1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
15 #include "posted_intr.h"
22 static bool __read_mostly enable_shadow_vmcs
= 1;
23 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
25 static bool __read_mostly nested_early_check
= 0;
26 module_param(nested_early_check
, bool, S_IRUGO
);
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
47 static unsigned long *vmx_bitmap
[VMX_BITMAP_NR
];
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
52 struct shadow_vmcs_field
{
56 static struct shadow_vmcs_field shadow_read_only_fields
[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
60 static int max_shadow_read_only_fields
=
61 ARRAY_SIZE(shadow_read_only_fields
);
63 static struct shadow_vmcs_field shadow_read_write_fields
[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
67 static int max_shadow_read_write_fields
=
68 ARRAY_SIZE(shadow_read_write_fields
);
70 static void init_vmcs_shadow_fields(void)
74 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
75 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
77 for (i
= j
= 0; i
< max_shadow_read_only_fields
; i
++) {
78 struct shadow_vmcs_field entry
= shadow_read_only_fields
[i
];
79 u16 field
= entry
.encoding
;
81 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
82 (i
+ 1 == max_shadow_read_only_fields
||
83 shadow_read_only_fields
[i
+ 1].encoding
!= field
+ 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
87 clear_bit(field
, vmx_vmread_bitmap
);
92 entry
.offset
+= sizeof(u32
);
94 shadow_read_only_fields
[j
++] = entry
;
96 max_shadow_read_only_fields
= j
;
98 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
99 struct shadow_vmcs_field entry
= shadow_read_write_fields
[i
];
100 u16 field
= entry
.encoding
;
102 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
103 (i
+ 1 == max_shadow_read_write_fields
||
104 shadow_read_write_fields
[i
+ 1].encoding
!= field
+ 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
108 WARN_ONCE(field
>= GUEST_ES_AR_BYTES
&&
109 field
<= GUEST_TR_AR_BYTES
,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
118 case GUEST_PML_INDEX
:
119 if (!cpu_has_vmx_pml())
122 case VMX_PREEMPTION_TIMER_VALUE
:
123 if (!cpu_has_vmx_preemption_timer())
126 case GUEST_INTR_STATUS
:
127 if (!cpu_has_vmx_apicv())
134 clear_bit(field
, vmx_vmwrite_bitmap
);
135 clear_bit(field
, vmx_vmread_bitmap
);
140 entry
.offset
+= sizeof(u32
);
142 shadow_read_write_fields
[j
++] = entry
;
144 max_shadow_read_write_fields
= j
;
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
153 static int nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
155 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
156 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
157 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
158 return kvm_skip_emulated_instruction(vcpu
);
161 static int nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
163 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
164 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
165 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
167 return kvm_skip_emulated_instruction(vcpu
);
170 static int nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
171 u32 vm_instruction_error
)
173 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
174 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
175 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
177 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
183 if (nested_vmx_is_evmptr12_set(to_vmx(vcpu
)))
184 to_vmx(vcpu
)->nested
.need_vmcs12_to_shadow_sync
= true;
186 return kvm_skip_emulated_instruction(vcpu
);
189 static int nested_vmx_fail(struct kvm_vcpu
*vcpu
, u32 vm_instruction_error
)
191 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
197 if (vmx
->nested
.current_vmptr
== INVALID_GPA
&&
198 !nested_vmx_is_evmptr12_valid(vmx
))
199 return nested_vmx_failInvalid(vcpu
);
201 return nested_vmx_failValid(vcpu
, vm_instruction_error
);
204 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator
);
211 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
213 return fixed_bits_valid(control
, low
, high
);
216 static inline u64
vmx_control_msr(u32 low
, u32 high
)
218 return low
| ((u64
)high
<< 32);
221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx
*vmx
)
223 secondary_exec_controls_clearbit(vmx
, SECONDARY_EXEC_SHADOW_VMCS
);
224 vmcs_write64(VMCS_LINK_POINTER
, INVALID_GPA
);
225 vmx
->nested
.need_vmcs12_to_shadow_sync
= false;
228 static inline void nested_release_evmcs(struct kvm_vcpu
*vcpu
)
230 #ifdef CONFIG_KVM_HYPERV
231 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(vcpu
);
232 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
234 if (nested_vmx_is_evmptr12_valid(vmx
)) {
235 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.hv_evmcs_map
, true);
236 vmx
->nested
.hv_evmcs
= NULL
;
239 vmx
->nested
.hv_evmcs_vmptr
= EVMPTR_INVALID
;
242 hv_vcpu
->nested
.pa_page_gpa
= INVALID_GPA
;
243 hv_vcpu
->nested
.vm_id
= 0;
244 hv_vcpu
->nested
.vp_id
= 0;
249 static bool nested_evmcs_handle_vmclear(struct kvm_vcpu
*vcpu
, gpa_t vmptr
)
251 #ifdef CONFIG_KVM_HYPERV
252 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
254 * When Enlightened VMEntry is enabled on the calling CPU we treat
255 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
256 * way to distinguish it from VMCS12) and we must not corrupt it by
257 * writing to the non-existent 'launch_state' field. The area doesn't
258 * have to be the currently active EVMCS on the calling CPU and there's
259 * nothing KVM has to do to transition it from 'active' to 'non-active'
260 * state. It is possible that the area will stay mapped as
261 * vmx->nested.hv_evmcs but this shouldn't be a problem.
263 if (!guest_cpuid_has_evmcs(vcpu
) ||
264 !evmptr_is_valid(nested_get_evmptr(vcpu
)))
267 if (nested_vmx_evmcs(vmx
) && vmptr
== vmx
->nested
.hv_evmcs_vmptr
)
268 nested_release_evmcs(vcpu
);
276 static void vmx_sync_vmcs_host_state(struct vcpu_vmx
*vmx
,
277 struct loaded_vmcs
*prev
)
279 struct vmcs_host_state
*dest
, *src
;
281 if (unlikely(!vmx
->guest_state_loaded
))
284 src
= &prev
->host_state
;
285 dest
= &vmx
->loaded_vmcs
->host_state
;
287 vmx_set_host_fs_gs(dest
, src
->fs_sel
, src
->gs_sel
, src
->fs_base
, src
->gs_base
);
288 dest
->ldt_sel
= src
->ldt_sel
;
290 dest
->ds_sel
= src
->ds_sel
;
291 dest
->es_sel
= src
->es_sel
;
295 static void vmx_switch_vmcs(struct kvm_vcpu
*vcpu
, struct loaded_vmcs
*vmcs
)
297 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
298 struct loaded_vmcs
*prev
;
301 if (WARN_ON_ONCE(vmx
->loaded_vmcs
== vmcs
))
305 prev
= vmx
->loaded_vmcs
;
306 vmx
->loaded_vmcs
= vmcs
;
307 vmx_vcpu_load_vmcs(vcpu
, cpu
, prev
);
308 vmx_sync_vmcs_host_state(vmx
, prev
);
311 vcpu
->arch
.regs_avail
= ~VMX_REGS_LAZY_LOAD_SET
;
314 * All lazily updated registers will be reloaded from VMCS12 on both
315 * vmentry and vmexit.
317 vcpu
->arch
.regs_dirty
= 0;
321 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
322 * just stops using VMX.
324 static void free_nested(struct kvm_vcpu
*vcpu
)
326 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
328 if (WARN_ON_ONCE(vmx
->loaded_vmcs
!= &vmx
->vmcs01
))
329 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
331 if (!vmx
->nested
.vmxon
&& !vmx
->nested
.smm
.vmxon
)
334 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES
, vcpu
);
336 vmx
->nested
.vmxon
= false;
337 vmx
->nested
.smm
.vmxon
= false;
338 vmx
->nested
.vmxon_ptr
= INVALID_GPA
;
339 free_vpid(vmx
->nested
.vpid02
);
340 vmx
->nested
.posted_intr_nv
= -1;
341 vmx
->nested
.current_vmptr
= INVALID_GPA
;
342 if (enable_shadow_vmcs
) {
343 vmx_disable_shadow_vmcs(vmx
);
344 vmcs_clear(vmx
->vmcs01
.shadow_vmcs
);
345 free_vmcs(vmx
->vmcs01
.shadow_vmcs
);
346 vmx
->vmcs01
.shadow_vmcs
= NULL
;
348 kfree(vmx
->nested
.cached_vmcs12
);
349 vmx
->nested
.cached_vmcs12
= NULL
;
350 kfree(vmx
->nested
.cached_shadow_vmcs12
);
351 vmx
->nested
.cached_shadow_vmcs12
= NULL
;
353 * Unpin physical memory we referred to in the vmcs02. The APIC access
354 * page's backing page (yeah, confusing) shouldn't actually be accessed,
355 * and if it is written, the contents are irrelevant.
357 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.apic_access_page_map
, false);
358 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.virtual_apic_map
, true);
359 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.pi_desc_map
, true);
360 vmx
->nested
.pi_desc
= NULL
;
362 kvm_mmu_free_roots(vcpu
->kvm
, &vcpu
->arch
.guest_mmu
, KVM_MMU_ROOTS_ALL
);
364 nested_release_evmcs(vcpu
);
366 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
370 * Ensure that the current vmcs of the logical processor is the
371 * vmcs01 of the vcpu before calling free_nested().
373 void nested_vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
376 vmx_leave_nested(vcpu
);
380 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
382 static bool nested_ept_root_matches(hpa_t root_hpa
, u64 root_eptp
, u64 eptp
)
384 return VALID_PAGE(root_hpa
) &&
385 ((root_eptp
& EPTP_PA_MASK
) == (eptp
& EPTP_PA_MASK
));
388 static void nested_ept_invalidate_addr(struct kvm_vcpu
*vcpu
, gpa_t eptp
,
391 unsigned long roots
= 0;
393 struct kvm_mmu_root_info
*cached_root
;
395 WARN_ON_ONCE(!mmu_is_nested(vcpu
));
397 for (i
= 0; i
< KVM_MMU_NUM_PREV_ROOTS
; i
++) {
398 cached_root
= &vcpu
->arch
.mmu
->prev_roots
[i
];
400 if (nested_ept_root_matches(cached_root
->hpa
, cached_root
->pgd
,
402 roots
|= KVM_MMU_ROOT_PREVIOUS(i
);
405 kvm_mmu_invalidate_addr(vcpu
, vcpu
->arch
.mmu
, addr
, roots
);
408 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
409 struct x86_exception
*fault
)
411 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
412 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
413 unsigned long exit_qualification
;
416 if (vmx
->nested
.pml_full
) {
417 vm_exit_reason
= EXIT_REASON_PML_FULL
;
418 vmx
->nested
.pml_full
= false;
421 * It should be impossible to trigger a nested PML Full VM-Exit
422 * for anything other than an EPT Violation from L2. KVM *can*
423 * trigger nEPT page fault injection in response to an EPT
424 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425 * tables also changed, but KVM should not treat EPT Misconfig
426 * VM-Exits as writes.
428 WARN_ON_ONCE(vmx
->exit_reason
.basic
!= EXIT_REASON_EPT_VIOLATION
);
431 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433 * as-is from the original EXIT_QUALIFICATION.
435 exit_qualification
= vmx_get_exit_qual(vcpu
) & INTR_INFO_UNBLOCK_NMI
;
437 if (fault
->error_code
& PFERR_RSVD_MASK
) {
438 vm_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
439 exit_qualification
= 0;
441 exit_qualification
= fault
->exit_qualification
;
442 exit_qualification
|= vmx_get_exit_qual(vcpu
) &
443 (EPT_VIOLATION_GVA_IS_VALID
|
444 EPT_VIOLATION_GVA_TRANSLATED
);
445 vm_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
449 * Although the caller (kvm_inject_emulated_page_fault) would
450 * have already synced the faulting address in the shadow EPT
451 * tables for the current EPTP12, we also need to sync it for
452 * any other cached EPTP02s based on the same EP4TA, since the
453 * TLB associates mappings to the EP4TA rather than the full EPTP.
455 nested_ept_invalidate_addr(vcpu
, vmcs12
->ept_pointer
,
459 nested_vmx_vmexit(vcpu
, vm_exit_reason
, 0, exit_qualification
);
460 vmcs12
->guest_physical_address
= fault
->address
;
463 static void nested_ept_new_eptp(struct kvm_vcpu
*vcpu
)
465 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
466 bool execonly
= vmx
->nested
.msrs
.ept_caps
& VMX_EPT_EXECUTE_ONLY_BIT
;
467 int ept_lpage_level
= ept_caps_to_lpage_level(vmx
->nested
.msrs
.ept_caps
);
469 kvm_init_shadow_ept_mmu(vcpu
, execonly
, ept_lpage_level
,
470 nested_ept_ad_enabled(vcpu
),
471 nested_ept_get_eptp(vcpu
));
474 static void nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
476 WARN_ON(mmu_is_nested(vcpu
));
478 vcpu
->arch
.mmu
= &vcpu
->arch
.guest_mmu
;
479 nested_ept_new_eptp(vcpu
);
480 vcpu
->arch
.mmu
->get_guest_pgd
= nested_ept_get_eptp
;
481 vcpu
->arch
.mmu
->inject_page_fault
= nested_ept_inject_page_fault
;
482 vcpu
->arch
.mmu
->get_pdptr
= kvm_pdptr_read
;
484 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
487 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
489 vcpu
->arch
.mmu
= &vcpu
->arch
.root_mmu
;
490 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.root_mmu
;
493 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
496 bool inequality
, bit
;
498 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
500 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
501 vmcs12
->page_fault_error_code_match
;
502 return inequality
^ bit
;
505 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu
*vcpu
, u8 vector
,
508 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
511 * Drop bits 31:16 of the error code when performing the #PF mask+match
512 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
513 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514 * error code. Including the to-be-dropped bits in the check might
515 * result in an "impossible" or missed exit from L1's perspective.
517 if (vector
== PF_VECTOR
)
518 return nested_vmx_is_page_fault_vmexit(vmcs12
, (u16
)error_code
);
520 return (vmcs12
->exception_bitmap
& (1u << vector
));
523 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu
*vcpu
,
524 struct vmcs12
*vmcs12
)
526 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
529 if (CC(!page_address_valid(vcpu
, vmcs12
->io_bitmap_a
)) ||
530 CC(!page_address_valid(vcpu
, vmcs12
->io_bitmap_b
)))
536 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
537 struct vmcs12
*vmcs12
)
539 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
542 if (CC(!page_address_valid(vcpu
, vmcs12
->msr_bitmap
)))
548 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu
*vcpu
,
549 struct vmcs12
*vmcs12
)
551 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
554 if (CC(!page_address_valid(vcpu
, vmcs12
->virtual_apic_page_addr
)))
561 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
562 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
563 * only the "disable intercept" case needs to be handled.
565 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1
,
566 unsigned long *msr_bitmap_l0
,
569 if (type
& MSR_TYPE_R
&& !vmx_test_msr_bitmap_read(msr_bitmap_l1
, msr
))
570 vmx_clear_msr_bitmap_read(msr_bitmap_l0
, msr
);
572 if (type
& MSR_TYPE_W
&& !vmx_test_msr_bitmap_write(msr_bitmap_l1
, msr
))
573 vmx_clear_msr_bitmap_write(msr_bitmap_l0
, msr
);
576 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap
)
580 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
581 unsigned word
= msr
/ BITS_PER_LONG
;
583 msr_bitmap
[word
] = ~0;
584 msr_bitmap
[word
+ (0x800 / sizeof(long))] = ~0;
588 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
590 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
591 unsigned long *msr_bitmap_l1, \
592 unsigned long *msr_bitmap_l0, u32 msr) \
594 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
595 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
596 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
598 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
600 BUILD_NVMX_MSR_INTERCEPT_HELPER(read
)
601 BUILD_NVMX_MSR_INTERCEPT_HELPER(write
)
603 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx
*vmx
,
604 unsigned long *msr_bitmap_l1
,
605 unsigned long *msr_bitmap_l0
,
608 if (types
& MSR_TYPE_R
)
609 nested_vmx_set_msr_read_intercept(vmx
, msr_bitmap_l1
,
611 if (types
& MSR_TYPE_W
)
612 nested_vmx_set_msr_write_intercept(vmx
, msr_bitmap_l1
,
617 * Merge L0's and L1's MSR bitmap, return false to indicate that
618 * we do not use the hardware.
620 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu
*vcpu
,
621 struct vmcs12
*vmcs12
)
623 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
625 unsigned long *msr_bitmap_l1
;
626 unsigned long *msr_bitmap_l0
= vmx
->nested
.vmcs02
.msr_bitmap
;
627 struct kvm_host_map
*map
= &vmx
->nested
.msr_bitmap_map
;
629 /* Nothing to do if the MSR bitmap is not in use. */
630 if (!cpu_has_vmx_msr_bitmap() ||
631 !nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
635 * MSR bitmap update can be skipped when:
636 * - MSR bitmap for L1 hasn't changed.
637 * - Nested hypervisor (L1) is attempting to launch the same L2 as
639 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
642 if (!vmx
->nested
.force_msr_bitmap_recalc
) {
643 struct hv_enlightened_vmcs
*evmcs
= nested_vmx_evmcs(vmx
);
645 if (evmcs
&& evmcs
->hv_enlightenments_control
.msr_bitmap
&&
646 evmcs
->hv_clean_fields
& HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP
)
650 if (kvm_vcpu_map(vcpu
, gpa_to_gfn(vmcs12
->msr_bitmap
), map
))
653 msr_bitmap_l1
= (unsigned long *)map
->hva
;
656 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658 * the x2APIC MSR range and selectively toggle those relevant to L2.
660 enable_x2apic_msr_intercepts(msr_bitmap_l0
);
662 if (nested_cpu_has_virt_x2apic_mode(vmcs12
)) {
663 if (nested_cpu_has_apic_reg_virt(vmcs12
)) {
665 * L0 need not intercept reads for MSRs between 0x800
666 * and 0x8ff, it just lets the processor take the value
667 * from the virtual-APIC page; take those 256 bits
668 * directly from the L1 bitmap.
670 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
671 unsigned word
= msr
/ BITS_PER_LONG
;
673 msr_bitmap_l0
[word
] = msr_bitmap_l1
[word
];
677 nested_vmx_disable_intercept_for_x2apic_msr(
678 msr_bitmap_l1
, msr_bitmap_l0
,
679 X2APIC_MSR(APIC_TASKPRI
),
680 MSR_TYPE_R
| MSR_TYPE_W
);
682 if (nested_cpu_has_vid(vmcs12
)) {
683 nested_vmx_disable_intercept_for_x2apic_msr(
684 msr_bitmap_l1
, msr_bitmap_l0
,
685 X2APIC_MSR(APIC_EOI
),
687 nested_vmx_disable_intercept_for_x2apic_msr(
688 msr_bitmap_l1
, msr_bitmap_l0
,
689 X2APIC_MSR(APIC_SELF_IPI
),
695 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
699 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
700 MSR_FS_BASE
, MSR_TYPE_RW
);
702 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
703 MSR_GS_BASE
, MSR_TYPE_RW
);
705 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
706 MSR_KERNEL_GS_BASE
, MSR_TYPE_RW
);
708 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
709 MSR_IA32_SPEC_CTRL
, MSR_TYPE_RW
);
711 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
712 MSR_IA32_PRED_CMD
, MSR_TYPE_W
);
714 nested_vmx_set_intercept_for_msr(vmx
, msr_bitmap_l1
, msr_bitmap_l0
,
715 MSR_IA32_FLUSH_CMD
, MSR_TYPE_W
);
717 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.msr_bitmap_map
, false);
719 vmx
->nested
.force_msr_bitmap_recalc
= false;
724 static void nested_cache_shadow_vmcs12(struct kvm_vcpu
*vcpu
,
725 struct vmcs12
*vmcs12
)
727 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
728 struct gfn_to_hva_cache
*ghc
= &vmx
->nested
.shadow_vmcs12_cache
;
730 if (!nested_cpu_has_shadow_vmcs(vmcs12
) ||
731 vmcs12
->vmcs_link_pointer
== INVALID_GPA
)
734 if (ghc
->gpa
!= vmcs12
->vmcs_link_pointer
&&
735 kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
,
736 vmcs12
->vmcs_link_pointer
, VMCS12_SIZE
))
739 kvm_read_guest_cached(vmx
->vcpu
.kvm
, ghc
, get_shadow_vmcs12(vcpu
),
743 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu
*vcpu
,
744 struct vmcs12
*vmcs12
)
746 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
747 struct gfn_to_hva_cache
*ghc
= &vmx
->nested
.shadow_vmcs12_cache
;
749 if (!nested_cpu_has_shadow_vmcs(vmcs12
) ||
750 vmcs12
->vmcs_link_pointer
== INVALID_GPA
)
753 if (ghc
->gpa
!= vmcs12
->vmcs_link_pointer
&&
754 kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
,
755 vmcs12
->vmcs_link_pointer
, VMCS12_SIZE
))
758 kvm_write_guest_cached(vmx
->vcpu
.kvm
, ghc
, get_shadow_vmcs12(vcpu
),
763 * In nested virtualization, check if L1 has set
764 * VM_EXIT_ACK_INTR_ON_EXIT
766 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
768 return get_vmcs12(vcpu
)->vm_exit_controls
&
769 VM_EXIT_ACK_INTR_ON_EXIT
;
772 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu
*vcpu
,
773 struct vmcs12
*vmcs12
)
775 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
) &&
776 CC(!page_address_valid(vcpu
, vmcs12
->apic_access_addr
)))
782 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
783 struct vmcs12
*vmcs12
)
785 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
786 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
787 !nested_cpu_has_vid(vmcs12
) &&
788 !nested_cpu_has_posted_intr(vmcs12
))
792 * If virtualize x2apic mode is enabled,
793 * virtualize apic access must be disabled.
795 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
796 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)))
800 * If virtual interrupt delivery is enabled,
801 * we must exit on external interrupts.
803 if (CC(nested_cpu_has_vid(vmcs12
) && !nested_exit_on_intr(vcpu
)))
807 * bits 15:8 should be zero in posted_intr_nv,
808 * the descriptor address has been already checked
809 * in nested_get_vmcs12_pages.
811 * bits 5:0 of posted_intr_desc_addr should be zero.
813 if (nested_cpu_has_posted_intr(vmcs12
) &&
814 (CC(!nested_cpu_has_vid(vmcs12
)) ||
815 CC(!nested_exit_intr_ack_set(vcpu
)) ||
816 CC((vmcs12
->posted_intr_nv
& 0xff00)) ||
817 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu
, vmcs12
->posted_intr_desc_addr
, 64))))
820 /* tpr shadow is needed by all apicv features. */
821 if (CC(!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)))
827 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
833 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu
, addr
, 16) ||
834 !kvm_vcpu_is_legal_gpa(vcpu
, (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1)))
840 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu
*vcpu
,
841 struct vmcs12
*vmcs12
)
843 if (CC(nested_vmx_check_msr_switch(vcpu
,
844 vmcs12
->vm_exit_msr_load_count
,
845 vmcs12
->vm_exit_msr_load_addr
)) ||
846 CC(nested_vmx_check_msr_switch(vcpu
,
847 vmcs12
->vm_exit_msr_store_count
,
848 vmcs12
->vm_exit_msr_store_addr
)))
854 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu
*vcpu
,
855 struct vmcs12
*vmcs12
)
857 if (CC(nested_vmx_check_msr_switch(vcpu
,
858 vmcs12
->vm_entry_msr_load_count
,
859 vmcs12
->vm_entry_msr_load_addr
)))
865 static int nested_vmx_check_pml_controls(struct kvm_vcpu
*vcpu
,
866 struct vmcs12
*vmcs12
)
868 if (!nested_cpu_has_pml(vmcs12
))
871 if (CC(!nested_cpu_has_ept(vmcs12
)) ||
872 CC(!page_address_valid(vcpu
, vmcs12
->pml_address
)))
878 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu
*vcpu
,
879 struct vmcs12
*vmcs12
)
881 if (CC(nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
) &&
882 !nested_cpu_has_ept(vmcs12
)))
887 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu
*vcpu
,
888 struct vmcs12
*vmcs12
)
890 if (CC(nested_cpu_has2(vmcs12
, SECONDARY_EXEC_MODE_BASED_EPT_EXEC
) &&
891 !nested_cpu_has_ept(vmcs12
)))
896 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu
*vcpu
,
897 struct vmcs12
*vmcs12
)
899 if (!nested_cpu_has_shadow_vmcs(vmcs12
))
902 if (CC(!page_address_valid(vcpu
, vmcs12
->vmread_bitmap
)) ||
903 CC(!page_address_valid(vcpu
, vmcs12
->vmwrite_bitmap
)))
909 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
910 struct vmx_msr_entry
*e
)
912 /* x2APIC MSR accesses are not allowed */
913 if (CC(vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8))
915 if (CC(e
->index
== MSR_IA32_UCODE_WRITE
) || /* SDM Table 35-2 */
916 CC(e
->index
== MSR_IA32_UCODE_REV
))
918 if (CC(e
->reserved
!= 0))
923 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
924 struct vmx_msr_entry
*e
)
926 if (CC(e
->index
== MSR_FS_BASE
) ||
927 CC(e
->index
== MSR_GS_BASE
) ||
928 CC(e
->index
== MSR_IA32_SMM_MONITOR_CTL
) || /* SMM is not supported */
929 nested_vmx_msr_check_common(vcpu
, e
))
934 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
935 struct vmx_msr_entry
*e
)
937 if (CC(e
->index
== MSR_IA32_SMBASE
) || /* SMM is not supported */
938 nested_vmx_msr_check_common(vcpu
, e
))
943 static u32
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu
*vcpu
)
945 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
946 u64 vmx_misc
= vmx_control_msr(vmx
->nested
.msrs
.misc_low
,
947 vmx
->nested
.msrs
.misc_high
);
949 return (vmx_misc_max_msr(vmx_misc
) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER
;
953 * Load guest's/host's msr at nested entry/exit.
954 * return 0 for success, entry index for failure.
956 * One of the failure modes for MSR load/store is when a list exceeds the
957 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958 * as possible, process all valid entries before failing rather than precheck
959 * for a capacity violation.
961 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
964 struct vmx_msr_entry e
;
965 u32 max_msr_list_size
= nested_vmx_max_atomic_switch_msrs(vcpu
);
967 for (i
= 0; i
< count
; i
++) {
968 if (unlikely(i
>= max_msr_list_size
))
971 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
973 pr_debug_ratelimited(
974 "%s cannot read MSR entry (%u, 0x%08llx)\n",
975 __func__
, i
, gpa
+ i
* sizeof(e
));
978 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
979 pr_debug_ratelimited(
980 "%s check failed (%u, 0x%x, 0x%x)\n",
981 __func__
, i
, e
.index
, e
.reserved
);
984 if (kvm_set_msr_with_filter(vcpu
, e
.index
, e
.value
)) {
985 pr_debug_ratelimited(
986 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987 __func__
, i
, e
.index
, e
.value
);
993 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
997 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu
*vcpu
,
1001 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1004 * If the L0 hypervisor stored a more accurate value for the TSC that
1005 * does not include the time taken for emulation of the L2->L1
1006 * VM-exit in L0, use the more accurate value.
1008 if (msr_index
== MSR_IA32_TSC
) {
1009 int i
= vmx_find_loadstore_msr_slot(&vmx
->msr_autostore
.guest
,
1013 u64 val
= vmx
->msr_autostore
.guest
.val
[i
].value
;
1015 *data
= kvm_read_l1_tsc(vcpu
, val
);
1020 if (kvm_get_msr_with_filter(vcpu
, msr_index
, data
)) {
1021 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__
,
1028 static bool read_and_check_msr_entry(struct kvm_vcpu
*vcpu
, u64 gpa
, int i
,
1029 struct vmx_msr_entry
*e
)
1031 if (kvm_vcpu_read_guest(vcpu
,
1032 gpa
+ i
* sizeof(*e
),
1033 e
, 2 * sizeof(u32
))) {
1034 pr_debug_ratelimited(
1035 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1036 __func__
, i
, gpa
+ i
* sizeof(*e
));
1039 if (nested_vmx_store_msr_check(vcpu
, e
)) {
1040 pr_debug_ratelimited(
1041 "%s check failed (%u, 0x%x, 0x%x)\n",
1042 __func__
, i
, e
->index
, e
->reserved
);
1048 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
1052 struct vmx_msr_entry e
;
1053 u32 max_msr_list_size
= nested_vmx_max_atomic_switch_msrs(vcpu
);
1055 for (i
= 0; i
< count
; i
++) {
1056 if (unlikely(i
>= max_msr_list_size
))
1059 if (!read_and_check_msr_entry(vcpu
, gpa
, i
, &e
))
1062 if (!nested_vmx_get_vmexit_msr_value(vcpu
, e
.index
, &data
))
1065 if (kvm_vcpu_write_guest(vcpu
,
1066 gpa
+ i
* sizeof(e
) +
1067 offsetof(struct vmx_msr_entry
, value
),
1068 &data
, sizeof(data
))) {
1069 pr_debug_ratelimited(
1070 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071 __func__
, i
, e
.index
, data
);
1078 static bool nested_msr_store_list_has_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
)
1080 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1081 u32 count
= vmcs12
->vm_exit_msr_store_count
;
1082 u64 gpa
= vmcs12
->vm_exit_msr_store_addr
;
1083 struct vmx_msr_entry e
;
1086 for (i
= 0; i
< count
; i
++) {
1087 if (!read_and_check_msr_entry(vcpu
, gpa
, i
, &e
))
1090 if (e
.index
== msr_index
)
1096 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu
*vcpu
,
1099 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1100 struct vmx_msrs
*autostore
= &vmx
->msr_autostore
.guest
;
1101 bool in_vmcs12_store_list
;
1102 int msr_autostore_slot
;
1103 bool in_autostore_list
;
1106 msr_autostore_slot
= vmx_find_loadstore_msr_slot(autostore
, msr_index
);
1107 in_autostore_list
= msr_autostore_slot
>= 0;
1108 in_vmcs12_store_list
= nested_msr_store_list_has_msr(vcpu
, msr_index
);
1110 if (in_vmcs12_store_list
&& !in_autostore_list
) {
1111 if (autostore
->nr
== MAX_NR_LOADSTORE_MSRS
) {
1113 * Emulated VMEntry does not fail here. Instead a less
1114 * accurate value will be returned by
1115 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116 * internal MSR state instead of reading the value from
1117 * the vmcs02 VMExit MSR-store area.
1119 pr_warn_ratelimited(
1120 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1124 last
= autostore
->nr
++;
1125 autostore
->val
[last
].index
= msr_index
;
1126 } else if (!in_vmcs12_store_list
&& in_autostore_list
) {
1127 last
= --autostore
->nr
;
1128 autostore
->val
[msr_autostore_slot
] = autostore
->val
[last
];
1133 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1134 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1135 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136 * @entry_failure_code.
1138 static int nested_vmx_load_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
,
1139 bool nested_ept
, bool reload_pdptrs
,
1140 enum vm_entry_failure_code
*entry_failure_code
)
1142 if (CC(!kvm_vcpu_is_legal_cr3(vcpu
, cr3
))) {
1143 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
1148 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149 * must not be dereferenced.
1151 if (reload_pdptrs
&& !nested_ept
&& is_pae_paging(vcpu
) &&
1152 CC(!load_pdptrs(vcpu
, cr3
))) {
1153 *entry_failure_code
= ENTRY_FAIL_PDPTE
;
1157 vcpu
->arch
.cr3
= cr3
;
1158 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_CR3
);
1160 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1164 kvm_mmu_new_pgd(vcpu
, cr3
);
1170 * Returns if KVM is able to config CPU to tag TLB entries
1171 * populated by L2 differently than TLB entries populated
1174 * If L0 uses EPT, L1 and L2 run with different EPTP because
1175 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176 * are tagged with different EPTP.
1178 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179 * with different VPID (L1 entries are tagged with vmx->vpid
1180 * while L2 entries are tagged with vmx->nested.vpid02).
1182 static bool nested_has_guest_tlb_tag(struct kvm_vcpu
*vcpu
)
1184 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1186 return enable_ept
||
1187 (nested_cpu_has_vpid(vmcs12
) && to_vmx(vcpu
)->nested
.vpid02
);
1190 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu
*vcpu
,
1191 struct vmcs12
*vmcs12
,
1194 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1196 /* Handle pending Hyper-V TLB flush requests */
1197 kvm_hv_nested_transtion_tlb_flush(vcpu
, enable_ept
);
1200 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1201 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1202 * full TLB flush from the guest's perspective. This is required even
1203 * if VPID is disabled in the host as KVM may need to synchronize the
1204 * MMU in response to the guest TLB flush.
1206 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1207 * EPT is a special snowflake, as guest-physical mappings aren't
1208 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1209 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1210 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1213 if (!nested_cpu_has_vpid(vmcs12
)) {
1214 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
1218 /* L2 should never have a VPID if VPID is disabled. */
1219 WARN_ON(!enable_vpid
);
1222 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1223 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1224 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1225 * that the new vpid12 has never been used and thus represents a new
1226 * guest ASID that cannot have entries in the TLB.
1228 if (is_vmenter
&& vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
1229 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
1230 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
1235 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1236 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1237 * KVM was unable to allocate a VPID for L2, flush the current context
1238 * as the effective ASID is common to both L1 and L2.
1240 if (!nested_has_guest_tlb_tag(vcpu
))
1241 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
);
1244 static bool is_bitwise_subset(u64 superset
, u64 subset
, u64 mask
)
1249 return (superset
| subset
) == superset
;
1252 static int vmx_restore_vmx_basic(struct vcpu_vmx
*vmx
, u64 data
)
1254 const u64 feature_bits
= VMX_BASIC_DUAL_MONITOR_TREATMENT
|
1256 VMX_BASIC_TRUE_CTLS
;
1258 const u64 reserved_bits
= GENMASK_ULL(63, 56) |
1259 GENMASK_ULL(47, 45) |
1262 u64 vmx_basic
= vmcs_config
.nested
.basic
;
1264 BUILD_BUG_ON(feature_bits
& reserved_bits
);
1267 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1268 * inverted polarity), the incoming value must not set feature bits or
1269 * reserved bits that aren't allowed/supported by KVM. Fields, i.e.
1270 * multi-bit values, are explicitly checked below.
1272 if (!is_bitwise_subset(vmx_basic
, data
, feature_bits
| reserved_bits
))
1276 * KVM does not emulate a version of VMX that constrains physical
1277 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1279 if (data
& VMX_BASIC_32BIT_PHYS_ADDR_ONLY
)
1282 if (vmx_basic_vmcs_revision_id(vmx_basic
) !=
1283 vmx_basic_vmcs_revision_id(data
))
1286 if (vmx_basic_vmcs_size(vmx_basic
) > vmx_basic_vmcs_size(data
))
1289 vmx
->nested
.msrs
.basic
= data
;
1293 static void vmx_get_control_msr(struct nested_vmx_msrs
*msrs
, u32 msr_index
,
1294 u32
**low
, u32
**high
)
1296 switch (msr_index
) {
1297 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
1298 *low
= &msrs
->pinbased_ctls_low
;
1299 *high
= &msrs
->pinbased_ctls_high
;
1301 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
1302 *low
= &msrs
->procbased_ctls_low
;
1303 *high
= &msrs
->procbased_ctls_high
;
1305 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
1306 *low
= &msrs
->exit_ctls_low
;
1307 *high
= &msrs
->exit_ctls_high
;
1309 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
1310 *low
= &msrs
->entry_ctls_low
;
1311 *high
= &msrs
->entry_ctls_high
;
1313 case MSR_IA32_VMX_PROCBASED_CTLS2
:
1314 *low
= &msrs
->secondary_ctls_low
;
1315 *high
= &msrs
->secondary_ctls_high
;
1323 vmx_restore_control_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
1328 vmx_get_control_msr(&vmcs_config
.nested
, msr_index
, &lowp
, &highp
);
1330 supported
= vmx_control_msr(*lowp
, *highp
);
1332 /* Check must-be-1 bits are still 1. */
1333 if (!is_bitwise_subset(data
, supported
, GENMASK_ULL(31, 0)))
1336 /* Check must-be-0 bits are still 0. */
1337 if (!is_bitwise_subset(supported
, data
, GENMASK_ULL(63, 32)))
1340 vmx_get_control_msr(&vmx
->nested
.msrs
, msr_index
, &lowp
, &highp
);
1342 *highp
= data
>> 32;
1346 static int vmx_restore_vmx_misc(struct vcpu_vmx
*vmx
, u64 data
)
1348 const u64 feature_bits
= VMX_MISC_SAVE_EFER_LMA
|
1349 VMX_MISC_ACTIVITY_HLT
|
1350 VMX_MISC_ACTIVITY_SHUTDOWN
|
1351 VMX_MISC_ACTIVITY_WAIT_SIPI
|
1353 VMX_MISC_RDMSR_IN_SMM
|
1354 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
|
1355 VMX_MISC_VMXOFF_BLOCK_SMI
|
1356 VMX_MISC_ZERO_LEN_INS
;
1358 const u64 reserved_bits
= BIT_ULL(31) | GENMASK_ULL(13, 9);
1360 u64 vmx_misc
= vmx_control_msr(vmcs_config
.nested
.misc_low
,
1361 vmcs_config
.nested
.misc_high
);
1363 BUILD_BUG_ON(feature_bits
& reserved_bits
);
1366 * The incoming value must not set feature bits or reserved bits that
1367 * aren't allowed/supported by KVM. Fields, i.e. multi-bit values, are
1368 * explicitly checked below.
1370 if (!is_bitwise_subset(vmx_misc
, data
, feature_bits
| reserved_bits
))
1373 if ((vmx
->nested
.msrs
.pinbased_ctls_high
&
1374 PIN_BASED_VMX_PREEMPTION_TIMER
) &&
1375 vmx_misc_preemption_timer_rate(data
) !=
1376 vmx_misc_preemption_timer_rate(vmx_misc
))
1379 if (vmx_misc_cr3_count(data
) > vmx_misc_cr3_count(vmx_misc
))
1382 if (vmx_misc_max_msr(data
) > vmx_misc_max_msr(vmx_misc
))
1385 if (vmx_misc_mseg_revid(data
) != vmx_misc_mseg_revid(vmx_misc
))
1388 vmx
->nested
.msrs
.misc_low
= data
;
1389 vmx
->nested
.msrs
.misc_high
= data
>> 32;
1394 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx
*vmx
, u64 data
)
1396 u64 vmx_ept_vpid_cap
= vmx_control_msr(vmcs_config
.nested
.ept_caps
,
1397 vmcs_config
.nested
.vpid_caps
);
1399 /* Every bit is either reserved or a feature bit. */
1400 if (!is_bitwise_subset(vmx_ept_vpid_cap
, data
, -1ULL))
1403 vmx
->nested
.msrs
.ept_caps
= data
;
1404 vmx
->nested
.msrs
.vpid_caps
= data
>> 32;
1408 static u64
*vmx_get_fixed0_msr(struct nested_vmx_msrs
*msrs
, u32 msr_index
)
1410 switch (msr_index
) {
1411 case MSR_IA32_VMX_CR0_FIXED0
:
1412 return &msrs
->cr0_fixed0
;
1413 case MSR_IA32_VMX_CR4_FIXED0
:
1414 return &msrs
->cr4_fixed0
;
1420 static int vmx_restore_fixed0_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
1422 const u64
*msr
= vmx_get_fixed0_msr(&vmcs_config
.nested
, msr_index
);
1425 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1426 * must be 1 in the restored value.
1428 if (!is_bitwise_subset(data
, *msr
, -1ULL))
1431 *vmx_get_fixed0_msr(&vmx
->nested
.msrs
, msr_index
) = data
;
1436 * Called when userspace is restoring VMX MSRs.
1438 * Returns 0 on success, non-0 otherwise.
1440 int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1442 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1445 * Don't allow changes to the VMX capability MSRs while the vCPU
1446 * is in VMX operation.
1448 if (vmx
->nested
.vmxon
)
1451 switch (msr_index
) {
1452 case MSR_IA32_VMX_BASIC
:
1453 return vmx_restore_vmx_basic(vmx
, data
);
1454 case MSR_IA32_VMX_PINBASED_CTLS
:
1455 case MSR_IA32_VMX_PROCBASED_CTLS
:
1456 case MSR_IA32_VMX_EXIT_CTLS
:
1457 case MSR_IA32_VMX_ENTRY_CTLS
:
1459 * The "non-true" VMX capability MSRs are generated from the
1460 * "true" MSRs, so we do not support restoring them directly.
1462 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1463 * should restore the "true" MSRs with the must-be-1 bits
1464 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1465 * DEFAULT SETTINGS".
1468 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
1469 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
1470 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
1471 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
1472 case MSR_IA32_VMX_PROCBASED_CTLS2
:
1473 return vmx_restore_control_msr(vmx
, msr_index
, data
);
1474 case MSR_IA32_VMX_MISC
:
1475 return vmx_restore_vmx_misc(vmx
, data
);
1476 case MSR_IA32_VMX_CR0_FIXED0
:
1477 case MSR_IA32_VMX_CR4_FIXED0
:
1478 return vmx_restore_fixed0_msr(vmx
, msr_index
, data
);
1479 case MSR_IA32_VMX_CR0_FIXED1
:
1480 case MSR_IA32_VMX_CR4_FIXED1
:
1482 * These MSRs are generated based on the vCPU's CPUID, so we
1483 * do not support restoring them directly.
1486 case MSR_IA32_VMX_EPT_VPID_CAP
:
1487 return vmx_restore_vmx_ept_vpid_cap(vmx
, data
);
1488 case MSR_IA32_VMX_VMCS_ENUM
:
1489 vmx
->nested
.msrs
.vmcs_enum
= data
;
1491 case MSR_IA32_VMX_VMFUNC
:
1492 if (data
& ~vmcs_config
.nested
.vmfunc_controls
)
1494 vmx
->nested
.msrs
.vmfunc_controls
= data
;
1498 * The rest of the VMX capability MSRs do not support restore.
1504 /* Returns 0 on success, non-0 otherwise. */
1505 int vmx_get_vmx_msr(struct nested_vmx_msrs
*msrs
, u32 msr_index
, u64
*pdata
)
1507 switch (msr_index
) {
1508 case MSR_IA32_VMX_BASIC
:
1509 *pdata
= msrs
->basic
;
1511 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
1512 case MSR_IA32_VMX_PINBASED_CTLS
:
1513 *pdata
= vmx_control_msr(
1514 msrs
->pinbased_ctls_low
,
1515 msrs
->pinbased_ctls_high
);
1516 if (msr_index
== MSR_IA32_VMX_PINBASED_CTLS
)
1517 *pdata
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
1519 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
1520 case MSR_IA32_VMX_PROCBASED_CTLS
:
1521 *pdata
= vmx_control_msr(
1522 msrs
->procbased_ctls_low
,
1523 msrs
->procbased_ctls_high
);
1524 if (msr_index
== MSR_IA32_VMX_PROCBASED_CTLS
)
1525 *pdata
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
1527 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
1528 case MSR_IA32_VMX_EXIT_CTLS
:
1529 *pdata
= vmx_control_msr(
1530 msrs
->exit_ctls_low
,
1531 msrs
->exit_ctls_high
);
1532 if (msr_index
== MSR_IA32_VMX_EXIT_CTLS
)
1533 *pdata
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
1535 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
1536 case MSR_IA32_VMX_ENTRY_CTLS
:
1537 *pdata
= vmx_control_msr(
1538 msrs
->entry_ctls_low
,
1539 msrs
->entry_ctls_high
);
1540 if (msr_index
== MSR_IA32_VMX_ENTRY_CTLS
)
1541 *pdata
|= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
1543 case MSR_IA32_VMX_MISC
:
1544 *pdata
= vmx_control_msr(
1548 case MSR_IA32_VMX_CR0_FIXED0
:
1549 *pdata
= msrs
->cr0_fixed0
;
1551 case MSR_IA32_VMX_CR0_FIXED1
:
1552 *pdata
= msrs
->cr0_fixed1
;
1554 case MSR_IA32_VMX_CR4_FIXED0
:
1555 *pdata
= msrs
->cr4_fixed0
;
1557 case MSR_IA32_VMX_CR4_FIXED1
:
1558 *pdata
= msrs
->cr4_fixed1
;
1560 case MSR_IA32_VMX_VMCS_ENUM
:
1561 *pdata
= msrs
->vmcs_enum
;
1563 case MSR_IA32_VMX_PROCBASED_CTLS2
:
1564 *pdata
= vmx_control_msr(
1565 msrs
->secondary_ctls_low
,
1566 msrs
->secondary_ctls_high
);
1568 case MSR_IA32_VMX_EPT_VPID_CAP
:
1569 *pdata
= msrs
->ept_caps
|
1570 ((u64
)msrs
->vpid_caps
<< 32);
1572 case MSR_IA32_VMX_VMFUNC
:
1573 *pdata
= msrs
->vmfunc_controls
;
1583 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1584 * been modified by the L1 guest. Note, "writable" in this context means
1585 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1586 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1587 * VM-exit information fields (which are actually writable if the vCPU is
1588 * configured to support "VMWRITE to any supported field in the VMCS").
1590 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
1592 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
1593 struct vmcs12
*vmcs12
= get_vmcs12(&vmx
->vcpu
);
1594 struct shadow_vmcs_field field
;
1598 if (WARN_ON(!shadow_vmcs
))
1603 vmcs_load(shadow_vmcs
);
1605 for (i
= 0; i
< max_shadow_read_write_fields
; i
++) {
1606 field
= shadow_read_write_fields
[i
];
1607 val
= __vmcs_readl(field
.encoding
);
1608 vmcs12_write_any(vmcs12
, field
.encoding
, field
.offset
, val
);
1611 vmcs_clear(shadow_vmcs
);
1612 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1617 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
1619 const struct shadow_vmcs_field
*fields
[] = {
1620 shadow_read_write_fields
,
1621 shadow_read_only_fields
1623 const int max_fields
[] = {
1624 max_shadow_read_write_fields
,
1625 max_shadow_read_only_fields
1627 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
1628 struct vmcs12
*vmcs12
= get_vmcs12(&vmx
->vcpu
);
1629 struct shadow_vmcs_field field
;
1633 if (WARN_ON(!shadow_vmcs
))
1636 vmcs_load(shadow_vmcs
);
1638 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
1639 for (i
= 0; i
< max_fields
[q
]; i
++) {
1640 field
= fields
[q
][i
];
1641 val
= vmcs12_read_any(vmcs12
, field
.encoding
,
1643 __vmcs_writel(field
.encoding
, val
);
1647 vmcs_clear(shadow_vmcs
);
1648 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1651 static void copy_enlightened_to_vmcs12(struct vcpu_vmx
*vmx
, u32 hv_clean_fields
)
1653 #ifdef CONFIG_KVM_HYPERV
1654 struct vmcs12
*vmcs12
= vmx
->nested
.cached_vmcs12
;
1655 struct hv_enlightened_vmcs
*evmcs
= nested_vmx_evmcs(vmx
);
1656 struct kvm_vcpu_hv
*hv_vcpu
= to_hv_vcpu(&vmx
->vcpu
);
1658 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1659 vmcs12
->tpr_threshold
= evmcs
->tpr_threshold
;
1660 vmcs12
->guest_rip
= evmcs
->guest_rip
;
1662 if (unlikely(!(hv_clean_fields
&
1663 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL
))) {
1664 hv_vcpu
->nested
.pa_page_gpa
= evmcs
->partition_assist_page
;
1665 hv_vcpu
->nested
.vm_id
= evmcs
->hv_vm_id
;
1666 hv_vcpu
->nested
.vp_id
= evmcs
->hv_vp_id
;
1669 if (unlikely(!(hv_clean_fields
&
1670 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC
))) {
1671 vmcs12
->guest_rsp
= evmcs
->guest_rsp
;
1672 vmcs12
->guest_rflags
= evmcs
->guest_rflags
;
1673 vmcs12
->guest_interruptibility_info
=
1674 evmcs
->guest_interruptibility_info
;
1676 * Not present in struct vmcs12:
1677 * vmcs12->guest_ssp = evmcs->guest_ssp;
1681 if (unlikely(!(hv_clean_fields
&
1682 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC
))) {
1683 vmcs12
->cpu_based_vm_exec_control
=
1684 evmcs
->cpu_based_vm_exec_control
;
1687 if (unlikely(!(hv_clean_fields
&
1688 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN
))) {
1689 vmcs12
->exception_bitmap
= evmcs
->exception_bitmap
;
1692 if (unlikely(!(hv_clean_fields
&
1693 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY
))) {
1694 vmcs12
->vm_entry_controls
= evmcs
->vm_entry_controls
;
1697 if (unlikely(!(hv_clean_fields
&
1698 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT
))) {
1699 vmcs12
->vm_entry_intr_info_field
=
1700 evmcs
->vm_entry_intr_info_field
;
1701 vmcs12
->vm_entry_exception_error_code
=
1702 evmcs
->vm_entry_exception_error_code
;
1703 vmcs12
->vm_entry_instruction_len
=
1704 evmcs
->vm_entry_instruction_len
;
1707 if (unlikely(!(hv_clean_fields
&
1708 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1
))) {
1709 vmcs12
->host_ia32_pat
= evmcs
->host_ia32_pat
;
1710 vmcs12
->host_ia32_efer
= evmcs
->host_ia32_efer
;
1711 vmcs12
->host_cr0
= evmcs
->host_cr0
;
1712 vmcs12
->host_cr3
= evmcs
->host_cr3
;
1713 vmcs12
->host_cr4
= evmcs
->host_cr4
;
1714 vmcs12
->host_ia32_sysenter_esp
= evmcs
->host_ia32_sysenter_esp
;
1715 vmcs12
->host_ia32_sysenter_eip
= evmcs
->host_ia32_sysenter_eip
;
1716 vmcs12
->host_rip
= evmcs
->host_rip
;
1717 vmcs12
->host_ia32_sysenter_cs
= evmcs
->host_ia32_sysenter_cs
;
1718 vmcs12
->host_es_selector
= evmcs
->host_es_selector
;
1719 vmcs12
->host_cs_selector
= evmcs
->host_cs_selector
;
1720 vmcs12
->host_ss_selector
= evmcs
->host_ss_selector
;
1721 vmcs12
->host_ds_selector
= evmcs
->host_ds_selector
;
1722 vmcs12
->host_fs_selector
= evmcs
->host_fs_selector
;
1723 vmcs12
->host_gs_selector
= evmcs
->host_gs_selector
;
1724 vmcs12
->host_tr_selector
= evmcs
->host_tr_selector
;
1725 vmcs12
->host_ia32_perf_global_ctrl
= evmcs
->host_ia32_perf_global_ctrl
;
1727 * Not present in struct vmcs12:
1728 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1729 * vmcs12->host_ssp = evmcs->host_ssp;
1730 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1734 if (unlikely(!(hv_clean_fields
&
1735 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1
))) {
1736 vmcs12
->pin_based_vm_exec_control
=
1737 evmcs
->pin_based_vm_exec_control
;
1738 vmcs12
->vm_exit_controls
= evmcs
->vm_exit_controls
;
1739 vmcs12
->secondary_vm_exec_control
=
1740 evmcs
->secondary_vm_exec_control
;
1743 if (unlikely(!(hv_clean_fields
&
1744 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP
))) {
1745 vmcs12
->io_bitmap_a
= evmcs
->io_bitmap_a
;
1746 vmcs12
->io_bitmap_b
= evmcs
->io_bitmap_b
;
1749 if (unlikely(!(hv_clean_fields
&
1750 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP
))) {
1751 vmcs12
->msr_bitmap
= evmcs
->msr_bitmap
;
1754 if (unlikely(!(hv_clean_fields
&
1755 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2
))) {
1756 vmcs12
->guest_es_base
= evmcs
->guest_es_base
;
1757 vmcs12
->guest_cs_base
= evmcs
->guest_cs_base
;
1758 vmcs12
->guest_ss_base
= evmcs
->guest_ss_base
;
1759 vmcs12
->guest_ds_base
= evmcs
->guest_ds_base
;
1760 vmcs12
->guest_fs_base
= evmcs
->guest_fs_base
;
1761 vmcs12
->guest_gs_base
= evmcs
->guest_gs_base
;
1762 vmcs12
->guest_ldtr_base
= evmcs
->guest_ldtr_base
;
1763 vmcs12
->guest_tr_base
= evmcs
->guest_tr_base
;
1764 vmcs12
->guest_gdtr_base
= evmcs
->guest_gdtr_base
;
1765 vmcs12
->guest_idtr_base
= evmcs
->guest_idtr_base
;
1766 vmcs12
->guest_es_limit
= evmcs
->guest_es_limit
;
1767 vmcs12
->guest_cs_limit
= evmcs
->guest_cs_limit
;
1768 vmcs12
->guest_ss_limit
= evmcs
->guest_ss_limit
;
1769 vmcs12
->guest_ds_limit
= evmcs
->guest_ds_limit
;
1770 vmcs12
->guest_fs_limit
= evmcs
->guest_fs_limit
;
1771 vmcs12
->guest_gs_limit
= evmcs
->guest_gs_limit
;
1772 vmcs12
->guest_ldtr_limit
= evmcs
->guest_ldtr_limit
;
1773 vmcs12
->guest_tr_limit
= evmcs
->guest_tr_limit
;
1774 vmcs12
->guest_gdtr_limit
= evmcs
->guest_gdtr_limit
;
1775 vmcs12
->guest_idtr_limit
= evmcs
->guest_idtr_limit
;
1776 vmcs12
->guest_es_ar_bytes
= evmcs
->guest_es_ar_bytes
;
1777 vmcs12
->guest_cs_ar_bytes
= evmcs
->guest_cs_ar_bytes
;
1778 vmcs12
->guest_ss_ar_bytes
= evmcs
->guest_ss_ar_bytes
;
1779 vmcs12
->guest_ds_ar_bytes
= evmcs
->guest_ds_ar_bytes
;
1780 vmcs12
->guest_fs_ar_bytes
= evmcs
->guest_fs_ar_bytes
;
1781 vmcs12
->guest_gs_ar_bytes
= evmcs
->guest_gs_ar_bytes
;
1782 vmcs12
->guest_ldtr_ar_bytes
= evmcs
->guest_ldtr_ar_bytes
;
1783 vmcs12
->guest_tr_ar_bytes
= evmcs
->guest_tr_ar_bytes
;
1784 vmcs12
->guest_es_selector
= evmcs
->guest_es_selector
;
1785 vmcs12
->guest_cs_selector
= evmcs
->guest_cs_selector
;
1786 vmcs12
->guest_ss_selector
= evmcs
->guest_ss_selector
;
1787 vmcs12
->guest_ds_selector
= evmcs
->guest_ds_selector
;
1788 vmcs12
->guest_fs_selector
= evmcs
->guest_fs_selector
;
1789 vmcs12
->guest_gs_selector
= evmcs
->guest_gs_selector
;
1790 vmcs12
->guest_ldtr_selector
= evmcs
->guest_ldtr_selector
;
1791 vmcs12
->guest_tr_selector
= evmcs
->guest_tr_selector
;
1794 if (unlikely(!(hv_clean_fields
&
1795 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2
))) {
1796 vmcs12
->tsc_offset
= evmcs
->tsc_offset
;
1797 vmcs12
->virtual_apic_page_addr
= evmcs
->virtual_apic_page_addr
;
1798 vmcs12
->xss_exit_bitmap
= evmcs
->xss_exit_bitmap
;
1799 vmcs12
->encls_exiting_bitmap
= evmcs
->encls_exiting_bitmap
;
1800 vmcs12
->tsc_multiplier
= evmcs
->tsc_multiplier
;
1803 if (unlikely(!(hv_clean_fields
&
1804 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR
))) {
1805 vmcs12
->cr0_guest_host_mask
= evmcs
->cr0_guest_host_mask
;
1806 vmcs12
->cr4_guest_host_mask
= evmcs
->cr4_guest_host_mask
;
1807 vmcs12
->cr0_read_shadow
= evmcs
->cr0_read_shadow
;
1808 vmcs12
->cr4_read_shadow
= evmcs
->cr4_read_shadow
;
1809 vmcs12
->guest_cr0
= evmcs
->guest_cr0
;
1810 vmcs12
->guest_cr3
= evmcs
->guest_cr3
;
1811 vmcs12
->guest_cr4
= evmcs
->guest_cr4
;
1812 vmcs12
->guest_dr7
= evmcs
->guest_dr7
;
1815 if (unlikely(!(hv_clean_fields
&
1816 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER
))) {
1817 vmcs12
->host_fs_base
= evmcs
->host_fs_base
;
1818 vmcs12
->host_gs_base
= evmcs
->host_gs_base
;
1819 vmcs12
->host_tr_base
= evmcs
->host_tr_base
;
1820 vmcs12
->host_gdtr_base
= evmcs
->host_gdtr_base
;
1821 vmcs12
->host_idtr_base
= evmcs
->host_idtr_base
;
1822 vmcs12
->host_rsp
= evmcs
->host_rsp
;
1825 if (unlikely(!(hv_clean_fields
&
1826 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT
))) {
1827 vmcs12
->ept_pointer
= evmcs
->ept_pointer
;
1828 vmcs12
->virtual_processor_id
= evmcs
->virtual_processor_id
;
1831 if (unlikely(!(hv_clean_fields
&
1832 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1
))) {
1833 vmcs12
->vmcs_link_pointer
= evmcs
->vmcs_link_pointer
;
1834 vmcs12
->guest_ia32_debugctl
= evmcs
->guest_ia32_debugctl
;
1835 vmcs12
->guest_ia32_pat
= evmcs
->guest_ia32_pat
;
1836 vmcs12
->guest_ia32_efer
= evmcs
->guest_ia32_efer
;
1837 vmcs12
->guest_pdptr0
= evmcs
->guest_pdptr0
;
1838 vmcs12
->guest_pdptr1
= evmcs
->guest_pdptr1
;
1839 vmcs12
->guest_pdptr2
= evmcs
->guest_pdptr2
;
1840 vmcs12
->guest_pdptr3
= evmcs
->guest_pdptr3
;
1841 vmcs12
->guest_pending_dbg_exceptions
=
1842 evmcs
->guest_pending_dbg_exceptions
;
1843 vmcs12
->guest_sysenter_esp
= evmcs
->guest_sysenter_esp
;
1844 vmcs12
->guest_sysenter_eip
= evmcs
->guest_sysenter_eip
;
1845 vmcs12
->guest_bndcfgs
= evmcs
->guest_bndcfgs
;
1846 vmcs12
->guest_activity_state
= evmcs
->guest_activity_state
;
1847 vmcs12
->guest_sysenter_cs
= evmcs
->guest_sysenter_cs
;
1848 vmcs12
->guest_ia32_perf_global_ctrl
= evmcs
->guest_ia32_perf_global_ctrl
;
1850 * Not present in struct vmcs12:
1851 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1852 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1853 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1859 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1860 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1861 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1862 * vmcs12->page_fault_error_code_mask =
1863 * evmcs->page_fault_error_code_mask;
1864 * vmcs12->page_fault_error_code_match =
1865 * evmcs->page_fault_error_code_match;
1866 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1867 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1868 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1869 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1874 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1875 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1876 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1877 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1878 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1879 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1880 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1881 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1882 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1883 * vmcs12->exit_qualification = evmcs->exit_qualification;
1884 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1886 * Not present in struct vmcs12:
1887 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1888 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1889 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1890 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1894 #else /* CONFIG_KVM_HYPERV */
1895 KVM_BUG_ON(1, vmx
->vcpu
.kvm
);
1896 #endif /* CONFIG_KVM_HYPERV */
1899 static void copy_vmcs12_to_enlightened(struct vcpu_vmx
*vmx
)
1901 #ifdef CONFIG_KVM_HYPERV
1902 struct vmcs12
*vmcs12
= vmx
->nested
.cached_vmcs12
;
1903 struct hv_enlightened_vmcs
*evmcs
= nested_vmx_evmcs(vmx
);
1906 * Should not be changed by KVM:
1908 * evmcs->host_es_selector = vmcs12->host_es_selector;
1909 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1910 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1911 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1912 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1913 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1914 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1915 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1916 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1917 * evmcs->host_cr0 = vmcs12->host_cr0;
1918 * evmcs->host_cr3 = vmcs12->host_cr3;
1919 * evmcs->host_cr4 = vmcs12->host_cr4;
1920 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1921 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1922 * evmcs->host_rip = vmcs12->host_rip;
1923 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1924 * evmcs->host_fs_base = vmcs12->host_fs_base;
1925 * evmcs->host_gs_base = vmcs12->host_gs_base;
1926 * evmcs->host_tr_base = vmcs12->host_tr_base;
1927 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1928 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1929 * evmcs->host_rsp = vmcs12->host_rsp;
1930 * sync_vmcs02_to_vmcs12() doesn't read these:
1931 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1932 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1933 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1934 * evmcs->ept_pointer = vmcs12->ept_pointer;
1935 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1936 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1937 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1938 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1939 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1940 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1941 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1942 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1943 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1944 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1945 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1946 * evmcs->page_fault_error_code_mask =
1947 * vmcs12->page_fault_error_code_mask;
1948 * evmcs->page_fault_error_code_match =
1949 * vmcs12->page_fault_error_code_match;
1950 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1951 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1952 * evmcs->tsc_offset = vmcs12->tsc_offset;
1953 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1954 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1955 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1956 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1957 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1958 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1959 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1960 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1961 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1962 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1963 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1964 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1966 * Not present in struct vmcs12:
1967 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1968 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1969 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1970 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1971 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1972 * evmcs->host_ssp = vmcs12->host_ssp;
1973 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1974 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1975 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1976 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1977 * evmcs->guest_ssp = vmcs12->guest_ssp;
1980 evmcs
->guest_es_selector
= vmcs12
->guest_es_selector
;
1981 evmcs
->guest_cs_selector
= vmcs12
->guest_cs_selector
;
1982 evmcs
->guest_ss_selector
= vmcs12
->guest_ss_selector
;
1983 evmcs
->guest_ds_selector
= vmcs12
->guest_ds_selector
;
1984 evmcs
->guest_fs_selector
= vmcs12
->guest_fs_selector
;
1985 evmcs
->guest_gs_selector
= vmcs12
->guest_gs_selector
;
1986 evmcs
->guest_ldtr_selector
= vmcs12
->guest_ldtr_selector
;
1987 evmcs
->guest_tr_selector
= vmcs12
->guest_tr_selector
;
1989 evmcs
->guest_es_limit
= vmcs12
->guest_es_limit
;
1990 evmcs
->guest_cs_limit
= vmcs12
->guest_cs_limit
;
1991 evmcs
->guest_ss_limit
= vmcs12
->guest_ss_limit
;
1992 evmcs
->guest_ds_limit
= vmcs12
->guest_ds_limit
;
1993 evmcs
->guest_fs_limit
= vmcs12
->guest_fs_limit
;
1994 evmcs
->guest_gs_limit
= vmcs12
->guest_gs_limit
;
1995 evmcs
->guest_ldtr_limit
= vmcs12
->guest_ldtr_limit
;
1996 evmcs
->guest_tr_limit
= vmcs12
->guest_tr_limit
;
1997 evmcs
->guest_gdtr_limit
= vmcs12
->guest_gdtr_limit
;
1998 evmcs
->guest_idtr_limit
= vmcs12
->guest_idtr_limit
;
2000 evmcs
->guest_es_ar_bytes
= vmcs12
->guest_es_ar_bytes
;
2001 evmcs
->guest_cs_ar_bytes
= vmcs12
->guest_cs_ar_bytes
;
2002 evmcs
->guest_ss_ar_bytes
= vmcs12
->guest_ss_ar_bytes
;
2003 evmcs
->guest_ds_ar_bytes
= vmcs12
->guest_ds_ar_bytes
;
2004 evmcs
->guest_fs_ar_bytes
= vmcs12
->guest_fs_ar_bytes
;
2005 evmcs
->guest_gs_ar_bytes
= vmcs12
->guest_gs_ar_bytes
;
2006 evmcs
->guest_ldtr_ar_bytes
= vmcs12
->guest_ldtr_ar_bytes
;
2007 evmcs
->guest_tr_ar_bytes
= vmcs12
->guest_tr_ar_bytes
;
2009 evmcs
->guest_es_base
= vmcs12
->guest_es_base
;
2010 evmcs
->guest_cs_base
= vmcs12
->guest_cs_base
;
2011 evmcs
->guest_ss_base
= vmcs12
->guest_ss_base
;
2012 evmcs
->guest_ds_base
= vmcs12
->guest_ds_base
;
2013 evmcs
->guest_fs_base
= vmcs12
->guest_fs_base
;
2014 evmcs
->guest_gs_base
= vmcs12
->guest_gs_base
;
2015 evmcs
->guest_ldtr_base
= vmcs12
->guest_ldtr_base
;
2016 evmcs
->guest_tr_base
= vmcs12
->guest_tr_base
;
2017 evmcs
->guest_gdtr_base
= vmcs12
->guest_gdtr_base
;
2018 evmcs
->guest_idtr_base
= vmcs12
->guest_idtr_base
;
2020 evmcs
->guest_ia32_pat
= vmcs12
->guest_ia32_pat
;
2021 evmcs
->guest_ia32_efer
= vmcs12
->guest_ia32_efer
;
2023 evmcs
->guest_pdptr0
= vmcs12
->guest_pdptr0
;
2024 evmcs
->guest_pdptr1
= vmcs12
->guest_pdptr1
;
2025 evmcs
->guest_pdptr2
= vmcs12
->guest_pdptr2
;
2026 evmcs
->guest_pdptr3
= vmcs12
->guest_pdptr3
;
2028 evmcs
->guest_pending_dbg_exceptions
=
2029 vmcs12
->guest_pending_dbg_exceptions
;
2030 evmcs
->guest_sysenter_esp
= vmcs12
->guest_sysenter_esp
;
2031 evmcs
->guest_sysenter_eip
= vmcs12
->guest_sysenter_eip
;
2033 evmcs
->guest_activity_state
= vmcs12
->guest_activity_state
;
2034 evmcs
->guest_sysenter_cs
= vmcs12
->guest_sysenter_cs
;
2036 evmcs
->guest_cr0
= vmcs12
->guest_cr0
;
2037 evmcs
->guest_cr3
= vmcs12
->guest_cr3
;
2038 evmcs
->guest_cr4
= vmcs12
->guest_cr4
;
2039 evmcs
->guest_dr7
= vmcs12
->guest_dr7
;
2041 evmcs
->guest_physical_address
= vmcs12
->guest_physical_address
;
2043 evmcs
->vm_instruction_error
= vmcs12
->vm_instruction_error
;
2044 evmcs
->vm_exit_reason
= vmcs12
->vm_exit_reason
;
2045 evmcs
->vm_exit_intr_info
= vmcs12
->vm_exit_intr_info
;
2046 evmcs
->vm_exit_intr_error_code
= vmcs12
->vm_exit_intr_error_code
;
2047 evmcs
->idt_vectoring_info_field
= vmcs12
->idt_vectoring_info_field
;
2048 evmcs
->idt_vectoring_error_code
= vmcs12
->idt_vectoring_error_code
;
2049 evmcs
->vm_exit_instruction_len
= vmcs12
->vm_exit_instruction_len
;
2050 evmcs
->vmx_instruction_info
= vmcs12
->vmx_instruction_info
;
2052 evmcs
->exit_qualification
= vmcs12
->exit_qualification
;
2054 evmcs
->guest_linear_address
= vmcs12
->guest_linear_address
;
2055 evmcs
->guest_rsp
= vmcs12
->guest_rsp
;
2056 evmcs
->guest_rflags
= vmcs12
->guest_rflags
;
2058 evmcs
->guest_interruptibility_info
=
2059 vmcs12
->guest_interruptibility_info
;
2060 evmcs
->cpu_based_vm_exec_control
= vmcs12
->cpu_based_vm_exec_control
;
2061 evmcs
->vm_entry_controls
= vmcs12
->vm_entry_controls
;
2062 evmcs
->vm_entry_intr_info_field
= vmcs12
->vm_entry_intr_info_field
;
2063 evmcs
->vm_entry_exception_error_code
=
2064 vmcs12
->vm_entry_exception_error_code
;
2065 evmcs
->vm_entry_instruction_len
= vmcs12
->vm_entry_instruction_len
;
2067 evmcs
->guest_rip
= vmcs12
->guest_rip
;
2069 evmcs
->guest_bndcfgs
= vmcs12
->guest_bndcfgs
;
2072 #else /* CONFIG_KVM_HYPERV */
2073 KVM_BUG_ON(1, vmx
->vcpu
.kvm
);
2074 #endif /* CONFIG_KVM_HYPERV */
2078 * This is an equivalent of the nested hypervisor executing the vmptrld
2081 static enum nested_evmptrld_status
nested_vmx_handle_enlightened_vmptrld(
2082 struct kvm_vcpu
*vcpu
, bool from_launch
)
2084 #ifdef CONFIG_KVM_HYPERV
2085 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2086 bool evmcs_gpa_changed
= false;
2089 if (likely(!guest_cpuid_has_evmcs(vcpu
)))
2090 return EVMPTRLD_DISABLED
;
2092 evmcs_gpa
= nested_get_evmptr(vcpu
);
2093 if (!evmptr_is_valid(evmcs_gpa
)) {
2094 nested_release_evmcs(vcpu
);
2095 return EVMPTRLD_DISABLED
;
2098 if (unlikely(evmcs_gpa
!= vmx
->nested
.hv_evmcs_vmptr
)) {
2099 vmx
->nested
.current_vmptr
= INVALID_GPA
;
2101 nested_release_evmcs(vcpu
);
2103 if (kvm_vcpu_map(vcpu
, gpa_to_gfn(evmcs_gpa
),
2104 &vmx
->nested
.hv_evmcs_map
))
2105 return EVMPTRLD_ERROR
;
2107 vmx
->nested
.hv_evmcs
= vmx
->nested
.hv_evmcs_map
.hva
;
2110 * Currently, KVM only supports eVMCS version 1
2111 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2112 * value to first u32 field of eVMCS which should specify eVMCS
2115 * Guest should be aware of supported eVMCS versions by host by
2116 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2117 * expected to set this CPUID leaf according to the value
2118 * returned in vmcs_version from nested_enable_evmcs().
2120 * However, it turns out that Microsoft Hyper-V fails to comply
2121 * to their own invented interface: When Hyper-V use eVMCS, it
2122 * just sets first u32 field of eVMCS to revision_id specified
2123 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2124 * which is one of the supported versions specified in
2125 * CPUID.0x4000000A.EAX[0:15].
2127 * To overcome Hyper-V bug, we accept here either a supported
2128 * eVMCS version or VMCS12 revision_id as valid values for first
2129 * u32 field of eVMCS.
2131 if ((vmx
->nested
.hv_evmcs
->revision_id
!= KVM_EVMCS_VERSION
) &&
2132 (vmx
->nested
.hv_evmcs
->revision_id
!= VMCS12_REVISION
)) {
2133 nested_release_evmcs(vcpu
);
2134 return EVMPTRLD_VMFAIL
;
2137 vmx
->nested
.hv_evmcs_vmptr
= evmcs_gpa
;
2139 evmcs_gpa_changed
= true;
2141 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2142 * reloaded from guest's memory (read only fields, fields not
2143 * present in struct hv_enlightened_vmcs, ...). Make sure there
2147 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2148 memset(vmcs12
, 0, sizeof(*vmcs12
));
2149 vmcs12
->hdr
.revision_id
= VMCS12_REVISION
;
2155 * Clean fields data can't be used on VMLAUNCH and when we switch
2156 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2158 if (from_launch
|| evmcs_gpa_changed
) {
2159 vmx
->nested
.hv_evmcs
->hv_clean_fields
&=
2160 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL
;
2162 vmx
->nested
.force_msr_bitmap_recalc
= true;
2165 return EVMPTRLD_SUCCEEDED
;
2167 return EVMPTRLD_DISABLED
;
2171 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu
*vcpu
)
2173 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2175 if (nested_vmx_is_evmptr12_valid(vmx
))
2176 copy_vmcs12_to_enlightened(vmx
);
2178 copy_vmcs12_to_shadow(vmx
);
2180 vmx
->nested
.need_vmcs12_to_shadow_sync
= false;
2183 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
2185 struct vcpu_vmx
*vmx
=
2186 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
2188 vmx
->nested
.preemption_timer_expired
= true;
2189 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
2190 kvm_vcpu_kick(&vmx
->vcpu
);
2192 return HRTIMER_NORESTART
;
2195 static u64
vmx_calc_preemption_timer_value(struct kvm_vcpu
*vcpu
)
2197 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2198 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2200 u64 l1_scaled_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc()) >>
2201 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
2203 if (!vmx
->nested
.has_preemption_timer_deadline
) {
2204 vmx
->nested
.preemption_timer_deadline
=
2205 vmcs12
->vmx_preemption_timer_value
+ l1_scaled_tsc
;
2206 vmx
->nested
.has_preemption_timer_deadline
= true;
2208 return vmx
->nested
.preemption_timer_deadline
- l1_scaled_tsc
;
2211 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
,
2212 u64 preemption_timeout
)
2214 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2217 * A timer value of zero is architecturally guaranteed to cause
2218 * a VMExit prior to executing any instructions in the guest.
2220 if (preemption_timeout
== 0) {
2221 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
2225 if (vcpu
->arch
.virtual_tsc_khz
== 0)
2228 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
2229 preemption_timeout
*= 1000000;
2230 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
2231 hrtimer_start(&vmx
->nested
.preemption_timer
,
2232 ktime_add_ns(ktime_get(), preemption_timeout
),
2233 HRTIMER_MODE_ABS_PINNED
);
2236 static u64
nested_vmx_calc_efer(struct vcpu_vmx
*vmx
, struct vmcs12
*vmcs12
)
2238 if (vmx
->nested
.nested_run_pending
&&
2239 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
))
2240 return vmcs12
->guest_ia32_efer
;
2241 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
2242 return vmx
->vcpu
.arch
.efer
| (EFER_LMA
| EFER_LME
);
2244 return vmx
->vcpu
.arch
.efer
& ~(EFER_LMA
| EFER_LME
);
2247 static void prepare_vmcs02_constant_state(struct vcpu_vmx
*vmx
)
2249 struct kvm
*kvm
= vmx
->vcpu
.kvm
;
2252 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2253 * according to L0's settings (vmcs12 is irrelevant here). Host
2254 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2255 * will be set as needed prior to VMLAUNCH/VMRESUME.
2257 if (vmx
->nested
.vmcs02_initialized
)
2259 vmx
->nested
.vmcs02_initialized
= true;
2262 * We don't care what the EPTP value is we just need to guarantee
2263 * it's valid so we don't get a false positive when doing early
2264 * consistency checks.
2266 if (enable_ept
&& nested_early_check
)
2267 vmcs_write64(EPT_POINTER
,
2268 construct_eptp(&vmx
->vcpu
, 0, PT64_ROOT_4LEVEL
));
2271 vmcs_write64(VE_INFORMATION_ADDRESS
, __pa(vmx
->ve_info
));
2273 /* All VMFUNCs are currently emulated through L0 vmexits. */
2274 if (cpu_has_vmx_vmfunc())
2275 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
2277 if (cpu_has_vmx_posted_intr())
2278 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_NESTED_VECTOR
);
2280 if (cpu_has_vmx_msr_bitmap())
2281 vmcs_write64(MSR_BITMAP
, __pa(vmx
->nested
.vmcs02
.msr_bitmap
));
2284 * PML is emulated for L2, but never enabled in hardware as the MMU
2285 * handles A/D emulation. Disabling PML for L2 also avoids having to
2286 * deal with filtering out L2 GPAs from the buffer.
2289 vmcs_write64(PML_ADDRESS
, 0);
2290 vmcs_write16(GUEST_PML_INDEX
, -1);
2293 if (cpu_has_vmx_encls_vmexit())
2294 vmcs_write64(ENCLS_EXITING_BITMAP
, INVALID_GPA
);
2296 if (kvm_notify_vmexit_enabled(kvm
))
2297 vmcs_write32(NOTIFY_WINDOW
, kvm
->arch
.notify_window
);
2300 * Set the MSR load/store lists to match L0's settings. Only the
2301 * addresses are constant (for vmcs02), the counts can change based
2302 * on L2's behavior, e.g. switching to/from long mode.
2304 vmcs_write64(VM_EXIT_MSR_STORE_ADDR
, __pa(vmx
->msr_autostore
.guest
.val
));
2305 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
.val
));
2306 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
.val
));
2308 vmx_set_constant_host_state(vmx
);
2311 static void prepare_vmcs02_early_rare(struct vcpu_vmx
*vmx
,
2312 struct vmcs12
*vmcs12
)
2314 prepare_vmcs02_constant_state(vmx
);
2316 vmcs_write64(VMCS_LINK_POINTER
, INVALID_GPA
);
2319 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
)
2320 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
2322 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2326 static void prepare_vmcs02_early(struct vcpu_vmx
*vmx
, struct loaded_vmcs
*vmcs01
,
2327 struct vmcs12
*vmcs12
)
2330 u64 guest_efer
= nested_vmx_calc_efer(vmx
, vmcs12
);
2332 if (vmx
->nested
.dirty_vmcs12
|| nested_vmx_is_evmptr12_valid(vmx
))
2333 prepare_vmcs02_early_rare(vmx
, vmcs12
);
2338 exec_control
= __pin_controls_get(vmcs01
);
2339 exec_control
|= (vmcs12
->pin_based_vm_exec_control
&
2340 ~PIN_BASED_VMX_PREEMPTION_TIMER
);
2342 /* Posted interrupts setting is only taken from vmcs12. */
2343 vmx
->nested
.pi_pending
= false;
2344 if (nested_cpu_has_posted_intr(vmcs12
)) {
2345 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
2347 vmx
->nested
.posted_intr_nv
= -1;
2348 exec_control
&= ~PIN_BASED_POSTED_INTR
;
2350 pin_controls_set(vmx
, exec_control
);
2355 exec_control
= __exec_controls_get(vmcs01
); /* L0's desires */
2356 exec_control
&= ~CPU_BASED_INTR_WINDOW_EXITING
;
2357 exec_control
&= ~CPU_BASED_NMI_WINDOW_EXITING
;
2358 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2359 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
2361 vmx
->nested
.l1_tpr_threshold
= -1;
2362 if (exec_control
& CPU_BASED_TPR_SHADOW
)
2363 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
2364 #ifdef CONFIG_X86_64
2366 exec_control
|= CPU_BASED_CR8_LOAD_EXITING
|
2367 CPU_BASED_CR8_STORE_EXITING
;
2371 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2372 * for I/O port accesses.
2374 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
2375 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
2378 * This bit will be computed in nested_get_vmcs12_pages, because
2379 * we do not have access to L1's MSR bitmap yet. For now, keep
2380 * the same bit as before, hoping to avoid multiple VMWRITEs that
2381 * only set/clear this bit.
2383 exec_control
&= ~CPU_BASED_USE_MSR_BITMAPS
;
2384 exec_control
|= exec_controls_get(vmx
) & CPU_BASED_USE_MSR_BITMAPS
;
2386 exec_controls_set(vmx
, exec_control
);
2389 * SECONDARY EXEC CONTROLS
2391 if (cpu_has_secondary_exec_ctrls()) {
2392 exec_control
= __secondary_exec_controls_get(vmcs01
);
2394 /* Take the following fields only from vmcs12 */
2395 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2396 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2397 SECONDARY_EXEC_ENABLE_INVPCID
|
2398 SECONDARY_EXEC_ENABLE_RDTSCP
|
2399 SECONDARY_EXEC_ENABLE_XSAVES
|
2400 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE
|
2401 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2402 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2403 SECONDARY_EXEC_ENABLE_VMFUNC
|
2404 SECONDARY_EXEC_DESC
);
2406 if (nested_cpu_has(vmcs12
,
2407 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
))
2408 exec_control
|= vmcs12
->secondary_vm_exec_control
;
2410 /* PML is emulated and never enabled in hardware for L2. */
2411 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
2413 /* VMCS shadowing for L2 is emulated for now */
2414 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
2417 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2418 * will not have to rewrite the controls just for this bit.
2420 if (vmx_umip_emulated() && (vmcs12
->guest_cr4
& X86_CR4_UMIP
))
2421 exec_control
|= SECONDARY_EXEC_DESC
;
2423 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
2424 vmcs_write16(GUEST_INTR_STATUS
,
2425 vmcs12
->guest_intr_status
);
2427 if (!nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
2428 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2430 if (exec_control
& SECONDARY_EXEC_ENCLS_EXITING
)
2431 vmx_write_encls_bitmap(&vmx
->vcpu
, vmcs12
);
2433 secondary_exec_controls_set(vmx
, exec_control
);
2439 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2440 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2441 * on the related bits (if supported by the CPU) in the hope that
2442 * we can avoid VMWrites during vmx_set_efer().
2444 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2445 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2446 * do the same for L2.
2448 exec_control
= __vm_entry_controls_get(vmcs01
);
2449 exec_control
|= (vmcs12
->vm_entry_controls
&
2450 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
);
2451 exec_control
&= ~(VM_ENTRY_IA32E_MODE
| VM_ENTRY_LOAD_IA32_EFER
);
2452 if (cpu_has_load_ia32_efer()) {
2453 if (guest_efer
& EFER_LMA
)
2454 exec_control
|= VM_ENTRY_IA32E_MODE
;
2455 if (guest_efer
!= kvm_host
.efer
)
2456 exec_control
|= VM_ENTRY_LOAD_IA32_EFER
;
2458 vm_entry_controls_set(vmx
, exec_control
);
2463 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2464 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2465 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2467 exec_control
= __vm_exit_controls_get(vmcs01
);
2468 if (cpu_has_load_ia32_efer() && guest_efer
!= kvm_host
.efer
)
2469 exec_control
|= VM_EXIT_LOAD_IA32_EFER
;
2471 exec_control
&= ~VM_EXIT_LOAD_IA32_EFER
;
2472 vm_exit_controls_set(vmx
, exec_control
);
2475 * Interrupt/Exception Fields
2477 if (vmx
->nested
.nested_run_pending
) {
2478 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2479 vmcs12
->vm_entry_intr_info_field
);
2480 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
2481 vmcs12
->vm_entry_exception_error_code
);
2482 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2483 vmcs12
->vm_entry_instruction_len
);
2484 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
2485 vmcs12
->guest_interruptibility_info
);
2486 vmx
->loaded_vmcs
->nmi_known_unmasked
=
2487 !(vmcs12
->guest_interruptibility_info
& GUEST_INTR_STATE_NMI
);
2489 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
2493 static void prepare_vmcs02_rare(struct vcpu_vmx
*vmx
, struct vmcs12
*vmcs12
)
2495 struct hv_enlightened_vmcs
*hv_evmcs
= nested_vmx_evmcs(vmx
);
2497 if (!hv_evmcs
|| !(hv_evmcs
->hv_clean_fields
&
2498 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2
)) {
2500 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
2501 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
2502 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
2503 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
2504 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
2505 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
2506 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
2507 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
2508 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
2509 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
2510 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
2511 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
2512 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
2513 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
2514 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
2515 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
2516 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
2517 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
2518 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
2519 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
2520 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
2521 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
2522 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
2523 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
2524 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
2525 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
2526 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
2527 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
2528 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
2529 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
2530 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
2531 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
2532 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
2533 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
2534 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
2535 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
2537 vmx_segment_cache_clear(vmx
);
2540 if (!hv_evmcs
|| !(hv_evmcs
->hv_clean_fields
&
2541 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1
)) {
2542 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
2543 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
2544 vmcs12
->guest_pending_dbg_exceptions
);
2545 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
2546 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
2549 * L1 may access the L2's PDPTR, so save them to construct
2553 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
2554 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
2555 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
2556 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
2559 if (kvm_mpx_supported() && vmx
->nested
.nested_run_pending
&&
2560 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
))
2561 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
2564 if (nested_cpu_has_xsaves(vmcs12
))
2565 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
2568 * Whether page-faults are trapped is determined by a combination of
2569 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2570 * doesn't care about page faults then we should set all of these to
2571 * L1's desires. However, if L0 does care about (some) page faults, it
2572 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2573 * simply ask to exit on each and every L2 page fault. This is done by
2574 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2575 * Note that below we don't need special code to set EB.PF beyond the
2576 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2577 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2578 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2580 if (vmx_need_pf_intercept(&vmx
->vcpu
)) {
2582 * TODO: if both L0 and L1 need the same MASK and MATCH,
2583 * go ahead and use it?
2585 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
2586 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
2588 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, vmcs12
->page_fault_error_code_mask
);
2589 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, vmcs12
->page_fault_error_code_match
);
2592 if (cpu_has_vmx_apicv()) {
2593 vmcs_write64(EOI_EXIT_BITMAP0
, vmcs12
->eoi_exit_bitmap0
);
2594 vmcs_write64(EOI_EXIT_BITMAP1
, vmcs12
->eoi_exit_bitmap1
);
2595 vmcs_write64(EOI_EXIT_BITMAP2
, vmcs12
->eoi_exit_bitmap2
);
2596 vmcs_write64(EOI_EXIT_BITMAP3
, vmcs12
->eoi_exit_bitmap3
);
2600 * Make sure the msr_autostore list is up to date before we set the
2601 * count in the vmcs02.
2603 prepare_vmx_msr_autostore_list(&vmx
->vcpu
, MSR_IA32_TSC
);
2605 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, vmx
->msr_autostore
.guest
.nr
);
2606 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.host
.nr
);
2607 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.guest
.nr
);
2609 set_cr4_guest_host_mask(vmx
);
2613 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2614 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2615 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2616 * guest in a way that will both be appropriate to L1's requests, and our
2617 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2618 * function also has additional necessary side-effects, like setting various
2619 * vcpu->arch fields.
2620 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2621 * is assigned to entry_failure_code on failure.
2623 static int prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
2625 enum vm_entry_failure_code
*entry_failure_code
)
2627 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2628 struct hv_enlightened_vmcs
*evmcs
= nested_vmx_evmcs(vmx
);
2629 bool load_guest_pdptrs_vmcs12
= false;
2631 if (vmx
->nested
.dirty_vmcs12
|| nested_vmx_is_evmptr12_valid(vmx
)) {
2632 prepare_vmcs02_rare(vmx
, vmcs12
);
2633 vmx
->nested
.dirty_vmcs12
= false;
2635 load_guest_pdptrs_vmcs12
= !nested_vmx_is_evmptr12_valid(vmx
) ||
2636 !(evmcs
->hv_clean_fields
& HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1
);
2639 if (vmx
->nested
.nested_run_pending
&&
2640 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
)) {
2641 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
2642 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
2644 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
2645 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.pre_vmenter_debugctl
);
2647 if (kvm_mpx_supported() && (!vmx
->nested
.nested_run_pending
||
2648 !(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)))
2649 vmcs_write64(GUEST_BNDCFGS
, vmx
->nested
.pre_vmenter_bndcfgs
);
2650 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
2652 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2653 * bitwise-or of what L1 wants to trap for L2, and what we want to
2654 * trap. Note that CR0.TS also needs updating - we do this later.
2656 vmx_update_exception_bitmap(vcpu
);
2657 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
2658 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
2660 if (vmx
->nested
.nested_run_pending
&&
2661 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)) {
2662 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
2663 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
2664 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2665 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
2668 vcpu
->arch
.tsc_offset
= kvm_calc_nested_tsc_offset(
2669 vcpu
->arch
.l1_tsc_offset
,
2670 vmx_get_l2_tsc_offset(vcpu
),
2671 vmx_get_l2_tsc_multiplier(vcpu
));
2673 vcpu
->arch
.tsc_scaling_ratio
= kvm_calc_nested_tsc_multiplier(
2674 vcpu
->arch
.l1_tsc_scaling_ratio
,
2675 vmx_get_l2_tsc_multiplier(vcpu
));
2677 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
2678 if (kvm_caps
.has_tsc_control
)
2679 vmcs_write64(TSC_MULTIPLIER
, vcpu
->arch
.tsc_scaling_ratio
);
2681 nested_vmx_transition_tlb_flush(vcpu
, vmcs12
, true);
2683 if (nested_cpu_has_ept(vmcs12
))
2684 nested_ept_init_mmu_context(vcpu
);
2687 * Override the CR0/CR4 read shadows after setting the effective guest
2688 * CR0/CR4. The common helpers also set the shadows, but they don't
2689 * account for vmcs12's cr0/4_guest_host_mask.
2691 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
2692 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
2694 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
2695 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
2697 vcpu
->arch
.efer
= nested_vmx_calc_efer(vmx
, vmcs12
);
2698 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2699 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
2702 * Guest state is invalid and unrestricted guest is disabled,
2703 * which means L1 attempted VMEntry to L2 with invalid state.
2706 * However when force loading the guest state (SMM exit or
2707 * loading nested state after migration, it is possible to
2708 * have invalid guest state now, which will be later fixed by
2709 * restoring L2 register state
2711 if (CC(from_vmentry
&& !vmx_guest_state_valid(vcpu
))) {
2712 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
2716 /* Shadow page tables on either EPT or shadow page tables. */
2717 if (nested_vmx_load_cr3(vcpu
, vmcs12
->guest_cr3
, nested_cpu_has_ept(vmcs12
),
2718 from_vmentry
, entry_failure_code
))
2722 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2723 * on nested VM-Exit, which can occur without actually running L2 and
2724 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2725 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2726 * transition to HLT instead of running L2.
2729 vmcs_writel(GUEST_CR3
, vmcs12
->guest_cr3
);
2731 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2732 if (load_guest_pdptrs_vmcs12
&& nested_cpu_has_ept(vmcs12
) &&
2733 is_pae_paging(vcpu
)) {
2734 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
2735 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
2736 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
2737 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
2740 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
) &&
2741 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu
)) &&
2742 WARN_ON_ONCE(kvm_set_msr(vcpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
2743 vmcs12
->guest_ia32_perf_global_ctrl
))) {
2744 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
2748 kvm_rsp_write(vcpu
, vmcs12
->guest_rsp
);
2749 kvm_rip_write(vcpu
, vmcs12
->guest_rip
);
2752 * It was observed that genuine Hyper-V running in L1 doesn't reset
2753 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2754 * bits when it changes a field in eVMCS. Mark all fields as clean
2757 if (nested_vmx_is_evmptr12_valid(vmx
))
2758 evmcs
->hv_clean_fields
|= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL
;
2763 static int nested_vmx_check_nmi_controls(struct vmcs12
*vmcs12
)
2765 if (CC(!nested_cpu_has_nmi_exiting(vmcs12
) &&
2766 nested_cpu_has_virtual_nmis(vmcs12
)))
2769 if (CC(!nested_cpu_has_virtual_nmis(vmcs12
) &&
2770 nested_cpu_has(vmcs12
, CPU_BASED_NMI_WINDOW_EXITING
)))
2776 static bool nested_vmx_check_eptp(struct kvm_vcpu
*vcpu
, u64 new_eptp
)
2778 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2780 /* Check for memory type validity */
2781 switch (new_eptp
& VMX_EPTP_MT_MASK
) {
2782 case VMX_EPTP_MT_UC
:
2783 if (CC(!(vmx
->nested
.msrs
.ept_caps
& VMX_EPTP_UC_BIT
)))
2786 case VMX_EPTP_MT_WB
:
2787 if (CC(!(vmx
->nested
.msrs
.ept_caps
& VMX_EPTP_WB_BIT
)))
2794 /* Page-walk levels validity. */
2795 switch (new_eptp
& VMX_EPTP_PWL_MASK
) {
2796 case VMX_EPTP_PWL_5
:
2797 if (CC(!(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_PAGE_WALK_5_BIT
)))
2800 case VMX_EPTP_PWL_4
:
2801 if (CC(!(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_PAGE_WALK_4_BIT
)))
2808 /* Reserved bits should not be set */
2809 if (CC(!kvm_vcpu_is_legal_gpa(vcpu
, new_eptp
) || ((new_eptp
>> 7) & 0x1f)))
2812 /* AD, if set, should be supported */
2813 if (new_eptp
& VMX_EPTP_AD_ENABLE_BIT
) {
2814 if (CC(!(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_AD_BIT
)))
2822 * Checks related to VM-Execution Control Fields
2824 static int nested_check_vm_execution_controls(struct kvm_vcpu
*vcpu
,
2825 struct vmcs12
*vmcs12
)
2827 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2829 if (CC(!vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
2830 vmx
->nested
.msrs
.pinbased_ctls_low
,
2831 vmx
->nested
.msrs
.pinbased_ctls_high
)) ||
2832 CC(!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
2833 vmx
->nested
.msrs
.procbased_ctls_low
,
2834 vmx
->nested
.msrs
.procbased_ctls_high
)))
2837 if (nested_cpu_has(vmcs12
, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
2838 CC(!vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
2839 vmx
->nested
.msrs
.secondary_ctls_low
,
2840 vmx
->nested
.msrs
.secondary_ctls_high
)))
2843 if (CC(vmcs12
->cr3_target_count
> nested_cpu_vmx_misc_cr3_count(vcpu
)) ||
2844 nested_vmx_check_io_bitmap_controls(vcpu
, vmcs12
) ||
2845 nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
) ||
2846 nested_vmx_check_tpr_shadow_controls(vcpu
, vmcs12
) ||
2847 nested_vmx_check_apic_access_controls(vcpu
, vmcs12
) ||
2848 nested_vmx_check_apicv_controls(vcpu
, vmcs12
) ||
2849 nested_vmx_check_nmi_controls(vmcs12
) ||
2850 nested_vmx_check_pml_controls(vcpu
, vmcs12
) ||
2851 nested_vmx_check_unrestricted_guest_controls(vcpu
, vmcs12
) ||
2852 nested_vmx_check_mode_based_ept_exec_controls(vcpu
, vmcs12
) ||
2853 nested_vmx_check_shadow_vmcs_controls(vcpu
, vmcs12
) ||
2854 CC(nested_cpu_has_vpid(vmcs12
) && !vmcs12
->virtual_processor_id
))
2857 if (!nested_cpu_has_preemption_timer(vmcs12
) &&
2858 nested_cpu_has_save_preemption_timer(vmcs12
))
2861 if (nested_cpu_has_ept(vmcs12
) &&
2862 CC(!nested_vmx_check_eptp(vcpu
, vmcs12
->ept_pointer
)))
2865 if (nested_cpu_has_vmfunc(vmcs12
)) {
2866 if (CC(vmcs12
->vm_function_control
&
2867 ~vmx
->nested
.msrs
.vmfunc_controls
))
2870 if (nested_cpu_has_eptp_switching(vmcs12
)) {
2871 if (CC(!nested_cpu_has_ept(vmcs12
)) ||
2872 CC(!page_address_valid(vcpu
, vmcs12
->eptp_list_address
)))
2881 * Checks related to VM-Exit Control Fields
2883 static int nested_check_vm_exit_controls(struct kvm_vcpu
*vcpu
,
2884 struct vmcs12
*vmcs12
)
2886 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2888 if (CC(!vmx_control_verify(vmcs12
->vm_exit_controls
,
2889 vmx
->nested
.msrs
.exit_ctls_low
,
2890 vmx
->nested
.msrs
.exit_ctls_high
)) ||
2891 CC(nested_vmx_check_exit_msr_switch_controls(vcpu
, vmcs12
)))
2898 * Checks related to VM-Entry Control Fields
2900 static int nested_check_vm_entry_controls(struct kvm_vcpu
*vcpu
,
2901 struct vmcs12
*vmcs12
)
2903 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2905 if (CC(!vmx_control_verify(vmcs12
->vm_entry_controls
,
2906 vmx
->nested
.msrs
.entry_ctls_low
,
2907 vmx
->nested
.msrs
.entry_ctls_high
)))
2911 * From the Intel SDM, volume 3:
2912 * Fields relevant to VM-entry event injection must be set properly.
2913 * These fields are the VM-entry interruption-information field, the
2914 * VM-entry exception error code, and the VM-entry instruction length.
2916 if (vmcs12
->vm_entry_intr_info_field
& INTR_INFO_VALID_MASK
) {
2917 u32 intr_info
= vmcs12
->vm_entry_intr_info_field
;
2918 u8 vector
= intr_info
& INTR_INFO_VECTOR_MASK
;
2919 u32 intr_type
= intr_info
& INTR_INFO_INTR_TYPE_MASK
;
2920 bool has_error_code
= intr_info
& INTR_INFO_DELIVER_CODE_MASK
;
2921 bool should_have_error_code
;
2922 bool urg
= nested_cpu_has2(vmcs12
,
2923 SECONDARY_EXEC_UNRESTRICTED_GUEST
);
2924 bool prot_mode
= !urg
|| vmcs12
->guest_cr0
& X86_CR0_PE
;
2926 /* VM-entry interruption-info field: interruption type */
2927 if (CC(intr_type
== INTR_TYPE_RESERVED
) ||
2928 CC(intr_type
== INTR_TYPE_OTHER_EVENT
&&
2929 !nested_cpu_supports_monitor_trap_flag(vcpu
)))
2932 /* VM-entry interruption-info field: vector */
2933 if (CC(intr_type
== INTR_TYPE_NMI_INTR
&& vector
!= NMI_VECTOR
) ||
2934 CC(intr_type
== INTR_TYPE_HARD_EXCEPTION
&& vector
> 31) ||
2935 CC(intr_type
== INTR_TYPE_OTHER_EVENT
&& vector
!= 0))
2938 /* VM-entry interruption-info field: deliver error code */
2939 should_have_error_code
=
2940 intr_type
== INTR_TYPE_HARD_EXCEPTION
&& prot_mode
&&
2941 x86_exception_has_error_code(vector
);
2942 if (CC(has_error_code
!= should_have_error_code
))
2945 /* VM-entry exception error code */
2946 if (CC(has_error_code
&&
2947 vmcs12
->vm_entry_exception_error_code
& GENMASK(31, 16)))
2950 /* VM-entry interruption-info field: reserved bits */
2951 if (CC(intr_info
& INTR_INFO_RESVD_BITS_MASK
))
2954 /* VM-entry instruction length */
2955 switch (intr_type
) {
2956 case INTR_TYPE_SOFT_EXCEPTION
:
2957 case INTR_TYPE_SOFT_INTR
:
2958 case INTR_TYPE_PRIV_SW_EXCEPTION
:
2959 if (CC(vmcs12
->vm_entry_instruction_len
> 15) ||
2960 CC(vmcs12
->vm_entry_instruction_len
== 0 &&
2961 CC(!nested_cpu_has_zero_length_injection(vcpu
))))
2966 if (nested_vmx_check_entry_msr_switch_controls(vcpu
, vmcs12
))
2972 static int nested_vmx_check_controls(struct kvm_vcpu
*vcpu
,
2973 struct vmcs12
*vmcs12
)
2975 if (nested_check_vm_execution_controls(vcpu
, vmcs12
) ||
2976 nested_check_vm_exit_controls(vcpu
, vmcs12
) ||
2977 nested_check_vm_entry_controls(vcpu
, vmcs12
))
2980 #ifdef CONFIG_KVM_HYPERV
2981 if (guest_cpuid_has_evmcs(vcpu
))
2982 return nested_evmcs_check_controls(vmcs12
);
2988 static int nested_vmx_check_address_space_size(struct kvm_vcpu
*vcpu
,
2989 struct vmcs12
*vmcs12
)
2991 #ifdef CONFIG_X86_64
2992 if (CC(!!(vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
) !=
2993 !!(vcpu
->arch
.efer
& EFER_LMA
)))
2999 static int nested_vmx_check_host_state(struct kvm_vcpu
*vcpu
,
3000 struct vmcs12
*vmcs12
)
3002 bool ia32e
= !!(vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
);
3004 if (CC(!nested_host_cr0_valid(vcpu
, vmcs12
->host_cr0
)) ||
3005 CC(!nested_host_cr4_valid(vcpu
, vmcs12
->host_cr4
)) ||
3006 CC(!kvm_vcpu_is_legal_cr3(vcpu
, vmcs12
->host_cr3
)))
3009 if (CC(is_noncanonical_address(vmcs12
->host_ia32_sysenter_esp
, vcpu
)) ||
3010 CC(is_noncanonical_address(vmcs12
->host_ia32_sysenter_eip
, vcpu
)))
3013 if ((vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) &&
3014 CC(!kvm_pat_valid(vmcs12
->host_ia32_pat
)))
3017 if ((vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
) &&
3018 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu
),
3019 vmcs12
->host_ia32_perf_global_ctrl
)))
3023 if (CC(!(vmcs12
->host_cr4
& X86_CR4_PAE
)))
3026 if (CC(vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) ||
3027 CC(vmcs12
->host_cr4
& X86_CR4_PCIDE
) ||
3028 CC((vmcs12
->host_rip
) >> 32))
3032 if (CC(vmcs12
->host_cs_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3033 CC(vmcs12
->host_ss_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3034 CC(vmcs12
->host_ds_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3035 CC(vmcs12
->host_es_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3036 CC(vmcs12
->host_fs_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3037 CC(vmcs12
->host_gs_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3038 CC(vmcs12
->host_tr_selector
& (SEGMENT_RPL_MASK
| SEGMENT_TI_MASK
)) ||
3039 CC(vmcs12
->host_cs_selector
== 0) ||
3040 CC(vmcs12
->host_tr_selector
== 0) ||
3041 CC(vmcs12
->host_ss_selector
== 0 && !ia32e
))
3044 if (CC(is_noncanonical_address(vmcs12
->host_fs_base
, vcpu
)) ||
3045 CC(is_noncanonical_address(vmcs12
->host_gs_base
, vcpu
)) ||
3046 CC(is_noncanonical_address(vmcs12
->host_gdtr_base
, vcpu
)) ||
3047 CC(is_noncanonical_address(vmcs12
->host_idtr_base
, vcpu
)) ||
3048 CC(is_noncanonical_address(vmcs12
->host_tr_base
, vcpu
)) ||
3049 CC(is_noncanonical_address(vmcs12
->host_rip
, vcpu
)))
3053 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3054 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3055 * the values of the LMA and LME bits in the field must each be that of
3056 * the host address-space size VM-exit control.
3058 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
3059 if (CC(!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
)) ||
3060 CC(ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
)) ||
3061 CC(ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
)))
3068 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu
*vcpu
,
3069 struct vmcs12
*vmcs12
)
3071 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3072 struct gfn_to_hva_cache
*ghc
= &vmx
->nested
.shadow_vmcs12_cache
;
3073 struct vmcs_hdr hdr
;
3075 if (vmcs12
->vmcs_link_pointer
== INVALID_GPA
)
3078 if (CC(!page_address_valid(vcpu
, vmcs12
->vmcs_link_pointer
)))
3081 if (ghc
->gpa
!= vmcs12
->vmcs_link_pointer
&&
3082 CC(kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
,
3083 vmcs12
->vmcs_link_pointer
, VMCS12_SIZE
)))
3086 if (CC(kvm_read_guest_offset_cached(vcpu
->kvm
, ghc
, &hdr
,
3087 offsetof(struct vmcs12
, hdr
),
3091 if (CC(hdr
.revision_id
!= VMCS12_REVISION
) ||
3092 CC(hdr
.shadow_vmcs
!= nested_cpu_has_shadow_vmcs(vmcs12
)))
3099 * Checks related to Guest Non-register State
3101 static int nested_check_guest_non_reg_state(struct vmcs12
*vmcs12
)
3103 if (CC(vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
3104 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
&&
3105 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_WAIT_SIPI
))
3111 static int nested_vmx_check_guest_state(struct kvm_vcpu
*vcpu
,
3112 struct vmcs12
*vmcs12
,
3113 enum vm_entry_failure_code
*entry_failure_code
)
3115 bool ia32e
= !!(vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
);
3117 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
3119 if (CC(!nested_guest_cr0_valid(vcpu
, vmcs12
->guest_cr0
)) ||
3120 CC(!nested_guest_cr4_valid(vcpu
, vmcs12
->guest_cr4
)))
3123 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) &&
3124 CC(!kvm_dr7_valid(vmcs12
->guest_dr7
)))
3127 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
) &&
3128 CC(!kvm_pat_valid(vmcs12
->guest_ia32_pat
)))
3131 if (nested_vmx_check_vmcs_link_ptr(vcpu
, vmcs12
)) {
3132 *entry_failure_code
= ENTRY_FAIL_VMCS_LINK_PTR
;
3136 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
) &&
3137 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu
),
3138 vmcs12
->guest_ia32_perf_global_ctrl
)))
3141 if (CC((vmcs12
->guest_cr0
& (X86_CR0_PG
| X86_CR0_PE
)) == X86_CR0_PG
))
3144 if (CC(ia32e
&& !(vmcs12
->guest_cr4
& X86_CR4_PAE
)) ||
3145 CC(ia32e
&& !(vmcs12
->guest_cr0
& X86_CR0_PG
)))
3149 * If the load IA32_EFER VM-entry control is 1, the following checks
3150 * are performed on the field for the IA32_EFER MSR:
3151 * - Bits reserved in the IA32_EFER MSR must be 0.
3152 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3153 * the IA-32e mode guest VM-exit control. It must also be identical
3154 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3157 if (to_vmx(vcpu
)->nested
.nested_run_pending
&&
3158 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)) {
3159 if (CC(!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
)) ||
3160 CC(ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
)) ||
3161 CC(((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
3162 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
))))
3166 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
) &&
3167 (CC(is_noncanonical_address(vmcs12
->guest_bndcfgs
& PAGE_MASK
, vcpu
)) ||
3168 CC((vmcs12
->guest_bndcfgs
& MSR_IA32_BNDCFGS_RSVD
))))
3171 if (nested_check_guest_non_reg_state(vmcs12
))
3177 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu
*vcpu
)
3179 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3180 unsigned long cr3
, cr4
;
3183 if (!nested_early_check
)
3186 if (vmx
->msr_autoload
.host
.nr
)
3187 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
3188 if (vmx
->msr_autoload
.guest
.nr
)
3189 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
3193 vmx_prepare_switch_to_guest(vcpu
);
3196 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3197 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3198 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3199 * there is no need to preserve other bits or save/restore the field.
3201 vmcs_writel(GUEST_RFLAGS
, 0);
3203 cr3
= __get_current_cr3_fast();
3204 if (unlikely(cr3
!= vmx
->loaded_vmcs
->host_state
.cr3
)) {
3205 vmcs_writel(HOST_CR3
, cr3
);
3206 vmx
->loaded_vmcs
->host_state
.cr3
= cr3
;
3209 cr4
= cr4_read_shadow();
3210 if (unlikely(cr4
!= vmx
->loaded_vmcs
->host_state
.cr4
)) {
3211 vmcs_writel(HOST_CR4
, cr4
);
3212 vmx
->loaded_vmcs
->host_state
.cr4
= cr4
;
3215 vm_fail
= __vmx_vcpu_run(vmx
, (unsigned long *)&vcpu
->arch
.regs
,
3216 __vmx_vcpu_run_flags(vmx
));
3218 if (vmx
->msr_autoload
.host
.nr
)
3219 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.host
.nr
);
3220 if (vmx
->msr_autoload
.guest
.nr
)
3221 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.guest
.nr
);
3224 u32 error
= vmcs_read32(VM_INSTRUCTION_ERROR
);
3228 trace_kvm_nested_vmenter_failed(
3229 "early hardware check VM-instruction error: ", error
);
3230 WARN_ON_ONCE(error
!= VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
3235 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3237 if (hw_breakpoint_active())
3238 set_debugreg(__this_cpu_read(cpu_dr7
), 7);
3243 * A non-failing VMEntry means we somehow entered guest mode with
3244 * an illegal RIP, and that's just the tip of the iceberg. There
3245 * is no telling what memory has been modified or what state has
3246 * been exposed to unknown code. Hitting this all but guarantees
3247 * a (very critical) hardware issue.
3249 WARN_ON(!(vmcs_read32(VM_EXIT_REASON
) &
3250 VMX_EXIT_REASONS_FAILED_VMENTRY
));
3255 #ifdef CONFIG_KVM_HYPERV
3256 static bool nested_get_evmcs_page(struct kvm_vcpu
*vcpu
)
3258 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3261 * hv_evmcs may end up being not mapped after migration (when
3262 * L2 was running), map it here to make sure vmcs12 changes are
3263 * properly reflected.
3265 if (guest_cpuid_has_evmcs(vcpu
) &&
3266 vmx
->nested
.hv_evmcs_vmptr
== EVMPTR_MAP_PENDING
) {
3267 enum nested_evmptrld_status evmptrld_status
=
3268 nested_vmx_handle_enlightened_vmptrld(vcpu
, false);
3270 if (evmptrld_status
== EVMPTRLD_VMFAIL
||
3271 evmptrld_status
== EVMPTRLD_ERROR
)
3275 * Post migration VMCS12 always provides the most actual
3276 * information, copy it to eVMCS upon entry.
3278 vmx
->nested
.need_vmcs12_to_shadow_sync
= true;
3285 static bool nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
)
3287 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3288 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3289 struct kvm_host_map
*map
;
3291 if (!vcpu
->arch
.pdptrs_from_userspace
&&
3292 !nested_cpu_has_ept(vmcs12
) && is_pae_paging(vcpu
)) {
3294 * Reload the guest's PDPTRs since after a migration
3295 * the guest CR3 might be restored prior to setting the nested
3296 * state which can lead to a load of wrong PDPTRs.
3298 if (CC(!load_pdptrs(vcpu
, vcpu
->arch
.cr3
)))
3303 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
3304 map
= &vmx
->nested
.apic_access_page_map
;
3306 if (!kvm_vcpu_map(vcpu
, gpa_to_gfn(vmcs12
->apic_access_addr
), map
)) {
3307 vmcs_write64(APIC_ACCESS_ADDR
, pfn_to_hpa(map
->pfn
));
3309 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3311 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3312 vcpu
->run
->internal
.suberror
=
3313 KVM_INTERNAL_ERROR_EMULATION
;
3314 vcpu
->run
->internal
.ndata
= 0;
3319 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
3320 map
= &vmx
->nested
.virtual_apic_map
;
3322 if (!kvm_vcpu_map(vcpu
, gpa_to_gfn(vmcs12
->virtual_apic_page_addr
), map
)) {
3323 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, pfn_to_hpa(map
->pfn
));
3324 } else if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
) &&
3325 nested_cpu_has(vmcs12
, CPU_BASED_CR8_STORE_EXITING
) &&
3326 !nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
3328 * The processor will never use the TPR shadow, simply
3329 * clear the bit from the execution control. Such a
3330 * configuration is useless, but it happens in tests.
3331 * For any other configuration, failing the vm entry is
3332 * _not_ what the processor does but it's basically the
3333 * only possibility we have.
3335 exec_controls_clearbit(vmx
, CPU_BASED_TPR_SHADOW
);
3338 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3339 * force VM-Entry to fail.
3341 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, INVALID_GPA
);
3345 if (nested_cpu_has_posted_intr(vmcs12
)) {
3346 map
= &vmx
->nested
.pi_desc_map
;
3348 if (!kvm_vcpu_map(vcpu
, gpa_to_gfn(vmcs12
->posted_intr_desc_addr
), map
)) {
3349 vmx
->nested
.pi_desc
=
3350 (struct pi_desc
*)(((void *)map
->hva
) +
3351 offset_in_page(vmcs12
->posted_intr_desc_addr
));
3352 vmcs_write64(POSTED_INTR_DESC_ADDR
,
3353 pfn_to_hpa(map
->pfn
) + offset_in_page(vmcs12
->posted_intr_desc_addr
));
3356 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3357 * access the contents of the VMCS12 posted interrupt
3358 * descriptor. (Note that KVM may do this when it
3359 * should not, per the architectural specification.)
3361 vmx
->nested
.pi_desc
= NULL
;
3362 pin_controls_clearbit(vmx
, PIN_BASED_POSTED_INTR
);
3365 if (nested_vmx_prepare_msr_bitmap(vcpu
, vmcs12
))
3366 exec_controls_setbit(vmx
, CPU_BASED_USE_MSR_BITMAPS
);
3368 exec_controls_clearbit(vmx
, CPU_BASED_USE_MSR_BITMAPS
);
3373 static bool vmx_get_nested_state_pages(struct kvm_vcpu
*vcpu
)
3375 #ifdef CONFIG_KVM_HYPERV
3377 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3378 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3379 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3382 if (!nested_get_evmcs_page(vcpu
)) {
3383 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3385 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3386 vcpu
->run
->internal
.suberror
=
3387 KVM_INTERNAL_ERROR_EMULATION
;
3388 vcpu
->run
->internal
.ndata
= 0;
3394 if (is_guest_mode(vcpu
) && !nested_get_vmcs12_pages(vcpu
))
3400 static int nested_vmx_write_pml_buffer(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
3402 struct vmcs12
*vmcs12
;
3403 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3406 if (WARN_ON_ONCE(!is_guest_mode(vcpu
)))
3409 if (WARN_ON_ONCE(vmx
->nested
.pml_full
))
3413 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3414 * set is already checked as part of A/D emulation.
3416 vmcs12
= get_vmcs12(vcpu
);
3417 if (!nested_cpu_has_pml(vmcs12
))
3420 if (vmcs12
->guest_pml_index
>= PML_ENTITY_NUM
) {
3421 vmx
->nested
.pml_full
= true;
3426 dst
= vmcs12
->pml_address
+ sizeof(u64
) * vmcs12
->guest_pml_index
;
3428 if (kvm_write_guest_page(vcpu
->kvm
, gpa_to_gfn(dst
), &gpa
,
3429 offset_in_page(dst
), sizeof(gpa
)))
3432 vmcs12
->guest_pml_index
--;
3438 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3439 * for running VMX instructions (except VMXON, whose prerequisites are
3440 * slightly different). It also specifies what exception to inject otherwise.
3441 * Note that many of these exceptions have priority over VM exits, so they
3442 * don't have to be checked again here.
3444 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
3446 if (!to_vmx(vcpu
)->nested
.vmxon
) {
3447 kvm_queue_exception(vcpu
, UD_VECTOR
);
3451 if (vmx_get_cpl(vcpu
)) {
3452 kvm_inject_gp(vcpu
, 0);
3459 static u8
vmx_has_apicv_interrupt(struct kvm_vcpu
*vcpu
)
3461 u8 rvi
= vmx_get_rvi();
3462 u8 vppr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_PROCPRI
);
3464 return ((rvi
& 0xf0) > (vppr
& 0xf0));
3467 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
3468 struct vmcs12
*vmcs12
);
3471 * If from_vmentry is false, this is being called from state restore (either RSM
3472 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3475 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3476 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3477 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3478 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3480 enum nvmx_vmentry_status
nested_vmx_enter_non_root_mode(struct kvm_vcpu
*vcpu
,
3483 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3484 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3485 enum vm_entry_failure_code entry_failure_code
;
3486 bool evaluate_pending_interrupts
;
3487 union vmx_exit_reason exit_reason
= {
3488 .basic
= EXIT_REASON_INVALID_STATE
,
3489 .failed_vmentry
= 1,
3493 trace_kvm_nested_vmenter(kvm_rip_read(vcpu
),
3494 vmx
->nested
.current_vmptr
,
3496 vmcs12
->guest_intr_status
,
3497 vmcs12
->vm_entry_intr_info_field
,
3498 vmcs12
->secondary_vm_exec_control
& SECONDARY_EXEC_ENABLE_EPT
,
3499 vmcs12
->ept_pointer
,
3503 kvm_service_local_tlb_flush_requests(vcpu
);
3505 evaluate_pending_interrupts
= exec_controls_get(vmx
) &
3506 (CPU_BASED_INTR_WINDOW_EXITING
| CPU_BASED_NMI_WINDOW_EXITING
);
3507 if (likely(!evaluate_pending_interrupts
) && kvm_vcpu_apicv_active(vcpu
))
3508 evaluate_pending_interrupts
|= vmx_has_apicv_interrupt(vcpu
);
3509 if (!evaluate_pending_interrupts
)
3510 evaluate_pending_interrupts
|= kvm_apic_has_pending_init_or_sipi(vcpu
);
3512 if (!vmx
->nested
.nested_run_pending
||
3513 !(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
3514 vmx
->nested
.pre_vmenter_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
3515 if (kvm_mpx_supported() &&
3516 (!vmx
->nested
.nested_run_pending
||
3517 !(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
)))
3518 vmx
->nested
.pre_vmenter_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
3521 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3522 * nested early checks are disabled. In the event of a "late" VM-Fail,
3523 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3524 * software model to the pre-VMEntry host state. When EPT is disabled,
3525 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3526 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3527 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3528 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3529 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3530 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3531 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3532 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3533 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3534 * path would need to manually save/restore vmcs01.GUEST_CR3.
3536 if (!enable_ept
&& !nested_early_check
)
3537 vmcs_writel(GUEST_CR3
, vcpu
->arch
.cr3
);
3539 vmx_switch_vmcs(vcpu
, &vmx
->nested
.vmcs02
);
3541 prepare_vmcs02_early(vmx
, &vmx
->vmcs01
, vmcs12
);
3544 if (unlikely(!nested_get_vmcs12_pages(vcpu
))) {
3545 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
3546 return NVMX_VMENTRY_KVM_INTERNAL_ERROR
;
3549 if (nested_vmx_check_vmentry_hw(vcpu
)) {
3550 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
3551 return NVMX_VMENTRY_VMFAIL
;
3554 if (nested_vmx_check_guest_state(vcpu
, vmcs12
,
3555 &entry_failure_code
)) {
3556 exit_reason
.basic
= EXIT_REASON_INVALID_STATE
;
3557 vmcs12
->exit_qualification
= entry_failure_code
;
3558 goto vmentry_fail_vmexit
;
3562 enter_guest_mode(vcpu
);
3564 if (prepare_vmcs02(vcpu
, vmcs12
, from_vmentry
, &entry_failure_code
)) {
3565 exit_reason
.basic
= EXIT_REASON_INVALID_STATE
;
3566 vmcs12
->exit_qualification
= entry_failure_code
;
3567 goto vmentry_fail_vmexit_guest_mode
;
3571 failed_index
= nested_vmx_load_msr(vcpu
,
3572 vmcs12
->vm_entry_msr_load_addr
,
3573 vmcs12
->vm_entry_msr_load_count
);
3575 exit_reason
.basic
= EXIT_REASON_MSR_LOAD_FAIL
;
3576 vmcs12
->exit_qualification
= failed_index
;
3577 goto vmentry_fail_vmexit_guest_mode
;
3581 * The MMU is not initialized to point at the right entities yet and
3582 * "get pages" would need to read data from the guest (i.e. we will
3583 * need to perform gpa to hpa translation). Request a call
3584 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3585 * have already been set at vmentry time and should not be reset.
3587 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES
, vcpu
);
3591 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3592 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3593 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3596 if (unlikely(evaluate_pending_interrupts
))
3597 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3600 * Do not start the preemption timer hrtimer until after we know
3601 * we are successful, so that only nested_vmx_vmexit needs to cancel
3604 vmx
->nested
.preemption_timer_expired
= false;
3605 if (nested_cpu_has_preemption_timer(vmcs12
)) {
3606 u64 timer_value
= vmx_calc_preemption_timer_value(vcpu
);
3607 vmx_start_preemption_timer(vcpu
, timer_value
);
3611 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3612 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3613 * returned as far as L1 is concerned. It will only return (and set
3614 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3616 return NVMX_VMENTRY_SUCCESS
;
3619 * A failed consistency check that leads to a VMExit during L1's
3620 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3621 * 26.7 "VM-entry failures during or after loading guest state".
3623 vmentry_fail_vmexit_guest_mode
:
3624 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETTING
)
3625 vcpu
->arch
.tsc_offset
-= vmcs12
->tsc_offset
;
3626 leave_guest_mode(vcpu
);
3628 vmentry_fail_vmexit
:
3629 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
3632 return NVMX_VMENTRY_VMEXIT
;
3634 load_vmcs12_host_state(vcpu
, vmcs12
);
3635 vmcs12
->vm_exit_reason
= exit_reason
.full
;
3636 if (enable_shadow_vmcs
|| nested_vmx_is_evmptr12_valid(vmx
))
3637 vmx
->nested
.need_vmcs12_to_shadow_sync
= true;
3638 return NVMX_VMENTRY_VMEXIT
;
3642 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3643 * for running an L2 nested guest.
3645 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
3647 struct vmcs12
*vmcs12
;
3648 enum nvmx_vmentry_status status
;
3649 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3650 u32 interrupt_shadow
= vmx_get_interrupt_shadow(vcpu
);
3651 enum nested_evmptrld_status evmptrld_status
;
3653 if (!nested_vmx_check_permission(vcpu
))
3656 evmptrld_status
= nested_vmx_handle_enlightened_vmptrld(vcpu
, launch
);
3657 if (evmptrld_status
== EVMPTRLD_ERROR
) {
3658 kvm_queue_exception(vcpu
, UD_VECTOR
);
3662 kvm_pmu_trigger_event(vcpu
, kvm_pmu_eventsel
.BRANCH_INSTRUCTIONS_RETIRED
);
3664 if (CC(evmptrld_status
== EVMPTRLD_VMFAIL
))
3665 return nested_vmx_failInvalid(vcpu
);
3667 if (CC(!nested_vmx_is_evmptr12_valid(vmx
) &&
3668 vmx
->nested
.current_vmptr
== INVALID_GPA
))
3669 return nested_vmx_failInvalid(vcpu
);
3671 vmcs12
= get_vmcs12(vcpu
);
3674 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3675 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3676 * rather than RFLAGS.ZF, and no error number is stored to the
3677 * VM-instruction error field.
3679 if (CC(vmcs12
->hdr
.shadow_vmcs
))
3680 return nested_vmx_failInvalid(vcpu
);
3682 if (nested_vmx_is_evmptr12_valid(vmx
)) {
3683 struct hv_enlightened_vmcs
*evmcs
= nested_vmx_evmcs(vmx
);
3685 copy_enlightened_to_vmcs12(vmx
, evmcs
->hv_clean_fields
);
3686 /* Enlightened VMCS doesn't have launch state */
3687 vmcs12
->launch_state
= !launch
;
3688 } else if (enable_shadow_vmcs
) {
3689 copy_shadow_to_vmcs12(vmx
);
3693 * The nested entry process starts with enforcing various prerequisites
3694 * on vmcs12 as required by the Intel SDM, and act appropriately when
3695 * they fail: As the SDM explains, some conditions should cause the
3696 * instruction to fail, while others will cause the instruction to seem
3697 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3698 * To speed up the normal (success) code path, we should avoid checking
3699 * for misconfigurations which will anyway be caught by the processor
3700 * when using the merged vmcs02.
3702 if (CC(interrupt_shadow
& KVM_X86_SHADOW_INT_MOV_SS
))
3703 return nested_vmx_fail(vcpu
, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS
);
3705 if (CC(vmcs12
->launch_state
== launch
))
3706 return nested_vmx_fail(vcpu
,
3707 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3708 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
3710 if (nested_vmx_check_controls(vcpu
, vmcs12
))
3711 return nested_vmx_fail(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
3713 if (nested_vmx_check_address_space_size(vcpu
, vmcs12
))
3714 return nested_vmx_fail(vcpu
, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
3716 if (nested_vmx_check_host_state(vcpu
, vmcs12
))
3717 return nested_vmx_fail(vcpu
, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
);
3720 * We're finally done with prerequisite checking, and can start with
3723 vmx
->nested
.nested_run_pending
= 1;
3724 vmx
->nested
.has_preemption_timer_deadline
= false;
3725 status
= nested_vmx_enter_non_root_mode(vcpu
, true);
3726 if (unlikely(status
!= NVMX_VMENTRY_SUCCESS
))
3727 goto vmentry_failed
;
3729 /* Emulate processing of posted interrupts on VM-Enter. */
3730 if (nested_cpu_has_posted_intr(vmcs12
) &&
3731 kvm_apic_has_interrupt(vcpu
) == vmx
->nested
.posted_intr_nv
) {
3732 vmx
->nested
.pi_pending
= true;
3733 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3734 kvm_apic_clear_irr(vcpu
, vmx
->nested
.posted_intr_nv
);
3737 /* Hide L1D cache contents from the nested guest. */
3738 vmx
->vcpu
.arch
.l1tf_flush_l1d
= true;
3741 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3742 * also be used as part of restoring nVMX state for
3743 * snapshot restore (migration).
3745 * In this flow, it is assumed that vmcs12 cache was
3746 * transferred as part of captured nVMX state and should
3747 * therefore not be read from guest memory (which may not
3748 * exist on destination host yet).
3750 nested_cache_shadow_vmcs12(vcpu
, vmcs12
);
3752 switch (vmcs12
->guest_activity_state
) {
3753 case GUEST_ACTIVITY_HLT
:
3755 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3756 * awakened by event injection or by an NMI-window VM-exit or
3757 * by an interrupt-window VM-exit, halt the vcpu.
3759 if (!(vmcs12
->vm_entry_intr_info_field
& INTR_INFO_VALID_MASK
) &&
3760 !nested_cpu_has(vmcs12
, CPU_BASED_NMI_WINDOW_EXITING
) &&
3761 !(nested_cpu_has(vmcs12
, CPU_BASED_INTR_WINDOW_EXITING
) &&
3762 (vmcs12
->guest_rflags
& X86_EFLAGS_IF
))) {
3763 vmx
->nested
.nested_run_pending
= 0;
3764 return kvm_emulate_halt_noskip(vcpu
);
3767 case GUEST_ACTIVITY_WAIT_SIPI
:
3768 vmx
->nested
.nested_run_pending
= 0;
3769 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
3778 vmx
->nested
.nested_run_pending
= 0;
3779 if (status
== NVMX_VMENTRY_KVM_INTERNAL_ERROR
)
3781 if (status
== NVMX_VMENTRY_VMEXIT
)
3783 WARN_ON_ONCE(status
!= NVMX_VMENTRY_VMFAIL
);
3784 return nested_vmx_fail(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
3788 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3789 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3790 * This function returns the new value we should put in vmcs12.guest_cr0.
3791 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3792 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3793 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3794 * didn't trap the bit, because if L1 did, so would L0).
3795 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3796 * been modified by L2, and L1 knows it. So just leave the old value of
3797 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3798 * isn't relevant, because if L0 traps this bit it can set it to anything.
3799 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3800 * changed these bits, and therefore they need to be updated, but L0
3801 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3802 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3804 static inline unsigned long
3805 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
3808 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
3809 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
3810 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
3811 vcpu
->arch
.cr0_guest_owned_bits
));
3814 static inline unsigned long
3815 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
3818 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
3819 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
3820 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
3821 vcpu
->arch
.cr4_guest_owned_bits
));
3824 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
3825 struct vmcs12
*vmcs12
,
3826 u32 vm_exit_reason
, u32 exit_intr_info
)
3832 * Per the SDM, VM-Exits due to double and triple faults are never
3833 * considered to occur during event delivery, even if the double/triple
3834 * fault is the result of an escalating vectoring issue.
3836 * Note, the SDM qualifies the double fault behavior with "The original
3837 * event results in a double-fault exception". It's unclear why the
3838 * qualification exists since exits due to double fault can occur only
3839 * while vectoring a different exception (injected events are never
3840 * subject to interception), i.e. there's _always_ an original event.
3842 * The SDM also uses NMI as a confusing example for the "original event
3843 * causes the VM exit directly" clause. NMI isn't special in any way,
3844 * the same rule applies to all events that cause an exit directly.
3845 * NMI is an odd choice for the example because NMIs can only occur on
3846 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3848 if ((u16
)vm_exit_reason
== EXIT_REASON_TRIPLE_FAULT
||
3849 ((u16
)vm_exit_reason
== EXIT_REASON_EXCEPTION_NMI
&&
3850 is_double_fault(exit_intr_info
))) {
3851 vmcs12
->idt_vectoring_info_field
= 0;
3852 } else if (vcpu
->arch
.exception
.injected
) {
3853 nr
= vcpu
->arch
.exception
.vector
;
3854 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
3856 if (kvm_exception_is_soft(nr
)) {
3857 vmcs12
->vm_exit_instruction_len
=
3858 vcpu
->arch
.event_exit_inst_len
;
3859 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
3861 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
3863 if (vcpu
->arch
.exception
.has_error_code
) {
3864 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
3865 vmcs12
->idt_vectoring_error_code
=
3866 vcpu
->arch
.exception
.error_code
;
3869 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
3870 } else if (vcpu
->arch
.nmi_injected
) {
3871 vmcs12
->idt_vectoring_info_field
=
3872 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
3873 } else if (vcpu
->arch
.interrupt
.injected
) {
3874 nr
= vcpu
->arch
.interrupt
.nr
;
3875 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
3877 if (vcpu
->arch
.interrupt
.soft
) {
3878 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
3879 vmcs12
->vm_entry_instruction_len
=
3880 vcpu
->arch
.event_exit_inst_len
;
3882 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
3884 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
3886 vmcs12
->idt_vectoring_info_field
= 0;
3891 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu
*vcpu
)
3893 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3897 * Don't need to mark the APIC access page dirty; it is never
3898 * written to by the CPU during APIC virtualization.
3901 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
3902 gfn
= vmcs12
->virtual_apic_page_addr
>> PAGE_SHIFT
;
3903 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
3906 if (nested_cpu_has_posted_intr(vmcs12
)) {
3907 gfn
= vmcs12
->posted_intr_desc_addr
>> PAGE_SHIFT
;
3908 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
3912 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
3914 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3919 if (!vmx
->nested
.pi_pending
)
3922 if (!vmx
->nested
.pi_desc
)
3925 vmx
->nested
.pi_pending
= false;
3927 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
3930 max_irr
= pi_find_highest_vector(vmx
->nested
.pi_desc
);
3932 vapic_page
= vmx
->nested
.virtual_apic_map
.hva
;
3936 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
,
3937 vapic_page
, &max_irr
);
3938 status
= vmcs_read16(GUEST_INTR_STATUS
);
3939 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
3941 status
|= (u8
)max_irr
;
3942 vmcs_write16(GUEST_INTR_STATUS
, status
);
3946 nested_mark_vmcs12_pages_dirty(vcpu
);
3950 kvm_handle_memory_failure(vcpu
, X86EMUL_IO_NEEDED
, NULL
);
3954 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu
*vcpu
)
3956 struct kvm_queued_exception
*ex
= &vcpu
->arch
.exception_vmexit
;
3957 u32 intr_info
= ex
->vector
| INTR_INFO_VALID_MASK
;
3958 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
3959 unsigned long exit_qual
;
3961 if (ex
->has_payload
) {
3962 exit_qual
= ex
->payload
;
3963 } else if (ex
->vector
== PF_VECTOR
) {
3964 exit_qual
= vcpu
->arch
.cr2
;
3965 } else if (ex
->vector
== DB_VECTOR
) {
3966 exit_qual
= vcpu
->arch
.dr6
;
3967 exit_qual
&= ~DR6_BT
;
3968 exit_qual
^= DR6_ACTIVE_LOW
;
3974 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3975 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3976 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3978 if (ex
->has_error_code
&& is_protmode(vcpu
)) {
3980 * Intel CPUs do not generate error codes with bits 31:16 set,
3981 * and more importantly VMX disallows setting bits 31:16 in the
3982 * injected error code for VM-Entry. Drop the bits to mimic
3983 * hardware and avoid inducing failure on nested VM-Entry if L1
3984 * chooses to inject the exception back to L2. AMD CPUs _do_
3985 * generate "full" 32-bit error codes, so KVM allows userspace
3986 * to inject exception error codes with bits 31:16 set.
3988 vmcs12
->vm_exit_intr_error_code
= (u16
)ex
->error_code
;
3989 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
3992 if (kvm_exception_is_soft(ex
->vector
))
3993 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
3995 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
3997 if (!(vmcs12
->idt_vectoring_info_field
& VECTORING_INFO_VALID_MASK
) &&
3998 vmx_get_nmi_mask(vcpu
))
3999 intr_info
|= INTR_INFO_UNBLOCK_NMI
;
4001 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
, intr_info
, exit_qual
);
4005 * Returns true if a debug trap is (likely) pending delivery. Infer the class
4006 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4007 * Using the payload is flawed because code breakpoints (fault-like) and data
4008 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4009 * this will return false positives if a to-be-injected code breakpoint #DB is
4010 * pending (from KVM's perspective, but not "pending" across an instruction
4011 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
4014 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4015 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4016 * #DB has already happened), and MTF isn't marked pending on code breakpoints
4017 * from the emulator (because such #DBs are fault-like and thus don't trigger
4018 * actions that fire on instruction retire).
4020 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception
*ex
)
4022 if (!ex
->pending
|| ex
->vector
!= DB_VECTOR
)
4025 /* General Detect #DBs are always fault-like. */
4026 return ex
->payload
& ~DR6_BD
;
4030 * Returns true if there's a pending #DB exception that is lower priority than
4031 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
4032 * KVM, but could theoretically be injected by userspace. Note, this code is
4033 * imperfect, see above.
4035 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception
*ex
)
4037 return vmx_get_pending_dbg_trap(ex
) & ~DR6_BT
;
4041 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4042 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4043 * represents these debug traps with a payload that is said to be compatible
4044 * with the 'pending debug exceptions' field, write the payload to the VMCS
4045 * field if a VM-exit is delivered before the debug trap.
4047 static void nested_vmx_update_pending_dbg(struct kvm_vcpu
*vcpu
)
4049 unsigned long pending_dbg
;
4051 pending_dbg
= vmx_get_pending_dbg_trap(&vcpu
->arch
.exception
);
4053 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, pending_dbg
);
4056 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu
*vcpu
)
4058 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
4059 to_vmx(vcpu
)->nested
.preemption_timer_expired
;
4062 static bool vmx_has_nested_events(struct kvm_vcpu
*vcpu
, bool for_injection
)
4064 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4065 void *vapic
= vmx
->nested
.virtual_apic_map
.hva
;
4068 if (nested_vmx_preemption_timer_pending(vcpu
) ||
4069 vmx
->nested
.mtf_pending
)
4073 * Virtual Interrupt Delivery doesn't require manual injection. Either
4074 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4075 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4076 * the interrupt from the PIR to RVI prior to entering the guest.
4081 if (!nested_cpu_has_vid(get_vmcs12(vcpu
)) ||
4082 __vmx_interrupt_blocked(vcpu
))
4088 vppr
= *((u32
*)(vapic
+ APIC_PROCPRI
));
4090 max_irr
= vmx_get_rvi();
4091 if ((max_irr
& 0xf0) > (vppr
& 0xf0))
4094 if (vmx
->nested
.pi_pending
&& vmx
->nested
.pi_desc
&&
4095 pi_test_on(vmx
->nested
.pi_desc
)) {
4096 max_irr
= pi_find_highest_vector(vmx
->nested
.pi_desc
);
4097 if (max_irr
> 0 && (max_irr
& 0xf0) > (vppr
& 0xf0))
4105 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4106 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4107 * and less minor edits to splice in the priority of VMX Non-Root specific
4108 * events, e.g. MTF and NMI/INTR-window exiting.
4110 * 1 Hardware Reset and Machine Checks
4114 * 2 Trap on Task Switch
4115 * - T flag in TSS is set (on task switch)
4117 * 3 External Hardware Interventions
4123 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4125 * 4 Traps on Previous Instruction
4127 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4128 * breakpoint, or #DB due to a split-lock access)
4130 * 4.3 VMX-preemption timer expired VM-exit
4132 * 4.6 NMI-window exiting VM-exit[2]
4134 * 5 Nonmaskable Interrupts (NMI)
4136 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4138 * 6 Maskable Hardware Interrupts
4140 * 7 Code Breakpoint Fault
4142 * 8 Faults from Fetching Next Instruction
4143 * - Code-Segment Limit Violation
4145 * - Control protection exception (missing ENDBRANCH at target of indirect
4148 * 9 Faults from Decoding Next Instruction
4149 * - Instruction length > 15 bytes
4151 * - Coprocessor Not Available
4153 *10 Faults on Executing Instruction
4157 * - Segment Not Present
4159 * - General Protection
4162 * - x86 FPU Floating-point exception
4163 * - SIMD floating-point exception
4164 * - Virtualization exception
4165 * - Control protection exception
4167 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4168 * INIT signals, and higher priority events take priority over MTF VM exits.
4169 * MTF VM exits take priority over debug-trap exceptions and lower priority
4172 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4173 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4174 * timer take priority over VM exits caused by the "NMI-window exiting"
4175 * VM-execution control and lower priority events.
4177 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4178 * caused by "NMI-window exiting". VM exits caused by this control take
4179 * priority over non-maskable interrupts (NMIs) and lower priority events.
4181 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4182 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4183 * non-maskable interrupts (NMIs) and higher priority events take priority over
4184 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4185 * priority over external interrupts and lower priority events.
4187 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
)
4189 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
4190 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4192 * Only a pending nested run blocks a pending exception. If there is a
4193 * previously injected event, the pending exception occurred while said
4194 * event was being delivered and thus needs to be handled.
4196 bool block_nested_exceptions
= vmx
->nested
.nested_run_pending
;
4198 * New events (not exceptions) are only recognized at instruction
4199 * boundaries. If an event needs reinjection, then KVM is handling a
4200 * VM-Exit that occurred _during_ instruction execution; new events are
4201 * blocked until the instruction completes.
4203 bool block_nested_events
= block_nested_exceptions
||
4204 kvm_event_needs_reinjection(vcpu
);
4206 if (lapic_in_kernel(vcpu
) &&
4207 test_bit(KVM_APIC_INIT
, &apic
->pending_events
)) {
4208 if (block_nested_events
)
4210 nested_vmx_update_pending_dbg(vcpu
);
4211 clear_bit(KVM_APIC_INIT
, &apic
->pending_events
);
4212 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_INIT_RECEIVED
)
4213 nested_vmx_vmexit(vcpu
, EXIT_REASON_INIT_SIGNAL
, 0, 0);
4215 /* MTF is discarded if the vCPU is in WFS. */
4216 vmx
->nested
.mtf_pending
= false;
4220 if (lapic_in_kernel(vcpu
) &&
4221 test_bit(KVM_APIC_SIPI
, &apic
->pending_events
)) {
4222 if (block_nested_events
)
4225 clear_bit(KVM_APIC_SIPI
, &apic
->pending_events
);
4226 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
4227 nested_vmx_vmexit(vcpu
, EXIT_REASON_SIPI_SIGNAL
, 0,
4228 apic
->sipi_vector
& 0xFFUL
);
4231 /* Fallthrough, the SIPI is completely ignored. */
4235 * Process exceptions that are higher priority than Monitor Trap Flag:
4236 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4237 * could theoretically come in from userspace), and ICEBP (INT1).
4239 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4240 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4241 * across SMI/RSM as it should; that needs to be addressed in order to
4242 * prioritize SMI over MTF and trap-like #DBs.
4244 if (vcpu
->arch
.exception_vmexit
.pending
&&
4245 !vmx_is_low_priority_db_trap(&vcpu
->arch
.exception_vmexit
)) {
4246 if (block_nested_exceptions
)
4249 nested_vmx_inject_exception_vmexit(vcpu
);
4253 if (vcpu
->arch
.exception
.pending
&&
4254 !vmx_is_low_priority_db_trap(&vcpu
->arch
.exception
)) {
4255 if (block_nested_exceptions
)
4260 if (vmx
->nested
.mtf_pending
) {
4261 if (block_nested_events
)
4263 nested_vmx_update_pending_dbg(vcpu
);
4264 nested_vmx_vmexit(vcpu
, EXIT_REASON_MONITOR_TRAP_FLAG
, 0, 0);
4268 if (vcpu
->arch
.exception_vmexit
.pending
) {
4269 if (block_nested_exceptions
)
4272 nested_vmx_inject_exception_vmexit(vcpu
);
4276 if (vcpu
->arch
.exception
.pending
) {
4277 if (block_nested_exceptions
)
4282 if (nested_vmx_preemption_timer_pending(vcpu
)) {
4283 if (block_nested_events
)
4285 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
4289 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)) {
4290 if (block_nested_events
)
4295 if (vcpu
->arch
.nmi_pending
&& !vmx_nmi_blocked(vcpu
)) {
4296 if (block_nested_events
)
4298 if (!nested_exit_on_nmi(vcpu
))
4301 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
4302 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
4303 INTR_INFO_VALID_MASK
, 0);
4305 * The NMI-triggered VM exit counts as injection:
4306 * clear this one and block further NMIs.
4308 vcpu
->arch
.nmi_pending
= 0;
4309 vmx_set_nmi_mask(vcpu
, true);
4313 if (kvm_cpu_has_interrupt(vcpu
) && !vmx_interrupt_blocked(vcpu
)) {
4316 if (block_nested_events
)
4318 if (!nested_exit_on_intr(vcpu
))
4321 if (!nested_exit_intr_ack_set(vcpu
)) {
4322 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
4326 irq
= kvm_cpu_get_extint(vcpu
);
4328 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
,
4329 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
| irq
, 0);
4333 irq
= kvm_apic_has_interrupt(vcpu
);
4334 if (WARN_ON_ONCE(irq
< 0))
4338 * If the IRQ is L2's PI notification vector, process posted
4339 * interrupts for L2 instead of injecting VM-Exit, as the
4340 * detection/morphing architecturally occurs when the IRQ is
4341 * delivered to the CPU. Note, only interrupts that are routed
4342 * through the local APIC trigger posted interrupt processing,
4343 * and enabling posted interrupts requires ACK-on-exit.
4345 if (irq
== vmx
->nested
.posted_intr_nv
) {
4346 vmx
->nested
.pi_pending
= true;
4347 kvm_apic_clear_irr(vcpu
, irq
);
4351 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
,
4352 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
| irq
, 0);
4355 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4356 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4357 * if APICv is active.
4359 kvm_apic_ack_interrupt(vcpu
, irq
);
4364 return vmx_complete_nested_posted_interrupt(vcpu
);
4367 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
4370 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
4373 if (ktime_to_ns(remaining
) <= 0)
4376 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
4377 do_div(value
, 1000000);
4378 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
4381 static bool is_vmcs12_ext_field(unsigned long field
)
4384 case GUEST_ES_SELECTOR
:
4385 case GUEST_CS_SELECTOR
:
4386 case GUEST_SS_SELECTOR
:
4387 case GUEST_DS_SELECTOR
:
4388 case GUEST_FS_SELECTOR
:
4389 case GUEST_GS_SELECTOR
:
4390 case GUEST_LDTR_SELECTOR
:
4391 case GUEST_TR_SELECTOR
:
4392 case GUEST_ES_LIMIT
:
4393 case GUEST_CS_LIMIT
:
4394 case GUEST_SS_LIMIT
:
4395 case GUEST_DS_LIMIT
:
4396 case GUEST_FS_LIMIT
:
4397 case GUEST_GS_LIMIT
:
4398 case GUEST_LDTR_LIMIT
:
4399 case GUEST_TR_LIMIT
:
4400 case GUEST_GDTR_LIMIT
:
4401 case GUEST_IDTR_LIMIT
:
4402 case GUEST_ES_AR_BYTES
:
4403 case GUEST_DS_AR_BYTES
:
4404 case GUEST_FS_AR_BYTES
:
4405 case GUEST_GS_AR_BYTES
:
4406 case GUEST_LDTR_AR_BYTES
:
4407 case GUEST_TR_AR_BYTES
:
4414 case GUEST_LDTR_BASE
:
4416 case GUEST_GDTR_BASE
:
4417 case GUEST_IDTR_BASE
:
4418 case GUEST_PENDING_DBG_EXCEPTIONS
:
4428 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu
*vcpu
,
4429 struct vmcs12
*vmcs12
)
4431 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4433 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
4434 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
4435 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
4436 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
4437 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
4438 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
4439 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
4440 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
4441 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
4442 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
4443 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
4444 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
4445 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
4446 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
4447 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
4448 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
4449 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
4450 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
4451 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
4452 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
4453 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
4454 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
4455 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
4456 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
4457 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
4458 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
4459 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
4460 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
4461 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
4462 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
4463 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
4464 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
4465 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
4466 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
4467 vmcs12
->guest_pending_dbg_exceptions
=
4468 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
4470 vmx
->nested
.need_sync_vmcs02_to_vmcs12_rare
= false;
4473 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu
*vcpu
,
4474 struct vmcs12
*vmcs12
)
4476 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4479 if (!vmx
->nested
.need_sync_vmcs02_to_vmcs12_rare
)
4483 WARN_ON_ONCE(vmx
->loaded_vmcs
!= &vmx
->vmcs01
);
4486 vmx
->loaded_vmcs
= &vmx
->nested
.vmcs02
;
4487 vmx_vcpu_load_vmcs(vcpu
, cpu
, &vmx
->vmcs01
);
4489 sync_vmcs02_to_vmcs12_rare(vcpu
, vmcs12
);
4491 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
4492 vmx_vcpu_load_vmcs(vcpu
, cpu
, &vmx
->nested
.vmcs02
);
4497 * Update the guest state fields of vmcs12 to reflect changes that
4498 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4499 * VM-entry controls is also updated, since this is really a guest
4502 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
4504 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4506 if (nested_vmx_is_evmptr12_valid(vmx
))
4507 sync_vmcs02_to_vmcs12_rare(vcpu
, vmcs12
);
4509 vmx
->nested
.need_sync_vmcs02_to_vmcs12_rare
=
4510 !nested_vmx_is_evmptr12_valid(vmx
);
4512 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
4513 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
4515 vmcs12
->guest_rsp
= kvm_rsp_read(vcpu
);
4516 vmcs12
->guest_rip
= kvm_rip_read(vcpu
);
4517 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
4519 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
4520 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
4522 vmcs12
->guest_interruptibility_info
=
4523 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
4525 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
4526 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
4527 else if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
)
4528 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_WAIT_SIPI
;
4530 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
4532 if (nested_cpu_has_preemption_timer(vmcs12
) &&
4533 vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
&&
4534 !vmx
->nested
.nested_run_pending
)
4535 vmcs12
->vmx_preemption_timer_value
=
4536 vmx_get_preemption_timer_value(vcpu
);
4539 * In some cases (usually, nested EPT), L2 is allowed to change its
4540 * own CR3 without exiting. If it has changed it, we must keep it.
4541 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4542 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4544 * Additionally, restore L2's PDPTR to vmcs12.
4547 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
4548 if (nested_cpu_has_ept(vmcs12
) && is_pae_paging(vcpu
)) {
4549 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
4550 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
4551 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
4552 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
4556 vmcs12
->guest_linear_address
= vmcs_readl(GUEST_LINEAR_ADDRESS
);
4558 if (nested_cpu_has_vid(vmcs12
))
4559 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
4561 vmcs12
->vm_entry_controls
=
4562 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
4563 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
4565 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
)
4566 vmcs12
->guest_dr7
= vcpu
->arch
.dr7
;
4568 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
4569 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
4573 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4574 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4575 * and this function updates it to reflect the changes to the guest state while
4576 * L2 was running (and perhaps made some exits which were handled directly by L0
4577 * without going back to L1), and to reflect the exit reason.
4578 * Note that we do not have to copy here all VMCS fields, just those that
4579 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4580 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4581 * which already writes to vmcs12 directly.
4583 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
4584 u32 vm_exit_reason
, u32 exit_intr_info
,
4585 unsigned long exit_qualification
)
4587 /* update exit information fields: */
4588 vmcs12
->vm_exit_reason
= vm_exit_reason
;
4589 if (to_vmx(vcpu
)->exit_reason
.enclave_mode
)
4590 vmcs12
->vm_exit_reason
|= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE
;
4591 vmcs12
->exit_qualification
= exit_qualification
;
4594 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4595 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4596 * exit info fields are unmodified.
4598 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
4599 vmcs12
->launch_state
= 1;
4601 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4602 * instead of reading the real value. */
4603 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
4606 * Transfer the event that L0 or L1 may wanted to inject into
4607 * L2 to IDT_VECTORING_INFO_FIELD.
4609 vmcs12_save_pending_event(vcpu
, vmcs12
,
4610 vm_exit_reason
, exit_intr_info
);
4612 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
4613 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
4614 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
4617 * According to spec, there's no need to store the guest's
4618 * MSRs if the exit is due to a VM-entry failure that occurs
4619 * during or after loading the guest state. Since this exit
4620 * does not fall in that category, we need to save the MSRs.
4622 if (nested_vmx_store_msr(vcpu
,
4623 vmcs12
->vm_exit_msr_store_addr
,
4624 vmcs12
->vm_exit_msr_store_count
))
4625 nested_vmx_abort(vcpu
,
4626 VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
4631 * A part of what we need to when the nested L2 guest exits and we want to
4632 * run its L1 parent, is to reset L1's guest state to the host state specified
4634 * This function is to be called not only on normal nested exit, but also on
4635 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4636 * Failures During or After Loading Guest State").
4637 * This function should be called when the active VMCS is L1's (vmcs01).
4639 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
4640 struct vmcs12
*vmcs12
)
4642 enum vm_entry_failure_code ignored
;
4643 struct kvm_segment seg
;
4645 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
4646 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
4647 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
4648 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
4650 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
4651 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
4653 kvm_rsp_write(vcpu
, vmcs12
->host_rsp
);
4654 kvm_rip_write(vcpu
, vmcs12
->host_rip
);
4655 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
4656 vmx_set_interrupt_shadow(vcpu
, 0);
4659 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4660 * actually changed, because vmx_set_cr0 refers to efer set above.
4662 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4663 * (KVM doesn't change it);
4665 vcpu
->arch
.cr0_guest_owned_bits
= vmx_l1_guest_owned_cr0_bits();
4666 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
4668 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4669 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
4670 vmx_set_cr4(vcpu
, vmcs12
->host_cr4
);
4672 nested_ept_uninit_mmu_context(vcpu
);
4675 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4676 * couldn't have changed.
4678 if (nested_vmx_load_cr3(vcpu
, vmcs12
->host_cr3
, false, true, &ignored
))
4679 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_PDPTE_FAIL
);
4681 nested_vmx_transition_tlb_flush(vcpu
, vmcs12
, false);
4683 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
4684 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
4685 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
4686 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
4687 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
4688 vmcs_write32(GUEST_IDTR_LIMIT
, 0xFFFF);
4689 vmcs_write32(GUEST_GDTR_LIMIT
, 0xFFFF);
4691 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4692 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
4693 vmcs_write64(GUEST_BNDCFGS
, 0);
4695 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
4696 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
4697 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
4699 if ((vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
) &&
4700 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu
)))
4701 WARN_ON_ONCE(kvm_set_msr(vcpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
4702 vmcs12
->host_ia32_perf_global_ctrl
));
4704 /* Set L1 segment info according to Intel SDM
4705 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4706 seg
= (struct kvm_segment
) {
4708 .limit
= 0xFFFFFFFF,
4709 .selector
= vmcs12
->host_cs_selector
,
4715 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
4719 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
4720 seg
= (struct kvm_segment
) {
4722 .limit
= 0xFFFFFFFF,
4729 seg
.selector
= vmcs12
->host_ds_selector
;
4730 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
4731 seg
.selector
= vmcs12
->host_es_selector
;
4732 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
4733 seg
.selector
= vmcs12
->host_ss_selector
;
4734 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
4735 seg
.selector
= vmcs12
->host_fs_selector
;
4736 seg
.base
= vmcs12
->host_fs_base
;
4737 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
4738 seg
.selector
= vmcs12
->host_gs_selector
;
4739 seg
.base
= vmcs12
->host_gs_base
;
4740 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
4741 seg
= (struct kvm_segment
) {
4742 .base
= vmcs12
->host_tr_base
,
4744 .selector
= vmcs12
->host_tr_selector
,
4748 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
4750 memset(&seg
, 0, sizeof(seg
));
4752 __vmx_set_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
4754 kvm_set_dr(vcpu
, 7, 0x400);
4755 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4757 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
4758 vmcs12
->vm_exit_msr_load_count
))
4759 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
4761 to_vmx(vcpu
)->emulation_required
= vmx_emulation_required(vcpu
);
4764 static inline u64
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx
*vmx
)
4766 struct vmx_uret_msr
*efer_msr
;
4769 if (vm_entry_controls_get(vmx
) & VM_ENTRY_LOAD_IA32_EFER
)
4770 return vmcs_read64(GUEST_IA32_EFER
);
4772 if (cpu_has_load_ia32_efer())
4773 return kvm_host
.efer
;
4775 for (i
= 0; i
< vmx
->msr_autoload
.guest
.nr
; ++i
) {
4776 if (vmx
->msr_autoload
.guest
.val
[i
].index
== MSR_EFER
)
4777 return vmx
->msr_autoload
.guest
.val
[i
].value
;
4780 efer_msr
= vmx_find_uret_msr(vmx
, MSR_EFER
);
4782 return efer_msr
->data
;
4784 return kvm_host
.efer
;
4787 static void nested_vmx_restore_host_state(struct kvm_vcpu
*vcpu
)
4789 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4790 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4791 struct vmx_msr_entry g
, h
;
4795 vcpu
->arch
.pat
= vmcs_read64(GUEST_IA32_PAT
);
4797 if (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
) {
4799 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4800 * as vmcs01.GUEST_DR7 contains a userspace defined value
4801 * and vcpu->arch.dr7 is not squirreled away before the
4802 * nested VMENTER (not worth adding a variable in nested_vmx).
4804 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
4805 kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
4807 WARN_ON(kvm_set_dr(vcpu
, 7, vmcs_readl(GUEST_DR7
)));
4811 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4812 * handle a variety of side effects to KVM's software model.
4814 vmx_set_efer(vcpu
, nested_vmx_get_vmcs01_guest_efer(vmx
));
4816 vcpu
->arch
.cr0_guest_owned_bits
= vmx_l1_guest_owned_cr0_bits();
4817 vmx_set_cr0(vcpu
, vmcs_readl(CR0_READ_SHADOW
));
4819 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
4820 vmx_set_cr4(vcpu
, vmcs_readl(CR4_READ_SHADOW
));
4822 nested_ept_uninit_mmu_context(vcpu
);
4823 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
4824 kvm_register_mark_available(vcpu
, VCPU_EXREG_CR3
);
4827 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4828 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4829 * VMFail, like everything else we just need to ensure our
4830 * software model is up-to-date.
4832 if (enable_ept
&& is_pae_paging(vcpu
))
4833 ept_save_pdptrs(vcpu
);
4835 kvm_mmu_reset_context(vcpu
);
4838 * This nasty bit of open coding is a compromise between blindly
4839 * loading L1's MSRs using the exit load lists (incorrect emulation
4840 * of VMFail), leaving the nested VM's MSRs in the software model
4841 * (incorrect behavior) and snapshotting the modified MSRs (too
4842 * expensive since the lists are unbound by hardware). For each
4843 * MSR that was (prematurely) loaded from the nested VMEntry load
4844 * list, reload it from the exit load list if it exists and differs
4845 * from the guest value. The intent is to stuff host state as
4846 * silently as possible, not to fully process the exit load list.
4848 for (i
= 0; i
< vmcs12
->vm_entry_msr_load_count
; i
++) {
4849 gpa
= vmcs12
->vm_entry_msr_load_addr
+ (i
* sizeof(g
));
4850 if (kvm_vcpu_read_guest(vcpu
, gpa
, &g
, sizeof(g
))) {
4851 pr_debug_ratelimited(
4852 "%s read MSR index failed (%u, 0x%08llx)\n",
4857 for (j
= 0; j
< vmcs12
->vm_exit_msr_load_count
; j
++) {
4858 gpa
= vmcs12
->vm_exit_msr_load_addr
+ (j
* sizeof(h
));
4859 if (kvm_vcpu_read_guest(vcpu
, gpa
, &h
, sizeof(h
))) {
4860 pr_debug_ratelimited(
4861 "%s read MSR failed (%u, 0x%08llx)\n",
4865 if (h
.index
!= g
.index
)
4867 if (h
.value
== g
.value
)
4870 if (nested_vmx_load_msr_check(vcpu
, &h
)) {
4871 pr_debug_ratelimited(
4872 "%s check failed (%u, 0x%x, 0x%x)\n",
4873 __func__
, j
, h
.index
, h
.reserved
);
4877 if (kvm_set_msr_with_filter(vcpu
, h
.index
, h
.value
)) {
4878 pr_debug_ratelimited(
4879 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4880 __func__
, j
, h
.index
, h
.value
);
4889 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
4893 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4894 * and modify vmcs12 to make it see what it would expect to see there if
4895 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4897 void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 vm_exit_reason
,
4898 u32 exit_intr_info
, unsigned long exit_qualification
)
4900 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4901 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4903 /* Pending MTF traps are discarded on VM-Exit. */
4904 vmx
->nested
.mtf_pending
= false;
4906 /* trying to cancel vmlaunch/vmresume is a bug */
4907 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
4909 #ifdef CONFIG_KVM_HYPERV
4910 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES
, vcpu
)) {
4912 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4913 * Enlightened VMCS after migration and we still need to
4914 * do that when something is forcing L2->L1 exit prior to
4917 (void)nested_get_evmcs_page(vcpu
);
4921 /* Service pending TLB flush requests for L2 before switching to L1. */
4922 kvm_service_local_tlb_flush_requests(vcpu
);
4925 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4926 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4927 * up-to-date before switching to L1.
4929 if (enable_ept
&& is_pae_paging(vcpu
))
4930 vmx_ept_load_pdptrs(vcpu
);
4932 leave_guest_mode(vcpu
);
4934 if (nested_cpu_has_preemption_timer(vmcs12
))
4935 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
4937 if (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETTING
)) {
4938 vcpu
->arch
.tsc_offset
= vcpu
->arch
.l1_tsc_offset
;
4939 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_TSC_SCALING
))
4940 vcpu
->arch
.tsc_scaling_ratio
= vcpu
->arch
.l1_tsc_scaling_ratio
;
4943 if (likely(!vmx
->fail
)) {
4944 sync_vmcs02_to_vmcs12(vcpu
, vmcs12
);
4946 if (vm_exit_reason
!= -1)
4947 prepare_vmcs12(vcpu
, vmcs12
, vm_exit_reason
,
4948 exit_intr_info
, exit_qualification
);
4951 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4952 * also be used to capture vmcs12 cache as part of
4953 * capturing nVMX state for snapshot (migration).
4955 * Otherwise, this flush will dirty guest memory at a
4956 * point it is already assumed by user-space to be
4959 nested_flush_cached_shadow_vmcs12(vcpu
, vmcs12
);
4962 * The only expected VM-instruction error is "VM entry with
4963 * invalid control field(s)." Anything else indicates a
4964 * problem with L0. And we should never get here with a
4965 * VMFail of any type if early consistency checks are enabled.
4967 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR
) !=
4968 VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
4969 WARN_ON_ONCE(nested_early_check
);
4973 * Drop events/exceptions that were queued for re-injection to L2
4974 * (picked up via vmx_complete_interrupts()), as well as exceptions
4975 * that were pending for L2. Note, this must NOT be hoisted above
4976 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4977 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4979 vcpu
->arch
.nmi_injected
= false;
4980 kvm_clear_exception_queue(vcpu
);
4981 kvm_clear_interrupt_queue(vcpu
);
4983 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
4986 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4987 * branch predictors when transitioning from L2 to L1, as L1 expects
4988 * hardware (KVM in this case) to provide separate predictor modes.
4989 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4990 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4991 * separate modes for L2 vs L1.
4993 if (guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
4994 indirect_branch_prediction_barrier();
4996 /* Update any VMCS fields that might have changed while L2 ran */
4997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.host
.nr
);
4998 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.guest
.nr
);
4999 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
5000 if (kvm_caps
.has_tsc_control
)
5001 vmcs_write64(TSC_MULTIPLIER
, vcpu
->arch
.tsc_scaling_ratio
);
5003 if (vmx
->nested
.l1_tpr_threshold
!= -1)
5004 vmcs_write32(TPR_THRESHOLD
, vmx
->nested
.l1_tpr_threshold
);
5006 if (vmx
->nested
.change_vmcs01_virtual_apic_mode
) {
5007 vmx
->nested
.change_vmcs01_virtual_apic_mode
= false;
5008 vmx_set_virtual_apic_mode(vcpu
);
5011 if (vmx
->nested
.update_vmcs01_cpu_dirty_logging
) {
5012 vmx
->nested
.update_vmcs01_cpu_dirty_logging
= false;
5013 vmx_update_cpu_dirty_logging(vcpu
);
5016 /* Unpin physical memory we referred to in vmcs02 */
5017 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.apic_access_page_map
, false);
5018 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.virtual_apic_map
, true);
5019 kvm_vcpu_unmap(vcpu
, &vmx
->nested
.pi_desc_map
, true);
5020 vmx
->nested
.pi_desc
= NULL
;
5022 if (vmx
->nested
.reload_vmcs01_apic_access_page
) {
5023 vmx
->nested
.reload_vmcs01_apic_access_page
= false;
5024 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
5027 if (vmx
->nested
.update_vmcs01_apicv_status
) {
5028 vmx
->nested
.update_vmcs01_apicv_status
= false;
5029 kvm_make_request(KVM_REQ_APICV_UPDATE
, vcpu
);
5032 if ((vm_exit_reason
!= -1) &&
5033 (enable_shadow_vmcs
|| nested_vmx_is_evmptr12_valid(vmx
)))
5034 vmx
->nested
.need_vmcs12_to_shadow_sync
= true;
5036 /* in case we halted in L2 */
5037 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
5039 if (likely(!vmx
->fail
)) {
5040 if (vm_exit_reason
!= -1)
5041 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
5042 vmcs12
->exit_qualification
,
5043 vmcs12
->idt_vectoring_info_field
,
5044 vmcs12
->vm_exit_intr_info
,
5045 vmcs12
->vm_exit_intr_error_code
,
5048 load_vmcs12_host_state(vcpu
, vmcs12
);
5054 * After an early L2 VM-entry failure, we're now back
5055 * in L1 which thinks it just finished a VMLAUNCH or
5056 * VMRESUME instruction, so we need to set the failure
5057 * flag and the VM-instruction error field of the VMCS
5058 * accordingly, and skip the emulated instruction.
5060 (void)nested_vmx_fail(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
5063 * Restore L1's host state to KVM's software model. We're here
5064 * because a consistency check was caught by hardware, which
5065 * means some amount of guest state has been propagated to KVM's
5066 * model and needs to be unwound to the host's state.
5068 nested_vmx_restore_host_state(vcpu
);
5073 static void nested_vmx_triple_fault(struct kvm_vcpu
*vcpu
)
5075 kvm_clear_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5076 nested_vmx_vmexit(vcpu
, EXIT_REASON_TRIPLE_FAULT
, 0, 0);
5080 * Decode the memory-address operand of a vmx instruction, as recorded on an
5081 * exit caused by such an instruction (run by a guest hypervisor).
5082 * On success, returns 0. When the operand is invalid, returns 1 and throws
5085 int get_vmx_mem_address(struct kvm_vcpu
*vcpu
, unsigned long exit_qualification
,
5086 u32 vmx_instruction_info
, bool wr
, int len
, gva_t
*ret
)
5090 struct kvm_segment s
;
5093 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5094 * Execution", on an exit, vmx_instruction_info holds most of the
5095 * addressing components of the operand. Only the displacement part
5096 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5097 * For how an actual address is calculated from all these components,
5098 * refer to Vol. 1, "Operand Addressing".
5100 int scaling
= vmx_instruction_info
& 3;
5101 int addr_size
= (vmx_instruction_info
>> 7) & 7;
5102 bool is_reg
= vmx_instruction_info
& (1u << 10);
5103 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
5104 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
5105 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
5106 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
5107 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
5110 kvm_queue_exception(vcpu
, UD_VECTOR
);
5114 /* Addr = segment_base + offset */
5115 /* offset = base + [index * scale] + displacement */
5116 off
= exit_qualification
; /* holds the displacement */
5118 off
= (gva_t
)sign_extend64(off
, 31);
5119 else if (addr_size
== 0)
5120 off
= (gva_t
)sign_extend64(off
, 15);
5122 off
+= kvm_register_read(vcpu
, base_reg
);
5124 off
+= kvm_register_read(vcpu
, index_reg
) << scaling
;
5125 vmx_get_segment(vcpu
, &s
, seg_reg
);
5128 * The effective address, i.e. @off, of a memory operand is truncated
5129 * based on the address size of the instruction. Note that this is
5130 * the *effective address*, i.e. the address prior to accounting for
5131 * the segment's base.
5133 if (addr_size
== 1) /* 32 bit */
5135 else if (addr_size
== 0) /* 16 bit */
5138 /* Checks for #GP/#SS exceptions. */
5140 if (is_long_mode(vcpu
)) {
5142 * The virtual/linear address is never truncated in 64-bit
5143 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5144 * address when using FS/GS with a non-zero base.
5146 if (seg_reg
== VCPU_SREG_FS
|| seg_reg
== VCPU_SREG_GS
)
5147 *ret
= s
.base
+ off
;
5151 *ret
= vmx_get_untagged_addr(vcpu
, *ret
, 0);
5152 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5153 * non-canonical form. This is the only check on the memory
5154 * destination for long mode!
5156 exn
= is_noncanonical_address(*ret
, vcpu
);
5159 * When not in long mode, the virtual/linear address is
5160 * unconditionally truncated to 32 bits regardless of the
5163 *ret
= (s
.base
+ off
) & 0xffffffff;
5165 /* Protected mode: apply checks for segment validity in the
5167 * - segment type check (#GP(0) may be thrown)
5168 * - usability check (#GP(0)/#SS(0))
5169 * - limit check (#GP(0)/#SS(0))
5172 /* #GP(0) if the destination operand is located in a
5173 * read-only data segment or any code segment.
5175 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
5177 /* #GP(0) if the source operand is located in an
5178 * execute-only code segment
5180 exn
= ((s
.type
& 0xa) == 8);
5182 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
5185 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5187 exn
= (s
.unusable
!= 0);
5190 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5191 * outside the segment limit. All CPUs that support VMX ignore
5192 * limit checks for flat segments, i.e. segments with base==0,
5193 * limit==0xffffffff and of type expand-up data or code.
5195 if (!(s
.base
== 0 && s
.limit
== 0xffffffff &&
5196 ((s
.type
& 8) || !(s
.type
& 4))))
5197 exn
= exn
|| ((u64
)off
+ len
- 1 > s
.limit
);
5200 kvm_queue_exception_e(vcpu
,
5201 seg_reg
== VCPU_SREG_SS
?
5202 SS_VECTOR
: GP_VECTOR
,
5210 static int nested_vmx_get_vmptr(struct kvm_vcpu
*vcpu
, gpa_t
*vmpointer
,
5214 struct x86_exception e
;
5217 if (get_vmx_mem_address(vcpu
, vmx_get_exit_qual(vcpu
),
5218 vmcs_read32(VMX_INSTRUCTION_INFO
), false,
5219 sizeof(*vmpointer
), &gva
)) {
5224 r
= kvm_read_guest_virt(vcpu
, gva
, vmpointer
, sizeof(*vmpointer
), &e
);
5225 if (r
!= X86EMUL_CONTINUE
) {
5226 *ret
= kvm_handle_memory_failure(vcpu
, r
, &e
);
5234 * Allocate a shadow VMCS and associate it with the currently loaded
5235 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5236 * VMCS is also VMCLEARed, so that it is ready for use.
5238 static struct vmcs
*alloc_shadow_vmcs(struct kvm_vcpu
*vcpu
)
5240 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5241 struct loaded_vmcs
*loaded_vmcs
= vmx
->loaded_vmcs
;
5244 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5245 * when L1 executes VMXOFF or the vCPU is forced out of nested
5246 * operation. VMXON faults if the CPU is already post-VMXON, so it
5247 * should be impossible to already have an allocated shadow VMCS. KVM
5248 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5249 * always be the loaded VMCS.
5251 if (WARN_ON(loaded_vmcs
!= &vmx
->vmcs01
|| loaded_vmcs
->shadow_vmcs
))
5252 return loaded_vmcs
->shadow_vmcs
;
5254 loaded_vmcs
->shadow_vmcs
= alloc_vmcs(true);
5255 if (loaded_vmcs
->shadow_vmcs
)
5256 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
5258 return loaded_vmcs
->shadow_vmcs
;
5261 static int enter_vmx_operation(struct kvm_vcpu
*vcpu
)
5263 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5266 r
= alloc_loaded_vmcs(&vmx
->nested
.vmcs02
);
5270 vmx
->nested
.cached_vmcs12
= kzalloc(VMCS12_SIZE
, GFP_KERNEL_ACCOUNT
);
5271 if (!vmx
->nested
.cached_vmcs12
)
5272 goto out_cached_vmcs12
;
5274 vmx
->nested
.shadow_vmcs12_cache
.gpa
= INVALID_GPA
;
5275 vmx
->nested
.cached_shadow_vmcs12
= kzalloc(VMCS12_SIZE
, GFP_KERNEL_ACCOUNT
);
5276 if (!vmx
->nested
.cached_shadow_vmcs12
)
5277 goto out_cached_shadow_vmcs12
;
5279 if (enable_shadow_vmcs
&& !alloc_shadow_vmcs(vcpu
))
5280 goto out_shadow_vmcs
;
5282 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
5283 HRTIMER_MODE_ABS_PINNED
);
5284 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
5286 vmx
->nested
.vpid02
= allocate_vpid();
5288 vmx
->nested
.vmcs02_initialized
= false;
5289 vmx
->nested
.vmxon
= true;
5291 if (vmx_pt_mode_is_host_guest()) {
5292 vmx
->pt_desc
.guest
.ctl
= 0;
5293 pt_update_intercept_for_msr(vcpu
);
5299 kfree(vmx
->nested
.cached_shadow_vmcs12
);
5301 out_cached_shadow_vmcs12
:
5302 kfree(vmx
->nested
.cached_vmcs12
);
5305 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
5311 /* Emulate the VMXON instruction. */
5312 static int handle_vmxon(struct kvm_vcpu
*vcpu
)
5317 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5318 const u64 VMXON_NEEDED_FEATURES
= FEAT_CTL_LOCKED
5319 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX
;
5322 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5323 * the guest and so cannot rely on hardware to perform the check,
5324 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5327 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5328 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5329 * force any of the relevant guest state. For a restricted guest, KVM
5330 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5331 * Real Mode, and so there's no need to check CR0.PE manually.
5333 if (!kvm_is_cr4_bit_set(vcpu
, X86_CR4_VMXE
)) {
5334 kvm_queue_exception(vcpu
, UD_VECTOR
);
5339 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5340 * and has higher priority than the VM-Fail due to being post-VMXON,
5341 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5342 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5343 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5346 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5347 * #UD checks (see above), is functionally ok because KVM doesn't allow
5348 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5349 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5350 * missed by hardware due to shadowing CR0 and/or CR4.
5352 if (vmx_get_cpl(vcpu
)) {
5353 kvm_inject_gp(vcpu
, 0);
5357 if (vmx
->nested
.vmxon
)
5358 return nested_vmx_fail(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
5361 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5362 * only if the vCPU isn't already in VMX operation, i.e. effectively
5363 * have lower priority than the VM-Fail above.
5365 if (!nested_host_cr0_valid(vcpu
, kvm_read_cr0(vcpu
)) ||
5366 !nested_host_cr4_valid(vcpu
, kvm_read_cr4(vcpu
))) {
5367 kvm_inject_gp(vcpu
, 0);
5371 if ((vmx
->msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
5372 != VMXON_NEEDED_FEATURES
) {
5373 kvm_inject_gp(vcpu
, 0);
5377 if (nested_vmx_get_vmptr(vcpu
, &vmptr
, &ret
))
5382 * The first 4 bytes of VMXON region contain the supported
5383 * VMCS revision identifier
5385 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5386 * which replaces physical address width with 32
5388 if (!page_address_valid(vcpu
, vmptr
))
5389 return nested_vmx_failInvalid(vcpu
);
5391 if (kvm_read_guest(vcpu
->kvm
, vmptr
, &revision
, sizeof(revision
)) ||
5392 revision
!= VMCS12_REVISION
)
5393 return nested_vmx_failInvalid(vcpu
);
5395 vmx
->nested
.vmxon_ptr
= vmptr
;
5396 ret
= enter_vmx_operation(vcpu
);
5400 return nested_vmx_succeed(vcpu
);
5403 static inline void nested_release_vmcs12(struct kvm_vcpu
*vcpu
)
5405 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5407 if (vmx
->nested
.current_vmptr
== INVALID_GPA
)
5410 copy_vmcs02_to_vmcs12_rare(vcpu
, get_vmcs12(vcpu
));
5412 if (enable_shadow_vmcs
) {
5413 /* copy to memory all shadowed fields in case
5414 they were modified */
5415 copy_shadow_to_vmcs12(vmx
);
5416 vmx_disable_shadow_vmcs(vmx
);
5418 vmx
->nested
.posted_intr_nv
= -1;
5420 /* Flush VMCS12 to guest memory */
5421 kvm_vcpu_write_guest_page(vcpu
,
5422 vmx
->nested
.current_vmptr
>> PAGE_SHIFT
,
5423 vmx
->nested
.cached_vmcs12
, 0, VMCS12_SIZE
);
5425 kvm_mmu_free_roots(vcpu
->kvm
, &vcpu
->arch
.guest_mmu
, KVM_MMU_ROOTS_ALL
);
5427 vmx
->nested
.current_vmptr
= INVALID_GPA
;
5430 /* Emulate the VMXOFF instruction */
5431 static int handle_vmxoff(struct kvm_vcpu
*vcpu
)
5433 if (!nested_vmx_check_permission(vcpu
))
5438 if (kvm_apic_has_pending_init_or_sipi(vcpu
))
5439 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5441 return nested_vmx_succeed(vcpu
);
5444 /* Emulate the VMCLEAR instruction */
5445 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
5447 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5452 if (!nested_vmx_check_permission(vcpu
))
5455 if (nested_vmx_get_vmptr(vcpu
, &vmptr
, &r
))
5458 if (!page_address_valid(vcpu
, vmptr
))
5459 return nested_vmx_fail(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
5461 if (vmptr
== vmx
->nested
.vmxon_ptr
)
5462 return nested_vmx_fail(vcpu
, VMXERR_VMCLEAR_VMXON_POINTER
);
5464 if (likely(!nested_evmcs_handle_vmclear(vcpu
, vmptr
))) {
5465 if (vmptr
== vmx
->nested
.current_vmptr
)
5466 nested_release_vmcs12(vcpu
);
5469 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5470 * for VMCLEAR includes a "ensure that data for VMCS referenced
5471 * by the operand is in memory" clause that guards writes to
5472 * memory, i.e. doing nothing for I/O is architecturally valid.
5474 * FIXME: Suppress failures if and only if no memslot is found,
5475 * i.e. exit to userspace if __copy_to_user() fails.
5477 (void)kvm_vcpu_write_guest(vcpu
,
5478 vmptr
+ offsetof(struct vmcs12
,
5480 &zero
, sizeof(zero
));
5483 return nested_vmx_succeed(vcpu
);
5486 /* Emulate the VMLAUNCH instruction */
5487 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
5489 return nested_vmx_run(vcpu
, true);
5492 /* Emulate the VMRESUME instruction */
5493 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
5496 return nested_vmx_run(vcpu
, false);
5499 static int handle_vmread(struct kvm_vcpu
*vcpu
)
5501 struct vmcs12
*vmcs12
= is_guest_mode(vcpu
) ? get_shadow_vmcs12(vcpu
)
5503 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5504 u32 instr_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5505 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5506 struct x86_exception e
;
5507 unsigned long field
;
5513 if (!nested_vmx_check_permission(vcpu
))
5516 /* Decode instruction info and find the field to read */
5517 field
= kvm_register_read(vcpu
, (((instr_info
) >> 28) & 0xf));
5519 if (!nested_vmx_is_evmptr12_valid(vmx
)) {
5521 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5522 * any VMREAD sets the ALU flags for VMfailInvalid.
5524 if (vmx
->nested
.current_vmptr
== INVALID_GPA
||
5525 (is_guest_mode(vcpu
) &&
5526 get_vmcs12(vcpu
)->vmcs_link_pointer
== INVALID_GPA
))
5527 return nested_vmx_failInvalid(vcpu
);
5529 offset
= get_vmcs12_field_offset(field
);
5531 return nested_vmx_fail(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5533 if (!is_guest_mode(vcpu
) && is_vmcs12_ext_field(field
))
5534 copy_vmcs02_to_vmcs12_rare(vcpu
, vmcs12
);
5536 /* Read the field, zero-extended to a u64 value */
5537 value
= vmcs12_read_any(vmcs12
, field
, offset
);
5540 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5541 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5542 * unsupported. Unfortunately, certain versions of Windows 11
5543 * don't comply with this requirement which is not enforced in
5544 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5545 * workaround, as misbehaving guests will panic on VM-Fail.
5546 * Note, enlightened VMCS is incompatible with shadow VMCS so
5547 * all VMREADs from L2 should go to L1.
5549 if (WARN_ON_ONCE(is_guest_mode(vcpu
)))
5550 return nested_vmx_failInvalid(vcpu
);
5552 offset
= evmcs_field_offset(field
, NULL
);
5554 return nested_vmx_fail(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5556 /* Read the field, zero-extended to a u64 value */
5557 value
= evmcs_read_any(nested_vmx_evmcs(vmx
), field
, offset
);
5561 * Now copy part of this value to register or memory, as requested.
5562 * Note that the number of bits actually copied is 32 or 64 depending
5563 * on the guest's mode (32 or 64 bit), not on the given field's length.
5565 if (instr_info
& BIT(10)) {
5566 kvm_register_write(vcpu
, (((instr_info
) >> 3) & 0xf), value
);
5568 len
= is_64_bit_mode(vcpu
) ? 8 : 4;
5569 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5570 instr_info
, true, len
, &gva
))
5572 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5573 r
= kvm_write_guest_virt_system(vcpu
, gva
, &value
, len
, &e
);
5574 if (r
!= X86EMUL_CONTINUE
)
5575 return kvm_handle_memory_failure(vcpu
, r
, &e
);
5578 return nested_vmx_succeed(vcpu
);
5581 static bool is_shadow_field_rw(unsigned long field
)
5584 #define SHADOW_FIELD_RW(x, y) case x:
5585 #include "vmcs_shadow_fields.h"
5593 static bool is_shadow_field_ro(unsigned long field
)
5596 #define SHADOW_FIELD_RO(x, y) case x:
5597 #include "vmcs_shadow_fields.h"
5605 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
5607 struct vmcs12
*vmcs12
= is_guest_mode(vcpu
) ? get_shadow_vmcs12(vcpu
)
5609 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5610 u32 instr_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5611 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5612 struct x86_exception e
;
5613 unsigned long field
;
5619 * The value to write might be 32 or 64 bits, depending on L1's long
5620 * mode, and eventually we need to write that into a field of several
5621 * possible lengths. The code below first zero-extends the value to 64
5622 * bit (value), and then copies only the appropriate number of
5623 * bits into the vmcs12 field.
5627 if (!nested_vmx_check_permission(vcpu
))
5631 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5632 * any VMWRITE sets the ALU flags for VMfailInvalid.
5634 if (vmx
->nested
.current_vmptr
== INVALID_GPA
||
5635 (is_guest_mode(vcpu
) &&
5636 get_vmcs12(vcpu
)->vmcs_link_pointer
== INVALID_GPA
))
5637 return nested_vmx_failInvalid(vcpu
);
5639 if (instr_info
& BIT(10))
5640 value
= kvm_register_read(vcpu
, (((instr_info
) >> 3) & 0xf));
5642 len
= is_64_bit_mode(vcpu
) ? 8 : 4;
5643 if (get_vmx_mem_address(vcpu
, exit_qualification
,
5644 instr_info
, false, len
, &gva
))
5646 r
= kvm_read_guest_virt(vcpu
, gva
, &value
, len
, &e
);
5647 if (r
!= X86EMUL_CONTINUE
)
5648 return kvm_handle_memory_failure(vcpu
, r
, &e
);
5651 field
= kvm_register_read(vcpu
, (((instr_info
) >> 28) & 0xf));
5653 offset
= get_vmcs12_field_offset(field
);
5655 return nested_vmx_fail(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
5658 * If the vCPU supports "VMWRITE to any supported field in the
5659 * VMCS," then the "read-only" fields are actually read/write.
5661 if (vmcs_field_readonly(field
) &&
5662 !nested_cpu_has_vmwrite_any_field(vcpu
))
5663 return nested_vmx_fail(vcpu
, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
5666 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5667 * vmcs12, else we may crush a field or consume a stale value.
5669 if (!is_guest_mode(vcpu
) && !is_shadow_field_rw(field
))
5670 copy_vmcs02_to_vmcs12_rare(vcpu
, vmcs12
);
5673 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5674 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5675 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5676 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5677 * from L1 will return a different value than VMREAD from L2 (L1 sees
5678 * the stripped down value, L2 sees the full value as stored by KVM).
5680 if (field
>= GUEST_ES_AR_BYTES
&& field
<= GUEST_TR_AR_BYTES
)
5683 vmcs12_write_any(vmcs12
, field
, offset
, value
);
5686 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5687 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5688 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5689 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5691 if (!is_guest_mode(vcpu
) && !is_shadow_field_rw(field
)) {
5693 * L1 can read these fields without exiting, ensure the
5694 * shadow VMCS is up-to-date.
5696 if (enable_shadow_vmcs
&& is_shadow_field_ro(field
)) {
5698 vmcs_load(vmx
->vmcs01
.shadow_vmcs
);
5700 __vmcs_writel(field
, value
);
5702 vmcs_clear(vmx
->vmcs01
.shadow_vmcs
);
5703 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
5706 vmx
->nested
.dirty_vmcs12
= true;
5709 return nested_vmx_succeed(vcpu
);
5712 static void set_current_vmptr(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
5714 vmx
->nested
.current_vmptr
= vmptr
;
5715 if (enable_shadow_vmcs
) {
5716 secondary_exec_controls_setbit(vmx
, SECONDARY_EXEC_SHADOW_VMCS
);
5717 vmcs_write64(VMCS_LINK_POINTER
,
5718 __pa(vmx
->vmcs01
.shadow_vmcs
));
5719 vmx
->nested
.need_vmcs12_to_shadow_sync
= true;
5721 vmx
->nested
.dirty_vmcs12
= true;
5722 vmx
->nested
.force_msr_bitmap_recalc
= true;
5725 /* Emulate the VMPTRLD instruction */
5726 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
5728 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5732 if (!nested_vmx_check_permission(vcpu
))
5735 if (nested_vmx_get_vmptr(vcpu
, &vmptr
, &r
))
5738 if (!page_address_valid(vcpu
, vmptr
))
5739 return nested_vmx_fail(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
5741 if (vmptr
== vmx
->nested
.vmxon_ptr
)
5742 return nested_vmx_fail(vcpu
, VMXERR_VMPTRLD_VMXON_POINTER
);
5744 /* Forbid normal VMPTRLD if Enlightened version was used */
5745 if (nested_vmx_is_evmptr12_valid(vmx
))
5748 if (vmx
->nested
.current_vmptr
!= vmptr
) {
5749 struct gfn_to_hva_cache
*ghc
= &vmx
->nested
.vmcs12_cache
;
5750 struct vmcs_hdr hdr
;
5752 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, ghc
, vmptr
, VMCS12_SIZE
)) {
5754 * Reads from an unbacked page return all 1s,
5755 * which means that the 32 bits located at the
5756 * given physical address won't match the required
5757 * VMCS12_REVISION identifier.
5759 return nested_vmx_fail(vcpu
,
5760 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5763 if (kvm_read_guest_offset_cached(vcpu
->kvm
, ghc
, &hdr
,
5764 offsetof(struct vmcs12
, hdr
),
5766 return nested_vmx_fail(vcpu
,
5767 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5770 if (hdr
.revision_id
!= VMCS12_REVISION
||
5772 !nested_cpu_has_vmx_shadow_vmcs(vcpu
))) {
5773 return nested_vmx_fail(vcpu
,
5774 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5777 nested_release_vmcs12(vcpu
);
5780 * Load VMCS12 from guest memory since it is not already
5783 if (kvm_read_guest_cached(vcpu
->kvm
, ghc
, vmx
->nested
.cached_vmcs12
,
5785 return nested_vmx_fail(vcpu
,
5786 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
5789 set_current_vmptr(vmx
, vmptr
);
5792 return nested_vmx_succeed(vcpu
);
5795 /* Emulate the VMPTRST instruction */
5796 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
5798 unsigned long exit_qual
= vmx_get_exit_qual(vcpu
);
5799 u32 instr_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5800 gpa_t current_vmptr
= to_vmx(vcpu
)->nested
.current_vmptr
;
5801 struct x86_exception e
;
5805 if (!nested_vmx_check_permission(vcpu
))
5808 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu
))))
5811 if (get_vmx_mem_address(vcpu
, exit_qual
, instr_info
,
5812 true, sizeof(gpa_t
), &gva
))
5814 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5815 r
= kvm_write_guest_virt_system(vcpu
, gva
, (void *)¤t_vmptr
,
5817 if (r
!= X86EMUL_CONTINUE
)
5818 return kvm_handle_memory_failure(vcpu
, r
, &e
);
5820 return nested_vmx_succeed(vcpu
);
5823 /* Emulate the INVEPT instruction */
5824 static int handle_invept(struct kvm_vcpu
*vcpu
)
5826 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5827 u32 vmx_instruction_info
, types
;
5828 unsigned long type
, roots_to_free
;
5829 struct kvm_mmu
*mmu
;
5831 struct x86_exception e
;
5835 int i
, r
, gpr_index
;
5837 if (!(vmx
->nested
.msrs
.secondary_ctls_high
&
5838 SECONDARY_EXEC_ENABLE_EPT
) ||
5839 !(vmx
->nested
.msrs
.ept_caps
& VMX_EPT_INVEPT_BIT
)) {
5840 kvm_queue_exception(vcpu
, UD_VECTOR
);
5844 if (!nested_vmx_check_permission(vcpu
))
5847 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5848 gpr_index
= vmx_get_instr_info_reg2(vmx_instruction_info
);
5849 type
= kvm_register_read(vcpu
, gpr_index
);
5851 types
= (vmx
->nested
.msrs
.ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
5853 if (type
>= 32 || !(types
& (1 << type
)))
5854 return nested_vmx_fail(vcpu
, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5856 /* According to the Intel VMX instruction reference, the memory
5857 * operand is read even if it isn't needed (e.g., for type==global)
5859 if (get_vmx_mem_address(vcpu
, vmx_get_exit_qual(vcpu
),
5860 vmx_instruction_info
, false, sizeof(operand
), &gva
))
5862 r
= kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
);
5863 if (r
!= X86EMUL_CONTINUE
)
5864 return kvm_handle_memory_failure(vcpu
, r
, &e
);
5867 * Nested EPT roots are always held through guest_mmu,
5870 mmu
= &vcpu
->arch
.guest_mmu
;
5873 case VMX_EPT_EXTENT_CONTEXT
:
5874 if (!nested_vmx_check_eptp(vcpu
, operand
.eptp
))
5875 return nested_vmx_fail(vcpu
,
5876 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5879 if (nested_ept_root_matches(mmu
->root
.hpa
, mmu
->root
.pgd
,
5881 roots_to_free
|= KVM_MMU_ROOT_CURRENT
;
5883 for (i
= 0; i
< KVM_MMU_NUM_PREV_ROOTS
; i
++) {
5884 if (nested_ept_root_matches(mmu
->prev_roots
[i
].hpa
,
5885 mmu
->prev_roots
[i
].pgd
,
5887 roots_to_free
|= KVM_MMU_ROOT_PREVIOUS(i
);
5890 case VMX_EPT_EXTENT_GLOBAL
:
5891 roots_to_free
= KVM_MMU_ROOTS_ALL
;
5899 kvm_mmu_free_roots(vcpu
->kvm
, mmu
, roots_to_free
);
5901 return nested_vmx_succeed(vcpu
);
5904 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
5906 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5907 u32 vmx_instruction_info
;
5908 unsigned long type
, types
;
5910 struct x86_exception e
;
5918 if (!(vmx
->nested
.msrs
.secondary_ctls_high
&
5919 SECONDARY_EXEC_ENABLE_VPID
) ||
5920 !(vmx
->nested
.msrs
.vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
5921 kvm_queue_exception(vcpu
, UD_VECTOR
);
5925 if (!nested_vmx_check_permission(vcpu
))
5928 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5929 gpr_index
= vmx_get_instr_info_reg2(vmx_instruction_info
);
5930 type
= kvm_register_read(vcpu
, gpr_index
);
5932 types
= (vmx
->nested
.msrs
.vpid_caps
&
5933 VMX_VPID_EXTENT_SUPPORTED_MASK
) >> 8;
5935 if (type
>= 32 || !(types
& (1 << type
)))
5936 return nested_vmx_fail(vcpu
,
5937 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5939 /* according to the intel vmx instruction reference, the memory
5940 * operand is read even if it isn't needed (e.g., for type==global)
5942 if (get_vmx_mem_address(vcpu
, vmx_get_exit_qual(vcpu
),
5943 vmx_instruction_info
, false, sizeof(operand
), &gva
))
5945 r
= kvm_read_guest_virt(vcpu
, gva
, &operand
, sizeof(operand
), &e
);
5946 if (r
!= X86EMUL_CONTINUE
)
5947 return kvm_handle_memory_failure(vcpu
, r
, &e
);
5949 if (operand
.vpid
>> 16)
5950 return nested_vmx_fail(vcpu
,
5951 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5953 vpid02
= nested_get_vpid02(vcpu
);
5955 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR
:
5957 * LAM doesn't apply to addresses that are inputs to TLB
5960 if (!operand
.vpid
||
5961 is_noncanonical_address(operand
.gla
, vcpu
))
5962 return nested_vmx_fail(vcpu
,
5963 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5964 vpid_sync_vcpu_addr(vpid02
, operand
.gla
);
5966 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
5967 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL
:
5969 return nested_vmx_fail(vcpu
,
5970 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
5971 vpid_sync_context(vpid02
);
5973 case VMX_VPID_EXTENT_ALL_CONTEXT
:
5974 vpid_sync_context(vpid02
);
5978 return kvm_skip_emulated_instruction(vcpu
);
5982 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5983 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5984 * roots as VPIDs are not tracked in the MMU role.
5986 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5987 * an MMU when EPT is disabled.
5989 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5992 kvm_mmu_free_guest_mode_roots(vcpu
->kvm
, &vcpu
->arch
.root_mmu
);
5994 return nested_vmx_succeed(vcpu
);
5997 static int nested_vmx_eptp_switching(struct kvm_vcpu
*vcpu
,
5998 struct vmcs12
*vmcs12
)
6000 u32 index
= kvm_rcx_read(vcpu
);
6003 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12
)))
6005 if (index
>= VMFUNC_EPTP_ENTRIES
)
6008 if (kvm_vcpu_read_guest_page(vcpu
, vmcs12
->eptp_list_address
>> PAGE_SHIFT
,
6009 &new_eptp
, index
* 8, 8))
6013 * If the (L2) guest does a vmfunc to the currently
6014 * active ept pointer, we don't have to do anything else
6016 if (vmcs12
->ept_pointer
!= new_eptp
) {
6017 if (!nested_vmx_check_eptp(vcpu
, new_eptp
))
6020 vmcs12
->ept_pointer
= new_eptp
;
6021 nested_ept_new_eptp(vcpu
);
6023 if (!nested_cpu_has_vpid(vmcs12
))
6024 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST
, vcpu
);
6030 static int handle_vmfunc(struct kvm_vcpu
*vcpu
)
6032 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6033 struct vmcs12
*vmcs12
;
6034 u32 function
= kvm_rax_read(vcpu
);
6037 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6038 * VMFUNC for nested VMs, but not for L1.
6040 if (WARN_ON_ONCE(!is_guest_mode(vcpu
))) {
6041 kvm_queue_exception(vcpu
, UD_VECTOR
);
6045 vmcs12
= get_vmcs12(vcpu
);
6048 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6049 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6051 if (WARN_ON_ONCE((function
> 63) || !nested_cpu_has_vmfunc(vmcs12
))) {
6052 kvm_queue_exception(vcpu
, UD_VECTOR
);
6056 if (!(vmcs12
->vm_function_control
& BIT_ULL(function
)))
6061 if (nested_vmx_eptp_switching(vcpu
, vmcs12
))
6067 return kvm_skip_emulated_instruction(vcpu
);
6071 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6072 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
6073 * EXIT_REASON_VMFUNC as the exit reason.
6075 nested_vmx_vmexit(vcpu
, vmx
->exit_reason
.full
,
6076 vmx_get_intr_info(vcpu
),
6077 vmx_get_exit_qual(vcpu
));
6082 * Return true if an IO instruction with the specified port and size should cause
6083 * a VM-exit into L1.
6085 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu
*vcpu
, unsigned int port
,
6088 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6089 gpa_t bitmap
, last_bitmap
;
6092 last_bitmap
= INVALID_GPA
;
6097 bitmap
= vmcs12
->io_bitmap_a
;
6098 else if (port
< 0x10000)
6099 bitmap
= vmcs12
->io_bitmap_b
;
6102 bitmap
+= (port
& 0x7fff) / 8;
6104 if (last_bitmap
!= bitmap
)
6105 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
6107 if (b
& (1 << (port
& 7)))
6112 last_bitmap
= bitmap
;
6118 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
6119 struct vmcs12
*vmcs12
)
6121 unsigned long exit_qualification
;
6122 unsigned short port
;
6125 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
6126 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
6128 exit_qualification
= vmx_get_exit_qual(vcpu
);
6130 port
= exit_qualification
>> 16;
6131 size
= (exit_qualification
& 7) + 1;
6133 return nested_vmx_check_io_bitmaps(vcpu
, port
, size
);
6137 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6138 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6139 * disinterest in the current event (read or write a specific MSR) by using an
6140 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6142 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
6143 struct vmcs12
*vmcs12
,
6144 union vmx_exit_reason exit_reason
)
6146 u32 msr_index
= kvm_rcx_read(vcpu
);
6149 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
6153 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6154 * for the four combinations of read/write and low/high MSR numbers.
6155 * First we need to figure out which of the four to use:
6157 bitmap
= vmcs12
->msr_bitmap
;
6158 if (exit_reason
.basic
== EXIT_REASON_MSR_WRITE
)
6160 if (msr_index
>= 0xc0000000) {
6161 msr_index
-= 0xc0000000;
6165 /* Then read the msr_index'th bit from this bitmap: */
6166 if (msr_index
< 1024*8) {
6168 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
6170 return 1 & (b
>> (msr_index
& 7));
6172 return true; /* let L1 handle the wrong parameter */
6176 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6177 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6178 * intercept (via guest_host_mask etc.) the current event.
6180 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
6181 struct vmcs12
*vmcs12
)
6183 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
6184 int cr
= exit_qualification
& 15;
6188 switch ((exit_qualification
>> 4) & 3) {
6189 case 0: /* mov to cr */
6190 reg
= (exit_qualification
>> 8) & 15;
6191 val
= kvm_register_read(vcpu
, reg
);
6194 if (vmcs12
->cr0_guest_host_mask
&
6195 (val
^ vmcs12
->cr0_read_shadow
))
6199 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
6203 if (vmcs12
->cr4_guest_host_mask
&
6204 (vmcs12
->cr4_read_shadow
^ val
))
6208 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
6214 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
6215 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
6218 case 1: /* mov from cr */
6221 if (vmcs12
->cpu_based_vm_exec_control
&
6222 CPU_BASED_CR3_STORE_EXITING
)
6226 if (vmcs12
->cpu_based_vm_exec_control
&
6227 CPU_BASED_CR8_STORE_EXITING
)
6234 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6235 * cr0. Other attempted changes are ignored, with no exit.
6237 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
6238 if (vmcs12
->cr0_guest_host_mask
& 0xe &
6239 (val
^ vmcs12
->cr0_read_shadow
))
6241 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
6242 !(vmcs12
->cr0_read_shadow
& 0x1) &&
6250 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu
*vcpu
,
6251 struct vmcs12
*vmcs12
)
6255 if (!guest_cpuid_has(vcpu
, X86_FEATURE_SGX
) ||
6256 !nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENCLS_EXITING
))
6259 encls_leaf
= kvm_rax_read(vcpu
);
6260 if (encls_leaf
> 62)
6262 return vmcs12
->encls_exiting_bitmap
& BIT_ULL(encls_leaf
);
6265 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu
*vcpu
,
6266 struct vmcs12
*vmcs12
, gpa_t bitmap
)
6268 u32 vmx_instruction_info
;
6269 unsigned long field
;
6272 if (!nested_cpu_has_shadow_vmcs(vmcs12
))
6275 /* Decode instruction info and find the field to access */
6276 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
6277 field
= kvm_register_read(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
6279 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6283 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ field
/8, &b
, 1))
6286 return 1 & (b
>> (field
& 7));
6289 static bool nested_vmx_exit_handled_mtf(struct vmcs12
*vmcs12
)
6291 u32 entry_intr_info
= vmcs12
->vm_entry_intr_info_field
;
6293 if (nested_cpu_has_mtf(vmcs12
))
6297 * An MTF VM-exit may be injected into the guest by setting the
6298 * interruption-type to 7 (other event) and the vector field to 0. Such
6299 * is the case regardless of the 'monitor trap flag' VM-execution
6302 return entry_intr_info
== (INTR_INFO_VALID_MASK
6303 | INTR_TYPE_OTHER_EVENT
);
6307 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6308 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6310 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu
*vcpu
,
6311 union vmx_exit_reason exit_reason
)
6315 switch ((u16
)exit_reason
.basic
) {
6316 case EXIT_REASON_EXCEPTION_NMI
:
6317 intr_info
= vmx_get_intr_info(vcpu
);
6318 if (is_nmi(intr_info
))
6320 else if (is_page_fault(intr_info
))
6321 return vcpu
->arch
.apf
.host_apf_flags
||
6322 vmx_need_pf_intercept(vcpu
);
6323 else if (is_debug(intr_info
) &&
6325 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
6327 else if (is_breakpoint(intr_info
) &&
6328 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
6330 else if (is_alignment_check(intr_info
) &&
6331 !vmx_guest_inject_ac(vcpu
))
6333 else if (is_ve_fault(intr_info
))
6336 case EXIT_REASON_EXTERNAL_INTERRUPT
:
6338 case EXIT_REASON_MCE_DURING_VMENTRY
:
6340 case EXIT_REASON_EPT_VIOLATION
:
6342 * L0 always deals with the EPT violation. If nested EPT is
6343 * used, and the nested mmu code discovers that the address is
6344 * missing in the guest EPT table (EPT12), the EPT violation
6345 * will be injected with nested_ept_inject_page_fault()
6348 case EXIT_REASON_EPT_MISCONFIG
:
6350 * L2 never uses directly L1's EPT, but rather L0's own EPT
6351 * table (shadow on EPT) or a merged EPT table that L0 built
6352 * (EPT on EPT). So any problems with the structure of the
6353 * table is L0's fault.
6356 case EXIT_REASON_PREEMPTION_TIMER
:
6358 case EXIT_REASON_PML_FULL
:
6360 * PML is emulated for an L1 VMM and should never be enabled in
6361 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6364 case EXIT_REASON_VMFUNC
:
6365 /* VM functions are emulated through L2->L0 vmexits. */
6367 case EXIT_REASON_BUS_LOCK
:
6369 * At present, bus lock VM exit is never exposed to L1.
6370 * Handle L2's bus locks in L0 directly.
6373 #ifdef CONFIG_KVM_HYPERV
6374 case EXIT_REASON_VMCALL
:
6375 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6376 return guest_hv_cpuid_has_l2_tlb_flush(vcpu
) &&
6377 nested_evmcs_l2_tlb_flush_enabled(vcpu
) &&
6378 kvm_hv_is_tlb_flush_hcall(vcpu
);
6387 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6388 * is_guest_mode (L2).
6390 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu
*vcpu
,
6391 union vmx_exit_reason exit_reason
)
6393 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6396 switch ((u16
)exit_reason
.basic
) {
6397 case EXIT_REASON_EXCEPTION_NMI
:
6398 intr_info
= vmx_get_intr_info(vcpu
);
6399 if (is_nmi(intr_info
))
6401 else if (is_page_fault(intr_info
))
6403 return vmcs12
->exception_bitmap
&
6404 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
6405 case EXIT_REASON_EXTERNAL_INTERRUPT
:
6406 return nested_exit_on_intr(vcpu
);
6407 case EXIT_REASON_TRIPLE_FAULT
:
6409 case EXIT_REASON_INTERRUPT_WINDOW
:
6410 return nested_cpu_has(vmcs12
, CPU_BASED_INTR_WINDOW_EXITING
);
6411 case EXIT_REASON_NMI_WINDOW
:
6412 return nested_cpu_has(vmcs12
, CPU_BASED_NMI_WINDOW_EXITING
);
6413 case EXIT_REASON_TASK_SWITCH
:
6415 case EXIT_REASON_CPUID
:
6417 case EXIT_REASON_HLT
:
6418 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
6419 case EXIT_REASON_INVD
:
6421 case EXIT_REASON_INVLPG
:
6422 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
6423 case EXIT_REASON_RDPMC
:
6424 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
6425 case EXIT_REASON_RDRAND
:
6426 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDRAND_EXITING
);
6427 case EXIT_REASON_RDSEED
:
6428 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDSEED_EXITING
);
6429 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
6430 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
6431 case EXIT_REASON_VMREAD
:
6432 return nested_vmx_exit_handled_vmcs_access(vcpu
, vmcs12
,
6433 vmcs12
->vmread_bitmap
);
6434 case EXIT_REASON_VMWRITE
:
6435 return nested_vmx_exit_handled_vmcs_access(vcpu
, vmcs12
,
6436 vmcs12
->vmwrite_bitmap
);
6437 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
6438 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
6439 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMRESUME
:
6440 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
6441 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
6443 * VMX instructions trap unconditionally. This allows L1 to
6444 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6447 case EXIT_REASON_CR_ACCESS
:
6448 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
6449 case EXIT_REASON_DR_ACCESS
:
6450 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
6451 case EXIT_REASON_IO_INSTRUCTION
:
6452 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
6453 case EXIT_REASON_GDTR_IDTR
: case EXIT_REASON_LDTR_TR
:
6454 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_DESC
);
6455 case EXIT_REASON_MSR_READ
:
6456 case EXIT_REASON_MSR_WRITE
:
6457 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
6458 case EXIT_REASON_INVALID_STATE
:
6460 case EXIT_REASON_MWAIT_INSTRUCTION
:
6461 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
6462 case EXIT_REASON_MONITOR_TRAP_FLAG
:
6463 return nested_vmx_exit_handled_mtf(vmcs12
);
6464 case EXIT_REASON_MONITOR_INSTRUCTION
:
6465 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
6466 case EXIT_REASON_PAUSE_INSTRUCTION
:
6467 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
6468 nested_cpu_has2(vmcs12
,
6469 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
6470 case EXIT_REASON_MCE_DURING_VMENTRY
:
6472 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
6473 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
6474 case EXIT_REASON_APIC_ACCESS
:
6475 case EXIT_REASON_APIC_WRITE
:
6476 case EXIT_REASON_EOI_INDUCED
:
6478 * The controls for "virtualize APIC accesses," "APIC-
6479 * register virtualization," and "virtual-interrupt
6480 * delivery" only come from vmcs12.
6483 case EXIT_REASON_INVPCID
:
6485 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_INVPCID
) &&
6486 nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
6487 case EXIT_REASON_WBINVD
:
6488 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
6489 case EXIT_REASON_XSETBV
:
6491 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
6493 * This should never happen, since it is not possible to
6494 * set XSS to a non-zero value---neither in L1 nor in L2.
6495 * If if it were, XSS would have to be checked against
6496 * the XSS exit bitmap in vmcs12.
6498 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_XSAVES
);
6499 case EXIT_REASON_UMWAIT
:
6500 case EXIT_REASON_TPAUSE
:
6501 return nested_cpu_has2(vmcs12
,
6502 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE
);
6503 case EXIT_REASON_ENCLS
:
6504 return nested_vmx_exit_handled_encls(vcpu
, vmcs12
);
6505 case EXIT_REASON_NOTIFY
:
6506 /* Notify VM exit is not exposed to L1 */
6514 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6515 * reflected into L1.
6517 bool nested_vmx_reflect_vmexit(struct kvm_vcpu
*vcpu
)
6519 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6520 union vmx_exit_reason exit_reason
= vmx
->exit_reason
;
6521 unsigned long exit_qual
;
6524 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
6527 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6528 * has already loaded L2's state.
6530 if (unlikely(vmx
->fail
)) {
6531 trace_kvm_nested_vmenter_failed(
6532 "hardware VM-instruction error: ",
6533 vmcs_read32(VM_INSTRUCTION_ERROR
));
6536 goto reflect_vmexit
;
6539 trace_kvm_nested_vmexit(vcpu
, KVM_ISA_VMX
);
6541 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6542 if (nested_vmx_l0_wants_exit(vcpu
, exit_reason
))
6545 /* If L1 doesn't want the exit, handle it in L0. */
6546 if (!nested_vmx_l1_wants_exit(vcpu
, exit_reason
))
6550 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6551 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6552 * need to be synthesized by querying the in-kernel LAPIC, but external
6553 * interrupts are never reflected to L1 so it's a non-issue.
6555 exit_intr_info
= vmx_get_intr_info(vcpu
);
6556 if (is_exception_with_error_code(exit_intr_info
)) {
6557 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6559 vmcs12
->vm_exit_intr_error_code
=
6560 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
6562 exit_qual
= vmx_get_exit_qual(vcpu
);
6565 nested_vmx_vmexit(vcpu
, exit_reason
.full
, exit_intr_info
, exit_qual
);
6569 static int vmx_get_nested_state(struct kvm_vcpu
*vcpu
,
6570 struct kvm_nested_state __user
*user_kvm_nested_state
,
6573 struct vcpu_vmx
*vmx
;
6574 struct vmcs12
*vmcs12
;
6575 struct kvm_nested_state kvm_state
= {
6577 .format
= KVM_STATE_NESTED_FORMAT_VMX
,
6578 .size
= sizeof(kvm_state
),
6580 .hdr
.vmx
.vmxon_pa
= INVALID_GPA
,
6581 .hdr
.vmx
.vmcs12_pa
= INVALID_GPA
,
6582 .hdr
.vmx
.preemption_timer_deadline
= 0,
6584 struct kvm_vmx_nested_state_data __user
*user_vmx_nested_state
=
6585 &user_kvm_nested_state
->data
.vmx
[0];
6588 return kvm_state
.size
+ sizeof(*user_vmx_nested_state
);
6591 vmcs12
= get_vmcs12(vcpu
);
6593 if (guest_can_use(vcpu
, X86_FEATURE_VMX
) &&
6594 (vmx
->nested
.vmxon
|| vmx
->nested
.smm
.vmxon
)) {
6595 kvm_state
.hdr
.vmx
.vmxon_pa
= vmx
->nested
.vmxon_ptr
;
6596 kvm_state
.hdr
.vmx
.vmcs12_pa
= vmx
->nested
.current_vmptr
;
6598 if (vmx_has_valid_vmcs12(vcpu
)) {
6599 kvm_state
.size
+= sizeof(user_vmx_nested_state
->vmcs12
);
6601 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6602 if (nested_vmx_is_evmptr12_set(vmx
))
6603 kvm_state
.flags
|= KVM_STATE_NESTED_EVMCS
;
6605 if (is_guest_mode(vcpu
) &&
6606 nested_cpu_has_shadow_vmcs(vmcs12
) &&
6607 vmcs12
->vmcs_link_pointer
!= INVALID_GPA
)
6608 kvm_state
.size
+= sizeof(user_vmx_nested_state
->shadow_vmcs12
);
6611 if (vmx
->nested
.smm
.vmxon
)
6612 kvm_state
.hdr
.vmx
.smm
.flags
|= KVM_STATE_NESTED_SMM_VMXON
;
6614 if (vmx
->nested
.smm
.guest_mode
)
6615 kvm_state
.hdr
.vmx
.smm
.flags
|= KVM_STATE_NESTED_SMM_GUEST_MODE
;
6617 if (is_guest_mode(vcpu
)) {
6618 kvm_state
.flags
|= KVM_STATE_NESTED_GUEST_MODE
;
6620 if (vmx
->nested
.nested_run_pending
)
6621 kvm_state
.flags
|= KVM_STATE_NESTED_RUN_PENDING
;
6623 if (vmx
->nested
.mtf_pending
)
6624 kvm_state
.flags
|= KVM_STATE_NESTED_MTF_PENDING
;
6626 if (nested_cpu_has_preemption_timer(vmcs12
) &&
6627 vmx
->nested
.has_preemption_timer_deadline
) {
6628 kvm_state
.hdr
.vmx
.flags
|=
6629 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE
;
6630 kvm_state
.hdr
.vmx
.preemption_timer_deadline
=
6631 vmx
->nested
.preemption_timer_deadline
;
6636 if (user_data_size
< kvm_state
.size
)
6639 if (copy_to_user(user_kvm_nested_state
, &kvm_state
, sizeof(kvm_state
)))
6642 if (!vmx_has_valid_vmcs12(vcpu
))
6646 * When running L2, the authoritative vmcs12 state is in the
6647 * vmcs02. When running L1, the authoritative vmcs12 state is
6648 * in the shadow or enlightened vmcs linked to vmcs01, unless
6649 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6650 * vmcs12 state is in the vmcs12 already.
6652 if (is_guest_mode(vcpu
)) {
6653 sync_vmcs02_to_vmcs12(vcpu
, vmcs12
);
6654 sync_vmcs02_to_vmcs12_rare(vcpu
, vmcs12
);
6656 copy_vmcs02_to_vmcs12_rare(vcpu
, get_vmcs12(vcpu
));
6657 if (!vmx
->nested
.need_vmcs12_to_shadow_sync
) {
6658 if (nested_vmx_is_evmptr12_valid(vmx
))
6660 * L1 hypervisor is not obliged to keep eVMCS
6661 * clean fields data always up-to-date while
6662 * not in guest mode, 'hv_clean_fields' is only
6663 * supposed to be actual upon vmentry so we need
6664 * to ignore it here and do full copy.
6666 copy_enlightened_to_vmcs12(vmx
, 0);
6667 else if (enable_shadow_vmcs
)
6668 copy_shadow_to_vmcs12(vmx
);
6672 BUILD_BUG_ON(sizeof(user_vmx_nested_state
->vmcs12
) < VMCS12_SIZE
);
6673 BUILD_BUG_ON(sizeof(user_vmx_nested_state
->shadow_vmcs12
) < VMCS12_SIZE
);
6676 * Copy over the full allocated size of vmcs12 rather than just the size
6679 if (copy_to_user(user_vmx_nested_state
->vmcs12
, vmcs12
, VMCS12_SIZE
))
6682 if (nested_cpu_has_shadow_vmcs(vmcs12
) &&
6683 vmcs12
->vmcs_link_pointer
!= INVALID_GPA
) {
6684 if (copy_to_user(user_vmx_nested_state
->shadow_vmcs12
,
6685 get_shadow_vmcs12(vcpu
), VMCS12_SIZE
))
6689 return kvm_state
.size
;
6692 void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
6694 if (is_guest_mode(vcpu
)) {
6695 to_vmx(vcpu
)->nested
.nested_run_pending
= 0;
6696 nested_vmx_vmexit(vcpu
, -1, 0, 0);
6701 static int vmx_set_nested_state(struct kvm_vcpu
*vcpu
,
6702 struct kvm_nested_state __user
*user_kvm_nested_state
,
6703 struct kvm_nested_state
*kvm_state
)
6705 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6706 struct vmcs12
*vmcs12
;
6707 enum vm_entry_failure_code ignored
;
6708 struct kvm_vmx_nested_state_data __user
*user_vmx_nested_state
=
6709 &user_kvm_nested_state
->data
.vmx
[0];
6712 if (kvm_state
->format
!= KVM_STATE_NESTED_FORMAT_VMX
)
6715 if (kvm_state
->hdr
.vmx
.vmxon_pa
== INVALID_GPA
) {
6716 if (kvm_state
->hdr
.vmx
.smm
.flags
)
6719 if (kvm_state
->hdr
.vmx
.vmcs12_pa
!= INVALID_GPA
)
6723 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6724 * enable eVMCS capability on vCPU. However, since then
6725 * code was changed such that flag signals vmcs12 should
6726 * be copied into eVMCS in guest memory.
6728 * To preserve backwards compatibility, allow user
6729 * to set this flag even when there is no VMXON region.
6731 if (kvm_state
->flags
& ~KVM_STATE_NESTED_EVMCS
)
6734 if (!guest_can_use(vcpu
, X86_FEATURE_VMX
))
6737 if (!page_address_valid(vcpu
, kvm_state
->hdr
.vmx
.vmxon_pa
))
6741 if ((kvm_state
->hdr
.vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
) &&
6742 (kvm_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
))
6745 if (kvm_state
->hdr
.vmx
.smm
.flags
&
6746 ~(KVM_STATE_NESTED_SMM_GUEST_MODE
| KVM_STATE_NESTED_SMM_VMXON
))
6749 if (kvm_state
->hdr
.vmx
.flags
& ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE
)
6753 * SMM temporarily disables VMX, so we cannot be in guest mode,
6754 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6759 (KVM_STATE_NESTED_GUEST_MODE
| KVM_STATE_NESTED_RUN_PENDING
))
6760 : kvm_state
->hdr
.vmx
.smm
.flags
)
6763 if ((kvm_state
->hdr
.vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
) &&
6764 !(kvm_state
->hdr
.vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_VMXON
))
6767 if ((kvm_state
->flags
& KVM_STATE_NESTED_EVMCS
) &&
6768 (!guest_can_use(vcpu
, X86_FEATURE_VMX
) ||
6769 !vmx
->nested
.enlightened_vmcs_enabled
))
6772 vmx_leave_nested(vcpu
);
6774 if (kvm_state
->hdr
.vmx
.vmxon_pa
== INVALID_GPA
)
6777 vmx
->nested
.vmxon_ptr
= kvm_state
->hdr
.vmx
.vmxon_pa
;
6778 ret
= enter_vmx_operation(vcpu
);
6782 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6783 if (kvm_state
->size
< sizeof(*kvm_state
) + sizeof(*vmcs12
)) {
6784 /* See vmx_has_valid_vmcs12. */
6785 if ((kvm_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
) ||
6786 (kvm_state
->flags
& KVM_STATE_NESTED_EVMCS
) ||
6787 (kvm_state
->hdr
.vmx
.vmcs12_pa
!= INVALID_GPA
))
6793 if (kvm_state
->hdr
.vmx
.vmcs12_pa
!= INVALID_GPA
) {
6794 if (kvm_state
->hdr
.vmx
.vmcs12_pa
== kvm_state
->hdr
.vmx
.vmxon_pa
||
6795 !page_address_valid(vcpu
, kvm_state
->hdr
.vmx
.vmcs12_pa
))
6798 set_current_vmptr(vmx
, kvm_state
->hdr
.vmx
.vmcs12_pa
);
6799 #ifdef CONFIG_KVM_HYPERV
6800 } else if (kvm_state
->flags
& KVM_STATE_NESTED_EVMCS
) {
6802 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6803 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6804 * restored yet. EVMCS will be mapped from
6805 * nested_get_vmcs12_pages().
6807 vmx
->nested
.hv_evmcs_vmptr
= EVMPTR_MAP_PENDING
;
6808 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES
, vcpu
);
6814 if (kvm_state
->hdr
.vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_VMXON
) {
6815 vmx
->nested
.smm
.vmxon
= true;
6816 vmx
->nested
.vmxon
= false;
6818 if (kvm_state
->hdr
.vmx
.smm
.flags
& KVM_STATE_NESTED_SMM_GUEST_MODE
)
6819 vmx
->nested
.smm
.guest_mode
= true;
6822 vmcs12
= get_vmcs12(vcpu
);
6823 if (copy_from_user(vmcs12
, user_vmx_nested_state
->vmcs12
, sizeof(*vmcs12
)))
6826 if (vmcs12
->hdr
.revision_id
!= VMCS12_REVISION
)
6829 if (!(kvm_state
->flags
& KVM_STATE_NESTED_GUEST_MODE
))
6832 vmx
->nested
.nested_run_pending
=
6833 !!(kvm_state
->flags
& KVM_STATE_NESTED_RUN_PENDING
);
6835 vmx
->nested
.mtf_pending
=
6836 !!(kvm_state
->flags
& KVM_STATE_NESTED_MTF_PENDING
);
6839 if (nested_cpu_has_shadow_vmcs(vmcs12
) &&
6840 vmcs12
->vmcs_link_pointer
!= INVALID_GPA
) {
6841 struct vmcs12
*shadow_vmcs12
= get_shadow_vmcs12(vcpu
);
6843 if (kvm_state
->size
<
6844 sizeof(*kvm_state
) +
6845 sizeof(user_vmx_nested_state
->vmcs12
) + sizeof(*shadow_vmcs12
))
6846 goto error_guest_mode
;
6848 if (copy_from_user(shadow_vmcs12
,
6849 user_vmx_nested_state
->shadow_vmcs12
,
6850 sizeof(*shadow_vmcs12
))) {
6852 goto error_guest_mode
;
6855 if (shadow_vmcs12
->hdr
.revision_id
!= VMCS12_REVISION
||
6856 !shadow_vmcs12
->hdr
.shadow_vmcs
)
6857 goto error_guest_mode
;
6860 vmx
->nested
.has_preemption_timer_deadline
= false;
6861 if (kvm_state
->hdr
.vmx
.flags
& KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE
) {
6862 vmx
->nested
.has_preemption_timer_deadline
= true;
6863 vmx
->nested
.preemption_timer_deadline
=
6864 kvm_state
->hdr
.vmx
.preemption_timer_deadline
;
6867 if (nested_vmx_check_controls(vcpu
, vmcs12
) ||
6868 nested_vmx_check_host_state(vcpu
, vmcs12
) ||
6869 nested_vmx_check_guest_state(vcpu
, vmcs12
, &ignored
))
6870 goto error_guest_mode
;
6872 vmx
->nested
.dirty_vmcs12
= true;
6873 vmx
->nested
.force_msr_bitmap_recalc
= true;
6874 ret
= nested_vmx_enter_non_root_mode(vcpu
, false);
6876 goto error_guest_mode
;
6878 if (vmx
->nested
.mtf_pending
)
6879 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6884 vmx
->nested
.nested_run_pending
= 0;
6888 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6890 if (enable_shadow_vmcs
) {
6891 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
6892 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
6897 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6898 * that madness to get the encoding for comparison.
6900 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6902 static u64
nested_vmx_calc_vmcs_enum_msr(void)
6905 * Note these are the so called "index" of the VMCS field encoding, not
6906 * the index into vmcs12.
6908 unsigned int max_idx
, idx
;
6912 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6913 * vmcs12, regardless of whether or not the associated feature is
6914 * exposed to L1. Simply find the field with the highest index.
6917 for (i
= 0; i
< nr_vmcs12_fields
; i
++) {
6918 /* The vmcs12 table is very, very sparsely populated. */
6919 if (!vmcs12_field_offsets
[i
])
6922 idx
= vmcs_field_index(VMCS12_IDX_TO_ENC(i
));
6927 return (u64
)max_idx
<< VMCS_FIELD_INDEX_SHIFT
;
6930 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config
*vmcs_conf
,
6931 struct nested_vmx_msrs
*msrs
)
6933 msrs
->pinbased_ctls_low
=
6934 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
6936 msrs
->pinbased_ctls_high
= vmcs_conf
->pin_based_exec_ctrl
;
6937 msrs
->pinbased_ctls_high
&=
6938 PIN_BASED_EXT_INTR_MASK
|
6939 PIN_BASED_NMI_EXITING
|
6940 PIN_BASED_VIRTUAL_NMIS
|
6941 (enable_apicv
? PIN_BASED_POSTED_INTR
: 0);
6942 msrs
->pinbased_ctls_high
|=
6943 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
6944 PIN_BASED_VMX_PREEMPTION_TIMER
;
6947 static void nested_vmx_setup_exit_ctls(struct vmcs_config
*vmcs_conf
,
6948 struct nested_vmx_msrs
*msrs
)
6950 msrs
->exit_ctls_low
=
6951 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
6953 msrs
->exit_ctls_high
= vmcs_conf
->vmexit_ctrl
;
6954 msrs
->exit_ctls_high
&=
6955 #ifdef CONFIG_X86_64
6956 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
6958 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
|
6959 VM_EXIT_CLEAR_BNDCFGS
;
6960 msrs
->exit_ctls_high
|=
6961 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
6962 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
6963 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
|
6964 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
;
6966 /* We support free control of debug control saving. */
6967 msrs
->exit_ctls_low
&= ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
6970 static void nested_vmx_setup_entry_ctls(struct vmcs_config
*vmcs_conf
,
6971 struct nested_vmx_msrs
*msrs
)
6973 msrs
->entry_ctls_low
=
6974 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
6976 msrs
->entry_ctls_high
= vmcs_conf
->vmentry_ctrl
;
6977 msrs
->entry_ctls_high
&=
6978 #ifdef CONFIG_X86_64
6979 VM_ENTRY_IA32E_MODE
|
6981 VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
6982 msrs
->entry_ctls_high
|=
6983 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
|
6984 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
);
6986 /* We support free control of debug control loading. */
6987 msrs
->entry_ctls_low
&= ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
6990 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config
*vmcs_conf
,
6991 struct nested_vmx_msrs
*msrs
)
6993 msrs
->procbased_ctls_low
=
6994 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
6996 msrs
->procbased_ctls_high
= vmcs_conf
->cpu_based_exec_ctrl
;
6997 msrs
->procbased_ctls_high
&=
6998 CPU_BASED_INTR_WINDOW_EXITING
|
6999 CPU_BASED_NMI_WINDOW_EXITING
| CPU_BASED_USE_TSC_OFFSETTING
|
7000 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
7001 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
7002 CPU_BASED_CR3_STORE_EXITING
|
7003 #ifdef CONFIG_X86_64
7004 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
7006 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
7007 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
7008 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
7009 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
7010 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
7012 * We can allow some features even when not supported by the
7013 * hardware. For example, L1 can specify an MSR bitmap - and we
7014 * can use it to avoid exits to L1 - even when L0 runs L2
7015 * without MSR bitmaps.
7017 msrs
->procbased_ctls_high
|=
7018 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
7019 CPU_BASED_USE_MSR_BITMAPS
;
7021 /* We support free control of CR3 access interception. */
7022 msrs
->procbased_ctls_low
&=
7023 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
7026 static void nested_vmx_setup_secondary_ctls(u32 ept_caps
,
7027 struct vmcs_config
*vmcs_conf
,
7028 struct nested_vmx_msrs
*msrs
)
7030 msrs
->secondary_ctls_low
= 0;
7032 msrs
->secondary_ctls_high
= vmcs_conf
->cpu_based_2nd_exec_ctrl
;
7033 msrs
->secondary_ctls_high
&=
7034 SECONDARY_EXEC_DESC
|
7035 SECONDARY_EXEC_ENABLE_RDTSCP
|
7036 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
7037 SECONDARY_EXEC_WBINVD_EXITING
|
7038 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
7039 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
7040 SECONDARY_EXEC_RDRAND_EXITING
|
7041 SECONDARY_EXEC_ENABLE_INVPCID
|
7042 SECONDARY_EXEC_ENABLE_VMFUNC
|
7043 SECONDARY_EXEC_RDSEED_EXITING
|
7044 SECONDARY_EXEC_ENABLE_XSAVES
|
7045 SECONDARY_EXEC_TSC_SCALING
|
7046 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE
;
7049 * We can emulate "VMCS shadowing," even if the hardware
7050 * doesn't support it.
7052 msrs
->secondary_ctls_high
|=
7053 SECONDARY_EXEC_SHADOW_VMCS
;
7056 /* nested EPT: emulate EPT also to L1 */
7057 msrs
->secondary_ctls_high
|=
7058 SECONDARY_EXEC_ENABLE_EPT
;
7060 VMX_EPT_PAGE_WALK_4_BIT
|
7061 VMX_EPT_PAGE_WALK_5_BIT
|
7063 VMX_EPT_INVEPT_BIT
|
7064 VMX_EPT_EXECUTE_ONLY_BIT
;
7066 msrs
->ept_caps
&= ept_caps
;
7067 msrs
->ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
7068 VMX_EPT_EXTENT_CONTEXT_BIT
| VMX_EPT_2MB_PAGE_BIT
|
7069 VMX_EPT_1GB_PAGE_BIT
;
7070 if (enable_ept_ad_bits
) {
7071 msrs
->secondary_ctls_high
|=
7072 SECONDARY_EXEC_ENABLE_PML
;
7073 msrs
->ept_caps
|= VMX_EPT_AD_BIT
;
7077 * Advertise EPTP switching irrespective of hardware support,
7078 * KVM emulates it in software so long as VMFUNC is supported.
7080 if (cpu_has_vmx_vmfunc())
7081 msrs
->vmfunc_controls
= VMX_VMFUNC_EPTP_SWITCHING
;
7085 * Old versions of KVM use the single-context version without
7086 * checking for support, so declare that it is supported even
7087 * though it is treated as global context. The alternative is
7088 * not failing the single-context invvpid, and it is worse.
7091 msrs
->secondary_ctls_high
|=
7092 SECONDARY_EXEC_ENABLE_VPID
;
7093 msrs
->vpid_caps
= VMX_VPID_INVVPID_BIT
|
7094 VMX_VPID_EXTENT_SUPPORTED_MASK
;
7097 if (enable_unrestricted_guest
)
7098 msrs
->secondary_ctls_high
|=
7099 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
7101 if (flexpriority_enabled
)
7102 msrs
->secondary_ctls_high
|=
7103 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
7106 msrs
->secondary_ctls_high
|= SECONDARY_EXEC_ENCLS_EXITING
;
7109 static void nested_vmx_setup_misc_data(struct vmcs_config
*vmcs_conf
,
7110 struct nested_vmx_msrs
*msrs
)
7112 msrs
->misc_low
= (u32
)vmcs_conf
->misc
& VMX_MISC_SAVE_EFER_LMA
;
7114 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
|
7115 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
7116 VMX_MISC_ACTIVITY_HLT
|
7117 VMX_MISC_ACTIVITY_WAIT_SIPI
;
7118 msrs
->misc_high
= 0;
7121 static void nested_vmx_setup_basic(struct nested_vmx_msrs
*msrs
)
7124 * This MSR reports some information about VMX support. We
7125 * should return information about the VMX we emulate for the
7126 * guest, and the VMCS structure we give it - not about the
7127 * VMX support of the underlying hardware.
7129 msrs
->basic
= vmx_basic_encode_vmcs_info(VMCS12_REVISION
, VMCS12_SIZE
,
7132 msrs
->basic
|= VMX_BASIC_TRUE_CTLS
;
7133 if (cpu_has_vmx_basic_inout())
7134 msrs
->basic
|= VMX_BASIC_INOUT
;
7137 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs
*msrs
)
7140 * These MSRs specify bits which the guest must keep fixed on
7141 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7142 * We picked the standard core2 setting.
7144 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7145 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7146 msrs
->cr0_fixed0
= VMXON_CR0_ALWAYSON
;
7147 msrs
->cr4_fixed0
= VMXON_CR4_ALWAYSON
;
7149 /* These MSRs specify bits which the guest must keep fixed off. */
7150 rdmsrl(MSR_IA32_VMX_CR0_FIXED1
, msrs
->cr0_fixed1
);
7151 rdmsrl(MSR_IA32_VMX_CR4_FIXED1
, msrs
->cr4_fixed1
);
7153 if (vmx_umip_emulated())
7154 msrs
->cr4_fixed1
|= X86_CR4_UMIP
;
7158 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7159 * returned for the various VMX controls MSRs when nested VMX is enabled.
7160 * The same values should also be used to verify that vmcs12 control fields are
7161 * valid during nested entry from L1 to L2.
7162 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7163 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7164 * bit in the high half is on if the corresponding bit in the control field
7165 * may be on. See also vmx_control_verify().
7167 void nested_vmx_setup_ctls_msrs(struct vmcs_config
*vmcs_conf
, u32 ept_caps
)
7169 struct nested_vmx_msrs
*msrs
= &vmcs_conf
->nested
;
7172 * Note that as a general rule, the high half of the MSRs (bits in
7173 * the control fields which may be 1) should be initialized by the
7174 * intersection of the underlying hardware's MSR (i.e., features which
7175 * can be supported) and the list of features we want to expose -
7176 * because they are known to be properly supported in our code.
7177 * Also, usually, the low half of the MSRs (bits which must be 1) can
7178 * be set to 0, meaning that L1 may turn off any of these bits. The
7179 * reason is that if one of these bits is necessary, it will appear
7180 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7181 * fields of vmcs01 and vmcs02, will turn these bits off - and
7182 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7183 * These rules have exceptions below.
7185 nested_vmx_setup_pinbased_ctls(vmcs_conf
, msrs
);
7187 nested_vmx_setup_exit_ctls(vmcs_conf
, msrs
);
7189 nested_vmx_setup_entry_ctls(vmcs_conf
, msrs
);
7191 nested_vmx_setup_cpubased_ctls(vmcs_conf
, msrs
);
7193 nested_vmx_setup_secondary_ctls(ept_caps
, vmcs_conf
, msrs
);
7195 nested_vmx_setup_misc_data(vmcs_conf
, msrs
);
7197 nested_vmx_setup_basic(msrs
);
7199 nested_vmx_setup_cr_fixed(msrs
);
7201 msrs
->vmcs_enum
= nested_vmx_calc_vmcs_enum_msr();
7204 void nested_vmx_hardware_unsetup(void)
7208 if (enable_shadow_vmcs
) {
7209 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
7210 free_page((unsigned long)vmx_bitmap
[i
]);
7214 __init
int nested_vmx_hardware_setup(int (*exit_handlers
[])(struct kvm_vcpu
*))
7218 if (!cpu_has_vmx_shadow_vmcs())
7219 enable_shadow_vmcs
= 0;
7220 if (enable_shadow_vmcs
) {
7221 for (i
= 0; i
< VMX_BITMAP_NR
; i
++) {
7223 * The vmx_bitmap is not tied to a VM and so should
7224 * not be charged to a memcg.
7226 vmx_bitmap
[i
] = (unsigned long *)
7227 __get_free_page(GFP_KERNEL
);
7228 if (!vmx_bitmap
[i
]) {
7229 nested_vmx_hardware_unsetup();
7234 init_vmcs_shadow_fields();
7237 exit_handlers
[EXIT_REASON_VMCLEAR
] = handle_vmclear
;
7238 exit_handlers
[EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
;
7239 exit_handlers
[EXIT_REASON_VMPTRLD
] = handle_vmptrld
;
7240 exit_handlers
[EXIT_REASON_VMPTRST
] = handle_vmptrst
;
7241 exit_handlers
[EXIT_REASON_VMREAD
] = handle_vmread
;
7242 exit_handlers
[EXIT_REASON_VMRESUME
] = handle_vmresume
;
7243 exit_handlers
[EXIT_REASON_VMWRITE
] = handle_vmwrite
;
7244 exit_handlers
[EXIT_REASON_VMOFF
] = handle_vmxoff
;
7245 exit_handlers
[EXIT_REASON_VMON
] = handle_vmxon
;
7246 exit_handlers
[EXIT_REASON_INVEPT
] = handle_invept
;
7247 exit_handlers
[EXIT_REASON_INVVPID
] = handle_invvpid
;
7248 exit_handlers
[EXIT_REASON_VMFUNC
] = handle_vmfunc
;
7253 struct kvm_x86_nested_ops vmx_nested_ops
= {
7254 .leave_nested
= vmx_leave_nested
,
7255 .is_exception_vmexit
= nested_vmx_is_exception_vmexit
,
7256 .check_events
= vmx_check_nested_events
,
7257 .has_events
= vmx_has_nested_events
,
7258 .triple_fault
= nested_vmx_triple_fault
,
7259 .get_state
= vmx_get_nested_state
,
7260 .set_state
= vmx_set_nested_state
,
7261 .get_nested_state_pages
= vmx_get_nested_state_pages
,
7262 .write_log_dirty
= nested_vmx_write_pml_buffer
,
7263 #ifdef CONFIG_KVM_HYPERV
7264 .enable_evmcs
= nested_enable_evmcs
,
7265 .get_evmcs_version
= nested_get_evmcs_version
,
7266 .hv_inject_synthetic_vmexit_post_tlb_flush
= vmx_hv_inject_synthetic_vmexit_post_tlb_flush
,