1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
42 #include <asm/idtentry.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
53 #include <trace/events/ipi.h>
55 #include "capabilities.h"
58 #include "kvm_onhyperv.h"
60 #include "kvm_cache_regs.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
81 static const struct x86_cpu_id vmx_cpu_id
[] = {
82 X86_MATCH_FEATURE(X86_FEATURE_VMX
, NULL
),
85 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
88 bool __read_mostly enable_vpid
= 1;
89 module_param_named(vpid
, enable_vpid
, bool, 0444);
91 static bool __read_mostly enable_vnmi
= 1;
92 module_param_named(vnmi
, enable_vnmi
, bool, 0444);
94 bool __read_mostly flexpriority_enabled
= 1;
95 module_param_named(flexpriority
, flexpriority_enabled
, bool, 0444);
97 bool __read_mostly enable_ept
= 1;
98 module_param_named(ept
, enable_ept
, bool, 0444);
100 bool __read_mostly enable_unrestricted_guest
= 1;
101 module_param_named(unrestricted_guest
,
102 enable_unrestricted_guest
, bool, 0444);
104 bool __read_mostly enable_ept_ad_bits
= 1;
105 module_param_named(eptad
, enable_ept_ad_bits
, bool, 0444);
107 static bool __read_mostly emulate_invalid_guest_state
= true;
108 module_param(emulate_invalid_guest_state
, bool, 0444);
110 static bool __read_mostly fasteoi
= 1;
111 module_param(fasteoi
, bool, 0444);
113 module_param(enable_apicv
, bool, 0444);
115 bool __read_mostly enable_ipiv
= true;
116 module_param(enable_ipiv
, bool, 0444);
119 * If nested=1, nested virtualization is supported, i.e., guests may use
120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121 * use VMX instructions.
123 static bool __read_mostly nested
= 1;
124 module_param(nested
, bool, 0444);
126 bool __read_mostly enable_pml
= 1;
127 module_param_named(pml
, enable_pml
, bool, 0444);
129 static bool __read_mostly error_on_inconsistent_vmcs_config
= true;
130 module_param(error_on_inconsistent_vmcs_config
, bool, 0444);
132 static bool __read_mostly dump_invalid_vmcs
= 0;
133 module_param(dump_invalid_vmcs
, bool, 0644);
135 #define MSR_BITMAP_MODE_X2APIC 1
136 #define MSR_BITMAP_MODE_X2APIC_APICV 2
138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
141 static int __read_mostly cpu_preemption_timer_multi
;
142 static bool __read_mostly enable_preemption_timer
= 1;
144 module_param_named(preemption_timer
, enable_preemption_timer
, bool, S_IRUGO
);
147 extern bool __read_mostly allow_smaller_maxphyaddr
;
148 module_param(allow_smaller_maxphyaddr
, bool, S_IRUGO
);
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON \
153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 RTIT_STATUS_BYTECNT))
167 * List of MSRs that can be directly passed to the guest.
168 * In addition to these x2apic, PT and LBR MSRs are handled specially.
170 static u32 vmx_possible_passthrough_msrs
[MAX_POSSIBLE_PASSTHROUGH_MSRS
] = {
182 MSR_IA32_SYSENTER_CS
,
183 MSR_IA32_SYSENTER_ESP
,
184 MSR_IA32_SYSENTER_EIP
,
186 MSR_CORE_C3_RESIDENCY
,
187 MSR_CORE_C6_RESIDENCY
,
188 MSR_CORE_C7_RESIDENCY
,
192 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193 * ple_gap: upper bound on the amount of time between two successive
194 * executions of PAUSE in a loop. Also indicate if ple enabled.
195 * According to test, this time is usually smaller than 128 cycles.
196 * ple_window: upper bound on the amount of time a guest is allowed to execute
197 * in a PAUSE loop. Tests indicate that most spinlocks are held for
198 * less than 2^12 cycles
199 * Time is measured based on a counter that runs at the same rate as the TSC,
200 * refer SDM volume 3b section 21.6.13 & 22.1.3.
202 static unsigned int ple_gap
= KVM_DEFAULT_PLE_GAP
;
203 module_param(ple_gap
, uint
, 0444);
205 static unsigned int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
206 module_param(ple_window
, uint
, 0444);
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow
= KVM_DEFAULT_PLE_WINDOW_GROW
;
210 module_param(ple_window_grow
, uint
, 0444);
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink
= KVM_DEFAULT_PLE_WINDOW_SHRINK
;
214 module_param(ple_window_shrink
, uint
, 0444);
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
218 module_param(ple_window_max
, uint
, 0444);
220 /* Default is SYSTEM mode, 1 for host-guest mode */
221 int __read_mostly pt_mode
= PT_MODE_SYSTEM
;
222 module_param(pt_mode
, int, S_IRUGO
);
224 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps
;
226 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush
);
227 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond
);
228 static DEFINE_MUTEX(vmx_l1d_flush_mutex
);
230 /* Storage for pre module init parameter parsing */
231 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param
= VMENTER_L1D_FLUSH_AUTO
;
233 static const struct {
236 } vmentry_l1d_param
[] = {
237 [VMENTER_L1D_FLUSH_AUTO
] = {"auto", true},
238 [VMENTER_L1D_FLUSH_NEVER
] = {"never", true},
239 [VMENTER_L1D_FLUSH_COND
] = {"cond", true},
240 [VMENTER_L1D_FLUSH_ALWAYS
] = {"always", true},
241 [VMENTER_L1D_FLUSH_EPT_DISABLED
] = {"EPT disabled", false},
242 [VMENTER_L1D_FLUSH_NOT_REQUIRED
] = {"not required", false},
245 #define L1D_CACHE_ORDER 4
246 static void *vmx_l1d_flush_pages
;
248 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf
)
253 if (!boot_cpu_has_bug(X86_BUG_L1TF
)) {
254 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_NOT_REQUIRED
;
259 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_EPT_DISABLED
;
263 if (kvm_host
.arch_capabilities
& ARCH_CAP_SKIP_VMENTRY_L1DFLUSH
) {
264 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_NOT_REQUIRED
;
268 /* If set to auto use the default l1tf mitigation method */
269 if (l1tf
== VMENTER_L1D_FLUSH_AUTO
) {
270 switch (l1tf_mitigation
) {
271 case L1TF_MITIGATION_OFF
:
272 l1tf
= VMENTER_L1D_FLUSH_NEVER
;
274 case L1TF_MITIGATION_FLUSH_NOWARN
:
275 case L1TF_MITIGATION_FLUSH
:
276 case L1TF_MITIGATION_FLUSH_NOSMT
:
277 l1tf
= VMENTER_L1D_FLUSH_COND
;
279 case L1TF_MITIGATION_FULL
:
280 case L1TF_MITIGATION_FULL_FORCE
:
281 l1tf
= VMENTER_L1D_FLUSH_ALWAYS
;
284 } else if (l1tf_mitigation
== L1TF_MITIGATION_FULL_FORCE
) {
285 l1tf
= VMENTER_L1D_FLUSH_ALWAYS
;
288 if (l1tf
!= VMENTER_L1D_FLUSH_NEVER
&& !vmx_l1d_flush_pages
&&
289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D
)) {
291 * This allocation for vmx_l1d_flush_pages is not tied to a VM
292 * lifetime and so should not be charged to a memcg.
294 page
= alloc_pages(GFP_KERNEL
, L1D_CACHE_ORDER
);
297 vmx_l1d_flush_pages
= page_address(page
);
300 * Initialize each page with a different pattern in
301 * order to protect against KSM in the nested
302 * virtualization case.
304 for (i
= 0; i
< 1u << L1D_CACHE_ORDER
; ++i
) {
305 memset(vmx_l1d_flush_pages
+ i
* PAGE_SIZE
, i
+ 1,
310 l1tf_vmx_mitigation
= l1tf
;
312 if (l1tf
!= VMENTER_L1D_FLUSH_NEVER
)
313 static_branch_enable(&vmx_l1d_should_flush
);
315 static_branch_disable(&vmx_l1d_should_flush
);
317 if (l1tf
== VMENTER_L1D_FLUSH_COND
)
318 static_branch_enable(&vmx_l1d_flush_cond
);
320 static_branch_disable(&vmx_l1d_flush_cond
);
324 static int vmentry_l1d_flush_parse(const char *s
)
329 for (i
= 0; i
< ARRAY_SIZE(vmentry_l1d_param
); i
++) {
330 if (vmentry_l1d_param
[i
].for_parse
&&
331 sysfs_streq(s
, vmentry_l1d_param
[i
].option
))
338 static int vmentry_l1d_flush_set(const char *s
, const struct kernel_param
*kp
)
342 l1tf
= vmentry_l1d_flush_parse(s
);
346 if (!boot_cpu_has(X86_BUG_L1TF
))
350 * Has vmx_init() run already? If not then this is the pre init
351 * parameter parsing. In that case just store the value and let
352 * vmx_init() do the proper setup after enable_ept has been
355 if (l1tf_vmx_mitigation
== VMENTER_L1D_FLUSH_AUTO
) {
356 vmentry_l1d_flush_param
= l1tf
;
360 mutex_lock(&vmx_l1d_flush_mutex
);
361 ret
= vmx_setup_l1d_flush(l1tf
);
362 mutex_unlock(&vmx_l1d_flush_mutex
);
366 static int vmentry_l1d_flush_get(char *s
, const struct kernel_param
*kp
)
368 if (WARN_ON_ONCE(l1tf_vmx_mitigation
>= ARRAY_SIZE(vmentry_l1d_param
)))
369 return sysfs_emit(s
, "???\n");
371 return sysfs_emit(s
, "%s\n", vmentry_l1d_param
[l1tf_vmx_mitigation
].option
);
374 static __always_inline
void vmx_disable_fb_clear(struct vcpu_vmx
*vmx
)
378 if (!vmx
->disable_fb_clear
)
381 msr
= __rdmsr(MSR_IA32_MCU_OPT_CTRL
);
383 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL
, msr
);
384 /* Cache the MSR value to avoid reading it later */
385 vmx
->msr_ia32_mcu_opt_ctrl
= msr
;
388 static __always_inline
void vmx_enable_fb_clear(struct vcpu_vmx
*vmx
)
390 if (!vmx
->disable_fb_clear
)
393 vmx
->msr_ia32_mcu_opt_ctrl
&= ~FB_CLEAR_DIS
;
394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL
, vmx
->msr_ia32_mcu_opt_ctrl
);
397 static void vmx_update_fb_clear_dis(struct kvm_vcpu
*vcpu
, struct vcpu_vmx
*vmx
)
400 * Disable VERW's behavior of clearing CPU buffers for the guest if the
401 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
402 * the mitigation. Disabling the clearing behavior provides a
403 * performance boost for guests that aren't aware that manually clearing
404 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 vmx
->disable_fb_clear
= !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF
) &&
408 (kvm_host
.arch_capabilities
& ARCH_CAP_FB_CLEAR_CTRL
) &&
409 !boot_cpu_has_bug(X86_BUG_MDS
) &&
410 !boot_cpu_has_bug(X86_BUG_TAA
);
413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 if ((vcpu
->arch
.arch_capabilities
& ARCH_CAP_FB_CLEAR
) ||
418 ((vcpu
->arch
.arch_capabilities
& ARCH_CAP_MDS_NO
) &&
419 (vcpu
->arch
.arch_capabilities
& ARCH_CAP_TAA_NO
) &&
420 (vcpu
->arch
.arch_capabilities
& ARCH_CAP_PSDP_NO
) &&
421 (vcpu
->arch
.arch_capabilities
& ARCH_CAP_FBSDP_NO
) &&
422 (vcpu
->arch
.arch_capabilities
& ARCH_CAP_SBDR_SSDP_NO
)))
423 vmx
->disable_fb_clear
= false;
426 static const struct kernel_param_ops vmentry_l1d_flush_ops
= {
427 .set
= vmentry_l1d_flush_set
,
428 .get
= vmentry_l1d_flush_get
,
430 module_param_cb(vmentry_l1d_flush
, &vmentry_l1d_flush_ops
, NULL
, 0644);
432 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
434 void vmx_vmexit(void);
436 #define vmx_insn_failed(fmt...) \
439 pr_warn_ratelimited(fmt); \
442 noinline
void vmread_error(unsigned long field
)
444 vmx_insn_failed("vmread failed: field=%lx\n", field
);
447 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
448 noinstr
void vmread_error_trampoline2(unsigned long field
, bool fault
)
451 kvm_spurious_fault();
453 instrumentation_begin();
455 instrumentation_end();
460 noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
462 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
463 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
466 noinline
void vmclear_error(struct vmcs
*vmcs
, u64 phys_addr
)
468 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
469 vmcs
, phys_addr
, vmcs_read32(VM_INSTRUCTION_ERROR
));
472 noinline
void vmptrld_error(struct vmcs
*vmcs
, u64 phys_addr
)
474 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
475 vmcs
, phys_addr
, vmcs_read32(VM_INSTRUCTION_ERROR
));
478 noinline
void invvpid_error(unsigned long ext
, u16 vpid
, gva_t gva
)
480 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
484 noinline
void invept_error(unsigned long ext
, u64 eptp
, gpa_t gpa
)
486 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
490 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
491 DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
493 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
494 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
496 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
498 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
499 static DEFINE_SPINLOCK(vmx_vpid_lock
);
501 struct vmcs_config vmcs_config __ro_after_init
;
502 struct vmx_capability vmx_capability __ro_after_init
;
504 #define VMX_SEGMENT_FIELD(seg) \
505 [VCPU_SREG_##seg] = { \
506 .selector = GUEST_##seg##_SELECTOR, \
507 .base = GUEST_##seg##_BASE, \
508 .limit = GUEST_##seg##_LIMIT, \
509 .ar_bytes = GUEST_##seg##_AR_BYTES, \
512 static const struct kvm_vmx_segment_field
{
517 } kvm_vmx_segment_fields
[] = {
518 VMX_SEGMENT_FIELD(CS
),
519 VMX_SEGMENT_FIELD(DS
),
520 VMX_SEGMENT_FIELD(ES
),
521 VMX_SEGMENT_FIELD(FS
),
522 VMX_SEGMENT_FIELD(GS
),
523 VMX_SEGMENT_FIELD(SS
),
524 VMX_SEGMENT_FIELD(TR
),
525 VMX_SEGMENT_FIELD(LDTR
),
529 static unsigned long host_idt_base
;
531 #if IS_ENABLED(CONFIG_HYPERV)
532 static bool __read_mostly enlightened_vmcs
= true;
533 module_param(enlightened_vmcs
, bool, 0444);
535 static int hv_enable_l2_tlb_flush(struct kvm_vcpu
*vcpu
)
537 struct hv_enlightened_vmcs
*evmcs
;
538 hpa_t partition_assist_page
= hv_get_partition_assist_page(vcpu
);
540 if (partition_assist_page
== INVALID_PAGE
)
543 evmcs
= (struct hv_enlightened_vmcs
*)to_vmx(vcpu
)->loaded_vmcs
->vmcs
;
545 evmcs
->partition_assist_page
= partition_assist_page
;
546 evmcs
->hv_vm_id
= (unsigned long)vcpu
->kvm
;
547 evmcs
->hv_enlightenments_control
.nested_flush_hypercall
= 1;
552 static __init
void hv_init_evmcs(void)
556 if (!enlightened_vmcs
)
560 * Enlightened VMCS usage should be recommended and the host needs
561 * to support eVMCS v1 or above.
563 if (ms_hyperv
.hints
& HV_X64_ENLIGHTENED_VMCS_RECOMMENDED
&&
564 (ms_hyperv
.nested_features
& HV_X64_ENLIGHTENED_VMCS_VERSION
) >=
567 /* Check that we have assist pages on all online CPUs */
568 for_each_online_cpu(cpu
) {
569 if (!hv_get_vp_assist_page(cpu
)) {
570 enlightened_vmcs
= false;
575 if (enlightened_vmcs
) {
576 pr_info("Using Hyper-V Enlightened VMCS\n");
577 static_branch_enable(&__kvm_is_using_evmcs
);
580 if (ms_hyperv
.nested_features
& HV_X64_NESTED_DIRECT_FLUSH
)
581 vt_x86_ops
.enable_l2_tlb_flush
582 = hv_enable_l2_tlb_flush
;
584 enlightened_vmcs
= false;
588 static void hv_reset_evmcs(void)
590 struct hv_vp_assist_page
*vp_ap
;
592 if (!kvm_is_using_evmcs())
596 * KVM should enable eVMCS if and only if all CPUs have a VP assist
597 * page, and should reject CPU onlining if eVMCS is enabled the CPU
598 * doesn't have a VP assist page allocated.
600 vp_ap
= hv_get_vp_assist_page(smp_processor_id());
601 if (WARN_ON_ONCE(!vp_ap
))
605 * Reset everything to support using non-enlightened VMCS access later
606 * (e.g. when we reload the module with enlightened_vmcs=0)
608 vp_ap
->nested_control
.features
.directhypercall
= 0;
609 vp_ap
->current_nested_vmcs
= 0;
610 vp_ap
->enlighten_vmentry
= 0;
613 #else /* IS_ENABLED(CONFIG_HYPERV) */
614 static void hv_init_evmcs(void) {}
615 static void hv_reset_evmcs(void) {}
616 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619 * Comment's format: document - errata name - stepping - processor name.
621 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
623 static u32 vmx_preemption_cpu_tfms
[] = {
624 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
626 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
627 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
628 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
630 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
632 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
633 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
635 * 320767.pdf - AAP86 - B1 -
636 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
641 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
643 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
645 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
646 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
647 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
649 /* Xeon E3-1220 V2 */
653 static inline bool cpu_has_broken_vmx_preemption_timer(void)
655 u32 eax
= cpuid_eax(0x00000001), i
;
657 /* Clear the reserved bits */
658 eax
&= ~(0x3U
<< 14 | 0xfU
<< 28);
659 for (i
= 0; i
< ARRAY_SIZE(vmx_preemption_cpu_tfms
); i
++)
660 if (eax
== vmx_preemption_cpu_tfms
[i
])
666 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
668 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
671 static int vmx_get_passthrough_msr_slot(u32 msr
)
676 case 0x800 ... 0x8ff:
677 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
679 case MSR_IA32_RTIT_STATUS
:
680 case MSR_IA32_RTIT_OUTPUT_BASE
:
681 case MSR_IA32_RTIT_OUTPUT_MASK
:
682 case MSR_IA32_RTIT_CR3_MATCH
:
683 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
684 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 case MSR_LBR_INFO_0
... MSR_LBR_INFO_0
+ 31:
688 case MSR_LBR_NHM_FROM
... MSR_LBR_NHM_FROM
+ 31:
689 case MSR_LBR_NHM_TO
... MSR_LBR_NHM_TO
+ 31:
690 case MSR_LBR_CORE_FROM
... MSR_LBR_CORE_FROM
+ 8:
691 case MSR_LBR_CORE_TO
... MSR_LBR_CORE_TO
+ 8:
692 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
696 for (i
= 0; i
< ARRAY_SIZE(vmx_possible_passthrough_msrs
); i
++) {
697 if (vmx_possible_passthrough_msrs
[i
] == msr
)
701 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr
);
705 struct vmx_uret_msr
*vmx_find_uret_msr(struct vcpu_vmx
*vmx
, u32 msr
)
709 i
= kvm_find_user_return_msr(msr
);
711 return &vmx
->guest_uret_msrs
[i
];
715 static int vmx_set_guest_uret_msr(struct vcpu_vmx
*vmx
,
716 struct vmx_uret_msr
*msr
, u64 data
)
718 unsigned int slot
= msr
- vmx
->guest_uret_msrs
;
721 if (msr
->load_into_hardware
) {
723 ret
= kvm_set_user_return_msr(slot
, data
, msr
->mask
);
732 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
734 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
735 * atomically track post-VMXON state, e.g. this may be called in NMI context.
736 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
737 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
738 * magically in RM, VM86, compat mode, or at CPL>0.
740 static int kvm_cpu_vmxoff(void)
742 asm goto("1: vmxoff\n\t"
743 _ASM_EXTABLE(1b
, %l
[fault
])
744 ::: "cc", "memory" : fault
);
746 cr4_clear_bits(X86_CR4_VMXE
);
750 cr4_clear_bits(X86_CR4_VMXE
);
754 void vmx_emergency_disable_virtualization_cpu(void)
756 int cpu
= raw_smp_processor_id();
757 struct loaded_vmcs
*v
;
759 kvm_rebooting
= true;
762 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
763 * set in task context. If this races with VMX is disabled by an NMI,
764 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 if (!(__read_cr4() & X86_CR4_VMXE
))
770 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
771 loaded_vmcss_on_cpu_link
)
777 static void __loaded_vmcs_clear(void *arg
)
779 struct loaded_vmcs
*loaded_vmcs
= arg
;
780 int cpu
= raw_smp_processor_id();
782 if (loaded_vmcs
->cpu
!= cpu
)
783 return; /* vcpu migration can race with cpu offline */
784 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
785 per_cpu(current_vmcs
, cpu
) = NULL
;
787 vmcs_clear(loaded_vmcs
->vmcs
);
788 if (loaded_vmcs
->shadow_vmcs
&& loaded_vmcs
->launched
)
789 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
791 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
794 * Ensure all writes to loaded_vmcs, including deleting it from its
795 * current percpu list, complete before setting loaded_vmcs->cpu to
796 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
797 * and add loaded_vmcs to its percpu list before it's deleted from this
798 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
802 loaded_vmcs
->cpu
= -1;
803 loaded_vmcs
->launched
= 0;
806 void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
808 int cpu
= loaded_vmcs
->cpu
;
811 smp_call_function_single(cpu
,
812 __loaded_vmcs_clear
, loaded_vmcs
, 1);
815 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
819 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
821 if (!kvm_register_is_available(&vmx
->vcpu
, VCPU_EXREG_SEGMENTS
)) {
822 kvm_register_mark_available(&vmx
->vcpu
, VCPU_EXREG_SEGMENTS
);
823 vmx
->segment_cache
.bitmask
= 0;
825 ret
= vmx
->segment_cache
.bitmask
& mask
;
826 vmx
->segment_cache
.bitmask
|= mask
;
830 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
832 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
834 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
835 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
839 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
841 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
843 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
844 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
848 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
850 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
852 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
853 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
857 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
859 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
861 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
862 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
866 void vmx_update_exception_bitmap(struct kvm_vcpu
*vcpu
)
870 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
871 (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
873 * #VE isn't used for VMX. To test against unexpected changes
874 * related to #VE for VMX, intercept unexpected #VE and warn on it.
876 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE
))
877 eb
|= 1u << VE_VECTOR
;
879 * Guest access to VMware backdoor ports could legitimately
880 * trigger #GP because of TSS I/O permission bitmap.
881 * We intercept those #GP and allow access to them anyway
884 if (enable_vmware_backdoor
)
885 eb
|= (1u << GP_VECTOR
);
886 if ((vcpu
->guest_debug
&
887 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
888 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
889 eb
|= 1u << BP_VECTOR
;
890 if (to_vmx(vcpu
)->rmode
.vm86_active
)
892 if (!vmx_need_pf_intercept(vcpu
))
893 eb
&= ~(1u << PF_VECTOR
);
895 /* When we are running a nested L2 guest and L1 specified for it a
896 * certain exception bitmap, we must trap the same exceptions and pass
897 * them to L1. When running L2, we will only handle the exceptions
898 * specified above if L1 did not want them.
900 if (is_guest_mode(vcpu
))
901 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
903 int mask
= 0, match
= 0;
905 if (enable_ept
&& (eb
& (1u << PF_VECTOR
))) {
907 * If EPT is enabled, #PF is currently only intercepted
908 * if MAXPHYADDR is smaller on the guest than on the
909 * host. In that case we only care about present,
910 * non-reserved faults. For vmcs02, however, PFEC_MASK
911 * and PFEC_MATCH are set in prepare_vmcs02_rare.
913 mask
= PFERR_PRESENT_MASK
| PFERR_RSVD_MASK
;
914 match
= PFERR_PRESENT_MASK
;
916 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, mask
);
917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, match
);
921 * Disabling xfd interception indicates that dynamic xfeatures
922 * might be used in the guest. Always trap #NM in this case
923 * to save guest xfd_err timely.
925 if (vcpu
->arch
.xfd_no_write_intercept
)
926 eb
|= (1u << NM_VECTOR
);
928 vmcs_write32(EXCEPTION_BITMAP
, eb
);
932 * Check if MSR is intercepted for currently loaded MSR bitmap.
934 static bool msr_write_intercepted(struct vcpu_vmx
*vmx
, u32 msr
)
936 if (!(exec_controls_get(vmx
) & CPU_BASED_USE_MSR_BITMAPS
))
939 return vmx_test_msr_bitmap_write(vmx
->loaded_vmcs
->msr_bitmap
, msr
);
942 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx
*vmx
)
944 unsigned int flags
= 0;
946 if (vmx
->loaded_vmcs
->launched
)
947 flags
|= VMX_RUN_VMRESUME
;
950 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
951 * to change it directly without causing a vmexit. In that case read
952 * it after vmexit and store it in vmx->spec_ctrl.
954 if (!msr_write_intercepted(vmx
, MSR_IA32_SPEC_CTRL
))
955 flags
|= VMX_RUN_SAVE_SPEC_CTRL
;
960 static __always_inline
void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
961 unsigned long entry
, unsigned long exit
)
963 vm_entry_controls_clearbit(vmx
, entry
);
964 vm_exit_controls_clearbit(vmx
, exit
);
967 int vmx_find_loadstore_msr_slot(struct vmx_msrs
*m
, u32 msr
)
971 for (i
= 0; i
< m
->nr
; ++i
) {
972 if (m
->val
[i
].index
== msr
)
978 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
981 struct msr_autoload
*m
= &vmx
->msr_autoload
;
985 if (cpu_has_load_ia32_efer()) {
986 clear_atomic_switch_msr_special(vmx
,
987 VM_ENTRY_LOAD_IA32_EFER
,
988 VM_EXIT_LOAD_IA32_EFER
);
992 case MSR_CORE_PERF_GLOBAL_CTRL
:
993 if (cpu_has_load_perf_global_ctrl()) {
994 clear_atomic_switch_msr_special(vmx
,
995 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
996 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1001 i
= vmx_find_loadstore_msr_slot(&m
->guest
, msr
);
1005 m
->guest
.val
[i
] = m
->guest
.val
[m
->guest
.nr
];
1006 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->guest
.nr
);
1009 i
= vmx_find_loadstore_msr_slot(&m
->host
, msr
);
1014 m
->host
.val
[i
] = m
->host
.val
[m
->host
.nr
];
1015 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->host
.nr
);
1018 static __always_inline
void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1019 unsigned long entry
, unsigned long exit
,
1020 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1021 u64 guest_val
, u64 host_val
)
1023 vmcs_write64(guest_val_vmcs
, guest_val
);
1024 if (host_val_vmcs
!= HOST_IA32_EFER
)
1025 vmcs_write64(host_val_vmcs
, host_val
);
1026 vm_entry_controls_setbit(vmx
, entry
);
1027 vm_exit_controls_setbit(vmx
, exit
);
1030 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1031 u64 guest_val
, u64 host_val
, bool entry_only
)
1034 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1038 if (cpu_has_load_ia32_efer()) {
1039 add_atomic_switch_msr_special(vmx
,
1040 VM_ENTRY_LOAD_IA32_EFER
,
1041 VM_EXIT_LOAD_IA32_EFER
,
1044 guest_val
, host_val
);
1048 case MSR_CORE_PERF_GLOBAL_CTRL
:
1049 if (cpu_has_load_perf_global_ctrl()) {
1050 add_atomic_switch_msr_special(vmx
,
1051 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1052 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
1053 GUEST_IA32_PERF_GLOBAL_CTRL
,
1054 HOST_IA32_PERF_GLOBAL_CTRL
,
1055 guest_val
, host_val
);
1059 case MSR_IA32_PEBS_ENABLE
:
1060 /* PEBS needs a quiescent period after being disabled (to write
1061 * a record). Disabling PEBS through VMX MSR swapping doesn't
1062 * provide that period, so a CPU could write host's record into
1065 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
1068 i
= vmx_find_loadstore_msr_slot(&m
->guest
, msr
);
1070 j
= vmx_find_loadstore_msr_slot(&m
->host
, msr
);
1072 if ((i
< 0 && m
->guest
.nr
== MAX_NR_LOADSTORE_MSRS
) ||
1073 (j
< 0 && m
->host
.nr
== MAX_NR_LOADSTORE_MSRS
)) {
1074 printk_once(KERN_WARNING
"Not enough msr switch entries. "
1075 "Can't add msr %x\n", msr
);
1080 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->guest
.nr
);
1082 m
->guest
.val
[i
].index
= msr
;
1083 m
->guest
.val
[i
].value
= guest_val
;
1090 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->host
.nr
);
1092 m
->host
.val
[j
].index
= msr
;
1093 m
->host
.val
[j
].value
= host_val
;
1096 static bool update_transition_efer(struct vcpu_vmx
*vmx
)
1098 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
1099 u64 ignore_bits
= 0;
1102 /* Shadow paging assumes NX to be available. */
1104 guest_efer
|= EFER_NX
;
1107 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1109 ignore_bits
|= EFER_SCE
;
1110 #ifdef CONFIG_X86_64
1111 ignore_bits
|= EFER_LMA
| EFER_LME
;
1112 /* SCE is meaningful only in long mode on Intel */
1113 if (guest_efer
& EFER_LMA
)
1114 ignore_bits
&= ~(u64
)EFER_SCE
;
1118 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1119 * On CPUs that support "load IA32_EFER", always switch EFER
1120 * atomically, since it's faster than switching it manually.
1122 if (cpu_has_load_ia32_efer() ||
1123 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ kvm_host
.efer
) & EFER_NX
))) {
1124 if (!(guest_efer
& EFER_LMA
))
1125 guest_efer
&= ~EFER_LME
;
1126 if (guest_efer
!= kvm_host
.efer
)
1127 add_atomic_switch_msr(vmx
, MSR_EFER
,
1128 guest_efer
, kvm_host
.efer
, false);
1130 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1134 i
= kvm_find_user_return_msr(MSR_EFER
);
1138 clear_atomic_switch_msr(vmx
, MSR_EFER
);
1140 guest_efer
&= ~ignore_bits
;
1141 guest_efer
|= kvm_host
.efer
& ignore_bits
;
1143 vmx
->guest_uret_msrs
[i
].data
= guest_efer
;
1144 vmx
->guest_uret_msrs
[i
].mask
= ~ignore_bits
;
1149 #ifdef CONFIG_X86_32
1151 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1152 * VMCS rather than the segment table. KVM uses this helper to figure
1153 * out the current bases to poke them into the VMCS before entry.
1155 static unsigned long segment_base(u16 selector
)
1157 struct desc_struct
*table
;
1160 if (!(selector
& ~SEGMENT_RPL_MASK
))
1163 table
= get_current_gdt_ro();
1165 if ((selector
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
1166 u16 ldt_selector
= kvm_read_ldt();
1168 if (!(ldt_selector
& ~SEGMENT_RPL_MASK
))
1171 table
= (struct desc_struct
*)segment_base(ldt_selector
);
1173 v
= get_desc_base(&table
[selector
>> 3]);
1178 static inline bool pt_can_write_msr(struct vcpu_vmx
*vmx
)
1180 return vmx_pt_mode_is_host_guest() &&
1181 !(vmx
->pt_desc
.guest
.ctl
& RTIT_CTL_TRACEEN
);
1184 static inline bool pt_output_base_valid(struct kvm_vcpu
*vcpu
, u64 base
)
1186 /* The base must be 128-byte aligned and a legal physical address. */
1187 return kvm_vcpu_is_legal_aligned_gpa(vcpu
, base
, 128);
1190 static inline void pt_load_msr(struct pt_ctx
*ctx
, u32 addr_range
)
1194 wrmsrl(MSR_IA32_RTIT_STATUS
, ctx
->status
);
1195 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE
, ctx
->output_base
);
1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK
, ctx
->output_mask
);
1197 wrmsrl(MSR_IA32_RTIT_CR3_MATCH
, ctx
->cr3_match
);
1198 for (i
= 0; i
< addr_range
; i
++) {
1199 wrmsrl(MSR_IA32_RTIT_ADDR0_A
+ i
* 2, ctx
->addr_a
[i
]);
1200 wrmsrl(MSR_IA32_RTIT_ADDR0_B
+ i
* 2, ctx
->addr_b
[i
]);
1204 static inline void pt_save_msr(struct pt_ctx
*ctx
, u32 addr_range
)
1208 rdmsrl(MSR_IA32_RTIT_STATUS
, ctx
->status
);
1209 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE
, ctx
->output_base
);
1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK
, ctx
->output_mask
);
1211 rdmsrl(MSR_IA32_RTIT_CR3_MATCH
, ctx
->cr3_match
);
1212 for (i
= 0; i
< addr_range
; i
++) {
1213 rdmsrl(MSR_IA32_RTIT_ADDR0_A
+ i
* 2, ctx
->addr_a
[i
]);
1214 rdmsrl(MSR_IA32_RTIT_ADDR0_B
+ i
* 2, ctx
->addr_b
[i
]);
1218 static void pt_guest_enter(struct vcpu_vmx
*vmx
)
1220 if (vmx_pt_mode_is_system())
1224 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1225 * Save host state before VM entry.
1227 rdmsrl(MSR_IA32_RTIT_CTL
, vmx
->pt_desc
.host
.ctl
);
1228 if (vmx
->pt_desc
.guest
.ctl
& RTIT_CTL_TRACEEN
) {
1229 wrmsrl(MSR_IA32_RTIT_CTL
, 0);
1230 pt_save_msr(&vmx
->pt_desc
.host
, vmx
->pt_desc
.num_address_ranges
);
1231 pt_load_msr(&vmx
->pt_desc
.guest
, vmx
->pt_desc
.num_address_ranges
);
1235 static void pt_guest_exit(struct vcpu_vmx
*vmx
)
1237 if (vmx_pt_mode_is_system())
1240 if (vmx
->pt_desc
.guest
.ctl
& RTIT_CTL_TRACEEN
) {
1241 pt_save_msr(&vmx
->pt_desc
.guest
, vmx
->pt_desc
.num_address_ranges
);
1242 pt_load_msr(&vmx
->pt_desc
.host
, vmx
->pt_desc
.num_address_ranges
);
1246 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1247 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1249 if (vmx
->pt_desc
.host
.ctl
)
1250 wrmsrl(MSR_IA32_RTIT_CTL
, vmx
->pt_desc
.host
.ctl
);
1253 void vmx_set_host_fs_gs(struct vmcs_host_state
*host
, u16 fs_sel
, u16 gs_sel
,
1254 unsigned long fs_base
, unsigned long gs_base
)
1256 if (unlikely(fs_sel
!= host
->fs_sel
)) {
1258 vmcs_write16(HOST_FS_SELECTOR
, fs_sel
);
1260 vmcs_write16(HOST_FS_SELECTOR
, 0);
1261 host
->fs_sel
= fs_sel
;
1263 if (unlikely(gs_sel
!= host
->gs_sel
)) {
1265 vmcs_write16(HOST_GS_SELECTOR
, gs_sel
);
1267 vmcs_write16(HOST_GS_SELECTOR
, 0);
1268 host
->gs_sel
= gs_sel
;
1270 if (unlikely(fs_base
!= host
->fs_base
)) {
1271 vmcs_writel(HOST_FS_BASE
, fs_base
);
1272 host
->fs_base
= fs_base
;
1274 if (unlikely(gs_base
!= host
->gs_base
)) {
1275 vmcs_writel(HOST_GS_BASE
, gs_base
);
1276 host
->gs_base
= gs_base
;
1280 void vmx_prepare_switch_to_guest(struct kvm_vcpu
*vcpu
)
1282 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1283 struct vmcs_host_state
*host_state
;
1284 #ifdef CONFIG_X86_64
1285 int cpu
= raw_smp_processor_id();
1287 unsigned long fs_base
, gs_base
;
1292 * Note that guest MSRs to be saved/restored can also be changed
1293 * when guest state is loaded. This happens when guest transitions
1294 * to/from long-mode by setting MSR_EFER.LMA.
1296 if (!vmx
->guest_uret_msrs_loaded
) {
1297 vmx
->guest_uret_msrs_loaded
= true;
1298 for (i
= 0; i
< kvm_nr_uret_msrs
; ++i
) {
1299 if (!vmx
->guest_uret_msrs
[i
].load_into_hardware
)
1302 kvm_set_user_return_msr(i
,
1303 vmx
->guest_uret_msrs
[i
].data
,
1304 vmx
->guest_uret_msrs
[i
].mask
);
1308 if (vmx
->nested
.need_vmcs12_to_shadow_sync
)
1309 nested_sync_vmcs12_to_shadow(vcpu
);
1311 if (vmx
->guest_state_loaded
)
1314 host_state
= &vmx
->loaded_vmcs
->host_state
;
1317 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1318 * allow segment selectors with cpl > 0 or ti == 1.
1320 host_state
->ldt_sel
= kvm_read_ldt();
1322 #ifdef CONFIG_X86_64
1323 savesegment(ds
, host_state
->ds_sel
);
1324 savesegment(es
, host_state
->es_sel
);
1326 gs_base
= cpu_kernelmode_gs_base(cpu
);
1327 if (likely(is_64bit_mm(current
->mm
))) {
1328 current_save_fsgs();
1329 fs_sel
= current
->thread
.fsindex
;
1330 gs_sel
= current
->thread
.gsindex
;
1331 fs_base
= current
->thread
.fsbase
;
1332 vmx
->msr_host_kernel_gs_base
= current
->thread
.gsbase
;
1334 savesegment(fs
, fs_sel
);
1335 savesegment(gs
, gs_sel
);
1336 fs_base
= read_msr(MSR_FS_BASE
);
1337 vmx
->msr_host_kernel_gs_base
= read_msr(MSR_KERNEL_GS_BASE
);
1340 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1342 savesegment(fs
, fs_sel
);
1343 savesegment(gs
, gs_sel
);
1344 fs_base
= segment_base(fs_sel
);
1345 gs_base
= segment_base(gs_sel
);
1348 vmx_set_host_fs_gs(host_state
, fs_sel
, gs_sel
, fs_base
, gs_base
);
1349 vmx
->guest_state_loaded
= true;
1352 static void vmx_prepare_switch_to_host(struct vcpu_vmx
*vmx
)
1354 struct vmcs_host_state
*host_state
;
1356 if (!vmx
->guest_state_loaded
)
1359 host_state
= &vmx
->loaded_vmcs
->host_state
;
1361 ++vmx
->vcpu
.stat
.host_state_reload
;
1363 #ifdef CONFIG_X86_64
1364 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1366 if (host_state
->ldt_sel
|| (host_state
->gs_sel
& 7)) {
1367 kvm_load_ldt(host_state
->ldt_sel
);
1368 #ifdef CONFIG_X86_64
1369 load_gs_index(host_state
->gs_sel
);
1371 loadsegment(gs
, host_state
->gs_sel
);
1374 if (host_state
->fs_sel
& 7)
1375 loadsegment(fs
, host_state
->fs_sel
);
1376 #ifdef CONFIG_X86_64
1377 if (unlikely(host_state
->ds_sel
| host_state
->es_sel
)) {
1378 loadsegment(ds
, host_state
->ds_sel
);
1379 loadsegment(es
, host_state
->es_sel
);
1382 invalidate_tss_limit();
1383 #ifdef CONFIG_X86_64
1384 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
1386 load_fixmap_gdt(raw_smp_processor_id());
1387 vmx
->guest_state_loaded
= false;
1388 vmx
->guest_uret_msrs_loaded
= false;
1391 #ifdef CONFIG_X86_64
1392 static u64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx
*vmx
)
1395 if (vmx
->guest_state_loaded
)
1396 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
1398 return vmx
->msr_guest_kernel_gs_base
;
1401 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx
*vmx
, u64 data
)
1404 if (vmx
->guest_state_loaded
)
1405 wrmsrl(MSR_KERNEL_GS_BASE
, data
);
1407 vmx
->msr_guest_kernel_gs_base
= data
;
1411 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
1413 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1414 unsigned int old
= vmx
->ple_window
;
1416 vmx
->ple_window
= __grow_ple_window(old
, ple_window
,
1420 if (vmx
->ple_window
!= old
) {
1421 vmx
->ple_window_dirty
= true;
1422 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
1423 vmx
->ple_window
, old
);
1427 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
1429 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1430 unsigned int old
= vmx
->ple_window
;
1432 vmx
->ple_window
= __shrink_ple_window(old
, ple_window
,
1436 if (vmx
->ple_window
!= old
) {
1437 vmx
->ple_window_dirty
= true;
1438 trace_kvm_ple_window_update(vcpu
->vcpu_id
,
1439 vmx
->ple_window
, old
);
1443 void vmx_vcpu_load_vmcs(struct kvm_vcpu
*vcpu
, int cpu
,
1444 struct loaded_vmcs
*buddy
)
1446 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1447 bool already_loaded
= vmx
->loaded_vmcs
->cpu
== cpu
;
1450 if (!already_loaded
) {
1451 loaded_vmcs_clear(vmx
->loaded_vmcs
);
1452 local_irq_disable();
1455 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1456 * this cpu's percpu list, otherwise it may not yet be deleted
1457 * from its previous cpu's percpu list. Pairs with the
1458 * smb_wmb() in __loaded_vmcs_clear().
1462 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
1463 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
1467 prev
= per_cpu(current_vmcs
, cpu
);
1468 if (prev
!= vmx
->loaded_vmcs
->vmcs
) {
1469 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
1470 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
1473 * No indirect branch prediction barrier needed when switching
1474 * the active VMCS within a vCPU, unless IBRS is advertised to
1475 * the vCPU. To minimize the number of IBPBs executed, KVM
1476 * performs IBPB on nested VM-Exit (a single nested transition
1477 * may switch the active VMCS multiple times).
1479 if (!buddy
|| WARN_ON_ONCE(buddy
->vmcs
!= prev
))
1480 indirect_branch_prediction_barrier();
1483 if (!already_loaded
) {
1484 void *gdt
= get_current_gdt_ro();
1487 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1488 * TLB entries from its previous association with the vCPU.
1490 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1493 * Linux uses per-cpu TSS and GDT, so set these when switching
1494 * processors. See 22.2.4.
1496 vmcs_writel(HOST_TR_BASE
,
1497 (unsigned long)&get_cpu_entry_area(cpu
)->tss
.x86_tss
);
1498 vmcs_writel(HOST_GDTR_BASE
, (unsigned long)gdt
); /* 22.2.4 */
1500 if (IS_ENABLED(CONFIG_IA32_EMULATION
) || IS_ENABLED(CONFIG_X86_32
)) {
1502 vmcs_writel(HOST_IA32_SYSENTER_ESP
,
1503 (unsigned long)(cpu_entry_stack(cpu
) + 1));
1506 vmx
->loaded_vmcs
->cpu
= cpu
;
1511 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1512 * vcpu mutex is already taken.
1514 void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1516 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1518 if (vcpu
->scheduled_out
&& !kvm_pause_in_guest(vcpu
->kvm
))
1519 shrink_ple_window(vcpu
);
1521 vmx_vcpu_load_vmcs(vcpu
, cpu
, NULL
);
1523 vmx_vcpu_pi_load(vcpu
, cpu
);
1525 vmx
->host_debugctlmsr
= get_debugctlmsr();
1528 void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
1530 vmx_vcpu_pi_put(vcpu
);
1532 vmx_prepare_switch_to_host(to_vmx(vcpu
));
1535 bool vmx_emulation_required(struct kvm_vcpu
*vcpu
)
1537 return emulate_invalid_guest_state
&& !vmx_guest_state_valid(vcpu
);
1540 unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
1542 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1543 unsigned long rflags
, save_rflags
;
1545 if (!kvm_register_is_available(vcpu
, VCPU_EXREG_RFLAGS
)) {
1546 kvm_register_mark_available(vcpu
, VCPU_EXREG_RFLAGS
);
1547 rflags
= vmcs_readl(GUEST_RFLAGS
);
1548 if (vmx
->rmode
.vm86_active
) {
1549 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
1550 save_rflags
= vmx
->rmode
.save_rflags
;
1551 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
1553 vmx
->rflags
= rflags
;
1558 void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1560 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1561 unsigned long old_rflags
;
1564 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1565 * is an unrestricted guest in order to mark L2 as needing emulation
1566 * if L1 runs L2 as a restricted guest.
1568 if (is_unrestricted_guest(vcpu
)) {
1569 kvm_register_mark_available(vcpu
, VCPU_EXREG_RFLAGS
);
1570 vmx
->rflags
= rflags
;
1571 vmcs_writel(GUEST_RFLAGS
, rflags
);
1575 old_rflags
= vmx_get_rflags(vcpu
);
1576 vmx
->rflags
= rflags
;
1577 if (vmx
->rmode
.vm86_active
) {
1578 vmx
->rmode
.save_rflags
= rflags
;
1579 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1581 vmcs_writel(GUEST_RFLAGS
, rflags
);
1583 if ((old_rflags
^ vmx
->rflags
) & X86_EFLAGS_VM
)
1584 vmx
->emulation_required
= vmx_emulation_required(vcpu
);
1587 bool vmx_get_if_flag(struct kvm_vcpu
*vcpu
)
1589 return vmx_get_rflags(vcpu
) & X86_EFLAGS_IF
;
1592 u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
1594 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1597 if (interruptibility
& GUEST_INTR_STATE_STI
)
1598 ret
|= KVM_X86_SHADOW_INT_STI
;
1599 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
1600 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
1605 void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
1607 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
1608 u32 interruptibility
= interruptibility_old
;
1610 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
1612 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
1613 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
1614 else if (mask
& KVM_X86_SHADOW_INT_STI
)
1615 interruptibility
|= GUEST_INTR_STATE_STI
;
1617 if ((interruptibility
!= interruptibility_old
))
1618 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
1621 static int vmx_rtit_ctl_check(struct kvm_vcpu
*vcpu
, u64 data
)
1623 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1624 unsigned long value
;
1627 * Any MSR write that attempts to change bits marked reserved will
1630 if (data
& vmx
->pt_desc
.ctl_bitmask
)
1634 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1635 * result in a #GP unless the same write also clears TraceEn.
1637 if ((vmx
->pt_desc
.guest
.ctl
& RTIT_CTL_TRACEEN
) &&
1638 ((vmx
->pt_desc
.guest
.ctl
^ data
) & ~RTIT_CTL_TRACEEN
))
1642 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1643 * and FabricEn would cause #GP, if
1644 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1646 if ((data
& RTIT_CTL_TRACEEN
) && !(data
& RTIT_CTL_TOPA
) &&
1647 !(data
& RTIT_CTL_FABRIC_EN
) &&
1648 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
1649 PT_CAP_single_range_output
))
1653 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1654 * utilize encodings marked reserved will cause a #GP fault.
1656 value
= intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_mtc_periods
);
1657 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_mtc
) &&
1658 !test_bit((data
& RTIT_CTL_MTC_RANGE
) >>
1659 RTIT_CTL_MTC_RANGE_OFFSET
, &value
))
1661 value
= intel_pt_validate_cap(vmx
->pt_desc
.caps
,
1662 PT_CAP_cycle_thresholds
);
1663 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_psb_cyc
) &&
1664 !test_bit((data
& RTIT_CTL_CYC_THRESH
) >>
1665 RTIT_CTL_CYC_THRESH_OFFSET
, &value
))
1667 value
= intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_psb_periods
);
1668 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_psb_cyc
) &&
1669 !test_bit((data
& RTIT_CTL_PSB_FREQ
) >>
1670 RTIT_CTL_PSB_FREQ_OFFSET
, &value
))
1674 * If ADDRx_CFG is reserved or the encodings is >2 will
1675 * cause a #GP fault.
1677 value
= (data
& RTIT_CTL_ADDR0
) >> RTIT_CTL_ADDR0_OFFSET
;
1678 if ((value
&& (vmx
->pt_desc
.num_address_ranges
< 1)) || (value
> 2))
1680 value
= (data
& RTIT_CTL_ADDR1
) >> RTIT_CTL_ADDR1_OFFSET
;
1681 if ((value
&& (vmx
->pt_desc
.num_address_ranges
< 2)) || (value
> 2))
1683 value
= (data
& RTIT_CTL_ADDR2
) >> RTIT_CTL_ADDR2_OFFSET
;
1684 if ((value
&& (vmx
->pt_desc
.num_address_ranges
< 3)) || (value
> 2))
1686 value
= (data
& RTIT_CTL_ADDR3
) >> RTIT_CTL_ADDR3_OFFSET
;
1687 if ((value
&& (vmx
->pt_desc
.num_address_ranges
< 4)) || (value
> 2))
1693 int vmx_check_emulate_instruction(struct kvm_vcpu
*vcpu
, int emul_type
,
1694 void *insn
, int insn_len
)
1697 * Emulation of instructions in SGX enclaves is impossible as RIP does
1698 * not point at the failing instruction, and even if it did, the code
1699 * stream is inaccessible. Inject #UD instead of exiting to userspace
1700 * so that guest userspace can't DoS the guest simply by triggering
1701 * emulation (enclaves are CPL3 only).
1703 if (to_vmx(vcpu
)->exit_reason
.enclave_mode
) {
1704 kvm_queue_exception(vcpu
, UD_VECTOR
);
1705 return X86EMUL_PROPAGATE_FAULT
;
1707 return X86EMUL_CONTINUE
;
1710 static int skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1712 union vmx_exit_reason exit_reason
= to_vmx(vcpu
)->exit_reason
;
1713 unsigned long rip
, orig_rip
;
1717 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1718 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1719 * set when EPT misconfig occurs. In practice, real hardware updates
1720 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1721 * (namely Hyper-V) don't set it due to it being undefined behavior,
1722 * i.e. we end up advancing IP with some random value.
1724 if (!static_cpu_has(X86_FEATURE_HYPERVISOR
) ||
1725 exit_reason
.basic
!= EXIT_REASON_EPT_MISCONFIG
) {
1726 instr_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
1729 * Emulating an enclave's instructions isn't supported as KVM
1730 * cannot access the enclave's memory or its true RIP, e.g. the
1731 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1732 * the RIP that actually triggered the VM-Exit. But, because
1733 * most instructions that cause VM-Exit will #UD in an enclave,
1734 * most instruction-based VM-Exits simply do not occur.
1736 * There are a few exceptions, notably the debug instructions
1737 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1738 * and generate #DB/#BP as expected, which KVM might intercept.
1739 * But again, the CPU does the dirty work and saves an instr
1740 * length of zero so VMMs don't shoot themselves in the foot.
1741 * WARN if KVM tries to skip a non-zero length instruction on
1742 * a VM-Exit from an enclave.
1747 WARN_ONCE(exit_reason
.enclave_mode
,
1748 "skipping instruction after SGX enclave VM-Exit");
1750 orig_rip
= kvm_rip_read(vcpu
);
1751 rip
= orig_rip
+ instr_len
;
1752 #ifdef CONFIG_X86_64
1754 * We need to mask out the high 32 bits of RIP if not in 64-bit
1755 * mode, but just finding out that we are in 64-bit mode is
1756 * quite expensive. Only do it if there was a carry.
1758 if (unlikely(((rip
^ orig_rip
) >> 31) == 3) && !is_64_bit_mode(vcpu
))
1761 kvm_rip_write(vcpu
, rip
);
1763 if (!kvm_emulate_instruction(vcpu
, EMULTYPE_SKIP
))
1768 /* skipping an emulated instruction also counts */
1769 vmx_set_interrupt_shadow(vcpu
, 0);
1775 * Recognizes a pending MTF VM-exit and records the nested state for later
1778 void vmx_update_emulated_instruction(struct kvm_vcpu
*vcpu
)
1780 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1781 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1783 if (!is_guest_mode(vcpu
))
1787 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1788 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1789 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1790 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1791 * as ICEBP is higher priority than both. As instruction emulation is
1792 * completed at this point (i.e. KVM is at the instruction boundary),
1793 * any #DB exception pending delivery must be a debug-trap of lower
1794 * priority than MTF. Record the pending MTF state to be delivered in
1795 * vmx_check_nested_events().
1797 if (nested_cpu_has_mtf(vmcs12
) &&
1798 (!vcpu
->arch
.exception
.pending
||
1799 vcpu
->arch
.exception
.vector
== DB_VECTOR
) &&
1800 (!vcpu
->arch
.exception_vmexit
.pending
||
1801 vcpu
->arch
.exception_vmexit
.vector
== DB_VECTOR
)) {
1802 vmx
->nested
.mtf_pending
= true;
1803 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
1805 vmx
->nested
.mtf_pending
= false;
1809 int vmx_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
1811 vmx_update_emulated_instruction(vcpu
);
1812 return skip_emulated_instruction(vcpu
);
1815 static void vmx_clear_hlt(struct kvm_vcpu
*vcpu
)
1818 * Ensure that we clear the HLT state in the VMCS. We don't need to
1819 * explicitly skip the instruction because if the HLT state is set,
1820 * then the instruction is already executing and RIP has already been
1823 if (kvm_hlt_in_guest(vcpu
->kvm
) &&
1824 vmcs_read32(GUEST_ACTIVITY_STATE
) == GUEST_ACTIVITY_HLT
)
1825 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
1828 void vmx_inject_exception(struct kvm_vcpu
*vcpu
)
1830 struct kvm_queued_exception
*ex
= &vcpu
->arch
.exception
;
1831 u32 intr_info
= ex
->vector
| INTR_INFO_VALID_MASK
;
1832 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1834 kvm_deliver_exception_payload(vcpu
, ex
);
1836 if (ex
->has_error_code
) {
1838 * Despite the error code being architecturally defined as 32
1839 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1840 * VMX don't actually supporting setting bits 31:16. Hardware
1841 * will (should) never provide a bogus error code, but AMD CPUs
1842 * do generate error codes with bits 31:16 set, and so KVM's
1843 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1844 * the upper bits to avoid VM-Fail, losing information that
1845 * doesn't really exist is preferable to killing the VM.
1847 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, (u16
)ex
->error_code
);
1848 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
1851 if (vmx
->rmode
.vm86_active
) {
1853 if (kvm_exception_is_soft(ex
->vector
))
1854 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
1855 kvm_inject_realmode_interrupt(vcpu
, ex
->vector
, inc_eip
);
1859 WARN_ON_ONCE(vmx
->emulation_required
);
1861 if (kvm_exception_is_soft(ex
->vector
)) {
1862 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
1863 vmx
->vcpu
.arch
.event_exit_inst_len
);
1864 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
1866 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
1868 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
1870 vmx_clear_hlt(vcpu
);
1873 static void vmx_setup_uret_msr(struct vcpu_vmx
*vmx
, unsigned int msr
,
1874 bool load_into_hardware
)
1876 struct vmx_uret_msr
*uret_msr
;
1878 uret_msr
= vmx_find_uret_msr(vmx
, msr
);
1882 uret_msr
->load_into_hardware
= load_into_hardware
;
1886 * Configuring user return MSRs to automatically save, load, and restore MSRs
1887 * that need to be shoved into hardware when running the guest. Note, omitting
1888 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1889 * loaded into hardware when running the guest.
1891 static void vmx_setup_uret_msrs(struct vcpu_vmx
*vmx
)
1893 #ifdef CONFIG_X86_64
1894 bool load_syscall_msrs
;
1897 * The SYSCALL MSRs are only needed on long mode guests, and only
1898 * when EFER.SCE is set.
1900 load_syscall_msrs
= is_long_mode(&vmx
->vcpu
) &&
1901 (vmx
->vcpu
.arch
.efer
& EFER_SCE
);
1903 vmx_setup_uret_msr(vmx
, MSR_STAR
, load_syscall_msrs
);
1904 vmx_setup_uret_msr(vmx
, MSR_LSTAR
, load_syscall_msrs
);
1905 vmx_setup_uret_msr(vmx
, MSR_SYSCALL_MASK
, load_syscall_msrs
);
1907 vmx_setup_uret_msr(vmx
, MSR_EFER
, update_transition_efer(vmx
));
1909 vmx_setup_uret_msr(vmx
, MSR_TSC_AUX
,
1910 guest_cpuid_has(&vmx
->vcpu
, X86_FEATURE_RDTSCP
) ||
1911 guest_cpuid_has(&vmx
->vcpu
, X86_FEATURE_RDPID
));
1914 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1915 * kernel and old userspace. If those guests run on a tsx=off host, do
1916 * allow guests to use TSX_CTRL, but don't change the value in hardware
1917 * so that TSX remains always disabled.
1919 vmx_setup_uret_msr(vmx
, MSR_IA32_TSX_CTRL
, boot_cpu_has(X86_FEATURE_RTM
));
1922 * The set of MSRs to load may have changed, reload MSRs before the
1925 vmx
->guest_uret_msrs_loaded
= false;
1928 u64
vmx_get_l2_tsc_offset(struct kvm_vcpu
*vcpu
)
1930 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1932 if (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETTING
))
1933 return vmcs12
->tsc_offset
;
1938 u64
vmx_get_l2_tsc_multiplier(struct kvm_vcpu
*vcpu
)
1940 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
1942 if (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETTING
) &&
1943 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_TSC_SCALING
))
1944 return vmcs12
->tsc_multiplier
;
1946 return kvm_caps
.default_tsc_scaling_ratio
;
1949 void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
)
1951 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
1954 void vmx_write_tsc_multiplier(struct kvm_vcpu
*vcpu
)
1956 vmcs_write64(TSC_MULTIPLIER
, vcpu
->arch
.tsc_scaling_ratio
);
1960 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1961 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1962 * backwards compatibility even though KVM doesn't support emulating SMX. And
1963 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1964 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1966 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1967 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1968 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1969 FEAT_CTL_SGX_LC_ENABLED | \
1970 FEAT_CTL_SGX_ENABLED | \
1971 FEAT_CTL_LMCE_ENABLED)
1973 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx
*vmx
,
1974 struct msr_data
*msr
)
1976 uint64_t valid_bits
;
1979 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1980 * exposed to the guest.
1982 WARN_ON_ONCE(vmx
->msr_ia32_feature_control_valid_bits
&
1983 ~KVM_SUPPORTED_FEATURE_CONTROL
);
1985 if (!msr
->host_initiated
&&
1986 (vmx
->msr_ia32_feature_control
& FEAT_CTL_LOCKED
))
1989 if (msr
->host_initiated
)
1990 valid_bits
= KVM_SUPPORTED_FEATURE_CONTROL
;
1992 valid_bits
= vmx
->msr_ia32_feature_control_valid_bits
;
1994 return !(msr
->data
& ~valid_bits
);
1997 int vmx_get_feature_msr(u32 msr
, u64
*data
)
2000 case KVM_FIRST_EMULATED_VMX_MSR
... KVM_LAST_EMULATED_VMX_MSR
:
2003 return vmx_get_vmx_msr(&vmcs_config
.nested
, msr
, data
);
2005 return KVM_MSR_RET_UNSUPPORTED
;
2010 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2011 * Returns 0 on success, non-0 otherwise.
2012 * Assumes vcpu_load() was already called.
2014 int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2016 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2017 struct vmx_uret_msr
*msr
;
2020 switch (msr_info
->index
) {
2021 #ifdef CONFIG_X86_64
2023 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
2026 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
2028 case MSR_KERNEL_GS_BASE
:
2029 msr_info
->data
= vmx_read_guest_kernel_gs_base(vmx
);
2033 return kvm_get_msr_common(vcpu
, msr_info
);
2034 case MSR_IA32_TSX_CTRL
:
2035 if (!msr_info
->host_initiated
&&
2036 !(vcpu
->arch
.arch_capabilities
& ARCH_CAP_TSX_CTRL_MSR
))
2039 case MSR_IA32_UMWAIT_CONTROL
:
2040 if (!msr_info
->host_initiated
&& !vmx_has_waitpkg(vmx
))
2043 msr_info
->data
= vmx
->msr_ia32_umwait_control
;
2045 case MSR_IA32_SPEC_CTRL
:
2046 if (!msr_info
->host_initiated
&&
2047 !guest_has_spec_ctrl_msr(vcpu
))
2050 msr_info
->data
= to_vmx(vcpu
)->spec_ctrl
;
2052 case MSR_IA32_SYSENTER_CS
:
2053 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
2055 case MSR_IA32_SYSENTER_EIP
:
2056 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
2058 case MSR_IA32_SYSENTER_ESP
:
2059 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
2061 case MSR_IA32_BNDCFGS
:
2062 if (!kvm_mpx_supported() ||
2063 (!msr_info
->host_initiated
&&
2064 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
2066 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
2068 case MSR_IA32_MCG_EXT_CTL
:
2069 if (!msr_info
->host_initiated
&&
2070 !(vmx
->msr_ia32_feature_control
&
2071 FEAT_CTL_LMCE_ENABLED
))
2073 msr_info
->data
= vcpu
->arch
.mcg_ext_ctl
;
2075 case MSR_IA32_FEAT_CTL
:
2076 msr_info
->data
= vmx
->msr_ia32_feature_control
;
2078 case MSR_IA32_SGXLEPUBKEYHASH0
... MSR_IA32_SGXLEPUBKEYHASH3
:
2079 if (!msr_info
->host_initiated
&&
2080 !guest_cpuid_has(vcpu
, X86_FEATURE_SGX_LC
))
2082 msr_info
->data
= to_vmx(vcpu
)->msr_ia32_sgxlepubkeyhash
2083 [msr_info
->index
- MSR_IA32_SGXLEPUBKEYHASH0
];
2085 case KVM_FIRST_EMULATED_VMX_MSR
... KVM_LAST_EMULATED_VMX_MSR
:
2086 if (!guest_can_use(vcpu
, X86_FEATURE_VMX
))
2088 if (vmx_get_vmx_msr(&vmx
->nested
.msrs
, msr_info
->index
,
2091 #ifdef CONFIG_KVM_HYPERV
2093 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2094 * instead of just ignoring the features, different Hyper-V
2095 * versions are either trying to use them and fail or do some
2096 * sanity checking and refuse to boot. Filter all unsupported
2099 if (!msr_info
->host_initiated
&& guest_cpuid_has_evmcs(vcpu
))
2100 nested_evmcs_filter_control_msr(vcpu
, msr_info
->index
,
2104 case MSR_IA32_RTIT_CTL
:
2105 if (!vmx_pt_mode_is_host_guest())
2107 msr_info
->data
= vmx
->pt_desc
.guest
.ctl
;
2109 case MSR_IA32_RTIT_STATUS
:
2110 if (!vmx_pt_mode_is_host_guest())
2112 msr_info
->data
= vmx
->pt_desc
.guest
.status
;
2114 case MSR_IA32_RTIT_CR3_MATCH
:
2115 if (!vmx_pt_mode_is_host_guest() ||
2116 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2117 PT_CAP_cr3_filtering
))
2119 msr_info
->data
= vmx
->pt_desc
.guest
.cr3_match
;
2121 case MSR_IA32_RTIT_OUTPUT_BASE
:
2122 if (!vmx_pt_mode_is_host_guest() ||
2123 (!intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2124 PT_CAP_topa_output
) &&
2125 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2126 PT_CAP_single_range_output
)))
2128 msr_info
->data
= vmx
->pt_desc
.guest
.output_base
;
2130 case MSR_IA32_RTIT_OUTPUT_MASK
:
2131 if (!vmx_pt_mode_is_host_guest() ||
2132 (!intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2133 PT_CAP_topa_output
) &&
2134 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2135 PT_CAP_single_range_output
)))
2137 msr_info
->data
= vmx
->pt_desc
.guest
.output_mask
;
2139 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
2140 index
= msr_info
->index
- MSR_IA32_RTIT_ADDR0_A
;
2141 if (!vmx_pt_mode_is_host_guest() ||
2142 (index
>= 2 * vmx
->pt_desc
.num_address_ranges
))
2145 msr_info
->data
= vmx
->pt_desc
.guest
.addr_b
[index
/ 2];
2147 msr_info
->data
= vmx
->pt_desc
.guest
.addr_a
[index
/ 2];
2149 case MSR_IA32_DEBUGCTLMSR
:
2150 msr_info
->data
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
2154 msr
= vmx_find_uret_msr(vmx
, msr_info
->index
);
2156 msr_info
->data
= msr
->data
;
2159 return kvm_get_msr_common(vcpu
, msr_info
);
2165 static u64
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu
*vcpu
,
2168 #ifdef CONFIG_X86_64
2169 if (!guest_cpuid_has(vcpu
, X86_FEATURE_LM
))
2172 return (unsigned long)data
;
2175 static u64
vmx_get_supported_debugctl(struct kvm_vcpu
*vcpu
, bool host_initiated
)
2179 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT
) &&
2180 (host_initiated
|| guest_cpuid_has(vcpu
, X86_FEATURE_BUS_LOCK_DETECT
)))
2181 debugctl
|= DEBUGCTLMSR_BUS_LOCK_DETECT
;
2183 if ((kvm_caps
.supported_perf_cap
& PMU_CAP_LBR_FMT
) &&
2184 (host_initiated
|| intel_pmu_lbr_is_enabled(vcpu
)))
2185 debugctl
|= DEBUGCTLMSR_LBR
| DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
;
2191 * Writes msr value into the appropriate "register".
2192 * Returns 0 on success, non-0 otherwise.
2193 * Assumes vcpu_load() was already called.
2195 int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2197 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2198 struct vmx_uret_msr
*msr
;
2200 u32 msr_index
= msr_info
->index
;
2201 u64 data
= msr_info
->data
;
2204 switch (msr_index
) {
2206 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2208 #ifdef CONFIG_X86_64
2210 vmx_segment_cache_clear(vmx
);
2211 vmcs_writel(GUEST_FS_BASE
, data
);
2214 vmx_segment_cache_clear(vmx
);
2215 vmcs_writel(GUEST_GS_BASE
, data
);
2217 case MSR_KERNEL_GS_BASE
:
2218 vmx_write_guest_kernel_gs_base(vmx
, data
);
2221 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2223 * Always intercepting WRMSR could incur non-negligible
2224 * overhead given xfd might be changed frequently in
2225 * guest context switch. Disable write interception
2226 * upon the first write with a non-zero value (indicating
2227 * potential usage on dynamic xfeatures). Also update
2228 * exception bitmap to trap #NM for proper virtualization
2232 vmx_disable_intercept_for_msr(vcpu
, MSR_IA32_XFD
,
2234 vcpu
->arch
.xfd_no_write_intercept
= true;
2235 vmx_update_exception_bitmap(vcpu
);
2239 case MSR_IA32_SYSENTER_CS
:
2240 if (is_guest_mode(vcpu
))
2241 get_vmcs12(vcpu
)->guest_sysenter_cs
= data
;
2242 vmcs_write32(GUEST_SYSENTER_CS
, data
);
2244 case MSR_IA32_SYSENTER_EIP
:
2245 if (is_guest_mode(vcpu
)) {
2246 data
= nested_vmx_truncate_sysenter_addr(vcpu
, data
);
2247 get_vmcs12(vcpu
)->guest_sysenter_eip
= data
;
2249 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
2251 case MSR_IA32_SYSENTER_ESP
:
2252 if (is_guest_mode(vcpu
)) {
2253 data
= nested_vmx_truncate_sysenter_addr(vcpu
, data
);
2254 get_vmcs12(vcpu
)->guest_sysenter_esp
= data
;
2256 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
2258 case MSR_IA32_DEBUGCTLMSR
: {
2261 invalid
= data
& ~vmx_get_supported_debugctl(vcpu
, msr_info
->host_initiated
);
2262 if (invalid
& (DEBUGCTLMSR_BTF
|DEBUGCTLMSR_LBR
)) {
2263 kvm_pr_unimpl_wrmsr(vcpu
, msr_index
, data
);
2264 data
&= ~(DEBUGCTLMSR_BTF
|DEBUGCTLMSR_LBR
);
2265 invalid
&= ~(DEBUGCTLMSR_BTF
|DEBUGCTLMSR_LBR
);
2271 if (is_guest_mode(vcpu
) && get_vmcs12(vcpu
)->vm_exit_controls
&
2272 VM_EXIT_SAVE_DEBUG_CONTROLS
)
2273 get_vmcs12(vcpu
)->guest_ia32_debugctl
= data
;
2275 vmcs_write64(GUEST_IA32_DEBUGCTL
, data
);
2276 if (intel_pmu_lbr_is_enabled(vcpu
) && !to_vmx(vcpu
)->lbr_desc
.event
&&
2277 (data
& DEBUGCTLMSR_LBR
))
2278 intel_pmu_create_guest_lbr_event(vcpu
);
2281 case MSR_IA32_BNDCFGS
:
2282 if (!kvm_mpx_supported() ||
2283 (!msr_info
->host_initiated
&&
2284 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
2286 if (is_noncanonical_address(data
& PAGE_MASK
, vcpu
) ||
2287 (data
& MSR_IA32_BNDCFGS_RSVD
))
2290 if (is_guest_mode(vcpu
) &&
2291 ((vmx
->nested
.msrs
.entry_ctls_high
& VM_ENTRY_LOAD_BNDCFGS
) ||
2292 (vmx
->nested
.msrs
.exit_ctls_high
& VM_EXIT_CLEAR_BNDCFGS
)))
2293 get_vmcs12(vcpu
)->guest_bndcfgs
= data
;
2295 vmcs_write64(GUEST_BNDCFGS
, data
);
2297 case MSR_IA32_UMWAIT_CONTROL
:
2298 if (!msr_info
->host_initiated
&& !vmx_has_waitpkg(vmx
))
2301 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2302 if (data
& (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2305 vmx
->msr_ia32_umwait_control
= data
;
2307 case MSR_IA32_SPEC_CTRL
:
2308 if (!msr_info
->host_initiated
&&
2309 !guest_has_spec_ctrl_msr(vcpu
))
2312 if (kvm_spec_ctrl_test_value(data
))
2315 vmx
->spec_ctrl
= data
;
2321 * When it's written (to non-zero) for the first time, pass
2325 * The handling of the MSR bitmap for L2 guests is done in
2326 * nested_vmx_prepare_msr_bitmap. We should not touch the
2327 * vmcs02.msr_bitmap here since it gets completely overwritten
2328 * in the merging. We update the vmcs01 here for L1 as well
2329 * since it will end up touching the MSR anyway now.
2331 vmx_disable_intercept_for_msr(vcpu
,
2335 case MSR_IA32_TSX_CTRL
:
2336 if (!msr_info
->host_initiated
&&
2337 !(vcpu
->arch
.arch_capabilities
& ARCH_CAP_TSX_CTRL_MSR
))
2339 if (data
& ~(TSX_CTRL_RTM_DISABLE
| TSX_CTRL_CPUID_CLEAR
))
2342 case MSR_IA32_CR_PAT
:
2343 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2347 if (is_guest_mode(vcpu
) &&
2348 get_vmcs12(vcpu
)->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
2349 get_vmcs12(vcpu
)->guest_ia32_pat
= data
;
2351 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
2352 vmcs_write64(GUEST_IA32_PAT
, data
);
2354 case MSR_IA32_MCG_EXT_CTL
:
2355 if ((!msr_info
->host_initiated
&&
2356 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
2357 FEAT_CTL_LMCE_ENABLED
)) ||
2358 (data
& ~MCG_EXT_CTL_LMCE_EN
))
2360 vcpu
->arch
.mcg_ext_ctl
= data
;
2362 case MSR_IA32_FEAT_CTL
:
2363 if (!is_vmx_feature_control_msr_valid(vmx
, msr_info
))
2366 vmx
->msr_ia32_feature_control
= data
;
2367 if (msr_info
->host_initiated
&& data
== 0)
2368 vmx_leave_nested(vcpu
);
2370 /* SGX may be enabled/disabled by guest's firmware */
2371 vmx_write_encls_bitmap(vcpu
, NULL
);
2373 case MSR_IA32_SGXLEPUBKEYHASH0
... MSR_IA32_SGXLEPUBKEYHASH3
:
2375 * On real hardware, the LE hash MSRs are writable before
2376 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2377 * at which point SGX related bits in IA32_FEATURE_CONTROL
2380 * KVM does not emulate SGX activation for simplicity, so
2381 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2382 * is unlocked. This is technically not architectural
2383 * behavior, but it's close enough.
2385 if (!msr_info
->host_initiated
&&
2386 (!guest_cpuid_has(vcpu
, X86_FEATURE_SGX_LC
) ||
2387 ((vmx
->msr_ia32_feature_control
& FEAT_CTL_LOCKED
) &&
2388 !(vmx
->msr_ia32_feature_control
& FEAT_CTL_SGX_LC_ENABLED
))))
2390 vmx
->msr_ia32_sgxlepubkeyhash
2391 [msr_index
- MSR_IA32_SGXLEPUBKEYHASH0
] = data
;
2393 case KVM_FIRST_EMULATED_VMX_MSR
... KVM_LAST_EMULATED_VMX_MSR
:
2394 if (!msr_info
->host_initiated
)
2395 return 1; /* they are read-only */
2396 if (!guest_can_use(vcpu
, X86_FEATURE_VMX
))
2398 return vmx_set_vmx_msr(vcpu
, msr_index
, data
);
2399 case MSR_IA32_RTIT_CTL
:
2400 if (!vmx_pt_mode_is_host_guest() ||
2401 vmx_rtit_ctl_check(vcpu
, data
) ||
2404 vmcs_write64(GUEST_IA32_RTIT_CTL
, data
);
2405 vmx
->pt_desc
.guest
.ctl
= data
;
2406 pt_update_intercept_for_msr(vcpu
);
2408 case MSR_IA32_RTIT_STATUS
:
2409 if (!pt_can_write_msr(vmx
))
2411 if (data
& MSR_IA32_RTIT_STATUS_MASK
)
2413 vmx
->pt_desc
.guest
.status
= data
;
2415 case MSR_IA32_RTIT_CR3_MATCH
:
2416 if (!pt_can_write_msr(vmx
))
2418 if (!intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2419 PT_CAP_cr3_filtering
))
2421 vmx
->pt_desc
.guest
.cr3_match
= data
;
2423 case MSR_IA32_RTIT_OUTPUT_BASE
:
2424 if (!pt_can_write_msr(vmx
))
2426 if (!intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2427 PT_CAP_topa_output
) &&
2428 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2429 PT_CAP_single_range_output
))
2431 if (!pt_output_base_valid(vcpu
, data
))
2433 vmx
->pt_desc
.guest
.output_base
= data
;
2435 case MSR_IA32_RTIT_OUTPUT_MASK
:
2436 if (!pt_can_write_msr(vmx
))
2438 if (!intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2439 PT_CAP_topa_output
) &&
2440 !intel_pt_validate_cap(vmx
->pt_desc
.caps
,
2441 PT_CAP_single_range_output
))
2443 vmx
->pt_desc
.guest
.output_mask
= data
;
2445 case MSR_IA32_RTIT_ADDR0_A
... MSR_IA32_RTIT_ADDR3_B
:
2446 if (!pt_can_write_msr(vmx
))
2448 index
= msr_info
->index
- MSR_IA32_RTIT_ADDR0_A
;
2449 if (index
>= 2 * vmx
->pt_desc
.num_address_ranges
)
2451 if (is_noncanonical_address(data
, vcpu
))
2454 vmx
->pt_desc
.guest
.addr_b
[index
/ 2] = data
;
2456 vmx
->pt_desc
.guest
.addr_a
[index
/ 2] = data
;
2458 case MSR_IA32_PERF_CAPABILITIES
:
2459 if (data
&& !vcpu_to_pmu(vcpu
)->version
)
2461 if (data
& PMU_CAP_LBR_FMT
) {
2462 if ((data
& PMU_CAP_LBR_FMT
) !=
2463 (kvm_caps
.supported_perf_cap
& PMU_CAP_LBR_FMT
))
2465 if (!cpuid_model_is_consistent(vcpu
))
2468 if (data
& PERF_CAP_PEBS_FORMAT
) {
2469 if ((data
& PERF_CAP_PEBS_MASK
) !=
2470 (kvm_caps
.supported_perf_cap
& PERF_CAP_PEBS_MASK
))
2472 if (!guest_cpuid_has(vcpu
, X86_FEATURE_DS
))
2474 if (!guest_cpuid_has(vcpu
, X86_FEATURE_DTES64
))
2476 if (!cpuid_model_is_consistent(vcpu
))
2479 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2484 msr
= vmx_find_uret_msr(vmx
, msr_index
);
2486 ret
= vmx_set_guest_uret_msr(vmx
, msr
, data
);
2488 ret
= kvm_set_msr_common(vcpu
, msr_info
);
2491 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2492 if (msr_index
== MSR_IA32_ARCH_CAPABILITIES
)
2493 vmx_update_fb_clear_dis(vcpu
, vmx
);
2498 void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2500 unsigned long guest_owned_bits
;
2502 kvm_register_mark_available(vcpu
, reg
);
2506 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
2509 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
2511 case VCPU_EXREG_PDPTR
:
2513 ept_save_pdptrs(vcpu
);
2515 case VCPU_EXREG_CR0
:
2516 guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
2518 vcpu
->arch
.cr0
&= ~guest_owned_bits
;
2519 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & guest_owned_bits
;
2521 case VCPU_EXREG_CR3
:
2523 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2524 * CR3 is loaded into hardware, not the guest's CR3.
2526 if (!(exec_controls_get(to_vmx(vcpu
)) & CPU_BASED_CR3_LOAD_EXITING
))
2527 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
2529 case VCPU_EXREG_CR4
:
2530 guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
2532 vcpu
->arch
.cr4
&= ~guest_owned_bits
;
2533 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & guest_owned_bits
;
2536 KVM_BUG_ON(1, vcpu
->kvm
);
2542 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2543 * directly instead of going through cpu_has(), to ensure KVM is trapping
2544 * ENCLS whenever it's supported in hardware. It does not matter whether
2545 * the host OS supports or has enabled SGX.
2547 static bool cpu_has_sgx(void)
2549 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2553 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2554 * can't be used due to errata where VM Exit may incorrectly clear
2555 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2556 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2558 static bool cpu_has_perf_global_ctrl_bug(void)
2560 switch (boot_cpu_data
.x86_vfm
) {
2561 case INTEL_NEHALEM_EP
: /* AAK155 */
2562 case INTEL_NEHALEM
: /* AAP115 */
2563 case INTEL_WESTMERE
: /* AAT100 */
2564 case INTEL_WESTMERE_EP
: /* BC86,AAY89,BD102 */
2565 case INTEL_NEHALEM_EX
: /* BA97 */
2574 static int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
, u32 msr
, u32
*result
)
2576 u32 vmx_msr_low
, vmx_msr_high
;
2577 u32 ctl
= ctl_min
| ctl_opt
;
2579 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
2581 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
2582 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
2584 /* Ensure minimum (required) set of control bits are supported. */
2592 static u64
adjust_vmx_controls64(u64 ctl_opt
, u32 msr
)
2596 rdmsrl(msr
, allowed
);
2598 return ctl_opt
& allowed
;
2601 static int setup_vmcs_config(struct vmcs_config
*vmcs_conf
,
2602 struct vmx_capability
*vmx_cap
)
2604 u32 _pin_based_exec_control
= 0;
2605 u32 _cpu_based_exec_control
= 0;
2606 u32 _cpu_based_2nd_exec_control
= 0;
2607 u64 _cpu_based_3rd_exec_control
= 0;
2608 u32 _vmexit_control
= 0;
2609 u32 _vmentry_control
= 0;
2615 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2616 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2617 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2622 } const vmcs_entry_exit_pairs
[] = {
2623 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
},
2624 { VM_ENTRY_LOAD_IA32_PAT
, VM_EXIT_LOAD_IA32_PAT
},
2625 { VM_ENTRY_LOAD_IA32_EFER
, VM_EXIT_LOAD_IA32_EFER
},
2626 { VM_ENTRY_LOAD_BNDCFGS
, VM_EXIT_CLEAR_BNDCFGS
},
2627 { VM_ENTRY_LOAD_IA32_RTIT_CTL
, VM_EXIT_CLEAR_IA32_RTIT_CTL
},
2630 memset(vmcs_conf
, 0, sizeof(*vmcs_conf
));
2632 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
,
2633 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL
,
2634 MSR_IA32_VMX_PROCBASED_CTLS
,
2635 &_cpu_based_exec_control
))
2637 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
2638 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL
,
2639 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL
,
2640 MSR_IA32_VMX_PROCBASED_CTLS2
,
2641 &_cpu_based_2nd_exec_control
))
2644 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE
))
2645 _cpu_based_2nd_exec_control
&= ~SECONDARY_EXEC_EPT_VIOLATION_VE
;
2647 #ifndef CONFIG_X86_64
2648 if (!(_cpu_based_2nd_exec_control
&
2649 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
2650 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2653 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
2654 _cpu_based_2nd_exec_control
&= ~(
2655 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2656 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2657 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
2659 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP
,
2660 &vmx_cap
->ept
, &vmx_cap
->vpid
);
2662 if (!(_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
2664 pr_warn_once("EPT CAP should not exist if not support "
2665 "1-setting enable EPT VM-execution control\n");
2667 if (error_on_inconsistent_vmcs_config
)
2671 _cpu_based_2nd_exec_control
&= ~SECONDARY_EXEC_EPT_VIOLATION_VE
;
2673 if (!(_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_VPID
) &&
2675 pr_warn_once("VPID CAP should not exist if not support "
2676 "1-setting enable VPID VM-execution control\n");
2678 if (error_on_inconsistent_vmcs_config
)
2685 _cpu_based_2nd_exec_control
&= ~SECONDARY_EXEC_ENCLS_EXITING
;
2687 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_TERTIARY_CONTROLS
)
2688 _cpu_based_3rd_exec_control
=
2689 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL
,
2690 MSR_IA32_VMX_PROCBASED_CTLS3
);
2692 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
,
2693 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS
,
2694 MSR_IA32_VMX_EXIT_CTLS
,
2698 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL
,
2699 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL
,
2700 MSR_IA32_VMX_PINBASED_CTLS
,
2701 &_pin_based_exec_control
))
2704 if (cpu_has_broken_vmx_preemption_timer())
2705 _pin_based_exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
2706 if (!(_cpu_based_2nd_exec_control
&
2707 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
))
2708 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
2710 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
,
2711 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS
,
2712 MSR_IA32_VMX_ENTRY_CTLS
,
2716 for (i
= 0; i
< ARRAY_SIZE(vmcs_entry_exit_pairs
); i
++) {
2717 u32 n_ctrl
= vmcs_entry_exit_pairs
[i
].entry_control
;
2718 u32 x_ctrl
= vmcs_entry_exit_pairs
[i
].exit_control
;
2720 if (!(_vmentry_control
& n_ctrl
) == !(_vmexit_control
& x_ctrl
))
2723 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2724 _vmentry_control
& n_ctrl
, _vmexit_control
& x_ctrl
);
2726 if (error_on_inconsistent_vmcs_config
)
2729 _vmentry_control
&= ~n_ctrl
;
2730 _vmexit_control
&= ~x_ctrl
;
2733 rdmsrl(MSR_IA32_VMX_BASIC
, basic_msr
);
2735 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2736 if (vmx_basic_vmcs_size(basic_msr
) > PAGE_SIZE
)
2739 #ifdef CONFIG_X86_64
2741 * KVM expects to be able to shove all legal physical addresses into
2742 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2743 * 0 for processors that support Intel 64 architecture".
2745 if (basic_msr
& VMX_BASIC_32BIT_PHYS_ADDR_ONLY
)
2749 /* Require Write-Back (WB) memory type for VMCS accesses. */
2750 if (vmx_basic_vmcs_mem_type(basic_msr
) != X86_MEMTYPE_WB
)
2753 rdmsrl(MSR_IA32_VMX_MISC
, misc_msr
);
2755 vmcs_conf
->basic
= basic_msr
;
2756 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
2757 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
2758 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
2759 vmcs_conf
->cpu_based_3rd_exec_ctrl
= _cpu_based_3rd_exec_control
;
2760 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
2761 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
2762 vmcs_conf
->misc
= misc_msr
;
2764 #if IS_ENABLED(CONFIG_HYPERV)
2765 if (enlightened_vmcs
)
2766 evmcs_sanitize_exec_ctrls(vmcs_conf
);
2772 static bool __kvm_is_vmx_supported(void)
2774 int cpu
= smp_processor_id();
2776 if (!(cpuid_ecx(1) & feature_bit(VMX
))) {
2777 pr_err("VMX not supported by CPU %d\n", cpu
);
2781 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL
) ||
2782 !this_cpu_has(X86_FEATURE_VMX
)) {
2783 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu
);
2790 static bool kvm_is_vmx_supported(void)
2795 supported
= __kvm_is_vmx_supported();
2801 int vmx_check_processor_compat(void)
2803 int cpu
= raw_smp_processor_id();
2804 struct vmcs_config vmcs_conf
;
2805 struct vmx_capability vmx_cap
;
2807 if (!__kvm_is_vmx_supported())
2810 if (setup_vmcs_config(&vmcs_conf
, &vmx_cap
) < 0) {
2811 pr_err("Failed to setup VMCS config on CPU %d\n", cpu
);
2815 nested_vmx_setup_ctls_msrs(&vmcs_conf
, vmx_cap
.ept
);
2816 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
))) {
2817 pr_err("Inconsistent VMCS config on CPU %d\n", cpu
);
2823 static int kvm_cpu_vmxon(u64 vmxon_pointer
)
2827 cr4_set_bits(X86_CR4_VMXE
);
2829 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2830 _ASM_EXTABLE(1b
, %l
[fault
])
2831 : : [vmxon_pointer
] "m"(vmxon_pointer
)
2836 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2837 rdmsrl_safe(MSR_IA32_FEAT_CTL
, &msr
) ? 0xdeadbeef : msr
);
2838 cr4_clear_bits(X86_CR4_VMXE
);
2843 int vmx_enable_virtualization_cpu(void)
2845 int cpu
= raw_smp_processor_id();
2846 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
2849 if (cr4_read_shadow() & X86_CR4_VMXE
)
2853 * This can happen if we hot-added a CPU but failed to allocate
2854 * VP assist page for it.
2856 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu
))
2859 intel_pt_handle_vmx(1);
2861 r
= kvm_cpu_vmxon(phys_addr
);
2863 intel_pt_handle_vmx(0);
2870 static void vmclear_local_loaded_vmcss(void)
2872 int cpu
= raw_smp_processor_id();
2873 struct loaded_vmcs
*v
, *n
;
2875 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
2876 loaded_vmcss_on_cpu_link
)
2877 __loaded_vmcs_clear(v
);
2880 void vmx_disable_virtualization_cpu(void)
2882 vmclear_local_loaded_vmcss();
2884 if (kvm_cpu_vmxoff())
2885 kvm_spurious_fault();
2889 intel_pt_handle_vmx(0);
2892 struct vmcs
*alloc_vmcs_cpu(bool shadow
, int cpu
, gfp_t flags
)
2894 int node
= cpu_to_node(cpu
);
2898 pages
= __alloc_pages_node(node
, flags
, 0);
2901 vmcs
= page_address(pages
);
2902 memset(vmcs
, 0, vmx_basic_vmcs_size(vmcs_config
.basic
));
2904 /* KVM supports Enlightened VMCS v1 only */
2905 if (kvm_is_using_evmcs())
2906 vmcs
->hdr
.revision_id
= KVM_EVMCS_VERSION
;
2908 vmcs
->hdr
.revision_id
= vmx_basic_vmcs_revision_id(vmcs_config
.basic
);
2911 vmcs
->hdr
.shadow_vmcs
= 1;
2915 void free_vmcs(struct vmcs
*vmcs
)
2917 free_page((unsigned long)vmcs
);
2921 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2923 void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
2925 if (!loaded_vmcs
->vmcs
)
2927 loaded_vmcs_clear(loaded_vmcs
);
2928 free_vmcs(loaded_vmcs
->vmcs
);
2929 loaded_vmcs
->vmcs
= NULL
;
2930 if (loaded_vmcs
->msr_bitmap
)
2931 free_page((unsigned long)loaded_vmcs
->msr_bitmap
);
2932 WARN_ON(loaded_vmcs
->shadow_vmcs
!= NULL
);
2935 int alloc_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
2937 loaded_vmcs
->vmcs
= alloc_vmcs(false);
2938 if (!loaded_vmcs
->vmcs
)
2941 vmcs_clear(loaded_vmcs
->vmcs
);
2943 loaded_vmcs
->shadow_vmcs
= NULL
;
2944 loaded_vmcs
->hv_timer_soft_disabled
= false;
2945 loaded_vmcs
->cpu
= -1;
2946 loaded_vmcs
->launched
= 0;
2948 if (cpu_has_vmx_msr_bitmap()) {
2949 loaded_vmcs
->msr_bitmap
= (unsigned long *)
2950 __get_free_page(GFP_KERNEL_ACCOUNT
);
2951 if (!loaded_vmcs
->msr_bitmap
)
2953 memset(loaded_vmcs
->msr_bitmap
, 0xff, PAGE_SIZE
);
2956 memset(&loaded_vmcs
->host_state
, 0, sizeof(struct vmcs_host_state
));
2957 memset(&loaded_vmcs
->controls_shadow
, 0,
2958 sizeof(struct vmcs_controls_shadow
));
2963 free_loaded_vmcs(loaded_vmcs
);
2967 static void free_kvm_area(void)
2971 for_each_possible_cpu(cpu
) {
2972 free_vmcs(per_cpu(vmxarea
, cpu
));
2973 per_cpu(vmxarea
, cpu
) = NULL
;
2977 static __init
int alloc_kvm_area(void)
2981 for_each_possible_cpu(cpu
) {
2984 vmcs
= alloc_vmcs_cpu(false, cpu
, GFP_KERNEL
);
2991 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2992 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2993 * revision_id reported by MSR_IA32_VMX_BASIC.
2995 * However, even though not explicitly documented by
2996 * TLFS, VMXArea passed as VMXON argument should
2997 * still be marked with revision_id reported by
3000 if (kvm_is_using_evmcs())
3001 vmcs
->hdr
.revision_id
= vmx_basic_vmcs_revision_id(vmcs_config
.basic
);
3003 per_cpu(vmxarea
, cpu
) = vmcs
;
3008 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
3009 struct kvm_segment
*save
)
3011 if (!emulate_invalid_guest_state
) {
3013 * CS and SS RPL should be equal during guest entry according
3014 * to VMX spec, but in reality it is not always so. Since vcpu
3015 * is in the middle of the transition from real mode to
3016 * protected mode it is safe to assume that RPL 0 is a good
3019 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
3020 save
->selector
&= ~SEGMENT_RPL_MASK
;
3021 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
3024 __vmx_set_segment(vcpu
, save
, seg
);
3027 static void enter_pmode(struct kvm_vcpu
*vcpu
)
3029 unsigned long flags
;
3030 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3033 * Update real mode segment cache. It may be not up-to-date if segment
3034 * register was written while vcpu was in a guest mode.
3036 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3037 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3038 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3039 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3040 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3041 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3043 vmx
->rmode
.vm86_active
= 0;
3045 __vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3047 flags
= vmcs_readl(GUEST_RFLAGS
);
3048 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
3049 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
3050 vmcs_writel(GUEST_RFLAGS
, flags
);
3052 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
3053 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
3055 vmx_update_exception_bitmap(vcpu
);
3057 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3058 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3059 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3060 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3061 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3062 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3065 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
3067 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3068 struct kvm_segment var
= *save
;
3071 if (seg
== VCPU_SREG_CS
)
3074 if (!emulate_invalid_guest_state
) {
3075 var
.selector
= var
.base
>> 4;
3076 var
.base
= var
.base
& 0xffff0;
3086 if (save
->base
& 0xf)
3087 pr_warn_once("segment base is not paragraph aligned "
3088 "when entering protected mode (seg=%d)", seg
);
3091 vmcs_write16(sf
->selector
, var
.selector
);
3092 vmcs_writel(sf
->base
, var
.base
);
3093 vmcs_write32(sf
->limit
, var
.limit
);
3094 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
3097 static void enter_rmode(struct kvm_vcpu
*vcpu
)
3099 unsigned long flags
;
3100 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3101 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(vcpu
->kvm
);
3104 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3105 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3106 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3107 * should VM-Fail and KVM should reject userspace attempts to stuff
3108 * CR0.PG=0 when L2 is active.
3110 WARN_ON_ONCE(is_guest_mode(vcpu
));
3112 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
3113 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
3114 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
3115 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
3116 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
3117 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
3118 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
3120 vmx
->rmode
.vm86_active
= 1;
3122 vmx_segment_cache_clear(vmx
);
3124 vmcs_writel(GUEST_TR_BASE
, kvm_vmx
->tss_addr
);
3125 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
3126 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
3128 flags
= vmcs_readl(GUEST_RFLAGS
);
3129 vmx
->rmode
.save_rflags
= flags
;
3131 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
3133 vmcs_writel(GUEST_RFLAGS
, flags
);
3134 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
3135 vmx_update_exception_bitmap(vcpu
);
3137 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
3138 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
3139 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
3140 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
3141 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
3142 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
3145 int vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
3147 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3149 /* Nothing to do if hardware doesn't support EFER. */
3150 if (!vmx_find_uret_msr(vmx
, MSR_EFER
))
3153 vcpu
->arch
.efer
= efer
;
3154 #ifdef CONFIG_X86_64
3155 if (efer
& EFER_LMA
)
3156 vm_entry_controls_setbit(vmx
, VM_ENTRY_IA32E_MODE
);
3158 vm_entry_controls_clearbit(vmx
, VM_ENTRY_IA32E_MODE
);
3160 if (KVM_BUG_ON(efer
& EFER_LMA
, vcpu
->kvm
))
3164 vmx_setup_uret_msrs(vmx
);
3168 #ifdef CONFIG_X86_64
3170 static void enter_lmode(struct kvm_vcpu
*vcpu
)
3174 vmx_segment_cache_clear(to_vmx(vcpu
));
3176 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
3177 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
3178 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3180 vmcs_write32(GUEST_TR_AR_BYTES
,
3181 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
3182 | VMX_AR_TYPE_BUSY_64_TSS
);
3184 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
3187 static void exit_lmode(struct kvm_vcpu
*vcpu
)
3189 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
3194 void vmx_flush_tlb_all(struct kvm_vcpu
*vcpu
)
3196 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3199 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3200 * the CPU is not required to invalidate guest-physical mappings on
3201 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3202 * associated with the root EPT structure and not any particular VPID
3203 * (INVVPID also isn't required to invalidate guest-physical mappings).
3207 } else if (enable_vpid
) {
3208 if (cpu_has_vmx_invvpid_global()) {
3209 vpid_sync_vcpu_global();
3211 vpid_sync_vcpu_single(vmx
->vpid
);
3212 vpid_sync_vcpu_single(vmx
->nested
.vpid02
);
3217 static inline int vmx_get_current_vpid(struct kvm_vcpu
*vcpu
)
3219 if (is_guest_mode(vcpu
))
3220 return nested_get_vpid02(vcpu
);
3221 return to_vmx(vcpu
)->vpid
;
3224 void vmx_flush_tlb_current(struct kvm_vcpu
*vcpu
)
3226 struct kvm_mmu
*mmu
= vcpu
->arch
.mmu
;
3227 u64 root_hpa
= mmu
->root
.hpa
;
3229 /* No flush required if the current context is invalid. */
3230 if (!VALID_PAGE(root_hpa
))
3234 ept_sync_context(construct_eptp(vcpu
, root_hpa
,
3235 mmu
->root_role
.level
));
3237 vpid_sync_context(vmx_get_current_vpid(vcpu
));
3240 void vmx_flush_tlb_gva(struct kvm_vcpu
*vcpu
, gva_t addr
)
3243 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3244 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3246 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu
), addr
);
3249 void vmx_flush_tlb_guest(struct kvm_vcpu
*vcpu
)
3252 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3253 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3254 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3255 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3256 * i.e. no explicit INVVPID is necessary.
3258 vpid_sync_context(vmx_get_current_vpid(vcpu
));
3261 void vmx_ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
3263 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3265 if (!kvm_register_is_dirty(vcpu
, VCPU_EXREG_PDPTR
))
3268 if (is_pae_paging(vcpu
)) {
3269 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
3270 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
3271 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
3272 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
3276 void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
3278 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
3280 if (WARN_ON_ONCE(!is_pae_paging(vcpu
)))
3283 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
3284 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
3285 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
3286 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
3288 kvm_register_mark_available(vcpu
, VCPU_EXREG_PDPTR
);
3291 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3292 CPU_BASED_CR3_STORE_EXITING)
3294 bool vmx_is_valid_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3296 if (is_guest_mode(vcpu
))
3297 return nested_guest_cr0_valid(vcpu
, cr0
);
3299 if (to_vmx(vcpu
)->nested
.vmxon
)
3300 return nested_host_cr0_valid(vcpu
, cr0
);
3305 void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
3307 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3308 unsigned long hw_cr0
, old_cr0_pg
;
3311 old_cr0_pg
= kvm_read_cr0_bits(vcpu
, X86_CR0_PG
);
3313 hw_cr0
= (cr0
& ~KVM_VM_CR0_ALWAYS_OFF
);
3314 if (enable_unrestricted_guest
)
3315 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
3317 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
3319 hw_cr0
|= X86_CR0_WP
;
3321 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
3324 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
3328 vmcs_writel(CR0_READ_SHADOW
, cr0
);
3329 vmcs_writel(GUEST_CR0
, hw_cr0
);
3330 vcpu
->arch
.cr0
= cr0
;
3331 kvm_register_mark_available(vcpu
, VCPU_EXREG_CR0
);
3333 #ifdef CONFIG_X86_64
3334 if (vcpu
->arch
.efer
& EFER_LME
) {
3335 if (!old_cr0_pg
&& (cr0
& X86_CR0_PG
))
3337 else if (old_cr0_pg
&& !(cr0
& X86_CR0_PG
))
3342 if (enable_ept
&& !enable_unrestricted_guest
) {
3344 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3345 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3346 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3347 * KVM's CR3 is installed.
3349 if (!kvm_register_is_available(vcpu
, VCPU_EXREG_CR3
))
3350 vmx_cache_reg(vcpu
, VCPU_EXREG_CR3
);
3353 * When running with EPT but not unrestricted guest, KVM must
3354 * intercept CR3 accesses when paging is _disabled_. This is
3355 * necessary because restricted guests can't actually run with
3356 * paging disabled, and so KVM stuffs its own CR3 in order to
3357 * run the guest when identity mapped page tables.
3359 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3360 * update, it may be stale with respect to CR3 interception,
3361 * e.g. after nested VM-Enter.
3363 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3364 * stores to forward them to L1, even if KVM does not need to
3365 * intercept them to preserve its identity mapped page tables.
3367 if (!(cr0
& X86_CR0_PG
)) {
3368 exec_controls_setbit(vmx
, CR3_EXITING_BITS
);
3369 } else if (!is_guest_mode(vcpu
)) {
3370 exec_controls_clearbit(vmx
, CR3_EXITING_BITS
);
3372 tmp
= exec_controls_get(vmx
);
3373 tmp
&= ~CR3_EXITING_BITS
;
3374 tmp
|= get_vmcs12(vcpu
)->cpu_based_vm_exec_control
& CR3_EXITING_BITS
;
3375 exec_controls_set(vmx
, tmp
);
3378 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3379 if ((old_cr0_pg
^ cr0
) & X86_CR0_PG
)
3380 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
3383 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3384 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3386 if (!(old_cr0_pg
& X86_CR0_PG
) && (cr0
& X86_CR0_PG
))
3387 kvm_register_mark_dirty(vcpu
, VCPU_EXREG_CR3
);
3390 /* depends on vcpu->arch.cr0 to be set to a new value */
3391 vmx
->emulation_required
= vmx_emulation_required(vcpu
);
3394 static int vmx_get_max_ept_level(void)
3396 if (cpu_has_vmx_ept_5levels())
3401 u64
construct_eptp(struct kvm_vcpu
*vcpu
, hpa_t root_hpa
, int root_level
)
3403 u64 eptp
= VMX_EPTP_MT_WB
;
3405 eptp
|= (root_level
== 5) ? VMX_EPTP_PWL_5
: VMX_EPTP_PWL_4
;
3407 if (enable_ept_ad_bits
&&
3408 (!is_guest_mode(vcpu
) || nested_ept_ad_enabled(vcpu
)))
3409 eptp
|= VMX_EPTP_AD_ENABLE_BIT
;
3415 void vmx_load_mmu_pgd(struct kvm_vcpu
*vcpu
, hpa_t root_hpa
, int root_level
)
3417 struct kvm
*kvm
= vcpu
->kvm
;
3418 bool update_guest_cr3
= true;
3419 unsigned long guest_cr3
;
3423 eptp
= construct_eptp(vcpu
, root_hpa
, root_level
);
3424 vmcs_write64(EPT_POINTER
, eptp
);
3426 hv_track_root_tdp(vcpu
, root_hpa
);
3428 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
3429 guest_cr3
= to_kvm_vmx(kvm
)->ept_identity_map_addr
;
3430 else if (kvm_register_is_dirty(vcpu
, VCPU_EXREG_CR3
))
3431 guest_cr3
= vcpu
->arch
.cr3
;
3432 else /* vmcs.GUEST_CR3 is already up-to-date. */
3433 update_guest_cr3
= false;
3434 vmx_ept_load_pdptrs(vcpu
);
3436 guest_cr3
= root_hpa
| kvm_get_active_pcid(vcpu
) |
3437 kvm_get_active_cr3_lam_bits(vcpu
);
3440 if (update_guest_cr3
)
3441 vmcs_writel(GUEST_CR3
, guest_cr3
);
3444 bool vmx_is_valid_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3447 * We operate under the default treatment of SMM, so VMX cannot be
3448 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3449 * i.e. is a reserved bit, is handled by common x86 code.
3451 if ((cr4
& X86_CR4_VMXE
) && is_smm(vcpu
))
3454 if (to_vmx(vcpu
)->nested
.vmxon
&& !nested_cr4_valid(vcpu
, cr4
))
3460 void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
3462 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
3463 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3464 unsigned long hw_cr4
;
3467 * Pass through host's Machine Check Enable value to hw_cr4, which
3468 * is in force while we are in guest mode. Do not let guests control
3469 * this bit, even if host CR4.MCE == 0.
3471 hw_cr4
= (cr4_read_shadow() & X86_CR4_MCE
) | (cr4
& ~X86_CR4_MCE
);
3472 if (enable_unrestricted_guest
)
3473 hw_cr4
|= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST
;
3474 else if (vmx
->rmode
.vm86_active
)
3475 hw_cr4
|= KVM_RMODE_VM_CR4_ALWAYS_ON
;
3477 hw_cr4
|= KVM_PMODE_VM_CR4_ALWAYS_ON
;
3479 if (vmx_umip_emulated()) {
3480 if (cr4
& X86_CR4_UMIP
) {
3481 secondary_exec_controls_setbit(vmx
, SECONDARY_EXEC_DESC
);
3482 hw_cr4
&= ~X86_CR4_UMIP
;
3483 } else if (!is_guest_mode(vcpu
) ||
3484 !nested_cpu_has2(get_vmcs12(vcpu
), SECONDARY_EXEC_DESC
)) {
3485 secondary_exec_controls_clearbit(vmx
, SECONDARY_EXEC_DESC
);
3489 vcpu
->arch
.cr4
= cr4
;
3490 kvm_register_mark_available(vcpu
, VCPU_EXREG_CR4
);
3492 if (!enable_unrestricted_guest
) {
3494 if (!is_paging(vcpu
)) {
3495 hw_cr4
&= ~X86_CR4_PAE
;
3496 hw_cr4
|= X86_CR4_PSE
;
3497 } else if (!(cr4
& X86_CR4_PAE
)) {
3498 hw_cr4
&= ~X86_CR4_PAE
;
3503 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3504 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3505 * to be manually disabled when guest switches to non-paging
3508 * If !enable_unrestricted_guest, the CPU is always running
3509 * with CR0.PG=1 and CR4 needs to be modified.
3510 * If enable_unrestricted_guest, the CPU automatically
3511 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3513 if (!is_paging(vcpu
))
3514 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
3517 vmcs_writel(CR4_READ_SHADOW
, cr4
);
3518 vmcs_writel(GUEST_CR4
, hw_cr4
);
3520 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
3521 kvm_update_cpuid_runtime(vcpu
);
3524 void vmx_get_segment(struct kvm_vcpu
*vcpu
, struct kvm_segment
*var
, int seg
)
3526 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3529 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3530 *var
= vmx
->rmode
.segs
[seg
];
3531 if (seg
== VCPU_SREG_TR
3532 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
3534 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3535 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3538 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
3539 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
3540 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
3541 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
3542 var
->unusable
= (ar
>> 16) & 1;
3543 var
->type
= ar
& 15;
3544 var
->s
= (ar
>> 4) & 1;
3545 var
->dpl
= (ar
>> 5) & 3;
3547 * Some userspaces do not preserve unusable property. Since usable
3548 * segment has to be present according to VMX spec we can use present
3549 * property to amend userspace bug by making unusable segment always
3550 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3551 * segment as unusable.
3553 var
->present
= !var
->unusable
;
3554 var
->avl
= (ar
>> 12) & 1;
3555 var
->l
= (ar
>> 13) & 1;
3556 var
->db
= (ar
>> 14) & 1;
3557 var
->g
= (ar
>> 15) & 1;
3560 u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
3562 struct kvm_segment s
;
3564 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
3565 vmx_get_segment(vcpu
, &s
, seg
);
3568 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
3571 int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
3573 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3575 if (unlikely(vmx
->rmode
.vm86_active
))
3578 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
3579 return VMX_AR_DPL(ar
);
3583 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
3587 ar
= var
->type
& 15;
3588 ar
|= (var
->s
& 1) << 4;
3589 ar
|= (var
->dpl
& 3) << 5;
3590 ar
|= (var
->present
& 1) << 7;
3591 ar
|= (var
->avl
& 1) << 12;
3592 ar
|= (var
->l
& 1) << 13;
3593 ar
|= (var
->db
& 1) << 14;
3594 ar
|= (var
->g
& 1) << 15;
3595 ar
|= (var
->unusable
|| !var
->present
) << 16;
3600 void __vmx_set_segment(struct kvm_vcpu
*vcpu
, struct kvm_segment
*var
, int seg
)
3602 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3603 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3605 vmx_segment_cache_clear(vmx
);
3607 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
3608 vmx
->rmode
.segs
[seg
] = *var
;
3609 if (seg
== VCPU_SREG_TR
)
3610 vmcs_write16(sf
->selector
, var
->selector
);
3612 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
3616 vmcs_writel(sf
->base
, var
->base
);
3617 vmcs_write32(sf
->limit
, var
->limit
);
3618 vmcs_write16(sf
->selector
, var
->selector
);
3621 * Fix the "Accessed" bit in AR field of segment registers for older
3623 * IA32 arch specifies that at the time of processor reset the
3624 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3625 * is setting it to 0 in the userland code. This causes invalid guest
3626 * state vmexit when "unrestricted guest" mode is turned on.
3627 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3628 * tree. Newer qemu binaries with that qemu fix would not need this
3631 if (is_unrestricted_guest(vcpu
) && (seg
!= VCPU_SREG_LDTR
))
3632 var
->type
|= 0x1; /* Accessed */
3634 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
3637 void vmx_set_segment(struct kvm_vcpu
*vcpu
, struct kvm_segment
*var
, int seg
)
3639 __vmx_set_segment(vcpu
, var
, seg
);
3641 to_vmx(vcpu
)->emulation_required
= vmx_emulation_required(vcpu
);
3644 void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3646 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
3648 *db
= (ar
>> 14) & 1;
3649 *l
= (ar
>> 13) & 1;
3652 void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3654 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
3655 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
3658 void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3660 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
3661 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
3664 void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3666 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
3667 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
3670 void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
3672 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
3673 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
3676 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3678 struct kvm_segment var
;
3681 vmx_get_segment(vcpu
, &var
, seg
);
3683 if (seg
== VCPU_SREG_CS
)
3685 ar
= vmx_segment_access_rights(&var
);
3687 if (var
.base
!= (var
.selector
<< 4))
3689 if (var
.limit
!= 0xffff)
3697 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
3699 struct kvm_segment cs
;
3700 unsigned int cs_rpl
;
3702 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3703 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
3707 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
3711 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
3712 if (cs
.dpl
> cs_rpl
)
3715 if (cs
.dpl
!= cs_rpl
)
3721 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3725 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
3727 struct kvm_segment ss
;
3728 unsigned int ss_rpl
;
3730 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3731 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
3735 if (ss
.type
!= 3 && ss
.type
!= 7)
3739 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
3747 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
3749 struct kvm_segment var
;
3752 vmx_get_segment(vcpu
, &var
, seg
);
3753 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
3761 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
3762 if (var
.dpl
< rpl
) /* DPL < RPL */
3766 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3772 static bool tr_valid(struct kvm_vcpu
*vcpu
)
3774 struct kvm_segment tr
;
3776 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
3780 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
3782 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
3790 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
3792 struct kvm_segment ldtr
;
3794 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
3798 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
3808 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
3810 struct kvm_segment cs
, ss
;
3812 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3813 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
3815 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
3816 (ss
.selector
& SEGMENT_RPL_MASK
));
3820 * Check if guest state is valid. Returns true if valid, false if
3822 * We assume that registers are always usable
3824 bool __vmx_guest_state_valid(struct kvm_vcpu
*vcpu
)
3826 /* real mode guest state checks */
3827 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
3828 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
3830 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
3832 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
3834 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
3836 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
3838 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
3841 /* protected mode guest state checks */
3842 if (!cs_ss_rpl_check(vcpu
))
3844 if (!code_segment_valid(vcpu
))
3846 if (!stack_segment_valid(vcpu
))
3848 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
3850 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
3852 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
3854 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
3856 if (!tr_valid(vcpu
))
3858 if (!ldtr_valid(vcpu
))
3862 * - Add checks on RIP
3863 * - Add checks on RFLAGS
3869 static int init_rmode_tss(struct kvm
*kvm
, void __user
*ua
)
3871 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3875 for (i
= 0; i
< 3; i
++) {
3876 if (__copy_to_user(ua
+ PAGE_SIZE
* i
, zero_page
, PAGE_SIZE
))
3880 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
3881 if (__copy_to_user(ua
+ TSS_IOPB_BASE_OFFSET
, &data
, sizeof(u16
)))
3885 if (__copy_to_user(ua
+ RMODE_TSS_SIZE
- 1, &data
, sizeof(u8
)))
3891 static int init_rmode_identity_map(struct kvm
*kvm
)
3893 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(kvm
);
3898 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3899 mutex_lock(&kvm
->slots_lock
);
3901 if (likely(kvm_vmx
->ept_identity_pagetable_done
))
3904 if (!kvm_vmx
->ept_identity_map_addr
)
3905 kvm_vmx
->ept_identity_map_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
3907 uaddr
= __x86_set_memory_region(kvm
,
3908 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
3909 kvm_vmx
->ept_identity_map_addr
,
3911 if (IS_ERR(uaddr
)) {
3916 /* Set up identity-mapping pagetable for EPT in real mode */
3917 for (i
= 0; i
< (PAGE_SIZE
/ sizeof(tmp
)); i
++) {
3918 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
3919 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
3920 if (__copy_to_user(uaddr
+ i
* sizeof(tmp
), &tmp
, sizeof(tmp
))) {
3925 kvm_vmx
->ept_identity_pagetable_done
= true;
3928 mutex_unlock(&kvm
->slots_lock
);
3932 static void seg_setup(int seg
)
3934 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
3937 vmcs_write16(sf
->selector
, 0);
3938 vmcs_writel(sf
->base
, 0);
3939 vmcs_write32(sf
->limit
, 0xffff);
3941 if (seg
== VCPU_SREG_CS
)
3942 ar
|= 0x08; /* code segment */
3944 vmcs_write32(sf
->ar_bytes
, ar
);
3947 int allocate_vpid(void)
3953 spin_lock(&vmx_vpid_lock
);
3954 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
3955 if (vpid
< VMX_NR_VPIDS
)
3956 __set_bit(vpid
, vmx_vpid_bitmap
);
3959 spin_unlock(&vmx_vpid_lock
);
3963 void free_vpid(int vpid
)
3965 if (!enable_vpid
|| vpid
== 0)
3967 spin_lock(&vmx_vpid_lock
);
3968 __clear_bit(vpid
, vmx_vpid_bitmap
);
3969 spin_unlock(&vmx_vpid_lock
);
3972 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx
*vmx
)
3975 * When KVM is a nested hypervisor on top of Hyper-V and uses
3976 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3977 * bitmap has changed.
3979 if (kvm_is_using_evmcs()) {
3980 struct hv_enlightened_vmcs
*evmcs
= (void *)vmx
->vmcs01
.vmcs
;
3982 if (evmcs
->hv_enlightenments_control
.msr_bitmap
)
3983 evmcs
->hv_clean_fields
&=
3984 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP
;
3987 vmx
->nested
.force_msr_bitmap_recalc
= true;
3990 void vmx_disable_intercept_for_msr(struct kvm_vcpu
*vcpu
, u32 msr
, int type
)
3992 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3993 unsigned long *msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
3996 if (!cpu_has_vmx_msr_bitmap())
3999 vmx_msr_bitmap_l01_changed(vmx
);
4002 * Mark the desired intercept state in shadow bitmap, this is needed
4003 * for resync when the MSR filters change.
4005 idx
= vmx_get_passthrough_msr_slot(msr
);
4007 if (type
& MSR_TYPE_R
)
4008 clear_bit(idx
, vmx
->shadow_msr_intercept
.read
);
4009 if (type
& MSR_TYPE_W
)
4010 clear_bit(idx
, vmx
->shadow_msr_intercept
.write
);
4013 if ((type
& MSR_TYPE_R
) &&
4014 !kvm_msr_allowed(vcpu
, msr
, KVM_MSR_FILTER_READ
)) {
4015 vmx_set_msr_bitmap_read(msr_bitmap
, msr
);
4016 type
&= ~MSR_TYPE_R
;
4019 if ((type
& MSR_TYPE_W
) &&
4020 !kvm_msr_allowed(vcpu
, msr
, KVM_MSR_FILTER_WRITE
)) {
4021 vmx_set_msr_bitmap_write(msr_bitmap
, msr
);
4022 type
&= ~MSR_TYPE_W
;
4025 if (type
& MSR_TYPE_R
)
4026 vmx_clear_msr_bitmap_read(msr_bitmap
, msr
);
4028 if (type
& MSR_TYPE_W
)
4029 vmx_clear_msr_bitmap_write(msr_bitmap
, msr
);
4032 void vmx_enable_intercept_for_msr(struct kvm_vcpu
*vcpu
, u32 msr
, int type
)
4034 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4035 unsigned long *msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
4038 if (!cpu_has_vmx_msr_bitmap())
4041 vmx_msr_bitmap_l01_changed(vmx
);
4044 * Mark the desired intercept state in shadow bitmap, this is needed
4045 * for resync when the MSR filter changes.
4047 idx
= vmx_get_passthrough_msr_slot(msr
);
4049 if (type
& MSR_TYPE_R
)
4050 set_bit(idx
, vmx
->shadow_msr_intercept
.read
);
4051 if (type
& MSR_TYPE_W
)
4052 set_bit(idx
, vmx
->shadow_msr_intercept
.write
);
4055 if (type
& MSR_TYPE_R
)
4056 vmx_set_msr_bitmap_read(msr_bitmap
, msr
);
4058 if (type
& MSR_TYPE_W
)
4059 vmx_set_msr_bitmap_write(msr_bitmap
, msr
);
4062 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu
*vcpu
)
4065 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4066 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4067 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4069 const int read_idx
= APIC_BASE_MSR
/ BITS_PER_LONG_LONG
;
4070 const int write_idx
= read_idx
+ (0x800 / sizeof(u64
));
4071 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4072 u64
*msr_bitmap
= (u64
*)vmx
->vmcs01
.msr_bitmap
;
4075 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu
)))
4078 if (cpu_has_secondary_exec_ctrls() &&
4079 (secondary_exec_controls_get(vmx
) &
4080 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
)) {
4081 mode
= MSR_BITMAP_MODE_X2APIC
;
4082 if (enable_apicv
&& kvm_vcpu_apicv_active(vcpu
))
4083 mode
|= MSR_BITMAP_MODE_X2APIC_APICV
;
4088 if (mode
== vmx
->x2apic_msr_bitmap_mode
)
4091 vmx
->x2apic_msr_bitmap_mode
= mode
;
4094 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4095 * registers (0x840 and above) intercepted, KVM doesn't support them.
4096 * Intercept all writes by default and poke holes as needed. Pass
4097 * through reads for all valid registers by default in x2APIC+APICv
4098 * mode, only the current timer count needs on-demand emulation by KVM.
4100 if (mode
& MSR_BITMAP_MODE_X2APIC_APICV
)
4101 msr_bitmap
[read_idx
] = ~kvm_lapic_readable_reg_mask(vcpu
->arch
.apic
);
4103 msr_bitmap
[read_idx
] = ~0ull;
4104 msr_bitmap
[write_idx
] = ~0ull;
4107 * TPR reads and writes can be virtualized even if virtual interrupt
4108 * delivery is not in use.
4110 vmx_set_intercept_for_msr(vcpu
, X2APIC_MSR(APIC_TASKPRI
), MSR_TYPE_RW
,
4111 !(mode
& MSR_BITMAP_MODE_X2APIC
));
4113 if (mode
& MSR_BITMAP_MODE_X2APIC_APICV
) {
4114 vmx_enable_intercept_for_msr(vcpu
, X2APIC_MSR(APIC_TMCCT
), MSR_TYPE_RW
);
4115 vmx_disable_intercept_for_msr(vcpu
, X2APIC_MSR(APIC_EOI
), MSR_TYPE_W
);
4116 vmx_disable_intercept_for_msr(vcpu
, X2APIC_MSR(APIC_SELF_IPI
), MSR_TYPE_W
);
4118 vmx_disable_intercept_for_msr(vcpu
, X2APIC_MSR(APIC_ICR
), MSR_TYPE_RW
);
4122 void pt_update_intercept_for_msr(struct kvm_vcpu
*vcpu
)
4124 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4125 bool flag
= !(vmx
->pt_desc
.guest
.ctl
& RTIT_CTL_TRACEEN
);
4128 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_STATUS
, MSR_TYPE_RW
, flag
);
4129 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_OUTPUT_BASE
, MSR_TYPE_RW
, flag
);
4130 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_OUTPUT_MASK
, MSR_TYPE_RW
, flag
);
4131 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_CR3_MATCH
, MSR_TYPE_RW
, flag
);
4132 for (i
= 0; i
< vmx
->pt_desc
.num_address_ranges
; i
++) {
4133 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_ADDR0_A
+ i
* 2, MSR_TYPE_RW
, flag
);
4134 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_RTIT_ADDR0_B
+ i
* 2, MSR_TYPE_RW
, flag
);
4138 void vmx_msr_filter_changed(struct kvm_vcpu
*vcpu
)
4140 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4143 if (!cpu_has_vmx_msr_bitmap())
4147 * Redo intercept permissions for MSRs that KVM is passing through to
4148 * the guest. Disabling interception will check the new MSR filter and
4149 * ensure that KVM enables interception if usersepace wants to filter
4150 * the MSR. MSRs that KVM is already intercepting don't need to be
4151 * refreshed since KVM is going to intercept them regardless of what
4154 for (i
= 0; i
< ARRAY_SIZE(vmx_possible_passthrough_msrs
); i
++) {
4155 u32 msr
= vmx_possible_passthrough_msrs
[i
];
4157 if (!test_bit(i
, vmx
->shadow_msr_intercept
.read
))
4158 vmx_disable_intercept_for_msr(vcpu
, msr
, MSR_TYPE_R
);
4160 if (!test_bit(i
, vmx
->shadow_msr_intercept
.write
))
4161 vmx_disable_intercept_for_msr(vcpu
, msr
, MSR_TYPE_W
);
4164 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4165 if (vmx_pt_mode_is_host_guest())
4166 pt_update_intercept_for_msr(vcpu
);
4169 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
,
4173 if (vcpu
->mode
== IN_GUEST_MODE
) {
4175 * The vector of the virtual has already been set in the PIR.
4176 * Send a notification event to deliver the virtual interrupt
4177 * unless the vCPU is the currently running vCPU, i.e. the
4178 * event is being sent from a fastpath VM-Exit handler, in
4179 * which case the PIR will be synced to the vIRR before
4180 * re-entering the guest.
4182 * When the target is not the running vCPU, the following
4183 * possibilities emerge:
4185 * Case 1: vCPU stays in non-root mode. Sending a notification
4186 * event posts the interrupt to the vCPU.
4188 * Case 2: vCPU exits to root mode and is still runnable. The
4189 * PIR will be synced to the vIRR before re-entering the guest.
4190 * Sending a notification event is ok as the host IRQ handler
4191 * will ignore the spurious event.
4193 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4194 * has already synced PIR to vIRR and never blocks the vCPU if
4195 * the vIRR is not empty. Therefore, a blocked vCPU here does
4196 * not wait for any requested interrupts in PIR, and sending a
4197 * notification event also results in a benign, spurious event.
4200 if (vcpu
!= kvm_get_running_vcpu())
4201 __apic_send_IPI_mask(get_cpu_mask(vcpu
->cpu
), pi_vec
);
4206 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4207 * otherwise do nothing as KVM will grab the highest priority pending
4208 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4210 kvm_vcpu_wake_up(vcpu
);
4213 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
4216 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4219 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4220 * and freed, and must not be accessed outside of vcpu->mutex. The
4221 * vCPU's cached PI NV is valid if and only if posted interrupts
4222 * enabled in its vmcs12, i.e. checking the vector also checks that
4223 * L1 has enabled posted interrupts for L2.
4225 if (is_guest_mode(vcpu
) &&
4226 vector
== vmx
->nested
.posted_intr_nv
) {
4228 * If a posted intr is not recognized by hardware,
4229 * we will accomplish it in the next vmentry.
4231 vmx
->nested
.pi_pending
= true;
4232 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4235 * This pairs with the smp_mb_*() after setting vcpu->mode in
4236 * vcpu_enter_guest() to guarantee the vCPU sees the event
4237 * request if triggering a posted interrupt "fails" because
4238 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4239 * the smb_wmb() in kvm_make_request() only ensures everything
4240 * done before making the request is visible when the request
4241 * is visible, it doesn't ensure ordering between the store to
4242 * vcpu->requests and the load from vcpu->mode.
4244 smp_mb__after_atomic();
4246 /* the PIR and ON have been set by L1. */
4247 kvm_vcpu_trigger_posted_interrupt(vcpu
, POSTED_INTR_NESTED_VECTOR
);
4253 * Send interrupt to vcpu via posted interrupt way.
4254 * 1. If target vcpu is running(non-root mode), send posted interrupt
4255 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4256 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4257 * interrupt from PIR in next vmentry.
4259 static int vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
4261 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4264 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
4268 /* Note, this is called iff the local APIC is in-kernel. */
4269 if (!vcpu
->arch
.apic
->apicv_active
)
4272 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
4275 /* If a previous notification has sent the IPI, nothing to do. */
4276 if (pi_test_and_set_on(&vmx
->pi_desc
))
4280 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4281 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4282 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4283 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4285 kvm_vcpu_trigger_posted_interrupt(vcpu
, POSTED_INTR_VECTOR
);
4289 void vmx_deliver_interrupt(struct kvm_lapic
*apic
, int delivery_mode
,
4290 int trig_mode
, int vector
)
4292 struct kvm_vcpu
*vcpu
= apic
->vcpu
;
4294 if (vmx_deliver_posted_interrupt(vcpu
, vector
)) {
4295 kvm_lapic_set_irr(vector
, apic
);
4296 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
4297 kvm_vcpu_kick(vcpu
);
4299 trace_kvm_apicv_accept_irq(vcpu
->vcpu_id
, delivery_mode
,
4305 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4306 * will not change in the lifetime of the guest.
4307 * Note that host-state that does change is set elsewhere. E.g., host-state
4308 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4310 void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
4314 unsigned long cr0
, cr3
, cr4
;
4317 WARN_ON(cr0
& X86_CR0_TS
);
4318 vmcs_writel(HOST_CR0
, cr0
); /* 22.2.3 */
4321 * Save the most likely value for this task's CR3 in the VMCS.
4322 * We can't use __get_current_cr3_fast() because we're not atomic.
4325 vmcs_writel(HOST_CR3
, cr3
); /* 22.2.3 FIXME: shadow tables */
4326 vmx
->loaded_vmcs
->host_state
.cr3
= cr3
;
4328 /* Save the most likely value for this task's CR4 in the VMCS. */
4329 cr4
= cr4_read_shadow();
4330 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
4331 vmx
->loaded_vmcs
->host_state
.cr4
= cr4
;
4333 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
4334 #ifdef CONFIG_X86_64
4336 * Load null selectors, so we can avoid reloading them in
4337 * vmx_prepare_switch_to_host(), in case userspace uses
4338 * the null selectors too (the expected case).
4340 vmcs_write16(HOST_DS_SELECTOR
, 0);
4341 vmcs_write16(HOST_ES_SELECTOR
, 0);
4343 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4344 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4346 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
4347 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
4349 vmcs_writel(HOST_IDTR_BASE
, host_idt_base
); /* 22.2.4 */
4351 vmcs_writel(HOST_RIP
, (unsigned long)vmx_vmexit
); /* 22.2.5 */
4353 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
4354 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
4357 * SYSENTER is used for 32-bit system calls on either 32-bit or
4358 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4359 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4360 * have already done so!).
4362 if (!IS_ENABLED(CONFIG_IA32_EMULATION
) && !IS_ENABLED(CONFIG_X86_32
))
4363 vmcs_writel(HOST_IA32_SYSENTER_ESP
, 0);
4365 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
4366 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
4368 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
4369 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
4370 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
4373 if (cpu_has_load_ia32_efer())
4374 vmcs_write64(HOST_IA32_EFER
, kvm_host
.efer
);
4377 void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
4379 struct kvm_vcpu
*vcpu
= &vmx
->vcpu
;
4381 vcpu
->arch
.cr4_guest_owned_bits
= KVM_POSSIBLE_CR4_GUEST_BITS
&
4382 ~vcpu
->arch
.cr4_guest_rsvd_bits
;
4384 vcpu
->arch
.cr4_guest_owned_bits
&= ~X86_CR4_TLBFLUSH_BITS
;
4385 vcpu
->arch
.cr4_guest_owned_bits
&= ~X86_CR4_PDPTR_BITS
;
4387 if (is_guest_mode(&vmx
->vcpu
))
4388 vcpu
->arch
.cr4_guest_owned_bits
&=
4389 ~get_vmcs12(vcpu
)->cr4_guest_host_mask
;
4390 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vcpu
->arch
.cr4_guest_owned_bits
);
4393 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
4395 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
4397 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
4398 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
4401 pin_based_exec_ctrl
&= ~PIN_BASED_VIRTUAL_NMIS
;
4403 if (!enable_preemption_timer
)
4404 pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
4406 return pin_based_exec_ctrl
;
4409 static u32
vmx_vmentry_ctrl(void)
4411 u32 vmentry_ctrl
= vmcs_config
.vmentry_ctrl
;
4413 if (vmx_pt_mode_is_system())
4414 vmentry_ctrl
&= ~(VM_ENTRY_PT_CONCEAL_PIP
|
4415 VM_ENTRY_LOAD_IA32_RTIT_CTL
);
4417 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4419 vmentry_ctrl
&= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
|
4420 VM_ENTRY_LOAD_IA32_EFER
|
4421 VM_ENTRY_IA32E_MODE
);
4423 if (cpu_has_perf_global_ctrl_bug())
4424 vmentry_ctrl
&= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
;
4426 return vmentry_ctrl
;
4429 static u32
vmx_vmexit_ctrl(void)
4431 u32 vmexit_ctrl
= vmcs_config
.vmexit_ctrl
;
4434 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4435 * nested virtualization and thus allowed to be set in vmcs12.
4437 vmexit_ctrl
&= ~(VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
|
4438 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
);
4440 if (vmx_pt_mode_is_system())
4441 vmexit_ctrl
&= ~(VM_EXIT_PT_CONCEAL_PIP
|
4442 VM_EXIT_CLEAR_IA32_RTIT_CTL
);
4444 if (cpu_has_perf_global_ctrl_bug())
4445 vmexit_ctrl
&= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
;
4447 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4448 return vmexit_ctrl
&
4449 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
| VM_EXIT_LOAD_IA32_EFER
);
4452 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
4454 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4456 if (is_guest_mode(vcpu
)) {
4457 vmx
->nested
.update_vmcs01_apicv_status
= true;
4461 pin_controls_set(vmx
, vmx_pin_based_exec_ctrl(vmx
));
4463 if (kvm_vcpu_apicv_active(vcpu
)) {
4464 secondary_exec_controls_setbit(vmx
,
4465 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4466 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4468 tertiary_exec_controls_setbit(vmx
, TERTIARY_EXEC_IPI_VIRT
);
4470 secondary_exec_controls_clearbit(vmx
,
4471 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4472 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4474 tertiary_exec_controls_clearbit(vmx
, TERTIARY_EXEC_IPI_VIRT
);
4477 vmx_update_msr_bitmap_x2apic(vcpu
);
4480 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
4482 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
4485 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4486 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4488 exec_control
&= ~(CPU_BASED_RDTSC_EXITING
|
4489 CPU_BASED_USE_IO_BITMAPS
|
4490 CPU_BASED_MONITOR_TRAP_FLAG
|
4491 CPU_BASED_PAUSE_EXITING
);
4493 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4494 exec_control
&= ~(CPU_BASED_INTR_WINDOW_EXITING
|
4495 CPU_BASED_NMI_WINDOW_EXITING
);
4497 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
4498 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
4500 if (!cpu_need_tpr_shadow(&vmx
->vcpu
))
4501 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
4503 #ifdef CONFIG_X86_64
4504 if (exec_control
& CPU_BASED_TPR_SHADOW
)
4505 exec_control
&= ~(CPU_BASED_CR8_LOAD_EXITING
|
4506 CPU_BASED_CR8_STORE_EXITING
);
4508 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
4509 CPU_BASED_CR8_LOAD_EXITING
;
4511 /* No need to intercept CR3 access or INVPLG when using EPT. */
4513 exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
4514 CPU_BASED_CR3_STORE_EXITING
|
4515 CPU_BASED_INVLPG_EXITING
);
4516 if (kvm_mwait_in_guest(vmx
->vcpu
.kvm
))
4517 exec_control
&= ~(CPU_BASED_MWAIT_EXITING
|
4518 CPU_BASED_MONITOR_EXITING
);
4519 if (kvm_hlt_in_guest(vmx
->vcpu
.kvm
))
4520 exec_control
&= ~CPU_BASED_HLT_EXITING
;
4521 return exec_control
;
4524 static u64
vmx_tertiary_exec_control(struct vcpu_vmx
*vmx
)
4526 u64 exec_control
= vmcs_config
.cpu_based_3rd_exec_ctrl
;
4529 * IPI virtualization relies on APICv. Disable IPI virtualization if
4530 * APICv is inhibited.
4532 if (!enable_ipiv
|| !kvm_vcpu_apicv_active(&vmx
->vcpu
))
4533 exec_control
&= ~TERTIARY_EXEC_IPI_VIRT
;
4535 return exec_control
;
4539 * Adjust a single secondary execution control bit to intercept/allow an
4540 * instruction in the guest. This is usually done based on whether or not a
4541 * feature has been exposed to the guest in order to correctly emulate faults.
4544 vmx_adjust_secondary_exec_control(struct vcpu_vmx
*vmx
, u32
*exec_control
,
4545 u32 control
, bool enabled
, bool exiting
)
4548 * If the control is for an opt-in feature, clear the control if the
4549 * feature is not exposed to the guest, i.e. not enabled. If the
4550 * control is opt-out, i.e. an exiting control, clear the control if
4551 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4552 * disabled for the associated instruction. Note, the caller is
4553 * responsible presetting exec_control to set all supported bits.
4555 if (enabled
== exiting
)
4556 *exec_control
&= ~control
;
4559 * Update the nested MSR settings so that a nested VMM can/can't set
4560 * controls for features that are/aren't exposed to the guest.
4564 * All features that can be added or removed to VMX MSRs must
4565 * be supported in the first place for nested virtualization.
4567 if (WARN_ON_ONCE(!(vmcs_config
.nested
.secondary_ctls_high
& control
)))
4571 vmx
->nested
.msrs
.secondary_ctls_high
|= control
;
4573 vmx
->nested
.msrs
.secondary_ctls_high
&= ~control
;
4578 * Wrapper macro for the common case of adjusting a secondary execution control
4579 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4580 * verifies that the control is actually supported by KVM and hardware.
4582 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4584 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4587 if (cpu_has_vmx_##name()) { \
4588 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4589 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4591 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4592 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4593 __enabled, exiting); \
4597 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4598 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4599 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4601 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4602 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4604 static u32
vmx_secondary_exec_control(struct vcpu_vmx
*vmx
)
4606 struct kvm_vcpu
*vcpu
= &vmx
->vcpu
;
4608 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
4610 if (vmx_pt_mode_is_system())
4611 exec_control
&= ~(SECONDARY_EXEC_PT_USE_GPA
| SECONDARY_EXEC_PT_CONCEAL_VMX
);
4612 if (!cpu_need_virtualize_apic_accesses(vcpu
))
4613 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
4615 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
4617 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
4618 exec_control
&= ~SECONDARY_EXEC_EPT_VIOLATION_VE
;
4619 enable_unrestricted_guest
= 0;
4621 if (!enable_unrestricted_guest
)
4622 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
4623 if (kvm_pause_in_guest(vmx
->vcpu
.kvm
))
4624 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
4625 if (!kvm_vcpu_apicv_active(vcpu
))
4626 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
4627 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
4628 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
4631 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4632 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4634 exec_control
&= ~SECONDARY_EXEC_ENABLE_VMFUNC
;
4636 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4637 * in vmx_set_cr4. */
4638 exec_control
&= ~SECONDARY_EXEC_DESC
;
4640 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4642 We can NOT enable shadow_vmcs here because we don't have yet
4645 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
4648 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4649 * it needs to be set here when dirty logging is already active, e.g.
4650 * if this vCPU was created after dirty logging was enabled.
4652 if (!enable_pml
|| !atomic_read(&vcpu
->kvm
->nr_memslots_dirty_logging
))
4653 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
4655 vmx_adjust_sec_exec_feature(vmx
, &exec_control
, xsaves
, XSAVES
);
4658 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4659 * feature is exposed to the guest. This creates a virtualization hole
4660 * if both are supported in hardware but only one is exposed to the
4661 * guest, but letting the guest execute RDTSCP or RDPID when either one
4662 * is advertised is preferable to emulating the advertised instruction
4663 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4665 if (cpu_has_vmx_rdtscp()) {
4666 bool rdpid_or_rdtscp_enabled
=
4667 guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
) ||
4668 guest_cpuid_has(vcpu
, X86_FEATURE_RDPID
);
4670 vmx_adjust_secondary_exec_control(vmx
, &exec_control
,
4671 SECONDARY_EXEC_ENABLE_RDTSCP
,
4672 rdpid_or_rdtscp_enabled
, false);
4675 vmx_adjust_sec_exec_feature(vmx
, &exec_control
, invpcid
, INVPCID
);
4677 vmx_adjust_sec_exec_exiting(vmx
, &exec_control
, rdrand
, RDRAND
);
4678 vmx_adjust_sec_exec_exiting(vmx
, &exec_control
, rdseed
, RDSEED
);
4680 vmx_adjust_sec_exec_control(vmx
, &exec_control
, waitpkg
, WAITPKG
,
4681 ENABLE_USR_WAIT_PAUSE
, false);
4683 if (!vcpu
->kvm
->arch
.bus_lock_detection_enabled
)
4684 exec_control
&= ~SECONDARY_EXEC_BUS_LOCK_DETECTION
;
4686 if (!kvm_notify_vmexit_enabled(vcpu
->kvm
))
4687 exec_control
&= ~SECONDARY_EXEC_NOTIFY_VM_EXITING
;
4689 return exec_control
;
4692 static inline int vmx_get_pid_table_order(struct kvm
*kvm
)
4694 return get_order(kvm
->arch
.max_vcpu_ids
* sizeof(*to_kvm_vmx(kvm
)->pid_table
));
4697 static int vmx_alloc_ipiv_pid_table(struct kvm
*kvm
)
4700 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(kvm
);
4702 if (!irqchip_in_kernel(kvm
) || !enable_ipiv
)
4705 if (kvm_vmx
->pid_table
)
4708 pages
= alloc_pages(GFP_KERNEL_ACCOUNT
| __GFP_ZERO
,
4709 vmx_get_pid_table_order(kvm
));
4713 kvm_vmx
->pid_table
= (void *)page_address(pages
);
4717 int vmx_vcpu_precreate(struct kvm
*kvm
)
4719 return vmx_alloc_ipiv_pid_table(kvm
);
4722 #define VMX_XSS_EXIT_BITMAP 0
4724 static void init_vmcs(struct vcpu_vmx
*vmx
)
4726 struct kvm
*kvm
= vmx
->vcpu
.kvm
;
4727 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(kvm
);
4730 nested_vmx_set_vmcs_shadowing_bitmap();
4732 if (cpu_has_vmx_msr_bitmap())
4733 vmcs_write64(MSR_BITMAP
, __pa(vmx
->vmcs01
.msr_bitmap
));
4735 vmcs_write64(VMCS_LINK_POINTER
, INVALID_GPA
); /* 22.3.1.5 */
4738 pin_controls_set(vmx
, vmx_pin_based_exec_ctrl(vmx
));
4740 exec_controls_set(vmx
, vmx_exec_control(vmx
));
4742 if (cpu_has_secondary_exec_ctrls()) {
4743 secondary_exec_controls_set(vmx
, vmx_secondary_exec_control(vmx
));
4745 vmcs_write64(VE_INFORMATION_ADDRESS
,
4746 __pa(vmx
->ve_info
));
4749 if (cpu_has_tertiary_exec_ctrls())
4750 tertiary_exec_controls_set(vmx
, vmx_tertiary_exec_control(vmx
));
4752 if (enable_apicv
&& lapic_in_kernel(&vmx
->vcpu
)) {
4753 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
4754 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
4755 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
4756 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
4758 vmcs_write16(GUEST_INTR_STATUS
, 0);
4760 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
4761 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
4764 if (vmx_can_use_ipiv(&vmx
->vcpu
)) {
4765 vmcs_write64(PID_POINTER_TABLE
, __pa(kvm_vmx
->pid_table
));
4766 vmcs_write16(LAST_PID_POINTER_INDEX
, kvm
->arch
.max_vcpu_ids
- 1);
4769 if (!kvm_pause_in_guest(kvm
)) {
4770 vmcs_write32(PLE_GAP
, ple_gap
);
4771 vmx
->ple_window
= ple_window
;
4772 vmx
->ple_window_dirty
= true;
4775 if (kvm_notify_vmexit_enabled(kvm
))
4776 vmcs_write32(NOTIFY_WINDOW
, kvm
->arch
.notify_window
);
4778 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
4779 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
4780 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
4782 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
4783 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
4784 vmx_set_constant_host_state(vmx
);
4785 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
4786 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
4788 if (cpu_has_vmx_vmfunc())
4789 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
4791 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
4792 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
4793 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
.val
));
4794 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
4795 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
.val
));
4797 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
4798 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
4800 vm_exit_controls_set(vmx
, vmx_vmexit_ctrl());
4802 /* 22.2.1, 20.8.1 */
4803 vm_entry_controls_set(vmx
, vmx_vmentry_ctrl());
4805 vmx
->vcpu
.arch
.cr0_guest_owned_bits
= vmx_l1_guest_owned_cr0_bits();
4806 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr0_guest_owned_bits
);
4808 set_cr4_guest_host_mask(vmx
);
4811 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
4813 if (cpu_has_vmx_xsaves())
4814 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
4817 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
4818 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
4821 vmx_write_encls_bitmap(&vmx
->vcpu
, NULL
);
4823 if (vmx_pt_mode_is_host_guest()) {
4824 memset(&vmx
->pt_desc
, 0, sizeof(vmx
->pt_desc
));
4825 /* Bit[6~0] are forced to 1, writes are ignored. */
4826 vmx
->pt_desc
.guest
.output_mask
= 0x7F;
4827 vmcs_write64(GUEST_IA32_RTIT_CTL
, 0);
4830 vmcs_write32(GUEST_SYSENTER_CS
, 0);
4831 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
4832 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
4833 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
4835 if (cpu_has_vmx_tpr_shadow()) {
4836 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
4837 if (cpu_need_tpr_shadow(&vmx
->vcpu
))
4838 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
4839 __pa(vmx
->vcpu
.arch
.apic
->regs
));
4840 vmcs_write32(TPR_THRESHOLD
, 0);
4843 vmx_setup_uret_msrs(vmx
);
4846 static void __vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
4848 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4853 memcpy(&vmx
->nested
.msrs
, &vmcs_config
.nested
, sizeof(vmx
->nested
.msrs
));
4855 vcpu_setup_sgx_lepubkeyhash(vcpu
);
4857 vmx
->nested
.posted_intr_nv
= -1;
4858 vmx
->nested
.vmxon_ptr
= INVALID_GPA
;
4859 vmx
->nested
.current_vmptr
= INVALID_GPA
;
4861 #ifdef CONFIG_KVM_HYPERV
4862 vmx
->nested
.hv_evmcs_vmptr
= EVMPTR_INVALID
;
4865 vcpu
->arch
.microcode_version
= 0x100000000ULL
;
4866 vmx
->msr_ia32_feature_control_valid_bits
= FEAT_CTL_LOCKED
;
4869 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4870 * or POSTED_INTR_WAKEUP_VECTOR.
4872 vmx
->pi_desc
.nv
= POSTED_INTR_VECTOR
;
4873 __pi_set_sn(&vmx
->pi_desc
);
4876 void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
4878 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4881 __vmx_vcpu_reset(vcpu
);
4883 vmx
->rmode
.vm86_active
= 0;
4886 vmx
->msr_ia32_umwait_control
= 0;
4888 vmx
->hv_deadline_tsc
= -1;
4889 kvm_set_cr8(vcpu
, 0);
4891 vmx_segment_cache_clear(vmx
);
4892 kvm_register_mark_available(vcpu
, VCPU_EXREG_SEGMENTS
);
4894 seg_setup(VCPU_SREG_CS
);
4895 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
4896 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
4898 seg_setup(VCPU_SREG_DS
);
4899 seg_setup(VCPU_SREG_ES
);
4900 seg_setup(VCPU_SREG_FS
);
4901 seg_setup(VCPU_SREG_GS
);
4902 seg_setup(VCPU_SREG_SS
);
4904 vmcs_write16(GUEST_TR_SELECTOR
, 0);
4905 vmcs_writel(GUEST_TR_BASE
, 0);
4906 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
4907 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4909 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
4910 vmcs_writel(GUEST_LDTR_BASE
, 0);
4911 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
4912 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
4914 vmcs_writel(GUEST_GDTR_BASE
, 0);
4915 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
4917 vmcs_writel(GUEST_IDTR_BASE
, 0);
4918 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
4920 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
4921 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
4922 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
4923 if (kvm_mpx_supported())
4924 vmcs_write64(GUEST_BNDCFGS
, 0);
4926 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
4928 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
4930 vpid_sync_context(vmx
->vpid
);
4932 vmx_update_fb_clear_dis(vcpu
, vmx
);
4935 void vmx_enable_irq_window(struct kvm_vcpu
*vcpu
)
4937 exec_controls_setbit(to_vmx(vcpu
), CPU_BASED_INTR_WINDOW_EXITING
);
4940 void vmx_enable_nmi_window(struct kvm_vcpu
*vcpu
)
4943 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
4944 vmx_enable_irq_window(vcpu
);
4948 exec_controls_setbit(to_vmx(vcpu
), CPU_BASED_NMI_WINDOW_EXITING
);
4951 void vmx_inject_irq(struct kvm_vcpu
*vcpu
, bool reinjected
)
4953 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4955 int irq
= vcpu
->arch
.interrupt
.nr
;
4957 trace_kvm_inj_virq(irq
, vcpu
->arch
.interrupt
.soft
, reinjected
);
4959 ++vcpu
->stat
.irq_injections
;
4960 if (vmx
->rmode
.vm86_active
) {
4962 if (vcpu
->arch
.interrupt
.soft
)
4963 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
4964 kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
);
4967 intr
= irq
| INTR_INFO_VALID_MASK
;
4968 if (vcpu
->arch
.interrupt
.soft
) {
4969 intr
|= INTR_TYPE_SOFT_INTR
;
4970 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
4971 vmx
->vcpu
.arch
.event_exit_inst_len
);
4973 intr
|= INTR_TYPE_EXT_INTR
;
4974 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
4976 vmx_clear_hlt(vcpu
);
4979 void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
4981 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4985 * Tracking the NMI-blocked state in software is built upon
4986 * finding the next open IRQ window. This, in turn, depends on
4987 * well-behaving guests: They have to keep IRQs disabled at
4988 * least as long as the NMI handler runs. Otherwise we may
4989 * cause NMI nesting, maybe breaking the guest. But as this is
4990 * highly unlikely, we can live with the residual risk.
4992 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 1;
4993 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
4996 ++vcpu
->stat
.nmi_injections
;
4997 vmx
->loaded_vmcs
->nmi_known_unmasked
= false;
4999 if (vmx
->rmode
.vm86_active
) {
5000 kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0);
5004 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5005 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5007 vmx_clear_hlt(vcpu
);
5010 bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5012 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5016 return vmx
->loaded_vmcs
->soft_vnmi_blocked
;
5017 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
5019 masked
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5020 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5024 void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5026 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5029 if (vmx
->loaded_vmcs
->soft_vnmi_blocked
!= masked
) {
5030 vmx
->loaded_vmcs
->soft_vnmi_blocked
= masked
;
5031 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
5034 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5036 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5037 GUEST_INTR_STATE_NMI
);
5039 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5040 GUEST_INTR_STATE_NMI
);
5044 bool vmx_nmi_blocked(struct kvm_vcpu
*vcpu
)
5046 if (is_guest_mode(vcpu
) && nested_exit_on_nmi(vcpu
))
5049 if (!enable_vnmi
&& to_vmx(vcpu
)->loaded_vmcs
->soft_vnmi_blocked
)
5052 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5053 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
|
5054 GUEST_INTR_STATE_NMI
));
5057 int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
, bool for_injection
)
5059 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5062 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5063 if (for_injection
&& is_guest_mode(vcpu
) && nested_exit_on_nmi(vcpu
))
5066 return !vmx_nmi_blocked(vcpu
);
5069 bool __vmx_interrupt_blocked(struct kvm_vcpu
*vcpu
)
5071 return !(vmx_get_rflags(vcpu
) & X86_EFLAGS_IF
) ||
5072 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5073 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
5076 bool vmx_interrupt_blocked(struct kvm_vcpu
*vcpu
)
5078 if (is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
))
5081 return __vmx_interrupt_blocked(vcpu
);
5084 int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
, bool for_injection
)
5086 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
5090 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5091 * e.g. if the IRQ arrived asynchronously after checking nested events.
5093 if (for_injection
&& is_guest_mode(vcpu
) && nested_exit_on_intr(vcpu
))
5096 return !vmx_interrupt_blocked(vcpu
);
5099 int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5103 if (enable_unrestricted_guest
)
5106 mutex_lock(&kvm
->slots_lock
);
5107 ret
= __x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
5109 mutex_unlock(&kvm
->slots_lock
);
5112 return PTR_ERR(ret
);
5114 to_kvm_vmx(kvm
)->tss_addr
= addr
;
5116 return init_rmode_tss(kvm
, ret
);
5119 int vmx_set_identity_map_addr(struct kvm
*kvm
, u64 ident_addr
)
5121 to_kvm_vmx(kvm
)->ept_identity_map_addr
= ident_addr
;
5125 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
5130 * Update instruction length as we may reinject the exception
5131 * from user space while in guest debugging mode.
5133 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
5134 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5135 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
5139 return !(vcpu
->guest_debug
&
5140 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
));
5154 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
5155 int vec
, u32 err_code
)
5158 * Instruction with address size override prefix opcode 0x67
5159 * Cause the #SS fault with 0 error code in VM86 mode.
5161 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
5162 if (kvm_emulate_instruction(vcpu
, 0)) {
5163 if (vcpu
->arch
.halt_request
) {
5164 vcpu
->arch
.halt_request
= 0;
5165 return kvm_emulate_halt_noskip(vcpu
);
5173 * Forward all other exceptions that are valid in real mode.
5174 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5175 * the required debugging infrastructure rework.
5177 kvm_queue_exception(vcpu
, vec
);
5181 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
5183 /* handled by vmx_vcpu_run() */
5188 * If the host has split lock detection disabled, then #AC is
5189 * unconditionally injected into the guest, which is the pre split lock
5190 * detection behaviour.
5192 * If the host has split lock detection enabled then #AC is
5193 * only injected into the guest when:
5194 * - Guest CPL == 3 (user mode)
5195 * - Guest has #AC detection enabled in CR0
5196 * - Guest EFLAGS has AC bit set
5198 bool vmx_guest_inject_ac(struct kvm_vcpu
*vcpu
)
5200 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT
))
5203 return vmx_get_cpl(vcpu
) == 3 && kvm_is_cr0_bit_set(vcpu
, X86_CR0_AM
) &&
5204 (kvm_get_rflags(vcpu
) & X86_EFLAGS_AC
);
5207 static int handle_exception_nmi(struct kvm_vcpu
*vcpu
)
5209 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5210 struct kvm_run
*kvm_run
= vcpu
->run
;
5211 u32 intr_info
, ex_no
, error_code
;
5212 unsigned long cr2
, dr6
;
5215 vect_info
= vmx
->idt_vectoring_info
;
5216 intr_info
= vmx_get_intr_info(vcpu
);
5219 * Machine checks are handled by handle_exception_irqoff(), or by
5220 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5221 * vmx_vcpu_enter_exit().
5223 if (is_machine_check(intr_info
) || is_nmi(intr_info
))
5227 * Queue the exception here instead of in handle_nm_fault_irqoff().
5228 * This ensures the nested_vmx check is not skipped so vmexit can
5229 * be reflected to L1 (when it intercepts #NM) before reaching this
5232 if (is_nm_fault(intr_info
)) {
5233 kvm_queue_exception(vcpu
, NM_VECTOR
);
5237 if (is_invalid_opcode(intr_info
))
5238 return handle_ud(vcpu
);
5240 if (WARN_ON_ONCE(is_ve_fault(intr_info
))) {
5241 struct vmx_ve_information
*ve_info
= vmx
->ve_info
;
5243 WARN_ONCE(ve_info
->exit_reason
!= EXIT_REASON_EPT_VIOLATION
,
5244 "Unexpected #VE on VM-Exit reason 0x%x", ve_info
->exit_reason
);
5246 kvm_mmu_print_sptes(vcpu
, ve_info
->guest_physical_address
, "#VE");
5251 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
5252 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
5254 if (!vmx
->rmode
.vm86_active
&& is_gp_fault(intr_info
)) {
5255 WARN_ON_ONCE(!enable_vmware_backdoor
);
5258 * VMware backdoor emulation on #GP interception only handles
5259 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5260 * error code on #GP.
5263 kvm_queue_exception_e(vcpu
, GP_VECTOR
, error_code
);
5266 return kvm_emulate_instruction(vcpu
, EMULTYPE_VMWARE_GP
);
5270 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5271 * MMIO, it is better to report an internal error.
5272 * See the comments in vmx_handle_exit.
5274 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
5275 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
5276 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5277 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
5278 vcpu
->run
->internal
.ndata
= 4;
5279 vcpu
->run
->internal
.data
[0] = vect_info
;
5280 vcpu
->run
->internal
.data
[1] = intr_info
;
5281 vcpu
->run
->internal
.data
[2] = error_code
;
5282 vcpu
->run
->internal
.data
[3] = vcpu
->arch
.last_vmentry_cpu
;
5286 if (is_page_fault(intr_info
)) {
5287 cr2
= vmx_get_exit_qual(vcpu
);
5288 if (enable_ept
&& !vcpu
->arch
.apf
.host_apf_flags
) {
5290 * EPT will cause page fault only if we need to
5291 * detect illegal GPAs.
5293 WARN_ON_ONCE(!allow_smaller_maxphyaddr
);
5294 kvm_fixup_and_inject_pf_error(vcpu
, cr2
, error_code
);
5297 return kvm_handle_page_fault(vcpu
, error_code
, cr2
, NULL
, 0);
5300 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
5302 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
5303 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
5307 dr6
= vmx_get_exit_qual(vcpu
);
5308 if (!(vcpu
->guest_debug
&
5309 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
5311 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5312 * instruction. ICEBP generates a trap-like #DB, but
5313 * despite its interception control being tied to #DB,
5314 * is an instruction intercept, i.e. the VM-Exit occurs
5315 * on the ICEBP itself. Use the inner "skip" helper to
5316 * avoid single-step #DB and MTF updates, as ICEBP is
5317 * higher priority. Note, skipping ICEBP still clears
5318 * STI and MOVSS blocking.
5320 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5321 * if single-step is enabled in RFLAGS and STI or MOVSS
5322 * blocking is active, as the CPU doesn't set the bit
5323 * on VM-Exit due to #DB interception. VM-Entry has a
5324 * consistency check that a single-step #DB is pending
5325 * in this scenario as the previous instruction cannot
5326 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5327 * don't modify RFLAGS), therefore the one instruction
5328 * delay when activating single-step breakpoints must
5329 * have already expired. Note, the CPU sets/clears BS
5330 * as appropriate for all other VM-Exits types.
5332 if (is_icebp(intr_info
))
5333 WARN_ON(!skip_emulated_instruction(vcpu
));
5334 else if ((vmx_get_rflags(vcpu
) & X86_EFLAGS_TF
) &&
5335 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
5336 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
)))
5337 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
5338 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
) | DR6_BS
);
5340 kvm_queue_exception_p(vcpu
, DB_VECTOR
, dr6
);
5343 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_ACTIVE_LOW
;
5344 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
5348 * Update instruction length as we may reinject #BP from
5349 * user space while in guest debugging mode. Reading it for
5350 * #DB as well causes no harm, it is not used in that case.
5352 vmx
->vcpu
.arch
.event_exit_inst_len
=
5353 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
5354 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5355 kvm_run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5356 kvm_run
->debug
.arch
.exception
= ex_no
;
5359 if (vmx_guest_inject_ac(vcpu
)) {
5360 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
5365 * Handle split lock. Depending on detection mode this will
5366 * either warn and disable split lock detection for this
5367 * task or force SIGBUS on it.
5369 if (handle_guest_split_lock(kvm_rip_read(vcpu
)))
5373 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
5374 kvm_run
->ex
.exception
= ex_no
;
5375 kvm_run
->ex
.error_code
= error_code
;
5381 static __always_inline
int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
5383 ++vcpu
->stat
.irq_exits
;
5387 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
5389 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5390 vcpu
->mmio_needed
= 0;
5394 static int handle_io(struct kvm_vcpu
*vcpu
)
5396 unsigned long exit_qualification
;
5397 int size
, in
, string
;
5400 exit_qualification
= vmx_get_exit_qual(vcpu
);
5401 string
= (exit_qualification
& 16) != 0;
5403 ++vcpu
->stat
.io_exits
;
5406 return kvm_emulate_instruction(vcpu
, 0);
5408 port
= exit_qualification
>> 16;
5409 size
= (exit_qualification
& 7) + 1;
5410 in
= (exit_qualification
& 8) != 0;
5412 return kvm_fast_pio(vcpu
, size
, port
, in
);
5415 void vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5418 * Patch in the VMCALL instruction:
5420 hypercall
[0] = 0x0f;
5421 hypercall
[1] = 0x01;
5422 hypercall
[2] = 0xc1;
5425 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5426 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
5428 if (is_guest_mode(vcpu
)) {
5429 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5430 unsigned long orig_val
= val
;
5433 * We get here when L2 changed cr0 in a way that did not change
5434 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5435 * but did change L0 shadowed bits. So we first calculate the
5436 * effective cr0 value that L1 would like to write into the
5437 * hardware. It consists of the L2-owned bits from the new
5438 * value combined with the L1-owned bits from L1's guest_cr0.
5440 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
5441 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
5443 if (kvm_set_cr0(vcpu
, val
))
5445 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
5448 return kvm_set_cr0(vcpu
, val
);
5452 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
5454 if (is_guest_mode(vcpu
)) {
5455 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5456 unsigned long orig_val
= val
;
5458 /* analogously to handle_set_cr0 */
5459 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
5460 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
5461 if (kvm_set_cr4(vcpu
, val
))
5463 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
5466 return kvm_set_cr4(vcpu
, val
);
5469 static int handle_desc(struct kvm_vcpu
*vcpu
)
5472 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5473 * and other code needs to be updated if UMIP can be guest owned.
5475 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS
& X86_CR4_UMIP
);
5477 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu
, X86_CR4_UMIP
));
5478 return kvm_emulate_instruction(vcpu
, 0);
5481 static int handle_cr(struct kvm_vcpu
*vcpu
)
5483 unsigned long exit_qualification
, val
;
5489 exit_qualification
= vmx_get_exit_qual(vcpu
);
5490 cr
= exit_qualification
& 15;
5491 reg
= (exit_qualification
>> 8) & 15;
5492 switch ((exit_qualification
>> 4) & 3) {
5493 case 0: /* mov to cr */
5494 val
= kvm_register_read(vcpu
, reg
);
5495 trace_kvm_cr_write(cr
, val
);
5498 err
= handle_set_cr0(vcpu
, val
);
5499 return kvm_complete_insn_gp(vcpu
, err
);
5501 WARN_ON_ONCE(enable_unrestricted_guest
);
5503 err
= kvm_set_cr3(vcpu
, val
);
5504 return kvm_complete_insn_gp(vcpu
, err
);
5506 err
= handle_set_cr4(vcpu
, val
);
5507 return kvm_complete_insn_gp(vcpu
, err
);
5509 u8 cr8_prev
= kvm_get_cr8(vcpu
);
5511 err
= kvm_set_cr8(vcpu
, cr8
);
5512 ret
= kvm_complete_insn_gp(vcpu
, err
);
5513 if (lapic_in_kernel(vcpu
))
5515 if (cr8_prev
<= cr8
)
5518 * TODO: we might be squashing a
5519 * KVM_GUESTDBG_SINGLESTEP-triggered
5520 * KVM_EXIT_DEBUG here.
5522 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
5528 KVM_BUG(1, vcpu
->kvm
, "Guest always owns CR0.TS");
5530 case 1: /*mov from cr*/
5533 WARN_ON_ONCE(enable_unrestricted_guest
);
5535 val
= kvm_read_cr3(vcpu
);
5536 kvm_register_write(vcpu
, reg
, val
);
5537 trace_kvm_cr_read(cr
, val
);
5538 return kvm_skip_emulated_instruction(vcpu
);
5540 val
= kvm_get_cr8(vcpu
);
5541 kvm_register_write(vcpu
, reg
, val
);
5542 trace_kvm_cr_read(cr
, val
);
5543 return kvm_skip_emulated_instruction(vcpu
);
5547 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
5548 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu
, ~0xful
) | val
));
5549 kvm_lmsw(vcpu
, val
);
5551 return kvm_skip_emulated_instruction(vcpu
);
5555 vcpu
->run
->exit_reason
= 0;
5556 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
5557 (int)(exit_qualification
>> 4) & 3, cr
);
5561 static int handle_dr(struct kvm_vcpu
*vcpu
)
5563 unsigned long exit_qualification
;
5567 exit_qualification
= vmx_get_exit_qual(vcpu
);
5568 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
5570 /* First, if DR does not exist, trigger UD */
5571 if (!kvm_require_dr(vcpu
, dr
))
5574 if (vmx_get_cpl(vcpu
) > 0)
5577 dr7
= vmcs_readl(GUEST_DR7
);
5580 * As the vm-exit takes precedence over the debug trap, we
5581 * need to emulate the latter, either for the host or the
5582 * guest debugging itself.
5584 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
5585 vcpu
->run
->debug
.arch
.dr6
= DR6_BD
| DR6_ACTIVE_LOW
;
5586 vcpu
->run
->debug
.arch
.dr7
= dr7
;
5587 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
5588 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
5589 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
5592 kvm_queue_exception_p(vcpu
, DB_VECTOR
, DR6_BD
);
5597 if (vcpu
->guest_debug
== 0) {
5598 exec_controls_clearbit(to_vmx(vcpu
), CPU_BASED_MOV_DR_EXITING
);
5601 * No more DR vmexits; force a reload of the debug registers
5602 * and reenter on this instruction. The next vmexit will
5603 * retrieve the full state of the debug registers.
5605 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
5609 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
5610 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
5611 kvm_register_write(vcpu
, reg
, kvm_get_dr(vcpu
, dr
));
5614 err
= kvm_set_dr(vcpu
, dr
, kvm_register_read(vcpu
, reg
));
5618 return kvm_complete_insn_gp(vcpu
, err
);
5621 void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
5623 get_debugreg(vcpu
->arch
.db
[0], 0);
5624 get_debugreg(vcpu
->arch
.db
[1], 1);
5625 get_debugreg(vcpu
->arch
.db
[2], 2);
5626 get_debugreg(vcpu
->arch
.db
[3], 3);
5627 get_debugreg(vcpu
->arch
.dr6
, 6);
5628 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
5630 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
5631 exec_controls_setbit(to_vmx(vcpu
), CPU_BASED_MOV_DR_EXITING
);
5634 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5635 * a stale dr6 from the guest.
5637 set_debugreg(DR6_RESERVED
, 6);
5640 void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
5642 vmcs_writel(GUEST_DR7
, val
);
5645 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
5647 kvm_apic_update_ppr(vcpu
);
5651 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
5653 exec_controls_clearbit(to_vmx(vcpu
), CPU_BASED_INTR_WINDOW_EXITING
);
5655 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5657 ++vcpu
->stat
.irq_window_exits
;
5661 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
5663 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5665 kvm_mmu_invlpg(vcpu
, exit_qualification
);
5666 return kvm_skip_emulated_instruction(vcpu
);
5669 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
5671 if (likely(fasteoi
)) {
5672 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5673 int access_type
, offset
;
5675 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
5676 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
5678 * Sane guest uses MOV to write EOI, with written value
5679 * not cared. So make a short-circuit here by avoiding
5680 * heavy instruction emulation.
5682 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
5683 (offset
== APIC_EOI
)) {
5684 kvm_lapic_set_eoi(vcpu
);
5685 return kvm_skip_emulated_instruction(vcpu
);
5688 return kvm_emulate_instruction(vcpu
, 0);
5691 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
5693 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5694 int vector
= exit_qualification
& 0xff;
5696 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5697 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
5701 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
5703 unsigned long exit_qualification
= vmx_get_exit_qual(vcpu
);
5706 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5707 * hardware has done any necessary aliasing, offset adjustments, etc...
5708 * for the access. I.e. the correct value has already been written to
5709 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5710 * retrieve the register value and emulate the access.
5712 u32 offset
= exit_qualification
& 0xff0;
5714 kvm_apic_write_nodecode(vcpu
, offset
);
5718 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
5720 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5721 unsigned long exit_qualification
;
5722 bool has_error_code
= false;
5725 int reason
, type
, idt_v
, idt_index
;
5727 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
5728 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
5729 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
5731 exit_qualification
= vmx_get_exit_qual(vcpu
);
5733 reason
= (u32
)exit_qualification
>> 30;
5734 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
5736 case INTR_TYPE_NMI_INTR
:
5737 vcpu
->arch
.nmi_injected
= false;
5738 vmx_set_nmi_mask(vcpu
, true);
5740 case INTR_TYPE_EXT_INTR
:
5741 case INTR_TYPE_SOFT_INTR
:
5742 kvm_clear_interrupt_queue(vcpu
);
5744 case INTR_TYPE_HARD_EXCEPTION
:
5745 if (vmx
->idt_vectoring_info
&
5746 VECTORING_INFO_DELIVER_CODE_MASK
) {
5747 has_error_code
= true;
5749 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
5752 case INTR_TYPE_SOFT_EXCEPTION
:
5753 kvm_clear_exception_queue(vcpu
);
5759 tss_selector
= exit_qualification
;
5761 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
5762 type
!= INTR_TYPE_EXT_INTR
&&
5763 type
!= INTR_TYPE_NMI_INTR
))
5764 WARN_ON(!skip_emulated_instruction(vcpu
));
5767 * TODO: What about debug traps on tss switch?
5768 * Are we supposed to inject them and update dr6?
5770 return kvm_task_switch(vcpu
, tss_selector
,
5771 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1,
5772 reason
, has_error_code
, error_code
);
5775 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
5777 unsigned long exit_qualification
;
5781 exit_qualification
= vmx_get_exit_qual(vcpu
);
5784 * EPT violation happened while executing iret from NMI,
5785 * "blocked by NMI" bit has to be set before next VM entry.
5786 * There are errata that may cause this bit to not be set:
5789 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5791 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5792 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
5794 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5795 trace_kvm_page_fault(vcpu
, gpa
, exit_qualification
);
5797 /* Is it a read fault? */
5798 error_code
= (exit_qualification
& EPT_VIOLATION_ACC_READ
)
5799 ? PFERR_USER_MASK
: 0;
5800 /* Is it a write fault? */
5801 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_WRITE
)
5802 ? PFERR_WRITE_MASK
: 0;
5803 /* Is it a fetch fault? */
5804 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_INSTR
)
5805 ? PFERR_FETCH_MASK
: 0;
5806 /* ept page table entry is present? */
5807 error_code
|= (exit_qualification
& EPT_VIOLATION_RWX_MASK
)
5808 ? PFERR_PRESENT_MASK
: 0;
5810 if (error_code
& EPT_VIOLATION_GVA_IS_VALID
)
5811 error_code
|= (exit_qualification
& EPT_VIOLATION_GVA_TRANSLATED
) ?
5812 PFERR_GUEST_FINAL_MASK
: PFERR_GUEST_PAGE_MASK
;
5815 * Check that the GPA doesn't exceed physical memory limits, as that is
5816 * a guest page fault. We have to emulate the instruction here, because
5817 * if the illegal address is that of a paging structure, then
5818 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5819 * would also use advanced VM-exit information for EPT violations to
5820 * reconstruct the page fault error code.
5822 if (unlikely(allow_smaller_maxphyaddr
&& !kvm_vcpu_is_legal_gpa(vcpu
, gpa
)))
5823 return kvm_emulate_instruction(vcpu
, 0);
5825 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
5828 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
5832 if (vmx_check_emulate_instruction(vcpu
, EMULTYPE_PF
, NULL
, 0))
5836 * A nested guest cannot optimize MMIO vmexits, because we have an
5837 * nGPA here instead of the required GPA.
5839 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
5840 if (!is_guest_mode(vcpu
) &&
5841 !kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
5842 trace_kvm_fast_mmio(gpa
);
5843 return kvm_skip_emulated_instruction(vcpu
);
5846 return kvm_mmu_page_fault(vcpu
, gpa
, PFERR_RSVD_MASK
, NULL
, 0);
5849 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
5851 if (KVM_BUG_ON(!enable_vnmi
, vcpu
->kvm
))
5854 exec_controls_clearbit(to_vmx(vcpu
), CPU_BASED_NMI_WINDOW_EXITING
);
5855 ++vcpu
->stat
.nmi_window_exits
;
5856 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5861 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu
*vcpu
)
5863 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5865 return vmx
->emulation_required
&& !vmx
->rmode
.vm86_active
&&
5866 (kvm_is_exception_pending(vcpu
) || vcpu
->arch
.exception
.injected
);
5869 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
5871 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5872 bool intr_window_requested
;
5873 unsigned count
= 130;
5875 intr_window_requested
= exec_controls_get(vmx
) &
5876 CPU_BASED_INTR_WINDOW_EXITING
;
5878 while (vmx
->emulation_required
&& count
-- != 0) {
5879 if (intr_window_requested
&& !vmx_interrupt_blocked(vcpu
))
5880 return handle_interrupt_window(&vmx
->vcpu
);
5882 if (kvm_test_request(KVM_REQ_EVENT
, vcpu
))
5885 if (!kvm_emulate_instruction(vcpu
, 0))
5888 if (vmx_emulation_required_with_pending_exception(vcpu
)) {
5889 kvm_prepare_emulation_failure_exit(vcpu
);
5893 if (vcpu
->arch
.halt_request
) {
5894 vcpu
->arch
.halt_request
= 0;
5895 return kvm_emulate_halt_noskip(vcpu
);
5899 * Note, return 1 and not 0, vcpu_run() will invoke
5900 * xfer_to_guest_mode() which will create a proper return
5903 if (__xfer_to_guest_mode_work_pending())
5910 int vmx_vcpu_pre_run(struct kvm_vcpu
*vcpu
)
5912 if (vmx_emulation_required_with_pending_exception(vcpu
)) {
5913 kvm_prepare_emulation_failure_exit(vcpu
);
5921 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5922 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5924 static int handle_pause(struct kvm_vcpu
*vcpu
)
5926 if (!kvm_pause_in_guest(vcpu
->kvm
))
5927 grow_ple_window(vcpu
);
5930 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5931 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5932 * never set PAUSE_EXITING and just set PLE if supported,
5933 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5935 kvm_vcpu_on_spin(vcpu
, true);
5936 return kvm_skip_emulated_instruction(vcpu
);
5939 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
5944 static int handle_invpcid(struct kvm_vcpu
*vcpu
)
5946 u32 vmx_instruction_info
;
5955 if (!guest_cpuid_has(vcpu
, X86_FEATURE_INVPCID
)) {
5956 kvm_queue_exception(vcpu
, UD_VECTOR
);
5960 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
5961 gpr_index
= vmx_get_instr_info_reg2(vmx_instruction_info
);
5962 type
= kvm_register_read(vcpu
, gpr_index
);
5964 /* According to the Intel instruction reference, the memory operand
5965 * is read even if it isn't needed (e.g., for type==all)
5967 if (get_vmx_mem_address(vcpu
, vmx_get_exit_qual(vcpu
),
5968 vmx_instruction_info
, false,
5969 sizeof(operand
), &gva
))
5972 return kvm_handle_invpcid(vcpu
, type
, gva
);
5975 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
5977 unsigned long exit_qualification
;
5979 trace_kvm_pml_full(vcpu
->vcpu_id
);
5981 exit_qualification
= vmx_get_exit_qual(vcpu
);
5984 * PML buffer FULL happened while executing iret from NMI,
5985 * "blocked by NMI" bit has to be set before next VM entry.
5987 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
5989 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
5990 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5991 GUEST_INTR_STATE_NMI
);
5994 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5995 * here.., and there's no userspace involvement needed for PML.
6000 static fastpath_t
handle_fastpath_preemption_timer(struct kvm_vcpu
*vcpu
,
6001 bool force_immediate_exit
)
6003 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6006 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6007 * due to the timer expiring while it was "soft" disabled, just eat the
6008 * exit and re-enter the guest.
6010 if (unlikely(vmx
->loaded_vmcs
->hv_timer_soft_disabled
))
6011 return EXIT_FASTPATH_REENTER_GUEST
;
6014 * If the timer expired because KVM used it to force an immediate exit,
6015 * then mission accomplished.
6017 if (force_immediate_exit
)
6018 return EXIT_FASTPATH_EXIT_HANDLED
;
6021 * If L2 is active, go down the slow path as emulating the guest timer
6022 * expiration likely requires synthesizing a nested VM-Exit.
6024 if (is_guest_mode(vcpu
))
6025 return EXIT_FASTPATH_NONE
;
6027 kvm_lapic_expired_hv_timer(vcpu
);
6028 return EXIT_FASTPATH_REENTER_GUEST
;
6031 static int handle_preemption_timer(struct kvm_vcpu
*vcpu
)
6034 * This non-fastpath handler is reached if and only if the preemption
6035 * timer was being used to emulate a guest timer while L2 is active.
6036 * All other scenarios are supposed to be handled in the fastpath.
6038 WARN_ON_ONCE(!is_guest_mode(vcpu
));
6039 kvm_lapic_expired_hv_timer(vcpu
);
6044 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6045 * are overwritten by nested_vmx_setup() when nested=1.
6047 static int handle_vmx_instruction(struct kvm_vcpu
*vcpu
)
6049 kvm_queue_exception(vcpu
, UD_VECTOR
);
6053 #ifndef CONFIG_X86_SGX_KVM
6054 static int handle_encls(struct kvm_vcpu
*vcpu
)
6057 * SGX virtualization is disabled. There is no software enable bit for
6058 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6059 * the guest from executing ENCLS (when SGX is supported by hardware).
6061 kvm_queue_exception(vcpu
, UD_VECTOR
);
6064 #endif /* CONFIG_X86_SGX_KVM */
6066 static int handle_bus_lock_vmexit(struct kvm_vcpu
*vcpu
)
6069 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6070 * VM-Exits. Unconditionally set the flag here and leave the handling to
6071 * vmx_handle_exit().
6073 to_vmx(vcpu
)->exit_reason
.bus_lock_detected
= true;
6077 static int handle_notify(struct kvm_vcpu
*vcpu
)
6079 unsigned long exit_qual
= vmx_get_exit_qual(vcpu
);
6080 bool context_invalid
= exit_qual
& NOTIFY_VM_CONTEXT_INVALID
;
6082 ++vcpu
->stat
.notify_window_exits
;
6085 * Notify VM exit happened while executing iret from NMI,
6086 * "blocked by NMI" bit has to be set before next VM entry.
6088 if (enable_vnmi
&& (exit_qual
& INTR_INFO_UNBLOCK_NMI
))
6089 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
6090 GUEST_INTR_STATE_NMI
);
6092 if (vcpu
->kvm
->arch
.notify_vmexit_flags
& KVM_X86_NOTIFY_VMEXIT_USER
||
6094 vcpu
->run
->exit_reason
= KVM_EXIT_NOTIFY
;
6095 vcpu
->run
->notify
.flags
= context_invalid
?
6096 KVM_NOTIFY_CONTEXT_INVALID
: 0;
6104 * The exit handlers return 1 if the exit was handled fully and guest execution
6105 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6106 * to be done to userspace and return 0.
6108 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
6109 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception_nmi
,
6110 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
6111 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
6112 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
6113 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
6114 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
6115 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
6116 [EXIT_REASON_CPUID
] = kvm_emulate_cpuid
,
6117 [EXIT_REASON_MSR_READ
] = kvm_emulate_rdmsr
,
6118 [EXIT_REASON_MSR_WRITE
] = kvm_emulate_wrmsr
,
6119 [EXIT_REASON_INTERRUPT_WINDOW
] = handle_interrupt_window
,
6120 [EXIT_REASON_HLT
] = kvm_emulate_halt
,
6121 [EXIT_REASON_INVD
] = kvm_emulate_invd
,
6122 [EXIT_REASON_INVLPG
] = handle_invlpg
,
6123 [EXIT_REASON_RDPMC
] = kvm_emulate_rdpmc
,
6124 [EXIT_REASON_VMCALL
] = kvm_emulate_hypercall
,
6125 [EXIT_REASON_VMCLEAR
] = handle_vmx_instruction
,
6126 [EXIT_REASON_VMLAUNCH
] = handle_vmx_instruction
,
6127 [EXIT_REASON_VMPTRLD
] = handle_vmx_instruction
,
6128 [EXIT_REASON_VMPTRST
] = handle_vmx_instruction
,
6129 [EXIT_REASON_VMREAD
] = handle_vmx_instruction
,
6130 [EXIT_REASON_VMRESUME
] = handle_vmx_instruction
,
6131 [EXIT_REASON_VMWRITE
] = handle_vmx_instruction
,
6132 [EXIT_REASON_VMOFF
] = handle_vmx_instruction
,
6133 [EXIT_REASON_VMON
] = handle_vmx_instruction
,
6134 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
6135 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
6136 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
6137 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
6138 [EXIT_REASON_WBINVD
] = kvm_emulate_wbinvd
,
6139 [EXIT_REASON_XSETBV
] = kvm_emulate_xsetbv
,
6140 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
6141 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
6142 [EXIT_REASON_GDTR_IDTR
] = handle_desc
,
6143 [EXIT_REASON_LDTR_TR
] = handle_desc
,
6144 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
6145 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
6146 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
6147 [EXIT_REASON_MWAIT_INSTRUCTION
] = kvm_emulate_mwait
,
6148 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
6149 [EXIT_REASON_MONITOR_INSTRUCTION
] = kvm_emulate_monitor
,
6150 [EXIT_REASON_INVEPT
] = handle_vmx_instruction
,
6151 [EXIT_REASON_INVVPID
] = handle_vmx_instruction
,
6152 [EXIT_REASON_RDRAND
] = kvm_handle_invalid_op
,
6153 [EXIT_REASON_RDSEED
] = kvm_handle_invalid_op
,
6154 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
6155 [EXIT_REASON_INVPCID
] = handle_invpcid
,
6156 [EXIT_REASON_VMFUNC
] = handle_vmx_instruction
,
6157 [EXIT_REASON_PREEMPTION_TIMER
] = handle_preemption_timer
,
6158 [EXIT_REASON_ENCLS
] = handle_encls
,
6159 [EXIT_REASON_BUS_LOCK
] = handle_bus_lock_vmexit
,
6160 [EXIT_REASON_NOTIFY
] = handle_notify
,
6163 static const int kvm_vmx_max_exit_handlers
=
6164 ARRAY_SIZE(kvm_vmx_exit_handlers
);
6166 void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u32
*reason
,
6167 u64
*info1
, u64
*info2
, u32
*intr_info
, u32
*error_code
)
6169 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6171 *reason
= vmx
->exit_reason
.full
;
6172 *info1
= vmx_get_exit_qual(vcpu
);
6173 if (!(vmx
->exit_reason
.failed_vmentry
)) {
6174 *info2
= vmx
->idt_vectoring_info
;
6175 *intr_info
= vmx_get_intr_info(vcpu
);
6176 if (is_exception_with_error_code(*intr_info
))
6177 *error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
6187 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
6190 __free_page(vmx
->pml_pg
);
6195 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
6197 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6201 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
6203 /* Do nothing if PML buffer is empty */
6204 if (pml_idx
== (PML_ENTITY_NUM
- 1))
6207 /* PML index always points to next available PML buffer entity */
6208 if (pml_idx
>= PML_ENTITY_NUM
)
6213 pml_buf
= page_address(vmx
->pml_pg
);
6214 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
6217 gpa
= pml_buf
[pml_idx
];
6218 WARN_ON(gpa
& (PAGE_SIZE
- 1));
6219 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
6222 /* reset PML index */
6223 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
6226 static void vmx_dump_sel(char *name
, uint32_t sel
)
6228 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6229 name
, vmcs_read16(sel
),
6230 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
6231 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
6232 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
6235 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
6237 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6238 name
, vmcs_read32(limit
),
6239 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
6242 static void vmx_dump_msrs(char *name
, struct vmx_msrs
*m
)
6245 struct vmx_msr_entry
*e
;
6247 pr_err("MSR %s:\n", name
);
6248 for (i
= 0, e
= m
->val
; i
< m
->nr
; ++i
, ++e
)
6249 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i
, e
->index
, e
->value
);
6252 void dump_vmcs(struct kvm_vcpu
*vcpu
)
6254 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6255 u32 vmentry_ctl
, vmexit_ctl
;
6256 u32 cpu_based_exec_ctrl
, pin_based_exec_ctrl
, secondary_exec_control
;
6257 u64 tertiary_exec_control
;
6261 if (!dump_invalid_vmcs
) {
6262 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6266 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
6267 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
6268 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6269 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
6270 cr4
= vmcs_readl(GUEST_CR4
);
6272 if (cpu_has_secondary_exec_ctrls())
6273 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
6275 secondary_exec_control
= 0;
6277 if (cpu_has_tertiary_exec_ctrls())
6278 tertiary_exec_control
= vmcs_read64(TERTIARY_VM_EXEC_CONTROL
);
6280 tertiary_exec_control
= 0;
6282 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6283 vmx
->loaded_vmcs
->vmcs
, vcpu
->arch
.last_vmentry_cpu
);
6284 pr_err("*** Guest State ***\n");
6285 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6286 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
6287 vmcs_readl(CR0_GUEST_HOST_MASK
));
6288 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6289 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
6290 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
6291 if (cpu_has_vmx_ept()) {
6292 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6293 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
6294 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6295 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
6297 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6298 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
6299 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6300 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
6301 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6302 vmcs_readl(GUEST_SYSENTER_ESP
),
6303 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
6304 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
6305 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
6306 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
6307 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
6308 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
6309 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
6310 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
6311 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
6312 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
6313 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
6314 efer_slot
= vmx_find_loadstore_msr_slot(&vmx
->msr_autoload
.guest
, MSR_EFER
);
6315 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_EFER
)
6316 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER
));
6317 else if (efer_slot
>= 0)
6318 pr_err("EFER= 0x%016llx (autoload)\n",
6319 vmx
->msr_autoload
.guest
.val
[efer_slot
].value
);
6320 else if (vmentry_ctl
& VM_ENTRY_IA32E_MODE
)
6321 pr_err("EFER= 0x%016llx (effective)\n",
6322 vcpu
->arch
.efer
| (EFER_LMA
| EFER_LME
));
6324 pr_err("EFER= 0x%016llx (effective)\n",
6325 vcpu
->arch
.efer
& ~(EFER_LMA
| EFER_LME
));
6326 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PAT
)
6327 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT
));
6328 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6329 vmcs_read64(GUEST_IA32_DEBUGCTL
),
6330 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
6331 if (cpu_has_load_perf_global_ctrl() &&
6332 vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
6333 pr_err("PerfGlobCtl = 0x%016llx\n",
6334 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
6335 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
6336 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
6337 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6338 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
6339 vmcs_read32(GUEST_ACTIVITY_STATE
));
6340 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
6341 pr_err("InterruptStatus = %04x\n",
6342 vmcs_read16(GUEST_INTR_STATUS
));
6343 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT
) > 0)
6344 vmx_dump_msrs("guest autoload", &vmx
->msr_autoload
.guest
);
6345 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT
) > 0)
6346 vmx_dump_msrs("guest autostore", &vmx
->msr_autostore
.guest
);
6348 pr_err("*** Host State ***\n");
6349 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6350 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
6351 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6352 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
6353 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
6354 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
6355 vmcs_read16(HOST_TR_SELECTOR
));
6356 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6357 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
6358 vmcs_readl(HOST_TR_BASE
));
6359 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6360 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
6361 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6362 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
6363 vmcs_readl(HOST_CR4
));
6364 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6365 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
6366 vmcs_read32(HOST_IA32_SYSENTER_CS
),
6367 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
6368 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_EFER
)
6369 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER
));
6370 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PAT
)
6371 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT
));
6372 if (cpu_has_load_perf_global_ctrl() &&
6373 vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
6374 pr_err("PerfGlobCtl = 0x%016llx\n",
6375 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
6376 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT
) > 0)
6377 vmx_dump_msrs("host autoload", &vmx
->msr_autoload
.host
);
6379 pr_err("*** Control State ***\n");
6380 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6381 cpu_based_exec_ctrl
, secondary_exec_control
, tertiary_exec_control
);
6382 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6383 pin_based_exec_ctrl
, vmentry_ctl
, vmexit_ctl
);
6384 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6385 vmcs_read32(EXCEPTION_BITMAP
),
6386 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
6387 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
6388 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6389 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
6390 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
6391 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
6392 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6393 vmcs_read32(VM_EXIT_INTR_INFO
),
6394 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
6395 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
6396 pr_err(" reason=%08x qualification=%016lx\n",
6397 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
6398 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6399 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
6400 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
6401 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
6402 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
6403 pr_err("TSC Multiplier = 0x%016llx\n",
6404 vmcs_read64(TSC_MULTIPLIER
));
6405 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
) {
6406 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
) {
6407 u16 status
= vmcs_read16(GUEST_INTR_STATUS
);
6408 pr_err("SVI|RVI = %02x|%02x ", status
>> 8, status
& 0xff);
6410 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
6411 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)
6412 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR
));
6413 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR
));
6415 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
6416 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
6417 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
6418 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
6419 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
6420 pr_err("PLE Gap=%08x Window=%08x\n",
6421 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
6422 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
6423 pr_err("Virtual processor ID = 0x%04x\n",
6424 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
6425 if (secondary_exec_control
& SECONDARY_EXEC_EPT_VIOLATION_VE
) {
6426 struct vmx_ve_information
*ve_info
= vmx
->ve_info
;
6427 u64 ve_info_pa
= vmcs_read64(VE_INFORMATION_ADDRESS
);
6430 * If KVM is dumping the VMCS, then something has gone wrong
6431 * already. Derefencing an address from the VMCS, which could
6432 * very well be corrupted, is a terrible idea. The virtual
6433 * address is known so use it.
6435 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa
,
6436 ve_info_pa
== __pa(ve_info
) ? "" : "(corrupted!)");
6437 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6438 ve_info
->exit_reason
, ve_info
->delivery
,
6439 ve_info
->exit_qualification
,
6440 ve_info
->guest_linear_address
,
6441 ve_info
->guest_physical_address
, ve_info
->eptp_index
);
6446 * The guest has exited. See if we can fix it or if we need userspace
6449 static int __vmx_handle_exit(struct kvm_vcpu
*vcpu
, fastpath_t exit_fastpath
)
6451 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6452 union vmx_exit_reason exit_reason
= vmx
->exit_reason
;
6453 u32 vectoring_info
= vmx
->idt_vectoring_info
;
6454 u16 exit_handler_index
;
6457 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6458 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6459 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6460 * mode as if vcpus is in root mode, the PML buffer must has been
6461 * flushed already. Note, PML is never enabled in hardware while
6464 if (enable_pml
&& !is_guest_mode(vcpu
))
6465 vmx_flush_pml_buffer(vcpu
);
6468 * KVM should never reach this point with a pending nested VM-Enter.
6469 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6470 * invalid guest state should never happen as that means KVM knowingly
6471 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6473 if (KVM_BUG_ON(vmx
->nested
.nested_run_pending
, vcpu
->kvm
))
6476 if (is_guest_mode(vcpu
)) {
6478 * PML is never enabled when running L2, bail immediately if a
6479 * PML full exit occurs as something is horribly wrong.
6481 if (exit_reason
.basic
== EXIT_REASON_PML_FULL
)
6482 goto unexpected_vmexit
;
6485 * The host physical addresses of some pages of guest memory
6486 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6487 * Page). The CPU may write to these pages via their host
6488 * physical address while L2 is running, bypassing any
6489 * address-translation-based dirty tracking (e.g. EPT write
6492 * Mark them dirty on every exit from L2 to prevent them from
6493 * getting out of sync with dirty tracking.
6495 nested_mark_vmcs12_pages_dirty(vcpu
);
6498 * Synthesize a triple fault if L2 state is invalid. In normal
6499 * operation, nested VM-Enter rejects any attempt to enter L2
6500 * with invalid state. However, those checks are skipped if
6501 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6502 * L2 state is invalid, it means either L1 modified SMRAM state
6503 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6504 * doing so is architecturally allowed in the RSM case, and is
6505 * the least awful solution for the userspace case without
6506 * risking false positives.
6508 if (vmx
->emulation_required
) {
6509 nested_vmx_vmexit(vcpu
, EXIT_REASON_TRIPLE_FAULT
, 0, 0);
6513 if (nested_vmx_reflect_vmexit(vcpu
))
6517 /* If guest state is invalid, start emulating. L2 is handled above. */
6518 if (vmx
->emulation_required
)
6519 return handle_invalid_guest_state(vcpu
);
6521 if (exit_reason
.failed_vmentry
) {
6523 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6524 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6526 vcpu
->run
->fail_entry
.cpu
= vcpu
->arch
.last_vmentry_cpu
;
6530 if (unlikely(vmx
->fail
)) {
6532 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
6533 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
6534 = vmcs_read32(VM_INSTRUCTION_ERROR
);
6535 vcpu
->run
->fail_entry
.cpu
= vcpu
->arch
.last_vmentry_cpu
;
6541 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6542 * delivery event since it indicates guest is accessing MMIO.
6543 * The vm-exit can be triggered again after return to guest that
6544 * will cause infinite loop.
6546 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6547 (exit_reason
.basic
!= EXIT_REASON_EXCEPTION_NMI
&&
6548 exit_reason
.basic
!= EXIT_REASON_EPT_VIOLATION
&&
6549 exit_reason
.basic
!= EXIT_REASON_PML_FULL
&&
6550 exit_reason
.basic
!= EXIT_REASON_APIC_ACCESS
&&
6551 exit_reason
.basic
!= EXIT_REASON_TASK_SWITCH
&&
6552 exit_reason
.basic
!= EXIT_REASON_NOTIFY
)) {
6555 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6556 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
6557 vcpu
->run
->internal
.data
[0] = vectoring_info
;
6558 vcpu
->run
->internal
.data
[1] = exit_reason
.full
;
6559 vcpu
->run
->internal
.data
[2] = vmx_get_exit_qual(vcpu
);
6560 if (exit_reason
.basic
== EXIT_REASON_EPT_MISCONFIG
) {
6561 vcpu
->run
->internal
.data
[ndata
++] =
6562 vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6564 vcpu
->run
->internal
.data
[ndata
++] = vcpu
->arch
.last_vmentry_cpu
;
6565 vcpu
->run
->internal
.ndata
= ndata
;
6569 if (unlikely(!enable_vnmi
&&
6570 vmx
->loaded_vmcs
->soft_vnmi_blocked
)) {
6571 if (!vmx_interrupt_blocked(vcpu
)) {
6572 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
6573 } else if (vmx
->loaded_vmcs
->vnmi_blocked_time
> 1000000000LL &&
6574 vcpu
->arch
.nmi_pending
) {
6576 * This CPU don't support us in finding the end of an
6577 * NMI-blocked window if the guest runs with IRQs
6578 * disabled. So we pull the trigger after 1 s of
6579 * futile waiting, but inform the user about this.
6581 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
6582 "state on VCPU %d after 1 s timeout\n",
6583 __func__
, vcpu
->vcpu_id
);
6584 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
6588 if (exit_fastpath
!= EXIT_FASTPATH_NONE
)
6591 if (exit_reason
.basic
>= kvm_vmx_max_exit_handlers
)
6592 goto unexpected_vmexit
;
6593 #ifdef CONFIG_MITIGATION_RETPOLINE
6594 if (exit_reason
.basic
== EXIT_REASON_MSR_WRITE
)
6595 return kvm_emulate_wrmsr(vcpu
);
6596 else if (exit_reason
.basic
== EXIT_REASON_PREEMPTION_TIMER
)
6597 return handle_preemption_timer(vcpu
);
6598 else if (exit_reason
.basic
== EXIT_REASON_INTERRUPT_WINDOW
)
6599 return handle_interrupt_window(vcpu
);
6600 else if (exit_reason
.basic
== EXIT_REASON_EXTERNAL_INTERRUPT
)
6601 return handle_external_interrupt(vcpu
);
6602 else if (exit_reason
.basic
== EXIT_REASON_HLT
)
6603 return kvm_emulate_halt(vcpu
);
6604 else if (exit_reason
.basic
== EXIT_REASON_EPT_MISCONFIG
)
6605 return handle_ept_misconfig(vcpu
);
6608 exit_handler_index
= array_index_nospec((u16
)exit_reason
.basic
,
6609 kvm_vmx_max_exit_handlers
);
6610 if (!kvm_vmx_exit_handlers
[exit_handler_index
])
6611 goto unexpected_vmexit
;
6613 return kvm_vmx_exit_handlers
[exit_handler_index
](vcpu
);
6616 vcpu_unimpl(vcpu
, "vmx: unexpected exit reason 0x%x\n",
6619 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6620 vcpu
->run
->internal
.suberror
=
6621 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON
;
6622 vcpu
->run
->internal
.ndata
= 2;
6623 vcpu
->run
->internal
.data
[0] = exit_reason
.full
;
6624 vcpu
->run
->internal
.data
[1] = vcpu
->arch
.last_vmentry_cpu
;
6628 int vmx_handle_exit(struct kvm_vcpu
*vcpu
, fastpath_t exit_fastpath
)
6630 int ret
= __vmx_handle_exit(vcpu
, exit_fastpath
);
6633 * Exit to user space when bus lock detected to inform that there is
6634 * a bus lock in guest.
6636 if (to_vmx(vcpu
)->exit_reason
.bus_lock_detected
) {
6638 vcpu
->run
->exit_reason
= KVM_EXIT_X86_BUS_LOCK
;
6640 vcpu
->run
->flags
|= KVM_RUN_X86_BUS_LOCK
;
6647 * Software based L1D cache flush which is used when microcode providing
6648 * the cache control MSR is not loaded.
6650 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6651 * flush it is required to read in 64 KiB because the replacement algorithm
6652 * is not exactly LRU. This could be sized at runtime via topology
6653 * information but as all relevant affected CPUs have 32KiB L1D cache size
6654 * there is no point in doing so.
6656 static noinstr
void vmx_l1d_flush(struct kvm_vcpu
*vcpu
)
6658 int size
= PAGE_SIZE
<< L1D_CACHE_ORDER
;
6661 * This code is only executed when the flush mode is 'cond' or
6664 if (static_branch_likely(&vmx_l1d_flush_cond
)) {
6668 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6669 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6670 * exits to userspace, or if KVM reaches one of the unsafe
6671 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6673 flush_l1d
= vcpu
->arch
.l1tf_flush_l1d
;
6674 vcpu
->arch
.l1tf_flush_l1d
= false;
6677 * Clear the per-cpu flush bit, it gets set again from
6678 * the interrupt handlers.
6680 flush_l1d
|= kvm_get_cpu_l1tf_flush_l1d();
6681 kvm_clear_cpu_l1tf_flush_l1d();
6687 vcpu
->stat
.l1d_flush
++;
6689 if (static_cpu_has(X86_FEATURE_FLUSH_L1D
)) {
6690 native_wrmsrl(MSR_IA32_FLUSH_CMD
, L1D_FLUSH
);
6695 /* First ensure the pages are in the TLB */
6696 "xorl %%eax, %%eax\n"
6697 ".Lpopulate_tlb:\n\t"
6698 "movzbl (%[flush_pages], %%" _ASM_AX
"), %%ecx\n\t"
6699 "addl $4096, %%eax\n\t"
6700 "cmpl %%eax, %[size]\n\t"
6701 "jne .Lpopulate_tlb\n\t"
6702 "xorl %%eax, %%eax\n\t"
6704 /* Now fill the cache */
6705 "xorl %%eax, %%eax\n"
6707 "movzbl (%[flush_pages], %%" _ASM_AX
"), %%ecx\n\t"
6708 "addl $64, %%eax\n\t"
6709 "cmpl %%eax, %[size]\n\t"
6710 "jne .Lfill_cache\n\t"
6712 :: [flush_pages
] "r" (vmx_l1d_flush_pages
),
6714 : "eax", "ebx", "ecx", "edx");
6717 void vmx_update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
6719 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6722 if (is_guest_mode(vcpu
) &&
6723 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
6726 tpr_threshold
= (irr
== -1 || tpr
< irr
) ? 0 : irr
;
6727 if (is_guest_mode(vcpu
))
6728 to_vmx(vcpu
)->nested
.l1_tpr_threshold
= tpr_threshold
;
6730 vmcs_write32(TPR_THRESHOLD
, tpr_threshold
);
6733 void vmx_set_virtual_apic_mode(struct kvm_vcpu
*vcpu
)
6735 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6736 u32 sec_exec_control
;
6738 if (!lapic_in_kernel(vcpu
))
6741 if (!flexpriority_enabled
&&
6742 !cpu_has_vmx_virtualize_x2apic_mode())
6745 /* Postpone execution until vmcs01 is the current VMCS. */
6746 if (is_guest_mode(vcpu
)) {
6747 vmx
->nested
.change_vmcs01_virtual_apic_mode
= true;
6751 sec_exec_control
= secondary_exec_controls_get(vmx
);
6752 sec_exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
6753 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
6755 switch (kvm_get_apic_mode(vcpu
)) {
6756 case LAPIC_MODE_INVALID
:
6757 WARN_ONCE(true, "Invalid local APIC state");
6759 case LAPIC_MODE_DISABLED
:
6761 case LAPIC_MODE_XAPIC
:
6762 if (flexpriority_enabled
) {
6764 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
6765 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
6768 * Flush the TLB, reloading the APIC access page will
6769 * only do so if its physical address has changed, but
6770 * the guest may have inserted a non-APIC mapping into
6771 * the TLB while the APIC access page was disabled.
6773 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT
, vcpu
);
6776 case LAPIC_MODE_X2APIC
:
6777 if (cpu_has_vmx_virtualize_x2apic_mode())
6779 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
6782 secondary_exec_controls_set(vmx
, sec_exec_control
);
6784 vmx_update_msr_bitmap_x2apic(vcpu
);
6787 void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
)
6789 const gfn_t gfn
= APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
;
6790 struct kvm
*kvm
= vcpu
->kvm
;
6791 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
6792 struct kvm_memory_slot
*slot
;
6793 unsigned long mmu_seq
;
6796 /* Defer reload until vmcs01 is the current VMCS. */
6797 if (is_guest_mode(vcpu
)) {
6798 to_vmx(vcpu
)->nested
.reload_vmcs01_apic_access_page
= true;
6802 if (!(secondary_exec_controls_get(to_vmx(vcpu
)) &
6803 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
6807 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6808 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6809 * be impossible for userspace to create a memslot for the APIC when
6810 * APICv is enabled, but paranoia won't hurt in this case.
6812 slot
= id_to_memslot(slots
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
);
6813 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
6817 * Ensure that the mmu_notifier sequence count is read before KVM
6818 * retrieves the pfn from the primary MMU. Note, the memslot is
6819 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6820 * in kvm_mmu_invalidate_end().
6822 mmu_seq
= kvm
->mmu_invalidate_seq
;
6826 * No need to retry if the memslot does not exist or is invalid. KVM
6827 * controls the APIC-access page memslot, and only deletes the memslot
6828 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6830 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
6831 if (is_error_noslot_pfn(pfn
))
6834 read_lock(&vcpu
->kvm
->mmu_lock
);
6835 if (mmu_invalidate_retry_gfn(kvm
, mmu_seq
, gfn
)) {
6836 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
6837 read_unlock(&vcpu
->kvm
->mmu_lock
);
6841 vmcs_write64(APIC_ACCESS_ADDR
, pfn_to_hpa(pfn
));
6842 read_unlock(&vcpu
->kvm
->mmu_lock
);
6845 * No need for a manual TLB flush at this point, KVM has already done a
6846 * flush if there were SPTEs pointing at the previous page.
6850 * Do not pin apic access page in memory, the MMU notifier
6851 * will call us again if it is migrated or swapped out.
6853 kvm_release_pfn_clean(pfn
);
6856 void vmx_hwapic_isr_update(int max_isr
)
6864 status
= vmcs_read16(GUEST_INTR_STATUS
);
6866 if (max_isr
!= old
) {
6868 status
|= max_isr
<< 8;
6869 vmcs_write16(GUEST_INTR_STATUS
, status
);
6873 static void vmx_set_rvi(int vector
)
6881 status
= vmcs_read16(GUEST_INTR_STATUS
);
6882 old
= (u8
)status
& 0xff;
6883 if ((u8
)vector
!= old
) {
6885 status
|= (u8
)vector
;
6886 vmcs_write16(GUEST_INTR_STATUS
, status
);
6890 void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
6893 * When running L2, updating RVI is only relevant when
6894 * vmcs12 virtual-interrupt-delivery enabled.
6895 * However, it can be enabled only when L1 also
6896 * intercepts external-interrupts and in that case
6897 * we should not update vmcs02 RVI but instead intercept
6898 * interrupt. Therefore, do nothing when running L2.
6900 if (!is_guest_mode(vcpu
))
6901 vmx_set_rvi(max_irr
);
6904 int vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
6906 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6908 bool got_posted_interrupt
;
6910 if (KVM_BUG_ON(!enable_apicv
, vcpu
->kvm
))
6913 if (pi_test_on(&vmx
->pi_desc
)) {
6914 pi_clear_on(&vmx
->pi_desc
);
6916 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6917 * But on x86 this is just a compiler barrier anyway.
6919 smp_mb__after_atomic();
6920 got_posted_interrupt
=
6921 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
, &max_irr
);
6923 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6924 got_posted_interrupt
= false;
6928 * Newly recognized interrupts are injected via either virtual interrupt
6929 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6930 * disabled in two cases:
6932 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6933 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6934 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6935 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6936 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6938 * 2) If APICv is disabled for this vCPU, assigned devices may still
6939 * attempt to post interrupts. The posted interrupt vector will cause
6940 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6942 if (!is_guest_mode(vcpu
) && kvm_vcpu_apicv_active(vcpu
))
6943 vmx_set_rvi(max_irr
);
6944 else if (got_posted_interrupt
)
6945 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6950 void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
6952 if (!kvm_vcpu_apicv_active(vcpu
))
6955 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
6956 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
6957 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
6958 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
6961 void vmx_apicv_pre_state_restore(struct kvm_vcpu
*vcpu
)
6963 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6965 pi_clear_on(&vmx
->pi_desc
);
6966 memset(vmx
->pi_desc
.pir
, 0, sizeof(vmx
->pi_desc
.pir
));
6969 void vmx_do_interrupt_irqoff(unsigned long entry
);
6970 void vmx_do_nmi_irqoff(void);
6972 static void handle_nm_fault_irqoff(struct kvm_vcpu
*vcpu
)
6975 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6976 * MSR value is not clobbered by the host activity before the guest
6977 * has chance to consume it.
6979 * Do not blindly read xfd_err here, since this exception might
6980 * be caused by L1 interception on a platform which doesn't
6981 * support xfd at all.
6983 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6984 * only when xfd contains a non-zero value.
6986 * Queuing exception is done in vmx_handle_exit. See comment there.
6988 if (vcpu
->arch
.guest_fpu
.fpstate
->xfd
)
6989 rdmsrl(MSR_IA32_XFD_ERR
, vcpu
->arch
.guest_fpu
.xfd_err
);
6992 static void handle_exception_irqoff(struct kvm_vcpu
*vcpu
, u32 intr_info
)
6994 /* if exit due to PF check for async PF */
6995 if (is_page_fault(intr_info
))
6996 vcpu
->arch
.apf
.host_apf_flags
= kvm_read_and_reset_apf_flags();
6997 /* if exit due to NM, handle before interrupts are enabled */
6998 else if (is_nm_fault(intr_info
))
6999 handle_nm_fault_irqoff(vcpu
);
7000 /* Handle machine checks before interrupts are enabled */
7001 else if (is_machine_check(intr_info
))
7002 kvm_machine_check();
7005 static void handle_external_interrupt_irqoff(struct kvm_vcpu
*vcpu
,
7008 unsigned int vector
= intr_info
& INTR_INFO_VECTOR_MASK
;
7010 if (KVM_BUG(!is_external_intr(intr_info
), vcpu
->kvm
,
7011 "unexpected VM-Exit interrupt info: 0x%x", intr_info
))
7014 kvm_before_interrupt(vcpu
, KVM_HANDLING_IRQ
);
7015 if (cpu_feature_enabled(X86_FEATURE_FRED
))
7016 fred_entry_from_kvm(EVENT_TYPE_EXTINT
, vector
);
7018 vmx_do_interrupt_irqoff(gate_offset((gate_desc
*)host_idt_base
+ vector
));
7019 kvm_after_interrupt(vcpu
);
7021 vcpu
->arch
.at_instruction_boundary
= true;
7024 void vmx_handle_exit_irqoff(struct kvm_vcpu
*vcpu
)
7026 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7028 if (vmx
->emulation_required
)
7031 if (vmx
->exit_reason
.basic
== EXIT_REASON_EXTERNAL_INTERRUPT
)
7032 handle_external_interrupt_irqoff(vcpu
, vmx_get_intr_info(vcpu
));
7033 else if (vmx
->exit_reason
.basic
== EXIT_REASON_EXCEPTION_NMI
)
7034 handle_exception_irqoff(vcpu
, vmx_get_intr_info(vcpu
));
7038 * The kvm parameter can be NULL (module initialization, or invocation before
7039 * VM creation). Be sure to check the kvm parameter before using it.
7041 bool vmx_has_emulated_msr(struct kvm
*kvm
, u32 index
)
7044 case MSR_IA32_SMBASE
:
7045 if (!IS_ENABLED(CONFIG_KVM_SMM
))
7048 * We cannot do SMM unless we can run the guest in big
7051 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
7052 case KVM_FIRST_EMULATED_VMX_MSR
... KVM_LAST_EMULATED_VMX_MSR
:
7054 case MSR_AMD64_VIRT_SPEC_CTRL
:
7055 case MSR_AMD64_TSC_RATIO
:
7056 /* This is AMD only. */
7063 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
7068 bool idtv_info_valid
;
7070 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7073 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
7076 exit_intr_info
= vmx_get_intr_info(&vmx
->vcpu
);
7077 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
7078 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
7080 * SDM 3: 27.7.1.2 (September 2008)
7081 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7082 * a guest IRET fault.
7083 * SDM 3: 23.2.2 (September 2008)
7084 * Bit 12 is undefined in any of the following cases:
7085 * If the VM exit sets the valid bit in the IDT-vectoring
7086 * information field.
7087 * If the VM exit is due to a double fault.
7089 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
7090 vector
!= DF_VECTOR
&& !idtv_info_valid
)
7091 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
7092 GUEST_INTR_STATE_NMI
);
7094 vmx
->loaded_vmcs
->nmi_known_unmasked
=
7095 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
7096 & GUEST_INTR_STATE_NMI
);
7097 } else if (unlikely(vmx
->loaded_vmcs
->soft_vnmi_blocked
))
7098 vmx
->loaded_vmcs
->vnmi_blocked_time
+=
7099 ktime_to_ns(ktime_sub(ktime_get(),
7100 vmx
->loaded_vmcs
->entry_time
));
7103 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
7104 u32 idt_vectoring_info
,
7105 int instr_len_field
,
7106 int error_code_field
)
7110 bool idtv_info_valid
;
7112 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
7114 vcpu
->arch
.nmi_injected
= false;
7115 kvm_clear_exception_queue(vcpu
);
7116 kvm_clear_interrupt_queue(vcpu
);
7118 if (!idtv_info_valid
)
7121 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7123 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
7124 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
7127 case INTR_TYPE_NMI_INTR
:
7128 vcpu
->arch
.nmi_injected
= true;
7130 * SDM 3: 27.7.1.2 (September 2008)
7131 * Clear bit "block by NMI" before VM entry if a NMI
7134 vmx_set_nmi_mask(vcpu
, false);
7136 case INTR_TYPE_SOFT_EXCEPTION
:
7137 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7139 case INTR_TYPE_HARD_EXCEPTION
:
7140 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
7141 u32 err
= vmcs_read32(error_code_field
);
7142 kvm_requeue_exception_e(vcpu
, vector
, err
);
7144 kvm_requeue_exception(vcpu
, vector
);
7146 case INTR_TYPE_SOFT_INTR
:
7147 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
7149 case INTR_TYPE_EXT_INTR
:
7150 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
7157 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
7159 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
7160 VM_EXIT_INSTRUCTION_LEN
,
7161 IDT_VECTORING_ERROR_CODE
);
7164 void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
7166 __vmx_complete_interrupts(vcpu
,
7167 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
7168 VM_ENTRY_INSTRUCTION_LEN
,
7169 VM_ENTRY_EXCEPTION_ERROR_CODE
);
7171 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
7174 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
7177 struct perf_guest_switch_msr
*msrs
;
7178 struct kvm_pmu
*pmu
= vcpu_to_pmu(&vmx
->vcpu
);
7180 pmu
->host_cross_mapped_mask
= 0;
7181 if (pmu
->pebs_enable
& pmu
->global_ctrl
)
7182 intel_pmu_cross_mapped_check(pmu
);
7184 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7185 msrs
= perf_guest_get_msrs(&nr_msrs
, (void *)pmu
);
7189 for (i
= 0; i
< nr_msrs
; i
++)
7190 if (msrs
[i
].host
== msrs
[i
].guest
)
7191 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
7193 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
7194 msrs
[i
].host
, false);
7197 static void vmx_update_hv_timer(struct kvm_vcpu
*vcpu
, bool force_immediate_exit
)
7199 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7203 if (force_immediate_exit
) {
7204 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, 0);
7205 vmx
->loaded_vmcs
->hv_timer_soft_disabled
= false;
7206 } else if (vmx
->hv_deadline_tsc
!= -1) {
7208 if (vmx
->hv_deadline_tsc
> tscl
)
7209 /* set_hv_timer ensures the delta fits in 32-bits */
7210 delta_tsc
= (u32
)((vmx
->hv_deadline_tsc
- tscl
) >>
7211 cpu_preemption_timer_multi
);
7215 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, delta_tsc
);
7216 vmx
->loaded_vmcs
->hv_timer_soft_disabled
= false;
7217 } else if (!vmx
->loaded_vmcs
->hv_timer_soft_disabled
) {
7218 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, -1);
7219 vmx
->loaded_vmcs
->hv_timer_soft_disabled
= true;
7223 void noinstr
vmx_update_host_rsp(struct vcpu_vmx
*vmx
, unsigned long host_rsp
)
7225 if (unlikely(host_rsp
!= vmx
->loaded_vmcs
->host_state
.rsp
)) {
7226 vmx
->loaded_vmcs
->host_state
.rsp
= host_rsp
;
7227 vmcs_writel(HOST_RSP
, host_rsp
);
7231 void noinstr
vmx_spec_ctrl_restore_host(struct vcpu_vmx
*vmx
,
7234 u64 hostval
= this_cpu_read(x86_spec_ctrl_current
);
7236 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL
))
7239 if (flags
& VMX_RUN_SAVE_SPEC_CTRL
)
7240 vmx
->spec_ctrl
= __rdmsr(MSR_IA32_SPEC_CTRL
);
7243 * If the guest/host SPEC_CTRL values differ, restore the host value.
7245 * For legacy IBRS, the IBRS bit always needs to be written after
7246 * transitioning from a less privileged predictor mode, regardless of
7247 * whether the guest/host values differ.
7249 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS
) ||
7250 vmx
->spec_ctrl
!= hostval
)
7251 native_wrmsrl(MSR_IA32_SPEC_CTRL
, hostval
);
7256 static fastpath_t
vmx_exit_handlers_fastpath(struct kvm_vcpu
*vcpu
,
7257 bool force_immediate_exit
)
7260 * If L2 is active, some VMX preemption timer exits can be handled in
7261 * the fastpath even, all other exits must use the slow path.
7263 if (is_guest_mode(vcpu
) &&
7264 to_vmx(vcpu
)->exit_reason
.basic
!= EXIT_REASON_PREEMPTION_TIMER
)
7265 return EXIT_FASTPATH_NONE
;
7267 switch (to_vmx(vcpu
)->exit_reason
.basic
) {
7268 case EXIT_REASON_MSR_WRITE
:
7269 return handle_fastpath_set_msr_irqoff(vcpu
);
7270 case EXIT_REASON_PREEMPTION_TIMER
:
7271 return handle_fastpath_preemption_timer(vcpu
, force_immediate_exit
);
7272 case EXIT_REASON_HLT
:
7273 return handle_fastpath_hlt(vcpu
);
7275 return EXIT_FASTPATH_NONE
;
7279 static noinstr
void vmx_vcpu_enter_exit(struct kvm_vcpu
*vcpu
,
7282 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7284 guest_state_enter_irqoff();
7287 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7288 * mitigation for MDS is done late in VMentry and is still
7289 * executed in spite of L1D Flush. This is because an extra VERW
7290 * should not matter much after the big hammer L1D Flush.
7292 if (static_branch_unlikely(&vmx_l1d_should_flush
))
7293 vmx_l1d_flush(vcpu
);
7294 else if (static_branch_unlikely(&mmio_stale_data_clear
) &&
7295 kvm_arch_has_assigned_device(vcpu
->kvm
))
7296 mds_clear_cpu_buffers();
7298 vmx_disable_fb_clear(vmx
);
7300 if (vcpu
->arch
.cr2
!= native_read_cr2())
7301 native_write_cr2(vcpu
->arch
.cr2
);
7303 vmx
->fail
= __vmx_vcpu_run(vmx
, (unsigned long *)&vcpu
->arch
.regs
,
7306 vcpu
->arch
.cr2
= native_read_cr2();
7307 vcpu
->arch
.regs_avail
&= ~VMX_REGS_LAZY_LOAD_SET
;
7309 vmx
->idt_vectoring_info
= 0;
7311 vmx_enable_fb_clear(vmx
);
7313 if (unlikely(vmx
->fail
)) {
7314 vmx
->exit_reason
.full
= 0xdead;
7318 vmx
->exit_reason
.full
= vmcs_read32(VM_EXIT_REASON
);
7319 if (likely(!vmx
->exit_reason
.failed_vmentry
))
7320 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
7322 if ((u16
)vmx
->exit_reason
.basic
== EXIT_REASON_EXCEPTION_NMI
&&
7323 is_nmi(vmx_get_intr_info(vcpu
))) {
7324 kvm_before_interrupt(vcpu
, KVM_HANDLING_NMI
);
7325 if (cpu_feature_enabled(X86_FEATURE_FRED
))
7326 fred_entry_from_kvm(EVENT_TYPE_NMI
, NMI_VECTOR
);
7328 vmx_do_nmi_irqoff();
7329 kvm_after_interrupt(vcpu
);
7333 guest_state_exit_irqoff();
7336 fastpath_t
vmx_vcpu_run(struct kvm_vcpu
*vcpu
, bool force_immediate_exit
)
7338 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7339 unsigned long cr3
, cr4
;
7341 /* Record the guest's net vcpu time for enforced NMI injections. */
7342 if (unlikely(!enable_vnmi
&&
7343 vmx
->loaded_vmcs
->soft_vnmi_blocked
))
7344 vmx
->loaded_vmcs
->entry_time
= ktime_get();
7347 * Don't enter VMX if guest state is invalid, let the exit handler
7348 * start emulation until we arrive back to a valid state. Synthesize a
7349 * consistency check VM-Exit due to invalid guest state and bail.
7351 if (unlikely(vmx
->emulation_required
)) {
7354 vmx
->exit_reason
.full
= EXIT_REASON_INVALID_STATE
;
7355 vmx
->exit_reason
.failed_vmentry
= 1;
7356 kvm_register_mark_available(vcpu
, VCPU_EXREG_EXIT_INFO_1
);
7357 vmx
->exit_qualification
= ENTRY_FAIL_DEFAULT
;
7358 kvm_register_mark_available(vcpu
, VCPU_EXREG_EXIT_INFO_2
);
7359 vmx
->exit_intr_info
= 0;
7360 return EXIT_FASTPATH_NONE
;
7363 trace_kvm_entry(vcpu
, force_immediate_exit
);
7365 if (vmx
->ple_window_dirty
) {
7366 vmx
->ple_window_dirty
= false;
7367 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
7371 * We did this in prepare_switch_to_guest, because it needs to
7372 * be within srcu_read_lock.
7374 WARN_ON_ONCE(vmx
->nested
.need_vmcs12_to_shadow_sync
);
7376 if (kvm_register_is_dirty(vcpu
, VCPU_REGS_RSP
))
7377 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
7378 if (kvm_register_is_dirty(vcpu
, VCPU_REGS_RIP
))
7379 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
7380 vcpu
->arch
.regs_dirty
= 0;
7383 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7384 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7385 * it switches back to the current->mm, which can occur in KVM context
7386 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7387 * toggles a static key while handling a VM-Exit.
7389 cr3
= __get_current_cr3_fast();
7390 if (unlikely(cr3
!= vmx
->loaded_vmcs
->host_state
.cr3
)) {
7391 vmcs_writel(HOST_CR3
, cr3
);
7392 vmx
->loaded_vmcs
->host_state
.cr3
= cr3
;
7395 cr4
= cr4_read_shadow();
7396 if (unlikely(cr4
!= vmx
->loaded_vmcs
->host_state
.cr4
)) {
7397 vmcs_writel(HOST_CR4
, cr4
);
7398 vmx
->loaded_vmcs
->host_state
.cr4
= cr4
;
7401 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7402 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
))
7403 set_debugreg(vcpu
->arch
.dr6
, 6);
7405 /* When single-stepping over STI and MOV SS, we must clear the
7406 * corresponding interruptibility bits in the guest state. Otherwise
7407 * vmentry fails as it then expects bit 14 (BS) in pending debug
7408 * exceptions being set, but that's not correct for the guest debugging
7410 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7411 vmx_set_interrupt_shadow(vcpu
, 0);
7413 kvm_load_guest_xsave_state(vcpu
);
7415 pt_guest_enter(vmx
);
7417 atomic_switch_perf_msrs(vmx
);
7418 if (intel_pmu_lbr_is_enabled(vcpu
))
7419 vmx_passthrough_lbr_msrs(vcpu
);
7421 if (enable_preemption_timer
)
7422 vmx_update_hv_timer(vcpu
, force_immediate_exit
);
7423 else if (force_immediate_exit
)
7424 smp_send_reschedule(vcpu
->cpu
);
7426 kvm_wait_lapic_expire(vcpu
);
7428 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7429 vmx_vcpu_enter_exit(vcpu
, __vmx_vcpu_run_flags(vmx
));
7431 /* All fields are clean at this point */
7432 if (kvm_is_using_evmcs()) {
7433 current_evmcs
->hv_clean_fields
|=
7434 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL
;
7436 current_evmcs
->hv_vp_id
= kvm_hv_get_vpindex(vcpu
);
7439 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7440 if (vmx
->host_debugctlmsr
)
7441 update_debugctlmsr(vmx
->host_debugctlmsr
);
7443 #ifndef CONFIG_X86_64
7445 * The sysexit path does not restore ds/es, so we must set them to
7446 * a reasonable value ourselves.
7448 * We can't defer this to vmx_prepare_switch_to_host() since that
7449 * function may be executed in interrupt context, which saves and
7450 * restore segments around it, nullifying its effect.
7452 loadsegment(ds
, __USER_DS
);
7453 loadsegment(es
, __USER_DS
);
7458 kvm_load_host_xsave_state(vcpu
);
7460 if (is_guest_mode(vcpu
)) {
7462 * Track VMLAUNCH/VMRESUME that have made past guest state
7465 if (vmx
->nested
.nested_run_pending
&&
7466 !vmx
->exit_reason
.failed_vmentry
)
7467 ++vcpu
->stat
.nested_run
;
7469 vmx
->nested
.nested_run_pending
= 0;
7472 if (unlikely(vmx
->fail
))
7473 return EXIT_FASTPATH_NONE
;
7475 if (unlikely((u16
)vmx
->exit_reason
.basic
== EXIT_REASON_MCE_DURING_VMENTRY
))
7476 kvm_machine_check();
7478 trace_kvm_exit(vcpu
, KVM_ISA_VMX
);
7480 if (unlikely(vmx
->exit_reason
.failed_vmentry
))
7481 return EXIT_FASTPATH_NONE
;
7483 vmx
->loaded_vmcs
->launched
= 1;
7485 vmx_recover_nmi_blocking(vmx
);
7486 vmx_complete_interrupts(vmx
);
7488 return vmx_exit_handlers_fastpath(vcpu
, force_immediate_exit
);
7491 void vmx_vcpu_free(struct kvm_vcpu
*vcpu
)
7493 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7496 vmx_destroy_pml_buffer(vmx
);
7497 free_vpid(vmx
->vpid
);
7498 nested_vmx_free_vcpu(vcpu
);
7499 free_loaded_vmcs(vmx
->loaded_vmcs
);
7500 free_page((unsigned long)vmx
->ve_info
);
7503 int vmx_vcpu_create(struct kvm_vcpu
*vcpu
)
7505 struct vmx_uret_msr
*tsx_ctrl
;
7506 struct vcpu_vmx
*vmx
;
7509 BUILD_BUG_ON(offsetof(struct vcpu_vmx
, vcpu
) != 0);
7512 INIT_LIST_HEAD(&vmx
->pi_wakeup_list
);
7516 vmx
->vpid
= allocate_vpid();
7519 * If PML is turned on, failure on enabling PML just results in failure
7520 * of creating the vcpu, therefore we can simplify PML logic (by
7521 * avoiding dealing with cases, such as enabling PML partially on vcpus
7522 * for the guest), etc.
7525 vmx
->pml_pg
= alloc_page(GFP_KERNEL_ACCOUNT
| __GFP_ZERO
);
7530 for (i
= 0; i
< kvm_nr_uret_msrs
; ++i
)
7531 vmx
->guest_uret_msrs
[i
].mask
= -1ull;
7532 if (boot_cpu_has(X86_FEATURE_RTM
)) {
7534 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7535 * Keep the host value unchanged to avoid changing CPUID bits
7536 * under the host kernel's feet.
7538 tsx_ctrl
= vmx_find_uret_msr(vmx
, MSR_IA32_TSX_CTRL
);
7540 tsx_ctrl
->mask
= ~(u64
)TSX_CTRL_CPUID_CLEAR
;
7543 err
= alloc_loaded_vmcs(&vmx
->vmcs01
);
7548 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7549 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7550 * feature only for vmcs01, KVM currently isn't equipped to realize any
7551 * performance benefits from enabling it for vmcs02.
7553 if (kvm_is_using_evmcs() &&
7554 (ms_hyperv
.nested_features
& HV_X64_NESTED_MSR_BITMAP
)) {
7555 struct hv_enlightened_vmcs
*evmcs
= (void *)vmx
->vmcs01
.vmcs
;
7557 evmcs
->hv_enlightenments_control
.msr_bitmap
= 1;
7560 /* The MSR bitmap starts with all ones */
7561 bitmap_fill(vmx
->shadow_msr_intercept
.read
, MAX_POSSIBLE_PASSTHROUGH_MSRS
);
7562 bitmap_fill(vmx
->shadow_msr_intercept
.write
, MAX_POSSIBLE_PASSTHROUGH_MSRS
);
7564 vmx_disable_intercept_for_msr(vcpu
, MSR_IA32_TSC
, MSR_TYPE_R
);
7565 #ifdef CONFIG_X86_64
7566 vmx_disable_intercept_for_msr(vcpu
, MSR_FS_BASE
, MSR_TYPE_RW
);
7567 vmx_disable_intercept_for_msr(vcpu
, MSR_GS_BASE
, MSR_TYPE_RW
);
7568 vmx_disable_intercept_for_msr(vcpu
, MSR_KERNEL_GS_BASE
, MSR_TYPE_RW
);
7570 vmx_disable_intercept_for_msr(vcpu
, MSR_IA32_SYSENTER_CS
, MSR_TYPE_RW
);
7571 vmx_disable_intercept_for_msr(vcpu
, MSR_IA32_SYSENTER_ESP
, MSR_TYPE_RW
);
7572 vmx_disable_intercept_for_msr(vcpu
, MSR_IA32_SYSENTER_EIP
, MSR_TYPE_RW
);
7573 if (kvm_cstate_in_guest(vcpu
->kvm
)) {
7574 vmx_disable_intercept_for_msr(vcpu
, MSR_CORE_C1_RES
, MSR_TYPE_R
);
7575 vmx_disable_intercept_for_msr(vcpu
, MSR_CORE_C3_RESIDENCY
, MSR_TYPE_R
);
7576 vmx_disable_intercept_for_msr(vcpu
, MSR_CORE_C6_RESIDENCY
, MSR_TYPE_R
);
7577 vmx_disable_intercept_for_msr(vcpu
, MSR_CORE_C7_RESIDENCY
, MSR_TYPE_R
);
7580 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
7582 if (cpu_need_virtualize_apic_accesses(vcpu
)) {
7583 err
= kvm_alloc_apic_access_page(vcpu
->kvm
);
7588 if (enable_ept
&& !enable_unrestricted_guest
) {
7589 err
= init_rmode_identity_map(vcpu
->kvm
);
7595 if (vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_EPT_VIOLATION_VE
) {
7598 BUILD_BUG_ON(sizeof(*vmx
->ve_info
) > PAGE_SIZE
);
7600 /* ve_info must be page aligned. */
7601 page
= alloc_page(GFP_KERNEL_ACCOUNT
| __GFP_ZERO
);
7605 vmx
->ve_info
= page_to_virt(page
);
7608 if (vmx_can_use_ipiv(vcpu
))
7609 WRITE_ONCE(to_kvm_vmx(vcpu
->kvm
)->pid_table
[vcpu
->vcpu_id
],
7610 __pa(&vmx
->pi_desc
) | PID_TABLE_ENTRY_VALID
);
7615 free_loaded_vmcs(vmx
->loaded_vmcs
);
7617 vmx_destroy_pml_buffer(vmx
);
7619 free_vpid(vmx
->vpid
);
7623 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7624 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7626 int vmx_vm_init(struct kvm
*kvm
)
7629 kvm
->arch
.pause_in_guest
= true;
7631 if (boot_cpu_has(X86_BUG_L1TF
) && enable_ept
) {
7632 switch (l1tf_mitigation
) {
7633 case L1TF_MITIGATION_OFF
:
7634 case L1TF_MITIGATION_FLUSH_NOWARN
:
7635 /* 'I explicitly don't care' is set */
7637 case L1TF_MITIGATION_FLUSH
:
7638 case L1TF_MITIGATION_FLUSH_NOSMT
:
7639 case L1TF_MITIGATION_FULL
:
7641 * Warn upon starting the first VM in a potentially
7642 * insecure environment.
7644 if (sched_smt_active())
7645 pr_warn_once(L1TF_MSG_SMT
);
7646 if (l1tf_vmx_mitigation
== VMENTER_L1D_FLUSH_NEVER
)
7647 pr_warn_once(L1TF_MSG_L1D
);
7649 case L1TF_MITIGATION_FULL_FORCE
:
7650 /* Flush is enforced */
7657 u8
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
7660 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7661 * with cacheable accesses will result in Machine Checks.
7664 return MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
7667 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7668 * device attached. Letting the guest control memory types on Intel
7669 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7670 * the guest to behave only as a last resort.
7672 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
))
7673 return (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
) | VMX_EPT_IPAT_BIT
;
7675 return (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
);
7678 static void vmcs_set_secondary_exec_control(struct vcpu_vmx
*vmx
, u32 new_ctl
)
7681 * These bits in the secondary execution controls field
7682 * are dynamic, the others are mostly based on the hypervisor
7683 * architecture and the guest's CPUID. Do not touch the
7687 SECONDARY_EXEC_SHADOW_VMCS
|
7688 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
7689 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
7690 SECONDARY_EXEC_DESC
;
7692 u32 cur_ctl
= secondary_exec_controls_get(vmx
);
7694 secondary_exec_controls_set(vmx
, (new_ctl
& ~mask
) | (cur_ctl
& mask
));
7698 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7699 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7701 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu
*vcpu
)
7703 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7704 struct kvm_cpuid_entry2
*entry
;
7706 vmx
->nested
.msrs
.cr0_fixed1
= 0xffffffff;
7707 vmx
->nested
.msrs
.cr4_fixed1
= X86_CR4_PCE
;
7709 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7710 if (entry && (entry->_reg & (_cpuid_mask))) \
7711 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7714 entry
= kvm_find_cpuid_entry(vcpu
, 0x1);
7715 cr4_fixed1_update(X86_CR4_VME
, edx
, feature_bit(VME
));
7716 cr4_fixed1_update(X86_CR4_PVI
, edx
, feature_bit(VME
));
7717 cr4_fixed1_update(X86_CR4_TSD
, edx
, feature_bit(TSC
));
7718 cr4_fixed1_update(X86_CR4_DE
, edx
, feature_bit(DE
));
7719 cr4_fixed1_update(X86_CR4_PSE
, edx
, feature_bit(PSE
));
7720 cr4_fixed1_update(X86_CR4_PAE
, edx
, feature_bit(PAE
));
7721 cr4_fixed1_update(X86_CR4_MCE
, edx
, feature_bit(MCE
));
7722 cr4_fixed1_update(X86_CR4_PGE
, edx
, feature_bit(PGE
));
7723 cr4_fixed1_update(X86_CR4_OSFXSR
, edx
, feature_bit(FXSR
));
7724 cr4_fixed1_update(X86_CR4_OSXMMEXCPT
, edx
, feature_bit(XMM
));
7725 cr4_fixed1_update(X86_CR4_VMXE
, ecx
, feature_bit(VMX
));
7726 cr4_fixed1_update(X86_CR4_SMXE
, ecx
, feature_bit(SMX
));
7727 cr4_fixed1_update(X86_CR4_PCIDE
, ecx
, feature_bit(PCID
));
7728 cr4_fixed1_update(X86_CR4_OSXSAVE
, ecx
, feature_bit(XSAVE
));
7730 entry
= kvm_find_cpuid_entry_index(vcpu
, 0x7, 0);
7731 cr4_fixed1_update(X86_CR4_FSGSBASE
, ebx
, feature_bit(FSGSBASE
));
7732 cr4_fixed1_update(X86_CR4_SMEP
, ebx
, feature_bit(SMEP
));
7733 cr4_fixed1_update(X86_CR4_SMAP
, ebx
, feature_bit(SMAP
));
7734 cr4_fixed1_update(X86_CR4_PKE
, ecx
, feature_bit(PKU
));
7735 cr4_fixed1_update(X86_CR4_UMIP
, ecx
, feature_bit(UMIP
));
7736 cr4_fixed1_update(X86_CR4_LA57
, ecx
, feature_bit(LA57
));
7738 entry
= kvm_find_cpuid_entry_index(vcpu
, 0x7, 1);
7739 cr4_fixed1_update(X86_CR4_LAM_SUP
, eax
, feature_bit(LAM
));
7741 #undef cr4_fixed1_update
7744 static void update_intel_pt_cfg(struct kvm_vcpu
*vcpu
)
7746 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7747 struct kvm_cpuid_entry2
*best
= NULL
;
7750 for (i
= 0; i
< PT_CPUID_LEAVES
; i
++) {
7751 best
= kvm_find_cpuid_entry_index(vcpu
, 0x14, i
);
7754 vmx
->pt_desc
.caps
[CPUID_EAX
+ i
*PT_CPUID_REGS_NUM
] = best
->eax
;
7755 vmx
->pt_desc
.caps
[CPUID_EBX
+ i
*PT_CPUID_REGS_NUM
] = best
->ebx
;
7756 vmx
->pt_desc
.caps
[CPUID_ECX
+ i
*PT_CPUID_REGS_NUM
] = best
->ecx
;
7757 vmx
->pt_desc
.caps
[CPUID_EDX
+ i
*PT_CPUID_REGS_NUM
] = best
->edx
;
7760 /* Get the number of configurable Address Ranges for filtering */
7761 vmx
->pt_desc
.num_address_ranges
= intel_pt_validate_cap(vmx
->pt_desc
.caps
,
7762 PT_CAP_num_address_ranges
);
7764 /* Initialize and clear the no dependency bits */
7765 vmx
->pt_desc
.ctl_bitmask
= ~(RTIT_CTL_TRACEEN
| RTIT_CTL_OS
|
7766 RTIT_CTL_USR
| RTIT_CTL_TSC_EN
| RTIT_CTL_DISRETC
|
7767 RTIT_CTL_BRANCH_EN
);
7770 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7771 * will inject an #GP
7773 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_cr3_filtering
))
7774 vmx
->pt_desc
.ctl_bitmask
&= ~RTIT_CTL_CR3EN
;
7777 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7778 * PSBFreq can be set
7780 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_psb_cyc
))
7781 vmx
->pt_desc
.ctl_bitmask
&= ~(RTIT_CTL_CYCLEACC
|
7782 RTIT_CTL_CYC_THRESH
| RTIT_CTL_PSB_FREQ
);
7785 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7787 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_mtc
))
7788 vmx
->pt_desc
.ctl_bitmask
&= ~(RTIT_CTL_MTC_EN
|
7789 RTIT_CTL_MTC_RANGE
);
7791 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7792 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_ptwrite
))
7793 vmx
->pt_desc
.ctl_bitmask
&= ~(RTIT_CTL_FUP_ON_PTW
|
7796 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7797 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_power_event_trace
))
7798 vmx
->pt_desc
.ctl_bitmask
&= ~RTIT_CTL_PWR_EVT_EN
;
7800 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7801 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_topa_output
))
7802 vmx
->pt_desc
.ctl_bitmask
&= ~RTIT_CTL_TOPA
;
7804 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7805 if (intel_pt_validate_cap(vmx
->pt_desc
.caps
, PT_CAP_output_subsys
))
7806 vmx
->pt_desc
.ctl_bitmask
&= ~RTIT_CTL_FABRIC_EN
;
7808 /* unmask address range configure area */
7809 for (i
= 0; i
< vmx
->pt_desc
.num_address_ranges
; i
++)
7810 vmx
->pt_desc
.ctl_bitmask
&= ~(0xfULL
<< (32 + i
* 4));
7813 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu
*vcpu
)
7815 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7818 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7819 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7820 * set if and only if XSAVE is supported.
7822 if (boot_cpu_has(X86_FEATURE_XSAVE
) &&
7823 guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
))
7824 kvm_governed_feature_check_and_set(vcpu
, X86_FEATURE_XSAVES
);
7826 kvm_governed_feature_check_and_set(vcpu
, X86_FEATURE_VMX
);
7827 kvm_governed_feature_check_and_set(vcpu
, X86_FEATURE_LAM
);
7829 vmx_setup_uret_msrs(vmx
);
7831 if (cpu_has_secondary_exec_ctrls())
7832 vmcs_set_secondary_exec_control(vmx
,
7833 vmx_secondary_exec_control(vmx
));
7835 if (guest_can_use(vcpu
, X86_FEATURE_VMX
))
7836 vmx
->msr_ia32_feature_control_valid_bits
|=
7837 FEAT_CTL_VMX_ENABLED_INSIDE_SMX
|
7838 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX
;
7840 vmx
->msr_ia32_feature_control_valid_bits
&=
7841 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX
|
7842 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX
);
7844 if (guest_can_use(vcpu
, X86_FEATURE_VMX
))
7845 nested_vmx_cr_fixed1_bits_update(vcpu
);
7847 if (boot_cpu_has(X86_FEATURE_INTEL_PT
) &&
7848 guest_cpuid_has(vcpu
, X86_FEATURE_INTEL_PT
))
7849 update_intel_pt_cfg(vcpu
);
7851 if (boot_cpu_has(X86_FEATURE_RTM
)) {
7852 struct vmx_uret_msr
*msr
;
7853 msr
= vmx_find_uret_msr(vmx
, MSR_IA32_TSX_CTRL
);
7855 bool enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RTM
);
7856 vmx_set_guest_uret_msr(vmx
, msr
, enabled
? 0 : TSX_CTRL_RTM_DISABLE
);
7860 if (kvm_cpu_cap_has(X86_FEATURE_XFD
))
7861 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_XFD_ERR
, MSR_TYPE_R
,
7862 !guest_cpuid_has(vcpu
, X86_FEATURE_XFD
));
7864 if (boot_cpu_has(X86_FEATURE_IBPB
))
7865 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_PRED_CMD
, MSR_TYPE_W
,
7866 !guest_has_pred_cmd_msr(vcpu
));
7868 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D
))
7869 vmx_set_intercept_for_msr(vcpu
, MSR_IA32_FLUSH_CMD
, MSR_TYPE_W
,
7870 !guest_cpuid_has(vcpu
, X86_FEATURE_FLUSH_L1D
));
7872 set_cr4_guest_host_mask(vmx
);
7874 vmx_write_encls_bitmap(vcpu
, NULL
);
7875 if (guest_cpuid_has(vcpu
, X86_FEATURE_SGX
))
7876 vmx
->msr_ia32_feature_control_valid_bits
|= FEAT_CTL_SGX_ENABLED
;
7878 vmx
->msr_ia32_feature_control_valid_bits
&= ~FEAT_CTL_SGX_ENABLED
;
7880 if (guest_cpuid_has(vcpu
, X86_FEATURE_SGX_LC
))
7881 vmx
->msr_ia32_feature_control_valid_bits
|=
7882 FEAT_CTL_SGX_LC_ENABLED
;
7884 vmx
->msr_ia32_feature_control_valid_bits
&=
7885 ~FEAT_CTL_SGX_LC_ENABLED
;
7887 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7888 vmx_update_exception_bitmap(vcpu
);
7891 static __init u64
vmx_get_perf_capabilities(void)
7893 u64 perf_cap
= PMU_CAP_FW_WRITES
;
7894 u64 host_perf_cap
= 0;
7899 if (boot_cpu_has(X86_FEATURE_PDCM
))
7900 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, host_perf_cap
);
7902 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR
)) {
7903 x86_perf_get_lbr(&vmx_lbr_caps
);
7906 * KVM requires LBR callstack support, as the overhead due to
7907 * context switching LBRs without said support is too high.
7908 * See intel_pmu_create_guest_lbr_event() for more info.
7910 if (!vmx_lbr_caps
.has_callstack
)
7911 memset(&vmx_lbr_caps
, 0, sizeof(vmx_lbr_caps
));
7912 else if (vmx_lbr_caps
.nr
)
7913 perf_cap
|= host_perf_cap
& PMU_CAP_LBR_FMT
;
7916 if (vmx_pebs_supported()) {
7917 perf_cap
|= host_perf_cap
& PERF_CAP_PEBS_MASK
;
7920 * Disallow adaptive PEBS as it is functionally broken, can be
7921 * used by the guest to read *host* LBRs, and can be used to
7922 * bypass userspace event filters. To correctly and safely
7923 * support adaptive PEBS, KVM needs to:
7925 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7928 * 2. Gain support from perf (or take direct control of counter
7929 * programming) to support events without adaptive PEBS
7930 * enabled for the hardware counter.
7932 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7933 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7935 * 4. Document which PMU events are effectively exposed to the
7936 * guest via adaptive PEBS, and make adaptive PEBS mutually
7937 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7939 perf_cap
&= ~PERF_CAP_PEBS_BASELINE
;
7945 static __init
void vmx_set_cpu_caps(void)
7951 kvm_cpu_cap_set(X86_FEATURE_VMX
);
7954 if (kvm_mpx_supported())
7955 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX
);
7956 if (!cpu_has_vmx_invpcid())
7957 kvm_cpu_cap_clear(X86_FEATURE_INVPCID
);
7958 if (vmx_pt_mode_is_host_guest())
7959 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT
);
7960 if (vmx_pebs_supported()) {
7961 kvm_cpu_cap_check_and_set(X86_FEATURE_DS
);
7962 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64
);
7966 kvm_cpu_cap_clear(X86_FEATURE_PDCM
);
7967 kvm_caps
.supported_perf_cap
= vmx_get_perf_capabilities();
7970 kvm_cpu_cap_clear(X86_FEATURE_SGX
);
7971 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC
);
7972 kvm_cpu_cap_clear(X86_FEATURE_SGX1
);
7973 kvm_cpu_cap_clear(X86_FEATURE_SGX2
);
7974 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA
);
7977 if (vmx_umip_emulated())
7978 kvm_cpu_cap_set(X86_FEATURE_UMIP
);
7981 kvm_caps
.supported_xss
= 0;
7982 if (!cpu_has_vmx_xsaves())
7983 kvm_cpu_cap_clear(X86_FEATURE_XSAVES
);
7985 /* CPUID 0x80000001 and 0x7 (RDPID) */
7986 if (!cpu_has_vmx_rdtscp()) {
7987 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP
);
7988 kvm_cpu_cap_clear(X86_FEATURE_RDPID
);
7991 if (cpu_has_vmx_waitpkg())
7992 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG
);
7995 static int vmx_check_intercept_io(struct kvm_vcpu
*vcpu
,
7996 struct x86_instruction_info
*info
)
7998 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
7999 unsigned short port
;
8003 if (info
->intercept
== x86_intercept_in
||
8004 info
->intercept
== x86_intercept_ins
) {
8005 port
= info
->src_val
;
8006 size
= info
->dst_bytes
;
8008 port
= info
->dst_val
;
8009 size
= info
->src_bytes
;
8013 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8014 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8017 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8019 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
8020 intercept
= nested_cpu_has(vmcs12
,
8021 CPU_BASED_UNCOND_IO_EXITING
);
8023 intercept
= nested_vmx_check_io_bitmaps(vcpu
, port
, size
);
8025 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8026 return intercept
? X86EMUL_UNHANDLEABLE
: X86EMUL_CONTINUE
;
8029 int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
8030 struct x86_instruction_info
*info
,
8031 enum x86_intercept_stage stage
,
8032 struct x86_exception
*exception
)
8034 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8036 switch (info
->intercept
) {
8038 * RDPID causes #UD if disabled through secondary execution controls.
8039 * Because it is marked as EmulateOnUD, we need to intercept it here.
8040 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8042 case x86_intercept_rdpid
:
8043 if (!nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_RDTSCP
)) {
8044 exception
->vector
= UD_VECTOR
;
8045 exception
->error_code_valid
= false;
8046 return X86EMUL_PROPAGATE_FAULT
;
8050 case x86_intercept_in
:
8051 case x86_intercept_ins
:
8052 case x86_intercept_out
:
8053 case x86_intercept_outs
:
8054 return vmx_check_intercept_io(vcpu
, info
);
8056 case x86_intercept_lgdt
:
8057 case x86_intercept_lidt
:
8058 case x86_intercept_lldt
:
8059 case x86_intercept_ltr
:
8060 case x86_intercept_sgdt
:
8061 case x86_intercept_sidt
:
8062 case x86_intercept_sldt
:
8063 case x86_intercept_str
:
8064 if (!nested_cpu_has2(vmcs12
, SECONDARY_EXEC_DESC
))
8065 return X86EMUL_CONTINUE
;
8067 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8070 case x86_intercept_pause
:
8072 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8073 * with vanilla NOPs in the emulator. Apply the interception
8074 * check only to actual PAUSE instructions. Don't check
8075 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8076 * exit, i.e. KVM is within its rights to allow L2 to execute
8079 if ((info
->rep_prefix
!= REPE_PREFIX
) ||
8080 !nested_cpu_has2(vmcs12
, CPU_BASED_PAUSE_EXITING
))
8081 return X86EMUL_CONTINUE
;
8085 /* TODO: check more intercepts... */
8090 return X86EMUL_UNHANDLEABLE
;
8093 #ifdef CONFIG_X86_64
8094 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8095 static inline int u64_shl_div_u64(u64 a
, unsigned int shift
,
8096 u64 divisor
, u64
*result
)
8098 u64 low
= a
<< shift
, high
= a
>> (64 - shift
);
8100 /* To avoid the overflow on divq */
8101 if (high
>= divisor
)
8104 /* Low hold the result, high hold rem which is discarded */
8105 asm("divq %2\n\t" : "=a" (low
), "=d" (high
) :
8106 "rm" (divisor
), "0" (low
), "1" (high
));
8112 int vmx_set_hv_timer(struct kvm_vcpu
*vcpu
, u64 guest_deadline_tsc
,
8115 struct vcpu_vmx
*vmx
;
8116 u64 tscl
, guest_tscl
, delta_tsc
, lapic_timer_advance_cycles
;
8117 struct kvm_timer
*ktimer
= &vcpu
->arch
.apic
->lapic_timer
;
8121 guest_tscl
= kvm_read_l1_tsc(vcpu
, tscl
);
8122 delta_tsc
= max(guest_deadline_tsc
, guest_tscl
) - guest_tscl
;
8123 lapic_timer_advance_cycles
= nsec_to_cycles(vcpu
,
8124 ktimer
->timer_advance_ns
);
8126 if (delta_tsc
> lapic_timer_advance_cycles
)
8127 delta_tsc
-= lapic_timer_advance_cycles
;
8131 /* Convert to host delta tsc if tsc scaling is enabled */
8132 if (vcpu
->arch
.l1_tsc_scaling_ratio
!= kvm_caps
.default_tsc_scaling_ratio
&&
8133 delta_tsc
&& u64_shl_div_u64(delta_tsc
,
8134 kvm_caps
.tsc_scaling_ratio_frac_bits
,
8135 vcpu
->arch
.l1_tsc_scaling_ratio
, &delta_tsc
))
8139 * If the delta tsc can't fit in the 32 bit after the multi shift,
8140 * we can't use the preemption timer.
8141 * It's possible that it fits on later vmentries, but checking
8142 * on every vmentry is costly so we just use an hrtimer.
8144 if (delta_tsc
>> (cpu_preemption_timer_multi
+ 32))
8147 vmx
->hv_deadline_tsc
= tscl
+ delta_tsc
;
8148 *expired
= !delta_tsc
;
8152 void vmx_cancel_hv_timer(struct kvm_vcpu
*vcpu
)
8154 to_vmx(vcpu
)->hv_deadline_tsc
= -1;
8158 void vmx_update_cpu_dirty_logging(struct kvm_vcpu
*vcpu
)
8160 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8162 if (WARN_ON_ONCE(!enable_pml
))
8165 if (is_guest_mode(vcpu
)) {
8166 vmx
->nested
.update_vmcs01_cpu_dirty_logging
= true;
8171 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8172 * code, but in that case another update request will be made and so
8173 * the guest will never run with a stale PML value.
8175 if (atomic_read(&vcpu
->kvm
->nr_memslots_dirty_logging
))
8176 secondary_exec_controls_setbit(vmx
, SECONDARY_EXEC_ENABLE_PML
);
8178 secondary_exec_controls_clearbit(vmx
, SECONDARY_EXEC_ENABLE_PML
);
8181 void vmx_setup_mce(struct kvm_vcpu
*vcpu
)
8183 if (vcpu
->arch
.mcg_cap
& MCG_LMCE_P
)
8184 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
8185 FEAT_CTL_LMCE_ENABLED
;
8187 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
8188 ~FEAT_CTL_LMCE_ENABLED
;
8191 #ifdef CONFIG_KVM_SMM
8192 int vmx_smi_allowed(struct kvm_vcpu
*vcpu
, bool for_injection
)
8194 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8195 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
8197 return !is_smm(vcpu
);
8200 int vmx_enter_smm(struct kvm_vcpu
*vcpu
, union kvm_smram
*smram
)
8202 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8205 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8206 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8207 * SMI and RSM only modify state that is saved and restored via SMRAM.
8208 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8209 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8211 vmx
->nested
.smm
.guest_mode
= is_guest_mode(vcpu
);
8212 if (vmx
->nested
.smm
.guest_mode
)
8213 nested_vmx_vmexit(vcpu
, -1, 0, 0);
8215 vmx
->nested
.smm
.vmxon
= vmx
->nested
.vmxon
;
8216 vmx
->nested
.vmxon
= false;
8217 vmx_clear_hlt(vcpu
);
8221 int vmx_leave_smm(struct kvm_vcpu
*vcpu
, const union kvm_smram
*smram
)
8223 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8226 if (vmx
->nested
.smm
.vmxon
) {
8227 vmx
->nested
.vmxon
= true;
8228 vmx
->nested
.smm
.vmxon
= false;
8231 if (vmx
->nested
.smm
.guest_mode
) {
8232 ret
= nested_vmx_enter_non_root_mode(vcpu
, false);
8236 vmx
->nested
.nested_run_pending
= 1;
8237 vmx
->nested
.smm
.guest_mode
= false;
8242 void vmx_enable_smi_window(struct kvm_vcpu
*vcpu
)
8244 /* RSM will cause a vmexit anyway. */
8248 bool vmx_apic_init_signal_blocked(struct kvm_vcpu
*vcpu
)
8250 return to_vmx(vcpu
)->nested
.vmxon
&& !is_guest_mode(vcpu
);
8253 void vmx_migrate_timers(struct kvm_vcpu
*vcpu
)
8255 if (is_guest_mode(vcpu
)) {
8256 struct hrtimer
*timer
= &to_vmx(vcpu
)->nested
.preemption_timer
;
8258 if (hrtimer_try_to_cancel(timer
) == 1)
8259 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
8263 void vmx_hardware_unsetup(void)
8265 kvm_set_posted_intr_wakeup_handler(NULL
);
8268 nested_vmx_hardware_unsetup();
8273 void vmx_vm_destroy(struct kvm
*kvm
)
8275 struct kvm_vmx
*kvm_vmx
= to_kvm_vmx(kvm
);
8277 free_pages((unsigned long)kvm_vmx
->pid_table
, vmx_get_pid_table_order(kvm
));
8281 * Note, the SDM states that the linear address is masked *after* the modified
8282 * canonicality check, whereas KVM masks (untags) the address and then performs
8283 * a "normal" canonicality check. Functionally, the two methods are identical,
8284 * and when the masking occurs relative to the canonicality check isn't visible
8285 * to software, i.e. KVM's behavior doesn't violate the SDM.
8287 gva_t
vmx_get_untagged_addr(struct kvm_vcpu
*vcpu
, gva_t gva
, unsigned int flags
)
8290 unsigned long cr3_bits
;
8292 if (flags
& (X86EMUL_F_FETCH
| X86EMUL_F_IMPLICIT
| X86EMUL_F_INVLPG
))
8295 if (!is_64_bit_mode(vcpu
))
8299 * Bit 63 determines if the address should be treated as user address
8300 * or a supervisor address.
8302 if (!(gva
& BIT_ULL(63))) {
8303 cr3_bits
= kvm_get_active_cr3_lam_bits(vcpu
);
8304 if (!(cr3_bits
& (X86_CR3_LAM_U57
| X86_CR3_LAM_U48
)))
8307 /* LAM_U48 is ignored if LAM_U57 is set. */
8308 lam_bit
= cr3_bits
& X86_CR3_LAM_U57
? 56 : 47;
8310 if (!kvm_is_cr4_bit_set(vcpu
, X86_CR4_LAM_SUP
))
8313 lam_bit
= kvm_is_cr4_bit_set(vcpu
, X86_CR4_LA57
) ? 56 : 47;
8317 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8318 * Bit 63 is retained from the raw virtual address so that untagging
8319 * doesn't change a user access to a supervisor access, and vice versa.
8321 return (sign_extend64(gva
, lam_bit
) & ~BIT_ULL(63)) | (gva
& BIT_ULL(63));
8324 static unsigned int vmx_handle_intel_pt_intr(void)
8326 struct kvm_vcpu
*vcpu
= kvm_get_running_vcpu();
8328 /* '0' on failure so that the !PT case can use a RET0 static call. */
8329 if (!vcpu
|| !kvm_handling_nmi_from_guest(vcpu
))
8332 kvm_make_request(KVM_REQ_PMI
, vcpu
);
8333 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT
,
8334 (unsigned long *)&vcpu
->arch
.pmu
.global_status
);
8338 static __init
void vmx_setup_user_return_msrs(void)
8342 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8343 * will emulate SYSCALL in legacy mode if the vendor string in guest
8344 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8345 * support this emulation, MSR_STAR is included in the list for i386,
8346 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8347 * into hardware and is here purely for emulation purposes.
8349 const u32 vmx_uret_msrs_list
[] = {
8350 #ifdef CONFIG_X86_64
8351 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
8353 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
8358 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list
) != MAX_NR_USER_RETURN_MSRS
);
8360 for (i
= 0; i
< ARRAY_SIZE(vmx_uret_msrs_list
); ++i
)
8361 kvm_add_user_return_msr(vmx_uret_msrs_list
[i
]);
8364 static void __init
vmx_setup_me_spte_mask(void)
8369 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8370 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8371 * boot_cpu_data.x86_phys_bits holds the actual physical address
8372 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8373 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8375 if (boot_cpu_data
.x86_phys_bits
!= kvm_host
.maxphyaddr
)
8376 me_mask
= rsvd_bits(boot_cpu_data
.x86_phys_bits
,
8377 kvm_host
.maxphyaddr
- 1);
8380 * Unlike SME, host kernel doesn't support setting up any
8381 * MKTME KeyID on Intel platforms. No memory encryption
8382 * bits should be included into the SPTE.
8384 kvm_mmu_set_me_spte_mask(0, me_mask
);
8387 __init
int vmx_hardware_setup(void)
8389 unsigned long host_bndcfgs
;
8394 host_idt_base
= dt
.address
;
8396 vmx_setup_user_return_msrs();
8398 if (setup_vmcs_config(&vmcs_config
, &vmx_capability
) < 0)
8401 if (cpu_has_perf_global_ctrl_bug())
8402 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8403 "does not work properly. Using workaround\n");
8405 if (boot_cpu_has(X86_FEATURE_NX
))
8406 kvm_enable_efer_bits(EFER_NX
);
8408 if (boot_cpu_has(X86_FEATURE_MPX
)) {
8409 rdmsrl(MSR_IA32_BNDCFGS
, host_bndcfgs
);
8410 WARN_ONCE(host_bndcfgs
, "BNDCFGS in host will be lost");
8413 if (!cpu_has_vmx_mpx())
8414 kvm_caps
.supported_xcr0
&= ~(XFEATURE_MASK_BNDREGS
|
8415 XFEATURE_MASK_BNDCSR
);
8417 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8418 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8421 if (!cpu_has_vmx_ept() ||
8422 !cpu_has_vmx_ept_4levels() ||
8423 !cpu_has_vmx_ept_mt_wb() ||
8424 !cpu_has_vmx_invept_global())
8427 /* NX support is required for shadow paging. */
8428 if (!enable_ept
&& !boot_cpu_has(X86_FEATURE_NX
)) {
8429 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8433 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept
)
8434 enable_ept_ad_bits
= 0;
8436 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept
)
8437 enable_unrestricted_guest
= 0;
8439 if (!cpu_has_vmx_flexpriority())
8440 flexpriority_enabled
= 0;
8442 if (!cpu_has_virtual_nmis())
8445 #ifdef CONFIG_X86_SGX_KVM
8446 if (!cpu_has_vmx_encls_vmexit())
8451 * set_apic_access_page_addr() is used to reload apic access
8452 * page upon invalidation. No need to do anything if not
8453 * using the APIC_ACCESS_ADDR VMCS field.
8455 if (!flexpriority_enabled
)
8456 vt_x86_ops
.set_apic_access_page_addr
= NULL
;
8458 if (!cpu_has_vmx_tpr_shadow())
8459 vt_x86_ops
.update_cr8_intercept
= NULL
;
8461 #if IS_ENABLED(CONFIG_HYPERV)
8462 if (ms_hyperv
.nested_features
& HV_X64_NESTED_GUEST_MAPPING_FLUSH
8464 vt_x86_ops
.flush_remote_tlbs
= hv_flush_remote_tlbs
;
8465 vt_x86_ops
.flush_remote_tlbs_range
= hv_flush_remote_tlbs_range
;
8469 if (!cpu_has_vmx_ple()) {
8472 ple_window_grow
= 0;
8474 ple_window_shrink
= 0;
8477 if (!cpu_has_vmx_apicv())
8480 vt_x86_ops
.sync_pir_to_irr
= NULL
;
8482 if (!enable_apicv
|| !cpu_has_vmx_ipiv())
8483 enable_ipiv
= false;
8485 if (cpu_has_vmx_tsc_scaling())
8486 kvm_caps
.has_tsc_control
= true;
8488 kvm_caps
.max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
8489 kvm_caps
.tsc_scaling_ratio_frac_bits
= 48;
8490 kvm_caps
.has_bus_lock_exit
= cpu_has_vmx_bus_lock_detection();
8491 kvm_caps
.has_notify_vmexit
= cpu_has_notify_vmexit();
8493 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
8496 kvm_mmu_set_ept_masks(enable_ept_ad_bits
,
8497 cpu_has_vmx_ept_execute_only());
8500 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8501 * bits to shadow_zero_check.
8503 vmx_setup_me_spte_mask();
8505 kvm_configure_mmu(enable_ept
, 0, vmx_get_max_ept_level(),
8506 ept_caps_to_lpage_level(vmx_capability
.ept
));
8509 * Only enable PML when hardware supports PML feature, and both EPT
8510 * and EPT A/D bit features are enabled -- PML depends on them to work.
8512 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
8516 vt_x86_ops
.cpu_dirty_log_size
= 0;
8518 if (!cpu_has_vmx_preemption_timer())
8519 enable_preemption_timer
= false;
8521 if (enable_preemption_timer
) {
8522 u64 use_timer_freq
= 5000ULL * 1000 * 1000;
8524 cpu_preemption_timer_multi
=
8525 vmx_misc_preemption_timer_rate(vmcs_config
.misc
);
8528 use_timer_freq
= (u64
)tsc_khz
* 1000;
8529 use_timer_freq
>>= cpu_preemption_timer_multi
;
8532 * KVM "disables" the preemption timer by setting it to its max
8533 * value. Don't use the timer if it might cause spurious exits
8534 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8536 if (use_timer_freq
> 0xffffffffu
/ 10)
8537 enable_preemption_timer
= false;
8540 if (!enable_preemption_timer
) {
8541 vt_x86_ops
.set_hv_timer
= NULL
;
8542 vt_x86_ops
.cancel_hv_timer
= NULL
;
8545 kvm_caps
.supported_mce_cap
|= MCG_LMCE_P
;
8546 kvm_caps
.supported_mce_cap
|= MCG_CMCI_P
;
8548 if (pt_mode
!= PT_MODE_SYSTEM
&& pt_mode
!= PT_MODE_HOST_GUEST
)
8550 if (!enable_ept
|| !enable_pmu
|| !cpu_has_vmx_intel_pt())
8551 pt_mode
= PT_MODE_SYSTEM
;
8552 if (pt_mode
== PT_MODE_HOST_GUEST
)
8553 vt_init_ops
.handle_intel_pt_intr
= vmx_handle_intel_pt_intr
;
8555 vt_init_ops
.handle_intel_pt_intr
= NULL
;
8557 setup_default_sgx_lepubkeyhash();
8560 nested_vmx_setup_ctls_msrs(&vmcs_config
, vmx_capability
.ept
);
8562 r
= nested_vmx_hardware_setup(kvm_vmx_exit_handlers
);
8569 r
= alloc_kvm_area();
8571 nested_vmx_hardware_unsetup();
8573 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler
);
8578 static void vmx_cleanup_l1d_flush(void)
8580 if (vmx_l1d_flush_pages
) {
8581 free_pages((unsigned long)vmx_l1d_flush_pages
, L1D_CACHE_ORDER
);
8582 vmx_l1d_flush_pages
= NULL
;
8584 /* Restore state so sysfs ignores VMX */
8585 l1tf_vmx_mitigation
= VMENTER_L1D_FLUSH_AUTO
;
8588 static void __vmx_exit(void)
8590 allow_smaller_maxphyaddr
= false;
8592 vmx_cleanup_l1d_flush();
8595 static void vmx_exit(void)
8599 kvm_x86_vendor_exit();
8602 module_exit(vmx_exit
);
8604 static int __init
vmx_init(void)
8608 if (!kvm_is_vmx_supported())
8612 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8613 * to unwind if a later step fails.
8617 r
= kvm_x86_vendor_init(&vt_init_ops
);
8622 * Must be called after common x86 init so enable_ept is properly set
8623 * up. Hand the parameter mitigation value in which was stored in
8624 * the pre module init parser. If no parameter was given, it will
8625 * contain 'auto' which will be turned into the default 'cond'
8628 r
= vmx_setup_l1d_flush(vmentry_l1d_flush_param
);
8632 for_each_possible_cpu(cpu
) {
8633 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
8638 vmx_check_vmcs12_offsets();
8641 * Shadow paging doesn't have a (further) performance penalty
8642 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8646 allow_smaller_maxphyaddr
= true;
8649 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8650 * exposed to userspace!
8652 r
= kvm_init(sizeof(struct vcpu_vmx
), __alignof__(struct vcpu_vmx
),
8662 kvm_x86_vendor_exit();
8665 module_init(vmx_init
);