARN_ON(preemptible());
2105 WARN_ON(!apic
->lapic_timer
.hv_timer_in_use
);
2106 kvm_x86_call(cancel_hv_timer
)(apic
->vcpu
);
2107 apic
->lapic_timer
.hv_timer_in_use
= false;
2110 static bool start_hv_timer(struct kvm_lapic
*apic
)
2112 struct kvm_timer
*ktimer
= &apic
->lapic_timer
;
2113 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
2116 WARN_ON(preemptible());
2117 if (!kvm_can_use_hv_timer(vcpu
))
2120 if (!ktimer
->tscdeadline
)
2123 if (kvm_x86_call(set_hv_timer
)(vcpu
, ktimer
->tscdeadline
, &expired
))
2126 ktimer
->hv_timer_in_use
= true;
2127 hrtimer_cancel(&ktimer
->timer
);
2130 * To simplify handling the periodic timer, leave the hv timer running
2131 * even if the deadline timer has expired, i.e. rely on the resulting
2132 * VM-Exit to recompute the periodic timer's target expiration.
2134 if (!apic_lvtt_period(apic
)) {
2136 * Cancel the hv timer if the sw timer fired while the hv timer
2137 * was being programmed, or if the hv timer itself expired.
2139 if (atomic_read(&ktimer
->pending
)) {
2140 cancel_hv_timer(apic
);
2141 } else if (expired
) {
2142 apic_timer_expired(apic
, false);
2143 cancel_hv_timer(apic
);
2147 trace_kvm_hv_timer_state(vcpu
->vcpu_id
, ktimer
->hv_timer_in_use
);
2152 static void start_sw_timer(struct kvm_lapic
*apic
)
2154 struct kvm_timer
*ktimer
= &apic
->lapic_timer
;
2156 WARN_ON(preemptible());
2157 if (apic
->lapic_timer
.hv_timer_in_use
)
2158 cancel_hv_timer(apic
);
2159 if (!apic_lvtt_period(apic
) && atomic_read(&ktimer
->pending
))
2162 if (apic_lvtt_period(apic
) || apic_lvtt_oneshot(apic
))
2163 start_sw_period(apic
);
2164 else if (apic_lvtt_tscdeadline(apic
))
2165 start_sw_tscdeadline(apic
);
2166 trace_kvm_hv_timer_state(apic
->vcpu
->vcpu_id
, false);
2169 static void restart_apic_timer(struct kvm_lapic
*apic
)
2173 if (!apic_lvtt_period(apic
) && atomic_read(&apic
->lapic_timer
.pending
))
2176 if (!start_hv_timer(apic
))
2177 start_sw_timer(apic
);
2182 void kvm_lapic_expired_hv_timer(struct kvm_vcpu
*vcpu
)
2184 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2187 /* If the preempt notifier has already run, it also called apic_timer_expired */
2188 if (!apic
->lapic_timer
.hv_timer_in_use
)
2190 WARN_ON(kvm_vcpu_is_blocking(vcpu
));
2191 apic_timer_expired(apic
, false);
2192 cancel_hv_timer(apic
);
2194 if (apic_lvtt_period(apic
) && apic
->lapic_timer
.period
) {
2195 advance_periodic_target_expiration(apic
);
2196 restart_apic_timer(apic
);
2201 EXPORT_SYMBOL_GPL(kvm_lapic_expired_hv_timer
);
2203 void kvm_lapic_switch_to_hv_timer(struct kvm_vcpu
*vcpu
)
2205 restart_apic_timer(vcpu
->arch
.apic
);
2208 void kvm_lapic_switch_to_sw_timer(struct kvm_vcpu
*vcpu
)
2210 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2213 /* Possibly the TSC deadline timer is not enabled yet */
2214 if (apic
->lapic_timer
.hv_timer_in_use
)
2215 start_sw_timer(apic
);
2219 void kvm_lapic_restart_hv_timer(struct kvm_vcpu
*vcpu
)
2221 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2223 WARN_ON(!apic
->lapic_timer
.hv_timer_in_use
);
2224 restart_apic_timer(apic
);
2227 static void __start_apic_timer(struct kvm_lapic
*apic
, u32 count_reg
)
2229 atomic_set(&apic
->lapic_timer
.pending
, 0);
2231 if ((apic_lvtt_period(apic
) || apic_lvtt_oneshot(apic
))
2232 && !set_target_expiration(apic
, count_reg
))
2235 restart_apic_timer(apic
);
2238 static void start_apic_timer(struct kvm_lapic
*apic
)
2240 __start_apic_timer(apic
, APIC_TMICT
);
2243 static void apic_manage_nmi_watchdog(struct kvm_lapic
*apic
, u32 lvt0_val
)
2245 bool lvt0_in_nmi_mode
= apic_lvt_nmi_mode(lvt0_val
);
2247 if (apic
->lvt0_in_nmi_mode
!= lvt0_in_nmi_mode
) {
2248 apic
->lvt0_in_nmi_mode
= lvt0_in_nmi_mode
;
2249 if (lvt0_in_nmi_mode
) {
2250 atomic_inc(&apic
->vcpu
->kvm
->arch
.vapics_in_nmi_mode
);
2252 atomic_dec(&apic
->vcpu
->kvm
->arch
.vapics_in_nmi_mode
);
2256 static int get_lvt_index(u32 reg
)
2258 if (reg
== APIC_LVTCMCI
)
2260 if (reg
< APIC_LVTT
|| reg
> APIC_LVTERR
)
2262 return array_index_nospec(
2263 (reg
- APIC_LVTT
) >> 4, KVM_APIC_MAX_NR_LVT_ENTRIES
);
2266 static int kvm_lapic_reg_write(struct kvm_lapic
*apic
, u32 reg
, u32 val
)
2270 trace_kvm_apic_write(reg
, val
);
2273 case APIC_ID
: /* Local APIC ID */
2274 if (!apic_x2apic_mode(apic
)) {
2275 kvm_apic_set_xapic_id(apic
, val
>> 24);
2282 report_tpr_access(apic
, true);
2283 apic_set_tpr(apic
, val
& 0xff);
2291 if (!apic_x2apic_mode(apic
))
2292 kvm_apic_set_ldr(apic
, val
& APIC_LDR_MASK
);
2298 if (!apic_x2apic_mode(apic
))
2299 kvm_apic_set_dfr(apic
, val
| 0x0FFFFFFF);
2306 if (kvm_lapic_get_reg(apic
, APIC_LVR
) & APIC_LVR_DIRECTED_EOI
)
2307 mask
|= APIC_SPIV_DIRECTED_EOI
;
2308 apic_set_spiv(apic
, val
& mask
);
2309 if (!(val
& APIC_SPIV_APIC_ENABLED
)) {
2312 for (i
= 0; i
< apic
->nr_lvt_entries
; i
++) {
2313 kvm_lapic_set_reg(apic
, APIC_LVTx(i
),
2314 kvm_lapic_get_reg(apic
, APIC_LVTx(i
)) | APIC_LVT_MASKED
);
2316 apic_update_lvtt(apic
);
2317 atomic_set(&apic
->lapic_timer
.pending
, 0);
2323 WARN_ON_ONCE(apic_x2apic_mode(apic
));
2325 /* No delay here, so we always clear the pending bit */
2326 val
&= ~APIC_ICR_BUSY
;
2327 kvm_apic_send_ipi(apic
, val
, kvm_lapic_get_reg(apic
, APIC_ICR2
));
2328 kvm_lapic_set_reg(apic
, APIC_ICR
, val
);
2331 if (apic_x2apic_mode(apic
))
2334 kvm_lapic_set_reg(apic
, APIC_ICR2
, val
& 0xff000000);
2338 apic_manage_nmi_watchdog(apic
, val
);
2344 case APIC_LVTCMCI
: {
2345 u32 index
= get_lvt_index(reg
);
2346 if (!kvm_lapic_lvt_supported(apic
, index
)) {
2350 if (!kvm_apic_sw_enabled(apic
))
2351 val
|= APIC_LVT_MASKED
;
2352 val
&= apic_lvt_mask
[index
];
2353 kvm_lapic_set_reg(apic
, reg
, val
);
2358 if (!kvm_apic_sw_enabled(apic
))
2359 val
|= APIC_LVT_MASKED
;
2360 val
&= (apic_lvt_mask
[0] | apic
->lapic_timer
.timer_mode_mask
);
2361 kvm_lapic_set_reg(apic
, APIC_LVTT
, val
);
2362 apic_update_lvtt(apic
);
2366 if (apic_lvtt_tscdeadline(apic
))
2369 cancel_apic_timer(apic
);
2370 kvm_lapic_set_reg(apic
, APIC_TMICT
, val
);
2371 start_apic_timer(apic
);
2375 uint32_t old_divisor
= apic
->divide_count
;
2377 kvm_lapic_set_reg(apic
, APIC_TDCR
, val
& 0xb);
2378 update_divide_count(apic
);
2379 if (apic
->divide_count
!= old_divisor
&&
2380 apic
->lapic_timer
.period
) {
2381 hrtimer_cancel(&apic
->lapic_timer
.timer
);
2382 update_target_expiration(apic
, old_divisor
);
2383 restart_apic_timer(apic
);
2388 if (apic_x2apic_mode(apic
) && val
!= 0)
2394 * Self-IPI exists only when x2APIC is enabled. Bits 7:0 hold
2395 * the vector, everything else is reserved.
2397 if (!apic_x2apic_mode(apic
) || (val
& ~APIC_VECTOR_MASK
))
2400 kvm_apic_send_ipi(apic
, APIC_DEST_SELF
| val
, 0);
2408 * Recalculate APIC maps if necessary, e.g. if the software enable bit
2409 * was toggled, the APIC ID changed, etc... The maps are marked dirty
2410 * on relevant changes, i.e. this is a nop for most writes.
2412 kvm_recalculate_apic_map(apic
->vcpu
->kvm
);
2417 static int apic_mmio_write(struct kvm_vcpu
*vcpu
, struct kvm_io_device
*this,
2418 gpa_t address
, int len
, const void *data
)
2420 struct kvm_lapic
*apic
= to_lapic(this);
2421 unsigned int offset
= address
- apic
->base_address
;
2424 if (!apic_mmio_in_range(apic
, address
))
2427 if (!kvm_apic_hw_enabled(apic
) || apic_x2apic_mode(apic
)) {
2428 if (!kvm_check_has_quirk(vcpu
->kvm
,
2429 KVM_X86_QUIRK_LAPIC_MMIO_HOLE
))
2436 * APIC register must be aligned on 128-bits boundary.
2437 * 32/64/128 bits registers must be accessed thru 32 bits.
2440 if (len
!= 4 || (offset
& 0xf))
2445 kvm_lapic_reg_write(apic
, offset
& 0xff0, val
);
2450 void kvm_lapic_set_eoi(struct kvm_vcpu
*vcpu
)
2452 kvm_lapic_reg_write(vcpu
->arch
.apic
, APIC_EOI
, 0);
2454 EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi
);
2456 #define X2APIC_ICR_RESERVED_BITS (GENMASK_ULL(31, 20) | GENMASK_ULL(17, 16) | BIT(13))
2458 int kvm_x2apic_icr_write(struct kvm_lapic
*apic
, u64 data
)
2460 if (data
& X2APIC_ICR_RESERVED_BITS
)
2464 * The BUSY bit is reserved on both Intel and AMD in x2APIC mode, but
2465 * only AMD requires it to be zero, Intel essentially just ignores the
2466 * bit. And if IPI virtualization (Intel) or x2AVIC (AMD) is enabled,
2467 * the CPU performs the reserved bits checks, i.e. the underlying CPU
2468 * behavior will "win". Arbitrarily clear the BUSY bit, as there is no
2469 * sane way to provide consistent behavior with respect to hardware.
2471 data
&= ~APIC_ICR_BUSY
;
2473 kvm_apic_send_ipi(apic
, (u32
)data
, (u32
)(data
>> 32));
2474 if (kvm_x86_ops
.x2apic_icr_is_split
) {
2475 kvm_lapic_set_reg(apic
, APIC_ICR
, data
);
2476 kvm_lapic_set_reg(apic
, APIC_ICR2
, data
>> 32);
2478 kvm_lapic_set_reg64(apic
, APIC_ICR
, data
);
2480 trace_kvm_apic_write(APIC_ICR
, data
);
2484 static u64
kvm_x2apic_icr_read(struct kvm_lapic
*apic
)
2486 if (kvm_x86_ops
.x2apic_icr_is_split
)
2487 return (u64
)kvm_lapic_get_reg(apic
, APIC_ICR
) |
2488 (u64
)kvm_lapic_get_reg(apic
, APIC_ICR2
) << 32;
2490 return kvm_lapic_get_reg64(apic
, APIC_ICR
);
2493 /* emulate APIC access in a trap manner */
2494 void kvm_apic_write_nodecode(struct kvm_vcpu
*vcpu
, u32 offset
)
2496 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2499 * ICR is a single 64-bit register when x2APIC is enabled, all others
2500 * registers hold 32-bit values. For legacy xAPIC, ICR writes need to
2501 * go down the common path to get the upper half from ICR2.
2503 * Note, using the write helpers may incur an unnecessary write to the
2504 * virtual APIC state, but KVM needs to conditionally modify the value
2505 * in certain cases, e.g. to clear the ICR busy bit. The cost of extra
2506 * conditional branches is likely a wash relative to the cost of the
2507 * maybe-unecessary write, and both are in the noise anyways.
2509 if (apic_x2apic_mode(apic
) && offset
== APIC_ICR
)
2510 WARN_ON_ONCE(kvm_x2apic_icr_write(apic
, kvm_x2apic_icr_read(apic
)));
2512 kvm_lapic_reg_write(apic
, offset
, kvm_lapic_get_reg(apic
, offset
));
2514 EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode
);
2516 void kvm_free_lapic(struct kvm_vcpu
*vcpu
)
2518 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2520 if (!vcpu
->arch
.apic
) {
2521 static_branch_dec(&kvm_has_noapic_vcpu
);
2525 hrtimer_cancel(&apic
->lapic_timer
.timer
);
2527 if (!(vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_ENABLE
))
2528 static_branch_slow_dec_deferred(&apic_hw_disabled
);
2530 if (!apic
->sw_enabled
)
2531 static_branch_slow_dec_deferred(&apic_sw_disabled
);
2534 free_page((unsigned long)apic
->regs
);
2540 *----------------------------------------------------------------------
2542 *----------------------------------------------------------------------
2544 u64
kvm_get_lapic_tscdeadline_msr(struct kvm_vcpu
*vcpu
)
2546 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2548 if (!kvm_apic_present(vcpu
) || !apic_lvtt_tscdeadline(apic
))
2551 return apic
->lapic_timer
.tscdeadline
;
2554 void kvm_set_lapic_tscdeadline_msr(struct kvm_vcpu
*vcpu
, u64 data
)
2556 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2558 if (!kvm_apic_present(vcpu
) || !apic_lvtt_tscdeadline(apic
))
2561 hrtimer_cancel(&apic
->lapic_timer
.timer
);
2562 apic
->lapic_timer
.tscdeadline
= data
;
2563 start_apic_timer(apic
);
2566 void kvm_lapic_set_tpr(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
2568 apic_set_tpr(vcpu
->arch
.apic
, (cr8
& 0x0f) << 4);
2571 u64
kvm_lapic_get_cr8(struct kvm_vcpu
*vcpu
)
2575 tpr
= (u64
) kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_TASKPRI
);
2577 return (tpr
& 0xf0) >> 4;
2580 void kvm_lapic_set_base(struct kvm_vcpu
*vcpu
, u64 value
)
2582 u64 old_value
= vcpu
->arch
.apic_base
;
2583 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2585 vcpu
->arch
.apic_base
= value
;
2587 if ((old_value
^ value
) & MSR_IA32_APICBASE_ENABLE
)
2588 kvm_update_cpuid_runtime(vcpu
);
2593 /* update jump label if enable bit changes */
2594 if ((old_value
^ value
) & MSR_IA32_APICBASE_ENABLE
) {
2595 if (value
& MSR_IA32_APICBASE_ENABLE
) {
2596 kvm_apic_set_xapic_id(apic
, vcpu
->vcpu_id
);
2597 static_branch_slow_dec_deferred(&apic_hw_disabled
);
2598 /* Check if there are APF page ready requests pending */
2599 kvm_make_request(KVM_REQ_APF_READY
, vcpu
);
2601 static_branch_inc(&apic_hw_disabled
.key
);
2602 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
2606 if ((old_value
^ value
) & X2APIC_ENABLE
) {
2607 if (value
& X2APIC_ENABLE
)
2608 kvm_apic_set_x2apic_id(apic
, vcpu
->vcpu_id
);
2609 else if (value
& MSR_IA32_APICBASE_ENABLE
)
2610 kvm_apic_set_xapic_id(apic
, vcpu
->vcpu_id
);
2613 if ((old_value
^ value
) & (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) {
2614 kvm_make_request(KVM_REQ_APICV_UPDATE
, vcpu
);
2615 kvm_x86_call(set_virtual_apic_mode
)(vcpu
);
2618 apic
->base_address
= apic
->vcpu
->arch
.apic_base
&
2619 MSR_IA32_APICBASE_BASE
;
2621 if ((value
& MSR_IA32_APICBASE_ENABLE
) &&
2622 apic
->base_address
!= APIC_DEFAULT_PHYS_BASE
) {
2623 kvm_set_apicv_inhibit(apic
->vcpu
->kvm
,
2624 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED
);
2628 void kvm_apic_update_apicv(struct kvm_vcpu
*vcpu
)
2630 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2632 if (apic
->apicv_active
) {
2633 /* irr_pending is always true when apicv is activated. */
2634 apic
->irr_pending
= true;
2635 apic
->isr_count
= 1;
2638 * Don't clear irr_pending, searching the IRR can race with
2639 * updates from the CPU as APICv is still active from hardware's
2640 * perspective. The flag will be cleared as appropriate when
2641 * KVM injects the interrupt.
2643 apic
->isr_count
= count_vectors(apic
->regs
+ APIC_ISR
);
2645 apic
->highest_isr_cache
= -1;
2648 int kvm_alloc_apic_access_page(struct kvm
*kvm
)
2654 mutex_lock(&kvm
->slots_lock
);
2655 if (kvm
->arch
.apic_access_memslot_enabled
||
2656 kvm
->arch
.apic_access_memslot_inhibited
)
2659 hva
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
2660 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
2666 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
2667 if (is_error_page(page
)) {
2673 * Do not pin the page in memory, so that memory hot-unplug
2674 * is able to migrate it.
2677 kvm
->arch
.apic_access_memslot_enabled
= true;
2679 mutex_unlock(&kvm
->slots_lock
);
2682 EXPORT_SYMBOL_GPL(kvm_alloc_apic_access_page
);
2684 void kvm_inhibit_apic_access_page(struct kvm_vcpu
*vcpu
)
2686 struct kvm
*kvm
= vcpu
->kvm
;
2688 if (!kvm
->arch
.apic_access_memslot_enabled
)
2691 kvm_vcpu_srcu_read_unlock(vcpu
);
2693 mutex_lock(&kvm
->slots_lock
);
2695 if (kvm
->arch
.apic_access_memslot_enabled
) {
2696 __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
2698 * Clear "enabled" after the memslot is deleted so that a
2699 * different vCPU doesn't get a false negative when checking
2700 * the flag out of slots_lock. No additional memory barrier is
2701 * needed as modifying memslots requires waiting other vCPUs to
2702 * drop SRCU (see above), and false positives are ok as the
2703 * flag is rechecked after acquiring slots_lock.
2705 kvm
->arch
.apic_access_memslot_enabled
= false;
2708 * Mark the memslot as inhibited to prevent reallocating the
2709 * memslot during vCPU creation, e.g. if a vCPU is hotplugged.
2711 kvm
->arch
.apic_access_memslot_inhibited
= true;
2714 mutex_unlock(&kvm
->slots_lock
);
2716 kvm_vcpu_srcu_read_lock(vcpu
);
2719 void kvm_lapic_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
2721 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2725 kvm_x86_call(apicv_pre_state_restore
)(vcpu
);
2728 msr_val
= APIC_DEFAULT_PHYS_BASE
| MSR_IA32_APICBASE_ENABLE
;
2729 if (kvm_vcpu_is_reset_bsp(vcpu
))
2730 msr_val
|= MSR_IA32_APICBASE_BSP
;
2731 kvm_lapic_set_base(vcpu
, msr_val
);
2737 /* Stop the timer in case it's a reset to an active apic */
2738 hrtimer_cancel(&apic
->lapic_timer
.timer
);
2740 /* The xAPIC ID is set at RESET even if the APIC was already enabled. */
2742 kvm_apic_set_xapic_id(apic
, vcpu
->vcpu_id
);
2743 kvm_apic_set_version(apic
->vcpu
);
2745 for (i
= 0; i
< apic
->nr_lvt_entries
; i
++)
2746 kvm_lapic_set_reg(apic
, APIC_LVTx(i
), APIC_LVT_MASKED
);
2747 apic_update_lvtt(apic
);
2748 if (kvm_vcpu_is_reset_bsp(vcpu
) &&
2749 kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_LINT0_REENABLED
))
2750 kvm_lapic_set_reg(apic
, APIC_LVT0
,
2751 SET_APIC_DELIVERY_MODE(0, APIC_MODE_EXTINT
));
2752 apic_manage_nmi_watchdog(apic
, kvm_lapic_get_reg(apic
, APIC_LVT0
));
2754 kvm_apic_set_dfr(apic
, 0xffffffffU
);
2755 apic_set_spiv(apic
, 0xff);
2756 kvm_lapic_set_reg(apic
, APIC_TASKPRI
, 0);
2757 if (!apic_x2apic_mode(apic
))
2758 kvm_apic_set_ldr(apic
, 0);
2759 kvm_lapic_set_reg(apic
, APIC_ESR
, 0);
2760 if (!apic_x2apic_mode(apic
)) {
2761 kvm_lapic_set_reg(apic
, APIC_ICR
, 0);
2762 kvm_lapic_set_reg(apic
, APIC_ICR2
, 0);
2764 kvm_lapic_set_reg64(apic
, APIC_ICR
, 0);
2766 kvm_lapic_set_reg(apic
, APIC_TDCR
, 0);
2767 kvm_lapic_set_reg(apic
, APIC_TMICT
, 0);
2768 for (i
= 0; i
< 8; i
++) {
2769 kvm_lapic_set_reg(apic
, APIC_IRR
+ 0x10 * i
, 0);
2770 kvm_lapic_set_reg(apic
, APIC_ISR
+ 0x10 * i
, 0);
2771 kvm_lapic_set_reg(apic
, APIC_TMR
+ 0x10 * i
, 0);
2773 kvm_apic_update_apicv(vcpu
);
2774 update_divide_count(apic
);
2775 atomic_set(&apic
->lapic_timer
.pending
, 0);
2777 vcpu
->arch
.pv_eoi
.msr_val
= 0;
2778 apic_update_ppr(apic
);
2779 if (apic
->apicv_active
) {
2780 kvm_x86_call(apicv_post_state_restore
)(vcpu
);
2781 kvm_x86_call(hwapic_irr_update
)(vcpu
, -1);
2782 kvm_x86_call(hwapic_isr_update
)(-1);
2785 vcpu
->arch
.apic_arb_prio
= 0;
2786 vcpu
->arch
.apic_attention
= 0;
2788 kvm_recalculate_apic_map(vcpu
->kvm
);
2792 *----------------------------------------------------------------------
2794 *----------------------------------------------------------------------
2797 static bool lapic_is_periodic(struct kvm_lapic
*apic
)
2799 return apic_lvtt_period(apic
);
2802 int apic_has_pending_timer(struct kvm_vcpu
*vcpu
)
2804 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2806 if (apic_enabled(apic
) && apic_lvt_enabled(apic
, APIC_LVTT
))
2807 return atomic_read(&apic
->lapic_timer
.pending
);
2812 int kvm_apic_local_deliver(struct kvm_lapic
*apic
, int lvt_type
)
2814 u32 reg
= kvm_lapic_get_reg(apic
, lvt_type
);
2815 int vector
, mode
, trig_mode
;
2818 if (kvm_apic_hw_enabled(apic
) && !(reg
& APIC_LVT_MASKED
)) {
2819 vector
= reg
& APIC_VECTOR_MASK
;
2820 mode
= reg
& APIC_MODE_MASK
;
2821 trig_mode
= reg
& APIC_LVT_LEVEL_TRIGGER
;
2823 r
= __apic_accept_irq(apic
, mode
, vector
, 1, trig_mode
, NULL
);
2824 if (r
&& lvt_type
== APIC_LVTPC
&&
2825 guest_cpuid_is_intel_compatible(apic
->vcpu
))
2826 kvm_lapic_set_reg(apic
, APIC_LVTPC
, reg
| APIC_LVT_MASKED
);
2832 void kvm_apic_nmi_wd_deliver(struct kvm_vcpu
*vcpu
)
2834 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2837 kvm_apic_local_deliver(apic
, APIC_LVT0
);
2840 static const struct kvm_io_device_ops apic_mmio_ops
= {
2841 .read
= apic_mmio_read
,
2842 .write
= apic_mmio_write
,
2845 static enum hrtimer_restart
apic_timer_fn(struct hrtimer
*data
)
2847 struct kvm_timer
*ktimer
= container_of(data
, struct kvm_timer
, timer
);
2848 struct kvm_lapic
*apic
= container_of(ktimer
, struct kvm_lapic
, lapic_timer
);
2850 apic_timer_expired(apic
, true);
2852 if (lapic_is_periodic(apic
)) {
2853 advance_periodic_target_expiration(apic
);
2854 hrtimer_add_expires_ns(&ktimer
->timer
, ktimer
->period
);
2855 return HRTIMER_RESTART
;
2857 return HRTIMER_NORESTART
;
2860 int kvm_create_lapic(struct kvm_vcpu
*vcpu
)
2862 struct kvm_lapic
*apic
;
2864 ASSERT(vcpu
!= NULL
);
2866 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2867 static_branch_inc(&kvm_has_noapic_vcpu
);
2871 apic
= kzalloc(sizeof(*apic
), GFP_KERNEL_ACCOUNT
);
2875 vcpu
->arch
.apic
= apic
;
2877 if (kvm_x86_ops
.alloc_apic_backing_page
)
2878 apic
->regs
= kvm_x86_call(alloc_apic_backing_page
)(vcpu
);
2880 apic
->regs
= (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT
);
2882 printk(KERN_ERR
"malloc apic regs error for vcpu %x\n",
2884 goto nomem_free_apic
;
2888 apic
->nr_lvt_entries
= kvm_apic_calc_nr_lvt_entries(vcpu
);
2890 hrtimer_init(&apic
->lapic_timer
.timer
, CLOCK_MONOTONIC
,
2891 HRTIMER_MODE_ABS_HARD
);
2892 apic
->lapic_timer
.timer
.function
= apic_timer_fn
;
2893 if (lapic_timer_advance
)
2894 apic
->lapic_timer
.timer_advance_ns
= LAPIC_TIMER_ADVANCE_NS_INIT
;
2897 * Stuff the APIC ENABLE bit in lieu of temporarily incrementing
2898 * apic_hw_disabled; the full RESET value is set by kvm_lapic_reset().
2900 vcpu
->arch
.apic_base
= MSR_IA32_APICBASE_ENABLE
;
2901 static_branch_inc(&apic_sw_disabled
.key
); /* sw disabled at reset */
2902 kvm_iodevice_init(&apic
->dev
, &apic_mmio_ops
);
2905 * Defer evaluating inhibits until the vCPU is first run, as this vCPU
2906 * will not get notified of any changes until this vCPU is visible to
2907 * other vCPUs (marked online and added to the set of vCPUs).
2909 * Opportunistically mark APICv active as VMX in particularly is highly
2910 * unlikely to have inhibits. Ignore the current per-VM APICv state so
2911 * that vCPU creation is guaranteed to run with a deterministic value,
2912 * the request will ensure the vCPU gets the correct state before VM-Entry.
2915 apic
->apicv_active
= true;
2916 kvm_make_request(KVM_REQ_APICV_UPDATE
, vcpu
);
2922 vcpu
->arch
.apic
= NULL
;
2927 int kvm_apic_has_interrupt(struct kvm_vcpu
*vcpu
)
2929 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2932 if (!kvm_apic_present(vcpu
))
2935 __apic_update_ppr(apic
, &ppr
);
2936 return apic_has_interrupt_for_ppr(apic
, ppr
);
2938 EXPORT_SYMBOL_GPL(kvm_apic_has_interrupt
);
2940 int kvm_apic_accept_pic_intr(struct kvm_vcpu
*vcpu
)
2942 u32 lvt0
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_LVT0
);
2944 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
2946 if ((lvt0
& APIC_LVT_MASKED
) == 0 &&
2947 GET_APIC_DELIVERY_MODE(lvt0
) == APIC_MODE_EXTINT
)
2952 void kvm_inject_apic_timer_irqs(struct kvm_vcpu
*vcpu
)
2954 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2956 if (atomic_read(&apic
->lapic_timer
.pending
) > 0) {
2957 kvm_apic_inject_pending_timer_irqs(apic
);
2958 atomic_set(&apic
->lapic_timer
.pending
, 0);
2962 void kvm_apic_ack_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
2964 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
2967 if (WARN_ON_ONCE(vector
< 0 || !apic
))
2971 * We get here even with APIC virtualization enabled, if doing
2972 * nested virtualization and L1 runs with the "acknowledge interrupt
2973 * on exit" mode. Then we cannot inject the interrupt via RVI,
2974 * because the process would deliver it through the IDT.
2977 apic_clear_irr(vector
, apic
);
2978 if (kvm_hv_synic_auto_eoi_set(vcpu
, vector
)) {
2980 * For auto-EOI interrupts, there might be another pending
2981 * interrupt above PPR, so check whether to raise another
2984 apic_update_ppr(apic
);
2987 * For normal interrupts, PPR has been raised and there cannot
2988 * be a higher-priority pending interrupt---except if there was
2989 * a concurrent interrupt injection, but that would have
2990 * triggered KVM_REQ_EVENT already.
2992 apic_set_isr(vector
, apic
);
2993 __apic_update_ppr(apic
, &ppr
);
2997 EXPORT_SYMBOL_GPL(kvm_apic_ack_interrupt
);
2999 static int kvm_apic_state_fixup(struct kvm_vcpu
*vcpu
,
3000 struct kvm_lapic_state
*s
, bool set
)
3002 if (apic_x2apic_mode(vcpu
->arch
.apic
)) {
3003 u32 x2apic_id
= kvm_x2apic_id(vcpu
->arch
.apic
);
3004 u32
*id
= (u32
*)(s
->regs
+ APIC_ID
);
3005 u32
*ldr
= (u32
*)(s
->regs
+ APIC_LDR
);
3008 if (vcpu
->kvm
->arch
.x2apic_format
) {
3009 if (*id
!= x2apic_id
)
3013 * Ignore the userspace value when setting APIC state.
3014 * KVM's model is that the x2APIC ID is readonly, e.g.
3015 * KVM only supports delivering interrupts to KVM's
3016 * version of the x2APIC ID. However, for backwards
3017 * compatibility, don't reject attempts to set a
3018 * mismatched ID for userspace that hasn't opted into
3024 *id
= x2apic_id
<< 24;
3028 * In x2APIC mode, the LDR is fixed and based on the id. And
3029 * if the ICR is _not_ split, ICR is internally a single 64-bit
3030 * register, but needs to be split to ICR+ICR2 in userspace for
3031 * backwards compatibility.
3034 *ldr
= kvm_apic_calc_x2apic_ldr(x2apic_id
);
3036 if (!kvm_x86_ops
.x2apic_icr_is_split
) {
3038 icr
= __kvm_lapic_get_reg(s
->regs
, APIC_ICR
) |
3039 (u64
)__kvm_lapic_get_reg(s
->regs
, APIC_ICR2
) << 32;
3040 __kvm_lapic_set_reg64(s
->regs
, APIC_ICR
, icr
);
3042 icr
= __kvm_lapic_get_reg64(s
->regs
, APIC_ICR
);
3043 __kvm_lapic_set_reg(s
->regs
, APIC_ICR2
, icr
>> 32);
3051 int kvm_apic_get_state(struct kvm_vcpu
*vcpu
, struct kvm_lapic_state
*s
)
3053 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof(*s
));
3056 * Get calculated timer current count for remaining timer period (if
3057 * any) and store it in the returned register set.
3059 __kvm_lapic_set_reg(s
->regs
, APIC_TMCCT
,
3060 __apic_read(vcpu
->arch
.apic
, APIC_TMCCT
));
3062 return kvm_apic_state_fixup(vcpu
, s
, false);
3065 int kvm_apic_set_state(struct kvm_vcpu
*vcpu
, struct kvm_lapic_state
*s
)
3067 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3070 kvm_x86_call(apicv_pre_state_restore
)(vcpu
);
3072 kvm_lapic_set_base(vcpu
, vcpu
->arch
.apic_base
);
3073 /* set SPIV separately to get count of SW disabled APICs right */
3074 apic_set_spiv(apic
, *((u32
*)(s
->regs
+ APIC_SPIV
)));
3076 r
= kvm_apic_state_fixup(vcpu
, s
, true);
3078 kvm_recalculate_apic_map(vcpu
->kvm
);
3081 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof(*s
));
3083 atomic_set_release(&apic
->vcpu
->kvm
->arch
.apic_map_dirty
, DIRTY
);
3084 kvm_recalculate_apic_map(vcpu
->kvm
);
3085 kvm_apic_set_version(vcpu
);
3087 apic_update_ppr(apic
);
3088 cancel_apic_timer(apic
);
3089 apic
->lapic_timer
.expired_tscdeadline
= 0;
3090 apic_update_lvtt(apic
);
3091 apic_manage_nmi_watchdog(apic
, kvm_lapic_get_reg(apic
, APIC_LVT0
));
3092 update_divide_count(apic
);
3093 __start_apic_timer(apic
, APIC_TMCCT
);
3094 kvm_lapic_set_reg(apic
, APIC_TMCCT
, 0);
3095 kvm_apic_update_apicv(vcpu
);
3096 if (apic
->apicv_active
) {
3097 kvm_x86_call(apicv_post_state_restore
)(vcpu
);
3098 kvm_x86_call(hwapic_irr_update
)(vcpu
,
3099 apic_find_highest_irr(apic
));
3100 kvm_x86_call(hwapic_isr_update
)(apic_find_highest_isr(apic
));
3102 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3103 if (ioapic_in_kernel(vcpu
->kvm
))
3104 kvm_rtc_eoi_tracking_restore_one(vcpu
);
3106 vcpu
->arch
.apic_arb_prio
= 0;
3111 void __kvm_migrate_apic_timer(struct kvm_vcpu
*vcpu
)
3113 struct hrtimer
*timer
;
3115 if (!lapic_in_kernel(vcpu
) ||
3116 kvm_can_post_timer_interrupt(vcpu
))
3119 timer
= &vcpu
->arch
.apic
->lapic_timer
.timer
;
3120 if (hrtimer_cancel(timer
))
3121 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_HARD
);
3125 * apic_sync_pv_eoi_from_guest - called on vmexit or cancel interrupt
3127 * Detect whether guest triggered PV EOI since the
3128 * last entry. If yes, set EOI on guests's behalf.
3129 * Clear PV EOI in guest memory in any case.
3131 static void apic_sync_pv_eoi_from_guest(struct kvm_vcpu
*vcpu
,
3132 struct kvm_lapic
*apic
)
3136 * PV EOI state is derived from KVM_APIC_PV_EOI_PENDING in host
3137 * and KVM_PV_EOI_ENABLED in guest memory as follows:
3139 * KVM_APIC_PV_EOI_PENDING is unset:
3140 * -> host disabled PV EOI.
3141 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is set:
3142 * -> host enabled PV EOI, guest did not execute EOI yet.
3143 * KVM_APIC_PV_EOI_PENDING is set, KVM_PV_EOI_ENABLED is unset:
3144 * -> host enabled PV EOI, guest executed EOI.
3146 BUG_ON(!pv_eoi_enabled(vcpu
));
3148 if (pv_eoi_test_and_clr_pending(vcpu
))
3150 vector
= apic_set_eoi(apic
);
3151 trace_kvm_pv_eoi(apic
, vector
);
3154 void kvm_lapic_sync_from_vapic(struct kvm_vcpu
*vcpu
)
3158 if (test_bit(KVM_APIC_PV_EOI_PENDING
, &vcpu
->arch
.apic_attention
))
3159 apic_sync_pv_eoi_from_guest(vcpu
, vcpu
->arch
.apic
);
3161 if (!test_bit(KVM_APIC_CHECK_VAPIC
, &vcpu
->arch
.apic_attention
))
3164 if (kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apic
->vapic_cache
, &data
,
3168 apic_set_tpr(vcpu
->arch
.apic
, data
& 0xff);
3172 * apic_sync_pv_eoi_to_guest - called before vmentry
3174 * Detect whether it's safe to enable PV EOI and
3177 static void apic_sync_pv_eoi_to_guest(struct kvm_vcpu
*vcpu
,
3178 struct kvm_lapic
*apic
)
3180 if (!pv_eoi_enabled(vcpu
) ||
3181 /* IRR set or many bits in ISR: could be nested. */
3182 apic
->irr_pending
||
3183 /* Cache not set: could be safe but we don't bother. */
3184 apic
->highest_isr_cache
== -1 ||
3185 /* Need EOI to update ioapic. */
3186 kvm_ioapic_handles_vector(apic
, apic
->highest_isr_cache
)) {
3188 * PV EOI was disabled by apic_sync_pv_eoi_from_guest
3189 * so we need not do anything here.
3194 pv_eoi_set_pending(apic
->vcpu
);
3197 void kvm_lapic_sync_to_vapic(struct kvm_vcpu
*vcpu
)
3200 int max_irr
, max_isr
;
3201 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3203 apic_sync_pv_eoi_to_guest(vcpu
, apic
);
3205 if (!test_bit(KVM_APIC_CHECK_VAPIC
, &vcpu
->arch
.apic_attention
))
3208 tpr
= kvm_lapic_get_reg(apic
, APIC_TASKPRI
) & 0xff;
3209 max_irr
= apic_find_highest_irr(apic
);
3212 max_isr
= apic_find_highest_isr(apic
);
3215 data
= (tpr
& 0xff) | ((max_isr
& 0xf0) << 8) | (max_irr
<< 24);
3217 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apic
->vapic_cache
, &data
,
3221 int kvm_lapic_set_vapic_addr(struct kvm_vcpu
*vcpu
, gpa_t vapic_addr
)
3224 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
3225 &vcpu
->arch
.apic
->vapic_cache
,
3226 vapic_addr
, sizeof(u32
)))
3228 __set_bit(KVM_APIC_CHECK_VAPIC
, &vcpu
->arch
.apic_attention
);
3230 __clear_bit(KVM_APIC_CHECK_VAPIC
, &vcpu
->arch
.apic_attention
);
3233 vcpu
->arch
.apic
->vapic_addr
= vapic_addr
;
3237 static int kvm_lapic_msr_read(struct kvm_lapic
*apic
, u32 reg
, u64
*data
)
3241 if (reg
== APIC_ICR
) {
3242 *data
= kvm_x2apic_icr_read(apic
);
3246 if (kvm_lapic_reg_read(apic
, reg
, 4, &low
))
3254 static int kvm_lapic_msr_write(struct kvm_lapic
*apic
, u32 reg
, u64 data
)
3257 * ICR is a 64-bit register in x2APIC mode (and Hyper-V PV vAPIC) and
3258 * can be written as such, all other registers remain accessible only
3259 * through 32-bit reads/writes.
3261 if (reg
== APIC_ICR
)
3262 return kvm_x2apic_icr_write(apic
, data
);
3264 /* Bits 63:32 are reserved in all other registers. */
3268 return kvm_lapic_reg_write(apic
, reg
, (u32
)data
);
3271 int kvm_x2apic_msr_write(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
3273 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3274 u32 reg
= (msr
- APIC_BASE_MSR
) << 4;
3276 if (!lapic_in_kernel(vcpu
) || !apic_x2apic_mode(apic
))
3279 return kvm_lapic_msr_write(apic
, reg
, data
);
3282 int kvm_x2apic_msr_read(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*data
)
3284 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3285 u32 reg
= (msr
- APIC_BASE_MSR
) << 4;
3287 if (!lapic_in_kernel(vcpu
) || !apic_x2apic_mode(apic
))
3290 return kvm_lapic_msr_read(apic
, reg
, data
);
3293 int kvm_hv_vapic_msr_write(struct kvm_vcpu
*vcpu
, u32 reg
, u64 data
)
3295 if (!lapic_in_kernel(vcpu
))
3298 return kvm_lapic_msr_write(vcpu
->arch
.apic
, reg
, data
);
3301 int kvm_hv_vapic_msr_read(struct kvm_vcpu
*vcpu
, u32 reg
, u64
*data
)
3303 if (!lapic_in_kernel(vcpu
))
3306 return kvm_lapic_msr_read(vcpu
->arch
.apic
, reg
, data
);
3309 int kvm_lapic_set_pv_eoi(struct kvm_vcpu
*vcpu
, u64 data
, unsigned long len
)
3311 u64 addr
= data
& ~KVM_MSR_ENABLED
;
3312 struct gfn_to_hva_cache
*ghc
= &vcpu
->arch
.pv_eoi
.data
;
3313 unsigned long new_len
;
3316 if (!IS_ALIGNED(addr
, 4))
3319 if (data
& KVM_MSR_ENABLED
) {
3320 if (addr
== ghc
->gpa
&& len
<= ghc
->len
)
3325 ret
= kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
, addr
, new_len
);
3330 vcpu
->arch
.pv_eoi
.msr_val
= data
;
3335 int kvm_apic_accept_events(struct kvm_vcpu
*vcpu
)
3337 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3341 if (!kvm_apic_has_pending_init_or_sipi(vcpu
))
3344 if (is_guest_mode(vcpu
)) {
3345 r
= kvm_check_nested_events(vcpu
);
3347 return r
== -EBUSY
? 0 : r
;
3349 * Continue processing INIT/SIPI even if a nested VM-Exit
3350 * occurred, e.g. pending SIPIs should be dropped if INIT+SIPI
3351 * are blocked as a result of transitioning to VMX root mode.
3356 * INITs are blocked while CPU is in specific states (SMM, VMX root
3357 * mode, SVM with GIF=0), while SIPIs are dropped if the CPU isn't in
3358 * wait-for-SIPI (WFS).
3360 if (!kvm_apic_init_sipi_allowed(vcpu
)) {
3361 WARN_ON_ONCE(vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
);
3362 clear_bit(KVM_APIC_SIPI
, &apic
->pending_events
);
3366 if (test_and_clear_bit(KVM_APIC_INIT
, &apic
->pending_events
)) {
3367 kvm_vcpu_reset(vcpu
, true);
3368 if (kvm_vcpu_is_bsp(apic
->vcpu
))
3369 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3371 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
3373 if (test_and_clear_bit(KVM_APIC_SIPI
, &apic
->pending_events
)) {
3374 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
3375 /* evaluate pending_events before reading the vector */
3377 sipi_vector
= apic
->sipi_vector
;
3378 kvm_x86_call(vcpu_deliver_sipi_vector
)(vcpu
,
3380 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3386 void kvm_lapic_exit(void)
3388 static_key_deferred_flush(&apic_hw_disabled
);
3389 WARN_ON(static_branch_unlikely(&apic_hw_disabled
.key
));
3390 static_key_deferred_flush(&apic_sw_disabled
);
3391 WARN_ON(static_branch_unlikely(&apic_sw_disabled
.key
));