drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / arch / x86 / net / bpf_jit_comp.c
blob06b080b61aa578dc9d0bd8a7040fc9bb98e73631
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * BPF JIT compiler
5 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
6 * Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
7 */
8 #include <linux/netdevice.h>
9 #include <linux/filter.h>
10 #include <linux/if_vlan.h>
11 #include <linux/bpf.h>
12 #include <linux/memory.h>
13 #include <linux/sort.h>
14 #include <asm/extable.h>
15 #include <asm/ftrace.h>
16 #include <asm/set_memory.h>
17 #include <asm/nospec-branch.h>
18 #include <asm/text-patching.h>
19 #include <asm/unwind.h>
20 #include <asm/cfi.h>
22 static bool all_callee_regs_used[4] = {true, true, true, true};
24 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
26 if (len == 1)
27 *ptr = bytes;
28 else if (len == 2)
29 *(u16 *)ptr = bytes;
30 else {
31 *(u32 *)ptr = bytes;
32 barrier();
34 return ptr + len;
37 #define EMIT(bytes, len) \
38 do { prog = emit_code(prog, bytes, len); } while (0)
40 #define EMIT1(b1) EMIT(b1, 1)
41 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
42 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
43 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
45 #define EMIT1_off32(b1, off) \
46 do { EMIT1(b1); EMIT(off, 4); } while (0)
47 #define EMIT2_off32(b1, b2, off) \
48 do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
49 #define EMIT3_off32(b1, b2, b3, off) \
50 do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
51 #define EMIT4_off32(b1, b2, b3, b4, off) \
52 do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
54 #ifdef CONFIG_X86_KERNEL_IBT
55 #define EMIT_ENDBR() EMIT(gen_endbr(), 4)
56 #define EMIT_ENDBR_POISON() EMIT(gen_endbr_poison(), 4)
57 #else
58 #define EMIT_ENDBR()
59 #define EMIT_ENDBR_POISON()
60 #endif
62 static bool is_imm8(int value)
64 return value <= 127 && value >= -128;
68 * Let us limit the positive offset to be <= 123.
69 * This is to ensure eventual jit convergence For the following patterns:
70 * ...
71 * pass4, final_proglen=4391:
72 * ...
73 * 20e: 48 85 ff test rdi,rdi
74 * 211: 74 7d je 0x290
75 * 213: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
76 * ...
77 * 289: 48 85 ff test rdi,rdi
78 * 28c: 74 17 je 0x2a5
79 * 28e: e9 7f ff ff ff jmp 0x212
80 * 293: bf 03 00 00 00 mov edi,0x3
81 * Note that insn at 0x211 is 2-byte cond jump insn for offset 0x7d (-125)
82 * and insn at 0x28e is 5-byte jmp insn with offset -129.
84 * pass5, final_proglen=4392:
85 * ...
86 * 20e: 48 85 ff test rdi,rdi
87 * 211: 0f 84 80 00 00 00 je 0x297
88 * 217: 48 8b 77 00 mov rsi,QWORD PTR [rdi+0x0]
89 * ...
90 * 28d: 48 85 ff test rdi,rdi
91 * 290: 74 1a je 0x2ac
92 * 292: eb 84 jmp 0x218
93 * 294: bf 03 00 00 00 mov edi,0x3
94 * Note that insn at 0x211 is 6-byte cond jump insn now since its offset
95 * becomes 0x80 based on previous round (0x293 - 0x213 = 0x80).
96 * At the same time, insn at 0x292 is a 2-byte insn since its offset is
97 * -124.
99 * pass6 will repeat the same code as in pass4 and this will prevent
100 * eventual convergence.
102 * To fix this issue, we need to break je (2->6 bytes) <-> jmp (5->2 bytes)
103 * cycle in the above. In the above example je offset <= 0x7c should work.
105 * For other cases, je <-> je needs offset <= 0x7b to avoid no convergence
106 * issue. For jmp <-> je and jmp <-> jmp cases, jmp offset <= 0x7c should
107 * avoid no convergence issue.
109 * Overall, let us limit the positive offset for 8bit cond/uncond jmp insn
110 * to maximum 123 (0x7b). This way, the jit pass can eventually converge.
112 static bool is_imm8_jmp_offset(int value)
114 return value <= 123 && value >= -128;
117 static bool is_simm32(s64 value)
119 return value == (s64)(s32)value;
122 static bool is_uimm32(u64 value)
124 return value == (u64)(u32)value;
127 /* mov dst, src */
128 #define EMIT_mov(DST, SRC) \
129 do { \
130 if (DST != SRC) \
131 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
132 } while (0)
134 static int bpf_size_to_x86_bytes(int bpf_size)
136 if (bpf_size == BPF_W)
137 return 4;
138 else if (bpf_size == BPF_H)
139 return 2;
140 else if (bpf_size == BPF_B)
141 return 1;
142 else if (bpf_size == BPF_DW)
143 return 4; /* imm32 */
144 else
145 return 0;
149 * List of x86 cond jumps opcodes (. + s8)
150 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
152 #define X86_JB 0x72
153 #define X86_JAE 0x73
154 #define X86_JE 0x74
155 #define X86_JNE 0x75
156 #define X86_JBE 0x76
157 #define X86_JA 0x77
158 #define X86_JL 0x7C
159 #define X86_JGE 0x7D
160 #define X86_JLE 0x7E
161 #define X86_JG 0x7F
163 /* Pick a register outside of BPF range for JIT internal work */
164 #define AUX_REG (MAX_BPF_JIT_REG + 1)
165 #define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
166 #define X86_REG_R12 (MAX_BPF_JIT_REG + 3)
169 * The following table maps BPF registers to x86-64 registers.
171 * x86-64 register R12 is unused, since if used as base address
172 * register in load/store instructions, it always needs an
173 * extra byte of encoding and is callee saved.
175 * x86-64 register R9 is not used by BPF programs, but can be used by BPF
176 * trampoline. x86-64 register R10 is used for blinding (if enabled).
178 static const int reg2hex[] = {
179 [BPF_REG_0] = 0, /* RAX */
180 [BPF_REG_1] = 7, /* RDI */
181 [BPF_REG_2] = 6, /* RSI */
182 [BPF_REG_3] = 2, /* RDX */
183 [BPF_REG_4] = 1, /* RCX */
184 [BPF_REG_5] = 0, /* R8 */
185 [BPF_REG_6] = 3, /* RBX callee saved */
186 [BPF_REG_7] = 5, /* R13 callee saved */
187 [BPF_REG_8] = 6, /* R14 callee saved */
188 [BPF_REG_9] = 7, /* R15 callee saved */
189 [BPF_REG_FP] = 5, /* RBP readonly */
190 [BPF_REG_AX] = 2, /* R10 temp register */
191 [AUX_REG] = 3, /* R11 temp register */
192 [X86_REG_R9] = 1, /* R9 register, 6th function argument */
193 [X86_REG_R12] = 4, /* R12 callee saved */
196 static const int reg2pt_regs[] = {
197 [BPF_REG_0] = offsetof(struct pt_regs, ax),
198 [BPF_REG_1] = offsetof(struct pt_regs, di),
199 [BPF_REG_2] = offsetof(struct pt_regs, si),
200 [BPF_REG_3] = offsetof(struct pt_regs, dx),
201 [BPF_REG_4] = offsetof(struct pt_regs, cx),
202 [BPF_REG_5] = offsetof(struct pt_regs, r8),
203 [BPF_REG_6] = offsetof(struct pt_regs, bx),
204 [BPF_REG_7] = offsetof(struct pt_regs, r13),
205 [BPF_REG_8] = offsetof(struct pt_regs, r14),
206 [BPF_REG_9] = offsetof(struct pt_regs, r15),
210 * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
211 * which need extra byte of encoding.
212 * rax,rcx,...,rbp have simpler encoding
214 static bool is_ereg(u32 reg)
216 return (1 << reg) & (BIT(BPF_REG_5) |
217 BIT(AUX_REG) |
218 BIT(BPF_REG_7) |
219 BIT(BPF_REG_8) |
220 BIT(BPF_REG_9) |
221 BIT(X86_REG_R9) |
222 BIT(X86_REG_R12) |
223 BIT(BPF_REG_AX));
227 * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64
228 * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte
229 * of encoding. al,cl,dl,bl have simpler encoding.
231 static bool is_ereg_8l(u32 reg)
233 return is_ereg(reg) ||
234 (1 << reg) & (BIT(BPF_REG_1) |
235 BIT(BPF_REG_2) |
236 BIT(BPF_REG_FP));
239 static bool is_axreg(u32 reg)
241 return reg == BPF_REG_0;
244 /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
245 static u8 add_1mod(u8 byte, u32 reg)
247 if (is_ereg(reg))
248 byte |= 1;
249 return byte;
252 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
254 if (is_ereg(r1))
255 byte |= 1;
256 if (is_ereg(r2))
257 byte |= 4;
258 return byte;
261 static u8 add_3mod(u8 byte, u32 r1, u32 r2, u32 index)
263 if (is_ereg(r1))
264 byte |= 1;
265 if (is_ereg(index))
266 byte |= 2;
267 if (is_ereg(r2))
268 byte |= 4;
269 return byte;
272 /* Encode 'dst_reg' register into x86-64 opcode 'byte' */
273 static u8 add_1reg(u8 byte, u32 dst_reg)
275 return byte + reg2hex[dst_reg];
278 /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
279 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
281 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
284 /* Some 1-byte opcodes for binary ALU operations */
285 static u8 simple_alu_opcodes[] = {
286 [BPF_ADD] = 0x01,
287 [BPF_SUB] = 0x29,
288 [BPF_AND] = 0x21,
289 [BPF_OR] = 0x09,
290 [BPF_XOR] = 0x31,
291 [BPF_LSH] = 0xE0,
292 [BPF_RSH] = 0xE8,
293 [BPF_ARSH] = 0xF8,
296 static void jit_fill_hole(void *area, unsigned int size)
298 /* Fill whole space with INT3 instructions */
299 memset(area, 0xcc, size);
302 int bpf_arch_text_invalidate(void *dst, size_t len)
304 return IS_ERR_OR_NULL(text_poke_set(dst, 0xcc, len));
307 struct jit_context {
308 int cleanup_addr; /* Epilogue code offset */
311 * Program specific offsets of labels in the code; these rely on the
312 * JIT doing at least 2 passes, recording the position on the first
313 * pass, only to generate the correct offset on the second pass.
315 int tail_call_direct_label;
316 int tail_call_indirect_label;
319 /* Maximum number of bytes emitted while JITing one eBPF insn */
320 #define BPF_MAX_INSN_SIZE 128
321 #define BPF_INSN_SAFETY 64
323 /* Number of bytes emit_patch() needs to generate instructions */
324 #define X86_PATCH_SIZE 5
325 /* Number of bytes that will be skipped on tailcall */
326 #define X86_TAIL_CALL_OFFSET (12 + ENDBR_INSN_SIZE)
328 static void push_r12(u8 **pprog)
330 u8 *prog = *pprog;
332 EMIT2(0x41, 0x54); /* push r12 */
333 *pprog = prog;
336 static void push_callee_regs(u8 **pprog, bool *callee_regs_used)
338 u8 *prog = *pprog;
340 if (callee_regs_used[0])
341 EMIT1(0x53); /* push rbx */
342 if (callee_regs_used[1])
343 EMIT2(0x41, 0x55); /* push r13 */
344 if (callee_regs_used[2])
345 EMIT2(0x41, 0x56); /* push r14 */
346 if (callee_regs_used[3])
347 EMIT2(0x41, 0x57); /* push r15 */
348 *pprog = prog;
351 static void pop_r12(u8 **pprog)
353 u8 *prog = *pprog;
355 EMIT2(0x41, 0x5C); /* pop r12 */
356 *pprog = prog;
359 static void pop_callee_regs(u8 **pprog, bool *callee_regs_used)
361 u8 *prog = *pprog;
363 if (callee_regs_used[3])
364 EMIT2(0x41, 0x5F); /* pop r15 */
365 if (callee_regs_used[2])
366 EMIT2(0x41, 0x5E); /* pop r14 */
367 if (callee_regs_used[1])
368 EMIT2(0x41, 0x5D); /* pop r13 */
369 if (callee_regs_used[0])
370 EMIT1(0x5B); /* pop rbx */
371 *pprog = prog;
374 static void emit_nops(u8 **pprog, int len)
376 u8 *prog = *pprog;
377 int i, noplen;
379 while (len > 0) {
380 noplen = len;
382 if (noplen > ASM_NOP_MAX)
383 noplen = ASM_NOP_MAX;
385 for (i = 0; i < noplen; i++)
386 EMIT1(x86_nops[noplen][i]);
387 len -= noplen;
390 *pprog = prog;
394 * Emit the various CFI preambles, see asm/cfi.h and the comments about FineIBT
395 * in arch/x86/kernel/alternative.c
398 static void emit_fineibt(u8 **pprog, u32 hash)
400 u8 *prog = *pprog;
402 EMIT_ENDBR();
403 EMIT3_off32(0x41, 0x81, 0xea, hash); /* subl $hash, %r10d */
404 EMIT2(0x74, 0x07); /* jz.d8 +7 */
405 EMIT2(0x0f, 0x0b); /* ud2 */
406 EMIT1(0x90); /* nop */
407 EMIT_ENDBR_POISON();
409 *pprog = prog;
412 static void emit_kcfi(u8 **pprog, u32 hash)
414 u8 *prog = *pprog;
416 EMIT1_off32(0xb8, hash); /* movl $hash, %eax */
417 #ifdef CONFIG_CALL_PADDING
418 EMIT1(0x90);
419 EMIT1(0x90);
420 EMIT1(0x90);
421 EMIT1(0x90);
422 EMIT1(0x90);
423 EMIT1(0x90);
424 EMIT1(0x90);
425 EMIT1(0x90);
426 EMIT1(0x90);
427 EMIT1(0x90);
428 EMIT1(0x90);
429 #endif
430 EMIT_ENDBR();
432 *pprog = prog;
435 static void emit_cfi(u8 **pprog, u32 hash)
437 u8 *prog = *pprog;
439 switch (cfi_mode) {
440 case CFI_FINEIBT:
441 emit_fineibt(&prog, hash);
442 break;
444 case CFI_KCFI:
445 emit_kcfi(&prog, hash);
446 break;
448 default:
449 EMIT_ENDBR();
450 break;
453 *pprog = prog;
456 static void emit_prologue_tail_call(u8 **pprog, bool is_subprog)
458 u8 *prog = *pprog;
460 if (!is_subprog) {
461 /* cmp rax, MAX_TAIL_CALL_CNT */
462 EMIT4(0x48, 0x83, 0xF8, MAX_TAIL_CALL_CNT);
463 EMIT2(X86_JA, 6); /* ja 6 */
464 /* rax is tail_call_cnt if <= MAX_TAIL_CALL_CNT.
465 * case1: entry of main prog.
466 * case2: tail callee of main prog.
468 EMIT1(0x50); /* push rax */
469 /* Make rax as tail_call_cnt_ptr. */
470 EMIT3(0x48, 0x89, 0xE0); /* mov rax, rsp */
471 EMIT2(0xEB, 1); /* jmp 1 */
472 /* rax is tail_call_cnt_ptr if > MAX_TAIL_CALL_CNT.
473 * case: tail callee of subprog.
475 EMIT1(0x50); /* push rax */
476 /* push tail_call_cnt_ptr */
477 EMIT1(0x50); /* push rax */
478 } else { /* is_subprog */
479 /* rax is tail_call_cnt_ptr. */
480 EMIT1(0x50); /* push rax */
481 EMIT1(0x50); /* push rax */
484 *pprog = prog;
488 * Emit x86-64 prologue code for BPF program.
489 * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes
490 * while jumping to another program
492 static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf,
493 bool tail_call_reachable, bool is_subprog,
494 bool is_exception_cb)
496 u8 *prog = *pprog;
498 emit_cfi(&prog, is_subprog ? cfi_bpf_subprog_hash : cfi_bpf_hash);
499 /* BPF trampoline can be made to work without these nops,
500 * but let's waste 5 bytes for now and optimize later
502 emit_nops(&prog, X86_PATCH_SIZE);
503 if (!ebpf_from_cbpf) {
504 if (tail_call_reachable && !is_subprog)
505 /* When it's the entry of the whole tailcall context,
506 * zeroing rax means initialising tail_call_cnt.
508 EMIT3(0x48, 0x31, 0xC0); /* xor rax, rax */
509 else
510 /* Keep the same instruction layout. */
511 emit_nops(&prog, 3); /* nop3 */
513 /* Exception callback receives FP as third parameter */
514 if (is_exception_cb) {
515 EMIT3(0x48, 0x89, 0xF4); /* mov rsp, rsi */
516 EMIT3(0x48, 0x89, 0xD5); /* mov rbp, rdx */
517 /* The main frame must have exception_boundary as true, so we
518 * first restore those callee-saved regs from stack, before
519 * reusing the stack frame.
521 pop_callee_regs(&prog, all_callee_regs_used);
522 pop_r12(&prog);
523 /* Reset the stack frame. */
524 EMIT3(0x48, 0x89, 0xEC); /* mov rsp, rbp */
525 } else {
526 EMIT1(0x55); /* push rbp */
527 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
530 /* X86_TAIL_CALL_OFFSET is here */
531 EMIT_ENDBR();
533 /* sub rsp, rounded_stack_depth */
534 if (stack_depth)
535 EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
536 if (tail_call_reachable)
537 emit_prologue_tail_call(&prog, is_subprog);
538 *pprog = prog;
541 static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
543 u8 *prog = *pprog;
544 s64 offset;
546 offset = func - (ip + X86_PATCH_SIZE);
547 if (!is_simm32(offset)) {
548 pr_err("Target call %p is out of range\n", func);
549 return -ERANGE;
551 EMIT1_off32(opcode, offset);
552 *pprog = prog;
553 return 0;
556 static int emit_call(u8 **pprog, void *func, void *ip)
558 return emit_patch(pprog, func, ip, 0xE8);
561 static int emit_rsb_call(u8 **pprog, void *func, void *ip)
563 OPTIMIZER_HIDE_VAR(func);
564 ip += x86_call_depth_emit_accounting(pprog, func, ip);
565 return emit_patch(pprog, func, ip, 0xE8);
568 static int emit_jump(u8 **pprog, void *func, void *ip)
570 return emit_patch(pprog, func, ip, 0xE9);
573 static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
574 void *old_addr, void *new_addr)
576 const u8 *nop_insn = x86_nops[5];
577 u8 old_insn[X86_PATCH_SIZE];
578 u8 new_insn[X86_PATCH_SIZE];
579 u8 *prog;
580 int ret;
582 memcpy(old_insn, nop_insn, X86_PATCH_SIZE);
583 if (old_addr) {
584 prog = old_insn;
585 ret = t == BPF_MOD_CALL ?
586 emit_call(&prog, old_addr, ip) :
587 emit_jump(&prog, old_addr, ip);
588 if (ret)
589 return ret;
592 memcpy(new_insn, nop_insn, X86_PATCH_SIZE);
593 if (new_addr) {
594 prog = new_insn;
595 ret = t == BPF_MOD_CALL ?
596 emit_call(&prog, new_addr, ip) :
597 emit_jump(&prog, new_addr, ip);
598 if (ret)
599 return ret;
602 ret = -EBUSY;
603 mutex_lock(&text_mutex);
604 if (memcmp(ip, old_insn, X86_PATCH_SIZE))
605 goto out;
606 ret = 1;
607 if (memcmp(ip, new_insn, X86_PATCH_SIZE)) {
608 text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
609 ret = 0;
611 out:
612 mutex_unlock(&text_mutex);
613 return ret;
616 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
617 void *old_addr, void *new_addr)
619 if (!is_kernel_text((long)ip) &&
620 !is_bpf_text_address((long)ip))
621 /* BPF poking in modules is not supported */
622 return -EINVAL;
625 * See emit_prologue(), for IBT builds the trampoline hook is preceded
626 * with an ENDBR instruction.
628 if (is_endbr(*(u32 *)ip))
629 ip += ENDBR_INSN_SIZE;
631 return __bpf_arch_text_poke(ip, t, old_addr, new_addr);
634 #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8)
636 static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip)
638 u8 *prog = *pprog;
640 if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
641 EMIT_LFENCE();
642 EMIT2(0xFF, 0xE0 + reg);
643 } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) {
644 OPTIMIZER_HIDE_VAR(reg);
645 if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
646 emit_jump(&prog, &__x86_indirect_jump_thunk_array[reg], ip);
647 else
648 emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip);
649 } else {
650 EMIT2(0xFF, 0xE0 + reg); /* jmp *%\reg */
651 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) || IS_ENABLED(CONFIG_MITIGATION_SLS))
652 EMIT1(0xCC); /* int3 */
655 *pprog = prog;
658 static void emit_return(u8 **pprog, u8 *ip)
660 u8 *prog = *pprog;
662 if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
663 emit_jump(&prog, x86_return_thunk, ip);
664 } else {
665 EMIT1(0xC3); /* ret */
666 if (IS_ENABLED(CONFIG_MITIGATION_SLS))
667 EMIT1(0xCC); /* int3 */
670 *pprog = prog;
673 #define BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack) (-16 - round_up(stack, 8))
676 * Generate the following code:
678 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
679 * if (index >= array->map.max_entries)
680 * goto out;
681 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
682 * goto out;
683 * prog = array->ptrs[index];
684 * if (prog == NULL)
685 * goto out;
686 * goto *(prog->bpf_func + prologue_size);
687 * out:
689 static void emit_bpf_tail_call_indirect(struct bpf_prog *bpf_prog,
690 u8 **pprog, bool *callee_regs_used,
691 u32 stack_depth, u8 *ip,
692 struct jit_context *ctx)
694 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
695 u8 *prog = *pprog, *start = *pprog;
696 int offset;
699 * rdi - pointer to ctx
700 * rsi - pointer to bpf_array
701 * rdx - index in bpf_array
705 * if (index >= array->map.max_entries)
706 * goto out;
708 EMIT2(0x89, 0xD2); /* mov edx, edx */
709 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
710 offsetof(struct bpf_array, map.max_entries));
712 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
713 EMIT2(X86_JBE, offset); /* jbe out */
716 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
717 * goto out;
719 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
720 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
722 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
723 EMIT2(X86_JAE, offset); /* jae out */
725 /* prog = array->ptrs[index]; */
726 EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */
727 offsetof(struct bpf_array, ptrs));
730 * if (prog == NULL)
731 * goto out;
733 EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */
735 offset = ctx->tail_call_indirect_label - (prog + 2 - start);
736 EMIT2(X86_JE, offset); /* je out */
738 /* Inc tail_call_cnt if the slot is populated. */
739 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
741 if (bpf_prog->aux->exception_boundary) {
742 pop_callee_regs(&prog, all_callee_regs_used);
743 pop_r12(&prog);
744 } else {
745 pop_callee_regs(&prog, callee_regs_used);
746 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
747 pop_r12(&prog);
750 /* Pop tail_call_cnt_ptr. */
751 EMIT1(0x58); /* pop rax */
752 /* Pop tail_call_cnt, if it's main prog.
753 * Pop tail_call_cnt_ptr, if it's subprog.
755 EMIT1(0x58); /* pop rax */
756 if (stack_depth)
757 EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */
758 round_up(stack_depth, 8));
760 /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */
761 EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */
762 offsetof(struct bpf_prog, bpf_func));
763 EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */
764 X86_TAIL_CALL_OFFSET);
766 * Now we're ready to jump into next BPF program
767 * rdi == ctx (1st arg)
768 * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET
770 emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start));
772 /* out: */
773 ctx->tail_call_indirect_label = prog - start;
774 *pprog = prog;
777 static void emit_bpf_tail_call_direct(struct bpf_prog *bpf_prog,
778 struct bpf_jit_poke_descriptor *poke,
779 u8 **pprog, u8 *ip,
780 bool *callee_regs_used, u32 stack_depth,
781 struct jit_context *ctx)
783 int tcc_ptr_off = BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack_depth);
784 u8 *prog = *pprog, *start = *pprog;
785 int offset;
788 * if ((*tcc_ptr)++ >= MAX_TAIL_CALL_CNT)
789 * goto out;
791 EMIT3_off32(0x48, 0x8B, 0x85, tcc_ptr_off); /* mov rax, qword ptr [rbp - tcc_ptr_off] */
792 EMIT4(0x48, 0x83, 0x38, MAX_TAIL_CALL_CNT); /* cmp qword ptr [rax], MAX_TAIL_CALL_CNT */
794 offset = ctx->tail_call_direct_label - (prog + 2 - start);
795 EMIT2(X86_JAE, offset); /* jae out */
797 poke->tailcall_bypass = ip + (prog - start);
798 poke->adj_off = X86_TAIL_CALL_OFFSET;
799 poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE;
800 poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE;
802 emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE,
803 poke->tailcall_bypass);
805 /* Inc tail_call_cnt if the slot is populated. */
806 EMIT4(0x48, 0x83, 0x00, 0x01); /* add qword ptr [rax], 1 */
808 if (bpf_prog->aux->exception_boundary) {
809 pop_callee_regs(&prog, all_callee_regs_used);
810 pop_r12(&prog);
811 } else {
812 pop_callee_regs(&prog, callee_regs_used);
813 if (bpf_arena_get_kern_vm_start(bpf_prog->aux->arena))
814 pop_r12(&prog);
817 /* Pop tail_call_cnt_ptr. */
818 EMIT1(0x58); /* pop rax */
819 /* Pop tail_call_cnt, if it's main prog.
820 * Pop tail_call_cnt_ptr, if it's subprog.
822 EMIT1(0x58); /* pop rax */
823 if (stack_depth)
824 EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));
826 emit_nops(&prog, X86_PATCH_SIZE);
828 /* out: */
829 ctx->tail_call_direct_label = prog - start;
831 *pprog = prog;
834 static void bpf_tail_call_direct_fixup(struct bpf_prog *prog)
836 struct bpf_jit_poke_descriptor *poke;
837 struct bpf_array *array;
838 struct bpf_prog *target;
839 int i, ret;
841 for (i = 0; i < prog->aux->size_poke_tab; i++) {
842 poke = &prog->aux->poke_tab[i];
843 if (poke->aux && poke->aux != prog->aux)
844 continue;
846 WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable));
848 if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
849 continue;
851 array = container_of(poke->tail_call.map, struct bpf_array, map);
852 mutex_lock(&array->aux->poke_mutex);
853 target = array->ptrs[poke->tail_call.key];
854 if (target) {
855 ret = __bpf_arch_text_poke(poke->tailcall_target,
856 BPF_MOD_JUMP, NULL,
857 (u8 *)target->bpf_func +
858 poke->adj_off);
859 BUG_ON(ret < 0);
860 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
861 BPF_MOD_JUMP,
862 (u8 *)poke->tailcall_target +
863 X86_PATCH_SIZE, NULL);
864 BUG_ON(ret < 0);
866 WRITE_ONCE(poke->tailcall_target_stable, true);
867 mutex_unlock(&array->aux->poke_mutex);
871 static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
872 u32 dst_reg, const u32 imm32)
874 u8 *prog = *pprog;
875 u8 b1, b2, b3;
878 * Optimization: if imm32 is positive, use 'mov %eax, imm32'
879 * (which zero-extends imm32) to save 2 bytes.
881 if (sign_propagate && (s32)imm32 < 0) {
882 /* 'mov %rax, imm32' sign extends imm32 */
883 b1 = add_1mod(0x48, dst_reg);
884 b2 = 0xC7;
885 b3 = 0xC0;
886 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
887 goto done;
891 * Optimization: if imm32 is zero, use 'xor %eax, %eax'
892 * to save 3 bytes.
894 if (imm32 == 0) {
895 if (is_ereg(dst_reg))
896 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
897 b2 = 0x31; /* xor */
898 b3 = 0xC0;
899 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
900 goto done;
903 /* mov %eax, imm32 */
904 if (is_ereg(dst_reg))
905 EMIT1(add_1mod(0x40, dst_reg));
906 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
907 done:
908 *pprog = prog;
911 static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
912 const u32 imm32_hi, const u32 imm32_lo)
914 u64 imm64 = ((u64)imm32_hi << 32) | (u32)imm32_lo;
915 u8 *prog = *pprog;
917 if (is_uimm32(imm64)) {
919 * For emitting plain u32, where sign bit must not be
920 * propagated LLVM tends to load imm64 over mov32
921 * directly, so save couple of bytes by just doing
922 * 'mov %eax, imm32' instead.
924 emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
925 } else if (is_simm32(imm64)) {
926 emit_mov_imm32(&prog, true, dst_reg, imm32_lo);
927 } else {
928 /* movabsq rax, imm64 */
929 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
930 EMIT(imm32_lo, 4);
931 EMIT(imm32_hi, 4);
934 *pprog = prog;
937 static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
939 u8 *prog = *pprog;
941 if (is64) {
942 /* mov dst, src */
943 EMIT_mov(dst_reg, src_reg);
944 } else {
945 /* mov32 dst, src */
946 if (is_ereg(dst_reg) || is_ereg(src_reg))
947 EMIT1(add_2mod(0x40, dst_reg, src_reg));
948 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
951 *pprog = prog;
954 static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
955 u32 src_reg)
957 u8 *prog = *pprog;
959 if (is64) {
960 /* movs[b,w,l]q dst, src */
961 if (num_bits == 8)
962 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
963 add_2reg(0xC0, src_reg, dst_reg));
964 else if (num_bits == 16)
965 EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
966 add_2reg(0xC0, src_reg, dst_reg));
967 else if (num_bits == 32)
968 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
969 add_2reg(0xC0, src_reg, dst_reg));
970 } else {
971 /* movs[b,w]l dst, src */
972 if (num_bits == 8) {
973 EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
974 add_2reg(0xC0, src_reg, dst_reg));
975 } else if (num_bits == 16) {
976 if (is_ereg(dst_reg) || is_ereg(src_reg))
977 EMIT1(add_2mod(0x40, src_reg, dst_reg));
978 EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
979 add_2reg(0xC0, src_reg, dst_reg));
983 *pprog = prog;
986 /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
987 static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
989 u8 *prog = *pprog;
991 if (is_imm8(off)) {
992 /* 1-byte signed displacement.
994 * If off == 0 we could skip this and save one extra byte, but
995 * special case of x86 R13 which always needs an offset is not
996 * worth the hassle
998 EMIT2(add_2reg(0x40, ptr_reg, val_reg), off);
999 } else {
1000 /* 4-byte signed displacement */
1001 EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off);
1003 *pprog = prog;
1006 static void emit_insn_suffix_SIB(u8 **pprog, u32 ptr_reg, u32 val_reg, u32 index_reg, int off)
1008 u8 *prog = *pprog;
1010 if (is_imm8(off)) {
1011 EMIT3(add_2reg(0x44, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1012 } else {
1013 EMIT2_off32(add_2reg(0x84, BPF_REG_0, val_reg), add_2reg(0, ptr_reg, index_reg) /* SIB */, off);
1015 *pprog = prog;
1019 * Emit a REX byte if it will be necessary to address these registers
1021 static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64)
1023 u8 *prog = *pprog;
1025 if (is64)
1026 EMIT1(add_2mod(0x48, dst_reg, src_reg));
1027 else if (is_ereg(dst_reg) || is_ereg(src_reg))
1028 EMIT1(add_2mod(0x40, dst_reg, src_reg));
1029 *pprog = prog;
1033 * Similar version of maybe_emit_mod() for a single register
1035 static void maybe_emit_1mod(u8 **pprog, u32 reg, bool is64)
1037 u8 *prog = *pprog;
1039 if (is64)
1040 EMIT1(add_1mod(0x48, reg));
1041 else if (is_ereg(reg))
1042 EMIT1(add_1mod(0x40, reg));
1043 *pprog = prog;
1046 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1047 static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1049 u8 *prog = *pprog;
1051 switch (size) {
1052 case BPF_B:
1053 /* Emit 'movzx rax, byte ptr [rax + off]' */
1054 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
1055 break;
1056 case BPF_H:
1057 /* Emit 'movzx rax, word ptr [rax + off]' */
1058 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
1059 break;
1060 case BPF_W:
1061 /* Emit 'mov eax, dword ptr [rax+0x14]' */
1062 if (is_ereg(dst_reg) || is_ereg(src_reg))
1063 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
1064 else
1065 EMIT1(0x8B);
1066 break;
1067 case BPF_DW:
1068 /* Emit 'mov rax, qword ptr [rax+0x14]' */
1069 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
1070 break;
1072 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1073 *pprog = prog;
1076 /* LDSX: dst_reg = *(s8*)(src_reg + off) */
1077 static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1079 u8 *prog = *pprog;
1081 switch (size) {
1082 case BPF_B:
1083 /* Emit 'movsx rax, byte ptr [rax + off]' */
1084 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
1085 break;
1086 case BPF_H:
1087 /* Emit 'movsx rax, word ptr [rax + off]' */
1088 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
1089 break;
1090 case BPF_W:
1091 /* Emit 'movsx rax, dword ptr [rax+0x14]' */
1092 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
1093 break;
1095 emit_insn_suffix(&prog, src_reg, dst_reg, off);
1096 *pprog = prog;
1099 static void emit_ldx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1101 u8 *prog = *pprog;
1103 switch (size) {
1104 case BPF_B:
1105 /* movzx rax, byte ptr [rax + r12 + off] */
1106 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB6);
1107 break;
1108 case BPF_H:
1109 /* movzx rax, word ptr [rax + r12 + off] */
1110 EMIT3(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x0F, 0xB7);
1111 break;
1112 case BPF_W:
1113 /* mov eax, dword ptr [rax + r12 + off] */
1114 EMIT2(add_3mod(0x40, src_reg, dst_reg, index_reg), 0x8B);
1115 break;
1116 case BPF_DW:
1117 /* mov rax, qword ptr [rax + r12 + off] */
1118 EMIT2(add_3mod(0x48, src_reg, dst_reg, index_reg), 0x8B);
1119 break;
1121 emit_insn_suffix_SIB(&prog, src_reg, dst_reg, index_reg, off);
1122 *pprog = prog;
1125 static void emit_ldx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1127 emit_ldx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1130 /* STX: *(u8*)(dst_reg + off) = src_reg */
1131 static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1133 u8 *prog = *pprog;
1135 switch (size) {
1136 case BPF_B:
1137 /* Emit 'mov byte ptr [rax + off], al' */
1138 if (is_ereg(dst_reg) || is_ereg_8l(src_reg))
1139 /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */
1140 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
1141 else
1142 EMIT1(0x88);
1143 break;
1144 case BPF_H:
1145 if (is_ereg(dst_reg) || is_ereg(src_reg))
1146 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
1147 else
1148 EMIT2(0x66, 0x89);
1149 break;
1150 case BPF_W:
1151 if (is_ereg(dst_reg) || is_ereg(src_reg))
1152 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
1153 else
1154 EMIT1(0x89);
1155 break;
1156 case BPF_DW:
1157 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
1158 break;
1160 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1161 *pprog = prog;
1164 /* STX: *(u8*)(dst_reg + index_reg + off) = src_reg */
1165 static void emit_stx_index(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1167 u8 *prog = *pprog;
1169 switch (size) {
1170 case BPF_B:
1171 /* mov byte ptr [rax + r12 + off], al */
1172 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x88);
1173 break;
1174 case BPF_H:
1175 /* mov word ptr [rax + r12 + off], ax */
1176 EMIT3(0x66, add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1177 break;
1178 case BPF_W:
1179 /* mov dword ptr [rax + r12 + 1], eax */
1180 EMIT2(add_3mod(0x40, dst_reg, src_reg, index_reg), 0x89);
1181 break;
1182 case BPF_DW:
1183 /* mov qword ptr [rax + r12 + 1], rax */
1184 EMIT2(add_3mod(0x48, dst_reg, src_reg, index_reg), 0x89);
1185 break;
1187 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1188 *pprog = prog;
1191 static void emit_stx_r12(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
1193 emit_stx_index(pprog, size, dst_reg, src_reg, X86_REG_R12, off);
1196 /* ST: *(u8*)(dst_reg + index_reg + off) = imm32 */
1197 static void emit_st_index(u8 **pprog, u32 size, u32 dst_reg, u32 index_reg, int off, int imm)
1199 u8 *prog = *pprog;
1201 switch (size) {
1202 case BPF_B:
1203 /* mov byte ptr [rax + r12 + off], imm8 */
1204 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC6);
1205 break;
1206 case BPF_H:
1207 /* mov word ptr [rax + r12 + off], imm16 */
1208 EMIT3(0x66, add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1209 break;
1210 case BPF_W:
1211 /* mov dword ptr [rax + r12 + 1], imm32 */
1212 EMIT2(add_3mod(0x40, dst_reg, 0, index_reg), 0xC7);
1213 break;
1214 case BPF_DW:
1215 /* mov qword ptr [rax + r12 + 1], imm32 */
1216 EMIT2(add_3mod(0x48, dst_reg, 0, index_reg), 0xC7);
1217 break;
1219 emit_insn_suffix_SIB(&prog, dst_reg, 0, index_reg, off);
1220 EMIT(imm, bpf_size_to_x86_bytes(size));
1221 *pprog = prog;
1224 static void emit_st_r12(u8 **pprog, u32 size, u32 dst_reg, int off, int imm)
1226 emit_st_index(pprog, size, dst_reg, X86_REG_R12, off, imm);
1229 static int emit_atomic(u8 **pprog, u8 atomic_op,
1230 u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size)
1232 u8 *prog = *pprog;
1234 EMIT1(0xF0); /* lock prefix */
1236 maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW);
1238 /* emit opcode */
1239 switch (atomic_op) {
1240 case BPF_ADD:
1241 case BPF_AND:
1242 case BPF_OR:
1243 case BPF_XOR:
1244 /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */
1245 EMIT1(simple_alu_opcodes[atomic_op]);
1246 break;
1247 case BPF_ADD | BPF_FETCH:
1248 /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */
1249 EMIT2(0x0F, 0xC1);
1250 break;
1251 case BPF_XCHG:
1252 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */
1253 EMIT1(0x87);
1254 break;
1255 case BPF_CMPXCHG:
1256 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
1257 EMIT2(0x0F, 0xB1);
1258 break;
1259 default:
1260 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1261 return -EFAULT;
1264 emit_insn_suffix(&prog, dst_reg, src_reg, off);
1266 *pprog = prog;
1267 return 0;
1270 static int emit_atomic_index(u8 **pprog, u8 atomic_op, u32 size,
1271 u32 dst_reg, u32 src_reg, u32 index_reg, int off)
1273 u8 *prog = *pprog;
1275 EMIT1(0xF0); /* lock prefix */
1276 switch (size) {
1277 case BPF_W:
1278 EMIT1(add_3mod(0x40, dst_reg, src_reg, index_reg));
1279 break;
1280 case BPF_DW:
1281 EMIT1(add_3mod(0x48, dst_reg, src_reg, index_reg));
1282 break;
1283 default:
1284 pr_err("bpf_jit: 1 and 2 byte atomics are not supported\n");
1285 return -EFAULT;
1288 /* emit opcode */
1289 switch (atomic_op) {
1290 case BPF_ADD:
1291 case BPF_AND:
1292 case BPF_OR:
1293 case BPF_XOR:
1294 /* lock *(u32/u64*)(dst_reg + idx_reg + off) <op>= src_reg */
1295 EMIT1(simple_alu_opcodes[atomic_op]);
1296 break;
1297 case BPF_ADD | BPF_FETCH:
1298 /* src_reg = atomic_fetch_add(dst_reg + idx_reg + off, src_reg); */
1299 EMIT2(0x0F, 0xC1);
1300 break;
1301 case BPF_XCHG:
1302 /* src_reg = atomic_xchg(dst_reg + idx_reg + off, src_reg); */
1303 EMIT1(0x87);
1304 break;
1305 case BPF_CMPXCHG:
1306 /* r0 = atomic_cmpxchg(dst_reg + idx_reg + off, r0, src_reg); */
1307 EMIT2(0x0F, 0xB1);
1308 break;
1309 default:
1310 pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op);
1311 return -EFAULT;
1313 emit_insn_suffix_SIB(&prog, dst_reg, src_reg, index_reg, off);
1314 *pprog = prog;
1315 return 0;
1318 #define DONT_CLEAR 1
1320 bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
1322 u32 reg = x->fixup >> 8;
1324 /* jump over faulting load and clear dest register */
1325 if (reg != DONT_CLEAR)
1326 *(unsigned long *)((void *)regs + reg) = 0;
1327 regs->ip += x->fixup & 0xff;
1328 return true;
1331 static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt,
1332 bool *regs_used)
1334 int i;
1336 for (i = 1; i <= insn_cnt; i++, insn++) {
1337 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6)
1338 regs_used[0] = true;
1339 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7)
1340 regs_used[1] = true;
1341 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8)
1342 regs_used[2] = true;
1343 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9)
1344 regs_used[3] = true;
1348 /* emit the 3-byte VEX prefix
1350 * r: same as rex.r, extra bit for ModRM reg field
1351 * x: same as rex.x, extra bit for SIB index field
1352 * b: same as rex.b, extra bit for ModRM r/m, or SIB base
1353 * m: opcode map select, encoding escape bytes e.g. 0x0f38
1354 * w: same as rex.w (32 bit or 64 bit) or opcode specific
1355 * src_reg2: additional source reg (encoded as BPF reg)
1356 * l: vector length (128 bit or 256 bit) or reserved
1357 * pp: opcode prefix (none, 0x66, 0xf2 or 0xf3)
1359 static void emit_3vex(u8 **pprog, bool r, bool x, bool b, u8 m,
1360 bool w, u8 src_reg2, bool l, u8 pp)
1362 u8 *prog = *pprog;
1363 const u8 b0 = 0xc4; /* first byte of 3-byte VEX prefix */
1364 u8 b1, b2;
1365 u8 vvvv = reg2hex[src_reg2];
1367 /* reg2hex gives only the lower 3 bit of vvvv */
1368 if (is_ereg(src_reg2))
1369 vvvv |= 1 << 3;
1372 * 2nd byte of 3-byte VEX prefix
1373 * ~ means bit inverted encoding
1375 * 7 0
1376 * +---+---+---+---+---+---+---+---+
1377 * |~R |~X |~B | m |
1378 * +---+---+---+---+---+---+---+---+
1380 b1 = (!r << 7) | (!x << 6) | (!b << 5) | (m & 0x1f);
1382 * 3rd byte of 3-byte VEX prefix
1384 * 7 0
1385 * +---+---+---+---+---+---+---+---+
1386 * | W | ~vvvv | L | pp |
1387 * +---+---+---+---+---+---+---+---+
1389 b2 = (w << 7) | ((~vvvv & 0xf) << 3) | (l << 2) | (pp & 3);
1391 EMIT3(b0, b1, b2);
1392 *pprog = prog;
1395 /* emit BMI2 shift instruction */
1396 static void emit_shiftx(u8 **pprog, u32 dst_reg, u8 src_reg, bool is64, u8 op)
1398 u8 *prog = *pprog;
1399 bool r = is_ereg(dst_reg);
1400 u8 m = 2; /* escape code 0f38 */
1402 emit_3vex(&prog, r, false, r, m, is64, src_reg, false, op);
1403 EMIT2(0xf7, add_2reg(0xC0, dst_reg, dst_reg));
1404 *pprog = prog;
1407 #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp)))
1409 #define __LOAD_TCC_PTR(off) \
1410 EMIT3_off32(0x48, 0x8B, 0x85, off)
1411 /* mov rax, qword ptr [rbp - rounded_stack_depth - 16] */
1412 #define LOAD_TAIL_CALL_CNT_PTR(stack) \
1413 __LOAD_TCC_PTR(BPF_TAIL_CALL_CNT_PTR_STACK_OFF(stack))
1415 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image,
1416 int oldproglen, struct jit_context *ctx, bool jmp_padding)
1418 bool tail_call_reachable = bpf_prog->aux->tail_call_reachable;
1419 struct bpf_insn *insn = bpf_prog->insnsi;
1420 bool callee_regs_used[4] = {};
1421 int insn_cnt = bpf_prog->len;
1422 bool seen_exit = false;
1423 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
1424 u64 arena_vm_start, user_vm_start;
1425 int i, excnt = 0;
1426 int ilen, proglen = 0;
1427 u8 *prog = temp;
1428 int err;
1430 arena_vm_start = bpf_arena_get_kern_vm_start(bpf_prog->aux->arena);
1431 user_vm_start = bpf_arena_get_user_vm_start(bpf_prog->aux->arena);
1433 detect_reg_usage(insn, insn_cnt, callee_regs_used);
1435 emit_prologue(&prog, bpf_prog->aux->stack_depth,
1436 bpf_prog_was_classic(bpf_prog), tail_call_reachable,
1437 bpf_is_subprog(bpf_prog), bpf_prog->aux->exception_cb);
1438 /* Exception callback will clobber callee regs for its own use, and
1439 * restore the original callee regs from main prog's stack frame.
1441 if (bpf_prog->aux->exception_boundary) {
1442 /* We also need to save r12, which is not mapped to any BPF
1443 * register, as we throw after entry into the kernel, which may
1444 * overwrite r12.
1446 push_r12(&prog);
1447 push_callee_regs(&prog, all_callee_regs_used);
1448 } else {
1449 if (arena_vm_start)
1450 push_r12(&prog);
1451 push_callee_regs(&prog, callee_regs_used);
1453 if (arena_vm_start)
1454 emit_mov_imm64(&prog, X86_REG_R12,
1455 arena_vm_start >> 32, (u32) arena_vm_start);
1457 ilen = prog - temp;
1458 if (rw_image)
1459 memcpy(rw_image + proglen, temp, ilen);
1460 proglen += ilen;
1461 addrs[0] = proglen;
1462 prog = temp;
1464 for (i = 1; i <= insn_cnt; i++, insn++) {
1465 const s32 imm32 = insn->imm;
1466 u32 dst_reg = insn->dst_reg;
1467 u32 src_reg = insn->src_reg;
1468 u8 b2 = 0, b3 = 0;
1469 u8 *start_of_ldx;
1470 s64 jmp_offset;
1471 s16 insn_off;
1472 u8 jmp_cond;
1473 u8 *func;
1474 int nops;
1476 switch (insn->code) {
1477 /* ALU */
1478 case BPF_ALU | BPF_ADD | BPF_X:
1479 case BPF_ALU | BPF_SUB | BPF_X:
1480 case BPF_ALU | BPF_AND | BPF_X:
1481 case BPF_ALU | BPF_OR | BPF_X:
1482 case BPF_ALU | BPF_XOR | BPF_X:
1483 case BPF_ALU64 | BPF_ADD | BPF_X:
1484 case BPF_ALU64 | BPF_SUB | BPF_X:
1485 case BPF_ALU64 | BPF_AND | BPF_X:
1486 case BPF_ALU64 | BPF_OR | BPF_X:
1487 case BPF_ALU64 | BPF_XOR | BPF_X:
1488 maybe_emit_mod(&prog, dst_reg, src_reg,
1489 BPF_CLASS(insn->code) == BPF_ALU64);
1490 b2 = simple_alu_opcodes[BPF_OP(insn->code)];
1491 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
1492 break;
1494 case BPF_ALU64 | BPF_MOV | BPF_X:
1495 if (insn_is_cast_user(insn)) {
1496 if (dst_reg != src_reg)
1497 /* 32-bit mov */
1498 emit_mov_reg(&prog, false, dst_reg, src_reg);
1499 /* shl dst_reg, 32 */
1500 maybe_emit_1mod(&prog, dst_reg, true);
1501 EMIT3(0xC1, add_1reg(0xE0, dst_reg), 32);
1503 /* or dst_reg, user_vm_start */
1504 maybe_emit_1mod(&prog, dst_reg, true);
1505 if (is_axreg(dst_reg))
1506 EMIT1_off32(0x0D, user_vm_start >> 32);
1507 else
1508 EMIT2_off32(0x81, add_1reg(0xC8, dst_reg), user_vm_start >> 32);
1510 /* rol dst_reg, 32 */
1511 maybe_emit_1mod(&prog, dst_reg, true);
1512 EMIT3(0xC1, add_1reg(0xC0, dst_reg), 32);
1514 /* xor r11, r11 */
1515 EMIT3(0x4D, 0x31, 0xDB);
1517 /* test dst_reg32, dst_reg32; check if lower 32-bit are zero */
1518 maybe_emit_mod(&prog, dst_reg, dst_reg, false);
1519 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
1521 /* cmove r11, dst_reg; if so, set dst_reg to zero */
1522 /* WARNING: Intel swapped src/dst register encoding in CMOVcc !!! */
1523 maybe_emit_mod(&prog, AUX_REG, dst_reg, true);
1524 EMIT3(0x0F, 0x44, add_2reg(0xC0, AUX_REG, dst_reg));
1525 break;
1526 } else if (insn_is_mov_percpu_addr(insn)) {
1527 /* mov <dst>, <src> (if necessary) */
1528 EMIT_mov(dst_reg, src_reg);
1529 #ifdef CONFIG_SMP
1530 /* add <dst>, gs:[<off>] */
1531 EMIT2(0x65, add_1mod(0x48, dst_reg));
1532 EMIT3(0x03, add_2reg(0x04, 0, dst_reg), 0x25);
1533 EMIT((u32)(unsigned long)&this_cpu_off, 4);
1534 #endif
1535 break;
1537 fallthrough;
1538 case BPF_ALU | BPF_MOV | BPF_X:
1539 if (insn->off == 0)
1540 emit_mov_reg(&prog,
1541 BPF_CLASS(insn->code) == BPF_ALU64,
1542 dst_reg, src_reg);
1543 else
1544 emit_movsx_reg(&prog, insn->off,
1545 BPF_CLASS(insn->code) == BPF_ALU64,
1546 dst_reg, src_reg);
1547 break;
1549 /* neg dst */
1550 case BPF_ALU | BPF_NEG:
1551 case BPF_ALU64 | BPF_NEG:
1552 maybe_emit_1mod(&prog, dst_reg,
1553 BPF_CLASS(insn->code) == BPF_ALU64);
1554 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
1555 break;
1557 case BPF_ALU | BPF_ADD | BPF_K:
1558 case BPF_ALU | BPF_SUB | BPF_K:
1559 case BPF_ALU | BPF_AND | BPF_K:
1560 case BPF_ALU | BPF_OR | BPF_K:
1561 case BPF_ALU | BPF_XOR | BPF_K:
1562 case BPF_ALU64 | BPF_ADD | BPF_K:
1563 case BPF_ALU64 | BPF_SUB | BPF_K:
1564 case BPF_ALU64 | BPF_AND | BPF_K:
1565 case BPF_ALU64 | BPF_OR | BPF_K:
1566 case BPF_ALU64 | BPF_XOR | BPF_K:
1567 maybe_emit_1mod(&prog, dst_reg,
1568 BPF_CLASS(insn->code) == BPF_ALU64);
1571 * b3 holds 'normal' opcode, b2 short form only valid
1572 * in case dst is eax/rax.
1574 switch (BPF_OP(insn->code)) {
1575 case BPF_ADD:
1576 b3 = 0xC0;
1577 b2 = 0x05;
1578 break;
1579 case BPF_SUB:
1580 b3 = 0xE8;
1581 b2 = 0x2D;
1582 break;
1583 case BPF_AND:
1584 b3 = 0xE0;
1585 b2 = 0x25;
1586 break;
1587 case BPF_OR:
1588 b3 = 0xC8;
1589 b2 = 0x0D;
1590 break;
1591 case BPF_XOR:
1592 b3 = 0xF0;
1593 b2 = 0x35;
1594 break;
1597 if (is_imm8(imm32))
1598 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
1599 else if (is_axreg(dst_reg))
1600 EMIT1_off32(b2, imm32);
1601 else
1602 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
1603 break;
1605 case BPF_ALU64 | BPF_MOV | BPF_K:
1606 case BPF_ALU | BPF_MOV | BPF_K:
1607 emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
1608 dst_reg, imm32);
1609 break;
1611 case BPF_LD | BPF_IMM | BPF_DW:
1612 emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
1613 insn++;
1614 i++;
1615 break;
1617 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
1618 case BPF_ALU | BPF_MOD | BPF_X:
1619 case BPF_ALU | BPF_DIV | BPF_X:
1620 case BPF_ALU | BPF_MOD | BPF_K:
1621 case BPF_ALU | BPF_DIV | BPF_K:
1622 case BPF_ALU64 | BPF_MOD | BPF_X:
1623 case BPF_ALU64 | BPF_DIV | BPF_X:
1624 case BPF_ALU64 | BPF_MOD | BPF_K:
1625 case BPF_ALU64 | BPF_DIV | BPF_K: {
1626 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
1628 if (dst_reg != BPF_REG_0)
1629 EMIT1(0x50); /* push rax */
1630 if (dst_reg != BPF_REG_3)
1631 EMIT1(0x52); /* push rdx */
1633 if (BPF_SRC(insn->code) == BPF_X) {
1634 if (src_reg == BPF_REG_0 ||
1635 src_reg == BPF_REG_3) {
1636 /* mov r11, src_reg */
1637 EMIT_mov(AUX_REG, src_reg);
1638 src_reg = AUX_REG;
1640 } else {
1641 /* mov r11, imm32 */
1642 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
1643 src_reg = AUX_REG;
1646 if (dst_reg != BPF_REG_0)
1647 /* mov rax, dst_reg */
1648 emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
1650 if (insn->off == 0) {
1652 * xor edx, edx
1653 * equivalent to 'xor rdx, rdx', but one byte less
1655 EMIT2(0x31, 0xd2);
1657 /* div src_reg */
1658 maybe_emit_1mod(&prog, src_reg, is64);
1659 EMIT2(0xF7, add_1reg(0xF0, src_reg));
1660 } else {
1661 if (BPF_CLASS(insn->code) == BPF_ALU)
1662 EMIT1(0x99); /* cdq */
1663 else
1664 EMIT2(0x48, 0x99); /* cqo */
1666 /* idiv src_reg */
1667 maybe_emit_1mod(&prog, src_reg, is64);
1668 EMIT2(0xF7, add_1reg(0xF8, src_reg));
1671 if (BPF_OP(insn->code) == BPF_MOD &&
1672 dst_reg != BPF_REG_3)
1673 /* mov dst_reg, rdx */
1674 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_3);
1675 else if (BPF_OP(insn->code) == BPF_DIV &&
1676 dst_reg != BPF_REG_0)
1677 /* mov dst_reg, rax */
1678 emit_mov_reg(&prog, is64, dst_reg, BPF_REG_0);
1680 if (dst_reg != BPF_REG_3)
1681 EMIT1(0x5A); /* pop rdx */
1682 if (dst_reg != BPF_REG_0)
1683 EMIT1(0x58); /* pop rax */
1684 break;
1687 case BPF_ALU | BPF_MUL | BPF_K:
1688 case BPF_ALU64 | BPF_MUL | BPF_K:
1689 maybe_emit_mod(&prog, dst_reg, dst_reg,
1690 BPF_CLASS(insn->code) == BPF_ALU64);
1692 if (is_imm8(imm32))
1693 /* imul dst_reg, dst_reg, imm8 */
1694 EMIT3(0x6B, add_2reg(0xC0, dst_reg, dst_reg),
1695 imm32);
1696 else
1697 /* imul dst_reg, dst_reg, imm32 */
1698 EMIT2_off32(0x69,
1699 add_2reg(0xC0, dst_reg, dst_reg),
1700 imm32);
1701 break;
1703 case BPF_ALU | BPF_MUL | BPF_X:
1704 case BPF_ALU64 | BPF_MUL | BPF_X:
1705 maybe_emit_mod(&prog, src_reg, dst_reg,
1706 BPF_CLASS(insn->code) == BPF_ALU64);
1708 /* imul dst_reg, src_reg */
1709 EMIT3(0x0F, 0xAF, add_2reg(0xC0, src_reg, dst_reg));
1710 break;
1712 /* Shifts */
1713 case BPF_ALU | BPF_LSH | BPF_K:
1714 case BPF_ALU | BPF_RSH | BPF_K:
1715 case BPF_ALU | BPF_ARSH | BPF_K:
1716 case BPF_ALU64 | BPF_LSH | BPF_K:
1717 case BPF_ALU64 | BPF_RSH | BPF_K:
1718 case BPF_ALU64 | BPF_ARSH | BPF_K:
1719 maybe_emit_1mod(&prog, dst_reg,
1720 BPF_CLASS(insn->code) == BPF_ALU64);
1722 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1723 if (imm32 == 1)
1724 EMIT2(0xD1, add_1reg(b3, dst_reg));
1725 else
1726 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
1727 break;
1729 case BPF_ALU | BPF_LSH | BPF_X:
1730 case BPF_ALU | BPF_RSH | BPF_X:
1731 case BPF_ALU | BPF_ARSH | BPF_X:
1732 case BPF_ALU64 | BPF_LSH | BPF_X:
1733 case BPF_ALU64 | BPF_RSH | BPF_X:
1734 case BPF_ALU64 | BPF_ARSH | BPF_X:
1735 /* BMI2 shifts aren't better when shift count is already in rcx */
1736 if (boot_cpu_has(X86_FEATURE_BMI2) && src_reg != BPF_REG_4) {
1737 /* shrx/sarx/shlx dst_reg, dst_reg, src_reg */
1738 bool w = (BPF_CLASS(insn->code) == BPF_ALU64);
1739 u8 op;
1741 switch (BPF_OP(insn->code)) {
1742 case BPF_LSH:
1743 op = 1; /* prefix 0x66 */
1744 break;
1745 case BPF_RSH:
1746 op = 3; /* prefix 0xf2 */
1747 break;
1748 case BPF_ARSH:
1749 op = 2; /* prefix 0xf3 */
1750 break;
1753 emit_shiftx(&prog, dst_reg, src_reg, w, op);
1755 break;
1758 if (src_reg != BPF_REG_4) { /* common case */
1759 /* Check for bad case when dst_reg == rcx */
1760 if (dst_reg == BPF_REG_4) {
1761 /* mov r11, dst_reg */
1762 EMIT_mov(AUX_REG, dst_reg);
1763 dst_reg = AUX_REG;
1764 } else {
1765 EMIT1(0x51); /* push rcx */
1767 /* mov rcx, src_reg */
1768 EMIT_mov(BPF_REG_4, src_reg);
1771 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
1772 maybe_emit_1mod(&prog, dst_reg,
1773 BPF_CLASS(insn->code) == BPF_ALU64);
1775 b3 = simple_alu_opcodes[BPF_OP(insn->code)];
1776 EMIT2(0xD3, add_1reg(b3, dst_reg));
1778 if (src_reg != BPF_REG_4) {
1779 if (insn->dst_reg == BPF_REG_4)
1780 /* mov dst_reg, r11 */
1781 EMIT_mov(insn->dst_reg, AUX_REG);
1782 else
1783 EMIT1(0x59); /* pop rcx */
1786 break;
1788 case BPF_ALU | BPF_END | BPF_FROM_BE:
1789 case BPF_ALU64 | BPF_END | BPF_FROM_LE:
1790 switch (imm32) {
1791 case 16:
1792 /* Emit 'ror %ax, 8' to swap lower 2 bytes */
1793 EMIT1(0x66);
1794 if (is_ereg(dst_reg))
1795 EMIT1(0x41);
1796 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
1798 /* Emit 'movzwl eax, ax' */
1799 if (is_ereg(dst_reg))
1800 EMIT3(0x45, 0x0F, 0xB7);
1801 else
1802 EMIT2(0x0F, 0xB7);
1803 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1804 break;
1805 case 32:
1806 /* Emit 'bswap eax' to swap lower 4 bytes */
1807 if (is_ereg(dst_reg))
1808 EMIT2(0x41, 0x0F);
1809 else
1810 EMIT1(0x0F);
1811 EMIT1(add_1reg(0xC8, dst_reg));
1812 break;
1813 case 64:
1814 /* Emit 'bswap rax' to swap 8 bytes */
1815 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
1816 add_1reg(0xC8, dst_reg));
1817 break;
1819 break;
1821 case BPF_ALU | BPF_END | BPF_FROM_LE:
1822 switch (imm32) {
1823 case 16:
1825 * Emit 'movzwl eax, ax' to zero extend 16-bit
1826 * into 64 bit
1828 if (is_ereg(dst_reg))
1829 EMIT3(0x45, 0x0F, 0xB7);
1830 else
1831 EMIT2(0x0F, 0xB7);
1832 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
1833 break;
1834 case 32:
1835 /* Emit 'mov eax, eax' to clear upper 32-bits */
1836 if (is_ereg(dst_reg))
1837 EMIT1(0x45);
1838 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
1839 break;
1840 case 64:
1841 /* nop */
1842 break;
1844 break;
1846 /* speculation barrier */
1847 case BPF_ST | BPF_NOSPEC:
1848 EMIT_LFENCE();
1849 break;
1851 /* ST: *(u8*)(dst_reg + off) = imm */
1852 case BPF_ST | BPF_MEM | BPF_B:
1853 if (is_ereg(dst_reg))
1854 EMIT2(0x41, 0xC6);
1855 else
1856 EMIT1(0xC6);
1857 goto st;
1858 case BPF_ST | BPF_MEM | BPF_H:
1859 if (is_ereg(dst_reg))
1860 EMIT3(0x66, 0x41, 0xC7);
1861 else
1862 EMIT2(0x66, 0xC7);
1863 goto st;
1864 case BPF_ST | BPF_MEM | BPF_W:
1865 if (is_ereg(dst_reg))
1866 EMIT2(0x41, 0xC7);
1867 else
1868 EMIT1(0xC7);
1869 goto st;
1870 case BPF_ST | BPF_MEM | BPF_DW:
1871 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
1873 st: if (is_imm8(insn->off))
1874 EMIT2(add_1reg(0x40, dst_reg), insn->off);
1875 else
1876 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
1878 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
1879 break;
1881 /* STX: *(u8*)(dst_reg + off) = src_reg */
1882 case BPF_STX | BPF_MEM | BPF_B:
1883 case BPF_STX | BPF_MEM | BPF_H:
1884 case BPF_STX | BPF_MEM | BPF_W:
1885 case BPF_STX | BPF_MEM | BPF_DW:
1886 emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1887 break;
1889 case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1890 case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1891 case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1892 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1893 start_of_ldx = prog;
1894 emit_st_r12(&prog, BPF_SIZE(insn->code), dst_reg, insn->off, insn->imm);
1895 goto populate_extable;
1897 /* LDX: dst_reg = *(u8*)(src_reg + r12 + off) */
1898 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1899 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1900 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1901 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1902 case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1903 case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1904 case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1905 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1906 start_of_ldx = prog;
1907 if (BPF_CLASS(insn->code) == BPF_LDX)
1908 emit_ldx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1909 else
1910 emit_stx_r12(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
1911 populate_extable:
1913 struct exception_table_entry *ex;
1914 u8 *_insn = image + proglen + (start_of_ldx - temp);
1915 s64 delta;
1917 if (!bpf_prog->aux->extable)
1918 break;
1920 if (excnt >= bpf_prog->aux->num_exentries) {
1921 pr_err("mem32 extable bug\n");
1922 return -EFAULT;
1924 ex = &bpf_prog->aux->extable[excnt++];
1926 delta = _insn - (u8 *)&ex->insn;
1927 /* switch ex to rw buffer for writes */
1928 ex = (void *)rw_image + ((void *)ex - (void *)image);
1930 ex->insn = delta;
1932 ex->data = EX_TYPE_BPF;
1934 ex->fixup = (prog - start_of_ldx) |
1935 ((BPF_CLASS(insn->code) == BPF_LDX ? reg2pt_regs[dst_reg] : DONT_CLEAR) << 8);
1937 break;
1939 /* LDX: dst_reg = *(u8*)(src_reg + off) */
1940 case BPF_LDX | BPF_MEM | BPF_B:
1941 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1942 case BPF_LDX | BPF_MEM | BPF_H:
1943 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1944 case BPF_LDX | BPF_MEM | BPF_W:
1945 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1946 case BPF_LDX | BPF_MEM | BPF_DW:
1947 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1948 /* LDXS: dst_reg = *(s8*)(src_reg + off) */
1949 case BPF_LDX | BPF_MEMSX | BPF_B:
1950 case BPF_LDX | BPF_MEMSX | BPF_H:
1951 case BPF_LDX | BPF_MEMSX | BPF_W:
1952 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1953 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1954 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1955 insn_off = insn->off;
1957 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
1958 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
1959 /* Conservatively check that src_reg + insn->off is a kernel address:
1960 * src_reg + insn->off > TASK_SIZE_MAX + PAGE_SIZE
1961 * and
1962 * src_reg + insn->off < VSYSCALL_ADDR
1965 u64 limit = TASK_SIZE_MAX + PAGE_SIZE - VSYSCALL_ADDR;
1966 u8 *end_of_jmp;
1968 /* movabsq r10, VSYSCALL_ADDR */
1969 emit_mov_imm64(&prog, BPF_REG_AX, (long)VSYSCALL_ADDR >> 32,
1970 (u32)(long)VSYSCALL_ADDR);
1972 /* mov src_reg, r11 */
1973 EMIT_mov(AUX_REG, src_reg);
1975 if (insn->off) {
1976 /* add r11, insn->off */
1977 maybe_emit_1mod(&prog, AUX_REG, true);
1978 EMIT2_off32(0x81, add_1reg(0xC0, AUX_REG), insn->off);
1981 /* sub r11, r10 */
1982 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1983 EMIT2(0x29, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1985 /* movabsq r10, limit */
1986 emit_mov_imm64(&prog, BPF_REG_AX, (long)limit >> 32,
1987 (u32)(long)limit);
1989 /* cmp r10, r11 */
1990 maybe_emit_mod(&prog, AUX_REG, BPF_REG_AX, true);
1991 EMIT2(0x39, add_2reg(0xC0, AUX_REG, BPF_REG_AX));
1993 /* if unsigned '>', goto load */
1994 EMIT2(X86_JA, 0);
1995 end_of_jmp = prog;
1997 /* xor dst_reg, dst_reg */
1998 emit_mov_imm32(&prog, false, dst_reg, 0);
1999 /* jmp byte_after_ldx */
2000 EMIT2(0xEB, 0);
2002 /* populate jmp_offset for JAE above to jump to start_of_ldx */
2003 start_of_ldx = prog;
2004 end_of_jmp[-1] = start_of_ldx - end_of_jmp;
2006 if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
2007 BPF_MODE(insn->code) == BPF_MEMSX)
2008 emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2009 else
2010 emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
2011 if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
2012 BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
2013 struct exception_table_entry *ex;
2014 u8 *_insn = image + proglen + (start_of_ldx - temp);
2015 s64 delta;
2017 /* populate jmp_offset for JMP above */
2018 start_of_ldx[-1] = prog - start_of_ldx;
2020 if (!bpf_prog->aux->extable)
2021 break;
2023 if (excnt >= bpf_prog->aux->num_exentries) {
2024 pr_err("ex gen bug\n");
2025 return -EFAULT;
2027 ex = &bpf_prog->aux->extable[excnt++];
2029 delta = _insn - (u8 *)&ex->insn;
2030 if (!is_simm32(delta)) {
2031 pr_err("extable->insn doesn't fit into 32-bit\n");
2032 return -EFAULT;
2034 /* switch ex to rw buffer for writes */
2035 ex = (void *)rw_image + ((void *)ex - (void *)image);
2037 ex->insn = delta;
2039 ex->data = EX_TYPE_BPF;
2041 if (dst_reg > BPF_REG_9) {
2042 pr_err("verifier error\n");
2043 return -EFAULT;
2046 * Compute size of x86 insn and its target dest x86 register.
2047 * ex_handler_bpf() will use lower 8 bits to adjust
2048 * pt_regs->ip to jump over this x86 instruction
2049 * and upper bits to figure out which pt_regs to zero out.
2050 * End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
2051 * of 4 bytes will be ignored and rbx will be zero inited.
2053 ex->fixup = (prog - start_of_ldx) | (reg2pt_regs[dst_reg] << 8);
2055 break;
2057 case BPF_STX | BPF_ATOMIC | BPF_W:
2058 case BPF_STX | BPF_ATOMIC | BPF_DW:
2059 if (insn->imm == (BPF_AND | BPF_FETCH) ||
2060 insn->imm == (BPF_OR | BPF_FETCH) ||
2061 insn->imm == (BPF_XOR | BPF_FETCH)) {
2062 bool is64 = BPF_SIZE(insn->code) == BPF_DW;
2063 u32 real_src_reg = src_reg;
2064 u32 real_dst_reg = dst_reg;
2065 u8 *branch_target;
2068 * Can't be implemented with a single x86 insn.
2069 * Need to do a CMPXCHG loop.
2072 /* Will need RAX as a CMPXCHG operand so save R0 */
2073 emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0);
2074 if (src_reg == BPF_REG_0)
2075 real_src_reg = BPF_REG_AX;
2076 if (dst_reg == BPF_REG_0)
2077 real_dst_reg = BPF_REG_AX;
2079 branch_target = prog;
2080 /* Load old value */
2081 emit_ldx(&prog, BPF_SIZE(insn->code),
2082 BPF_REG_0, real_dst_reg, insn->off);
2084 * Perform the (commutative) operation locally,
2085 * put the result in the AUX_REG.
2087 emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0);
2088 maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64);
2089 EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)],
2090 add_2reg(0xC0, AUX_REG, real_src_reg));
2091 /* Attempt to swap in new value */
2092 err = emit_atomic(&prog, BPF_CMPXCHG,
2093 real_dst_reg, AUX_REG,
2094 insn->off,
2095 BPF_SIZE(insn->code));
2096 if (WARN_ON(err))
2097 return err;
2099 * ZF tells us whether we won the race. If it's
2100 * cleared we need to try again.
2102 EMIT2(X86_JNE, -(prog - branch_target) - 2);
2103 /* Return the pre-modification value */
2104 emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0);
2105 /* Restore R0 after clobbering RAX */
2106 emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX);
2107 break;
2110 err = emit_atomic(&prog, insn->imm, dst_reg, src_reg,
2111 insn->off, BPF_SIZE(insn->code));
2112 if (err)
2113 return err;
2114 break;
2116 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
2117 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
2118 start_of_ldx = prog;
2119 err = emit_atomic_index(&prog, insn->imm, BPF_SIZE(insn->code),
2120 dst_reg, src_reg, X86_REG_R12, insn->off);
2121 if (err)
2122 return err;
2123 goto populate_extable;
2125 /* call */
2126 case BPF_JMP | BPF_CALL: {
2127 u8 *ip = image + addrs[i - 1];
2129 func = (u8 *) __bpf_call_base + imm32;
2130 if (tail_call_reachable) {
2131 LOAD_TAIL_CALL_CNT_PTR(bpf_prog->aux->stack_depth);
2132 ip += 7;
2134 if (!imm32)
2135 return -EINVAL;
2136 ip += x86_call_depth_emit_accounting(&prog, func, ip);
2137 if (emit_call(&prog, func, ip))
2138 return -EINVAL;
2139 break;
2142 case BPF_JMP | BPF_TAIL_CALL:
2143 if (imm32)
2144 emit_bpf_tail_call_direct(bpf_prog,
2145 &bpf_prog->aux->poke_tab[imm32 - 1],
2146 &prog, image + addrs[i - 1],
2147 callee_regs_used,
2148 bpf_prog->aux->stack_depth,
2149 ctx);
2150 else
2151 emit_bpf_tail_call_indirect(bpf_prog,
2152 &prog,
2153 callee_regs_used,
2154 bpf_prog->aux->stack_depth,
2155 image + addrs[i - 1],
2156 ctx);
2157 break;
2159 /* cond jump */
2160 case BPF_JMP | BPF_JEQ | BPF_X:
2161 case BPF_JMP | BPF_JNE | BPF_X:
2162 case BPF_JMP | BPF_JGT | BPF_X:
2163 case BPF_JMP | BPF_JLT | BPF_X:
2164 case BPF_JMP | BPF_JGE | BPF_X:
2165 case BPF_JMP | BPF_JLE | BPF_X:
2166 case BPF_JMP | BPF_JSGT | BPF_X:
2167 case BPF_JMP | BPF_JSLT | BPF_X:
2168 case BPF_JMP | BPF_JSGE | BPF_X:
2169 case BPF_JMP | BPF_JSLE | BPF_X:
2170 case BPF_JMP32 | BPF_JEQ | BPF_X:
2171 case BPF_JMP32 | BPF_JNE | BPF_X:
2172 case BPF_JMP32 | BPF_JGT | BPF_X:
2173 case BPF_JMP32 | BPF_JLT | BPF_X:
2174 case BPF_JMP32 | BPF_JGE | BPF_X:
2175 case BPF_JMP32 | BPF_JLE | BPF_X:
2176 case BPF_JMP32 | BPF_JSGT | BPF_X:
2177 case BPF_JMP32 | BPF_JSLT | BPF_X:
2178 case BPF_JMP32 | BPF_JSGE | BPF_X:
2179 case BPF_JMP32 | BPF_JSLE | BPF_X:
2180 /* cmp dst_reg, src_reg */
2181 maybe_emit_mod(&prog, dst_reg, src_reg,
2182 BPF_CLASS(insn->code) == BPF_JMP);
2183 EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
2184 goto emit_cond_jmp;
2186 case BPF_JMP | BPF_JSET | BPF_X:
2187 case BPF_JMP32 | BPF_JSET | BPF_X:
2188 /* test dst_reg, src_reg */
2189 maybe_emit_mod(&prog, dst_reg, src_reg,
2190 BPF_CLASS(insn->code) == BPF_JMP);
2191 EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
2192 goto emit_cond_jmp;
2194 case BPF_JMP | BPF_JSET | BPF_K:
2195 case BPF_JMP32 | BPF_JSET | BPF_K:
2196 /* test dst_reg, imm32 */
2197 maybe_emit_1mod(&prog, dst_reg,
2198 BPF_CLASS(insn->code) == BPF_JMP);
2199 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
2200 goto emit_cond_jmp;
2202 case BPF_JMP | BPF_JEQ | BPF_K:
2203 case BPF_JMP | BPF_JNE | BPF_K:
2204 case BPF_JMP | BPF_JGT | BPF_K:
2205 case BPF_JMP | BPF_JLT | BPF_K:
2206 case BPF_JMP | BPF_JGE | BPF_K:
2207 case BPF_JMP | BPF_JLE | BPF_K:
2208 case BPF_JMP | BPF_JSGT | BPF_K:
2209 case BPF_JMP | BPF_JSLT | BPF_K:
2210 case BPF_JMP | BPF_JSGE | BPF_K:
2211 case BPF_JMP | BPF_JSLE | BPF_K:
2212 case BPF_JMP32 | BPF_JEQ | BPF_K:
2213 case BPF_JMP32 | BPF_JNE | BPF_K:
2214 case BPF_JMP32 | BPF_JGT | BPF_K:
2215 case BPF_JMP32 | BPF_JLT | BPF_K:
2216 case BPF_JMP32 | BPF_JGE | BPF_K:
2217 case BPF_JMP32 | BPF_JLE | BPF_K:
2218 case BPF_JMP32 | BPF_JSGT | BPF_K:
2219 case BPF_JMP32 | BPF_JSLT | BPF_K:
2220 case BPF_JMP32 | BPF_JSGE | BPF_K:
2221 case BPF_JMP32 | BPF_JSLE | BPF_K:
2222 /* test dst_reg, dst_reg to save one extra byte */
2223 if (imm32 == 0) {
2224 maybe_emit_mod(&prog, dst_reg, dst_reg,
2225 BPF_CLASS(insn->code) == BPF_JMP);
2226 EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
2227 goto emit_cond_jmp;
2230 /* cmp dst_reg, imm8/32 */
2231 maybe_emit_1mod(&prog, dst_reg,
2232 BPF_CLASS(insn->code) == BPF_JMP);
2234 if (is_imm8(imm32))
2235 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
2236 else
2237 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
2239 emit_cond_jmp: /* Convert BPF opcode to x86 */
2240 switch (BPF_OP(insn->code)) {
2241 case BPF_JEQ:
2242 jmp_cond = X86_JE;
2243 break;
2244 case BPF_JSET:
2245 case BPF_JNE:
2246 jmp_cond = X86_JNE;
2247 break;
2248 case BPF_JGT:
2249 /* GT is unsigned '>', JA in x86 */
2250 jmp_cond = X86_JA;
2251 break;
2252 case BPF_JLT:
2253 /* LT is unsigned '<', JB in x86 */
2254 jmp_cond = X86_JB;
2255 break;
2256 case BPF_JGE:
2257 /* GE is unsigned '>=', JAE in x86 */
2258 jmp_cond = X86_JAE;
2259 break;
2260 case BPF_JLE:
2261 /* LE is unsigned '<=', JBE in x86 */
2262 jmp_cond = X86_JBE;
2263 break;
2264 case BPF_JSGT:
2265 /* Signed '>', GT in x86 */
2266 jmp_cond = X86_JG;
2267 break;
2268 case BPF_JSLT:
2269 /* Signed '<', LT in x86 */
2270 jmp_cond = X86_JL;
2271 break;
2272 case BPF_JSGE:
2273 /* Signed '>=', GE in x86 */
2274 jmp_cond = X86_JGE;
2275 break;
2276 case BPF_JSLE:
2277 /* Signed '<=', LE in x86 */
2278 jmp_cond = X86_JLE;
2279 break;
2280 default: /* to silence GCC warning */
2281 return -EFAULT;
2283 jmp_offset = addrs[i + insn->off] - addrs[i];
2284 if (is_imm8_jmp_offset(jmp_offset)) {
2285 if (jmp_padding) {
2286 /* To keep the jmp_offset valid, the extra bytes are
2287 * padded before the jump insn, so we subtract the
2288 * 2 bytes of jmp_cond insn from INSN_SZ_DIFF.
2290 * If the previous pass already emits an imm8
2291 * jmp_cond, then this BPF insn won't shrink, so
2292 * "nops" is 0.
2294 * On the other hand, if the previous pass emits an
2295 * imm32 jmp_cond, the extra 4 bytes(*) is padded to
2296 * keep the image from shrinking further.
2298 * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond
2299 * is 2 bytes, so the size difference is 4 bytes.
2301 nops = INSN_SZ_DIFF - 2;
2302 if (nops != 0 && nops != 4) {
2303 pr_err("unexpected jmp_cond padding: %d bytes\n",
2304 nops);
2305 return -EFAULT;
2307 emit_nops(&prog, nops);
2309 EMIT2(jmp_cond, jmp_offset);
2310 } else if (is_simm32(jmp_offset)) {
2311 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
2312 } else {
2313 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
2314 return -EFAULT;
2317 break;
2319 case BPF_JMP | BPF_JA:
2320 case BPF_JMP32 | BPF_JA:
2321 if (BPF_CLASS(insn->code) == BPF_JMP) {
2322 if (insn->off == -1)
2323 /* -1 jmp instructions will always jump
2324 * backwards two bytes. Explicitly handling
2325 * this case avoids wasting too many passes
2326 * when there are long sequences of replaced
2327 * dead code.
2329 jmp_offset = -2;
2330 else
2331 jmp_offset = addrs[i + insn->off] - addrs[i];
2332 } else {
2333 if (insn->imm == -1)
2334 jmp_offset = -2;
2335 else
2336 jmp_offset = addrs[i + insn->imm] - addrs[i];
2339 if (!jmp_offset) {
2341 * If jmp_padding is enabled, the extra nops will
2342 * be inserted. Otherwise, optimize out nop jumps.
2344 if (jmp_padding) {
2345 /* There are 3 possible conditions.
2346 * (1) This BPF_JA is already optimized out in
2347 * the previous run, so there is no need
2348 * to pad any extra byte (0 byte).
2349 * (2) The previous pass emits an imm8 jmp,
2350 * so we pad 2 bytes to match the previous
2351 * insn size.
2352 * (3) Similarly, the previous pass emits an
2353 * imm32 jmp, and 5 bytes is padded.
2355 nops = INSN_SZ_DIFF;
2356 if (nops != 0 && nops != 2 && nops != 5) {
2357 pr_err("unexpected nop jump padding: %d bytes\n",
2358 nops);
2359 return -EFAULT;
2361 emit_nops(&prog, nops);
2363 break;
2365 emit_jmp:
2366 if (is_imm8_jmp_offset(jmp_offset)) {
2367 if (jmp_padding) {
2368 /* To avoid breaking jmp_offset, the extra bytes
2369 * are padded before the actual jmp insn, so
2370 * 2 bytes is subtracted from INSN_SZ_DIFF.
2372 * If the previous pass already emits an imm8
2373 * jmp, there is nothing to pad (0 byte).
2375 * If it emits an imm32 jmp (5 bytes) previously
2376 * and now an imm8 jmp (2 bytes), then we pad
2377 * (5 - 2 = 3) bytes to stop the image from
2378 * shrinking further.
2380 nops = INSN_SZ_DIFF - 2;
2381 if (nops != 0 && nops != 3) {
2382 pr_err("unexpected jump padding: %d bytes\n",
2383 nops);
2384 return -EFAULT;
2386 emit_nops(&prog, INSN_SZ_DIFF - 2);
2388 EMIT2(0xEB, jmp_offset);
2389 } else if (is_simm32(jmp_offset)) {
2390 EMIT1_off32(0xE9, jmp_offset);
2391 } else {
2392 pr_err("jmp gen bug %llx\n", jmp_offset);
2393 return -EFAULT;
2395 break;
2397 case BPF_JMP | BPF_EXIT:
2398 if (seen_exit) {
2399 jmp_offset = ctx->cleanup_addr - addrs[i];
2400 goto emit_jmp;
2402 seen_exit = true;
2403 /* Update cleanup_addr */
2404 ctx->cleanup_addr = proglen;
2405 if (bpf_prog->aux->exception_boundary) {
2406 pop_callee_regs(&prog, all_callee_regs_used);
2407 pop_r12(&prog);
2408 } else {
2409 pop_callee_regs(&prog, callee_regs_used);
2410 if (arena_vm_start)
2411 pop_r12(&prog);
2413 EMIT1(0xC9); /* leave */
2414 emit_return(&prog, image + addrs[i - 1] + (prog - temp));
2415 break;
2417 default:
2419 * By design x86-64 JIT should support all BPF instructions.
2420 * This error will be seen if new instruction was added
2421 * to the interpreter, but not to the JIT, or if there is
2422 * junk in bpf_prog.
2424 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
2425 return -EINVAL;
2428 ilen = prog - temp;
2429 if (ilen > BPF_MAX_INSN_SIZE) {
2430 pr_err("bpf_jit: fatal insn size error\n");
2431 return -EFAULT;
2434 if (image) {
2436 * When populating the image, assert that:
2438 * i) We do not write beyond the allocated space, and
2439 * ii) addrs[i] did not change from the prior run, in order
2440 * to validate assumptions made for computing branch
2441 * displacements.
2443 if (unlikely(proglen + ilen > oldproglen ||
2444 proglen + ilen != addrs[i])) {
2445 pr_err("bpf_jit: fatal error\n");
2446 return -EFAULT;
2448 memcpy(rw_image + proglen, temp, ilen);
2450 proglen += ilen;
2451 addrs[i] = proglen;
2452 prog = temp;
2455 if (image && excnt != bpf_prog->aux->num_exentries) {
2456 pr_err("extable is not populated\n");
2457 return -EFAULT;
2459 return proglen;
2462 static void clean_stack_garbage(const struct btf_func_model *m,
2463 u8 **pprog, int nr_stack_slots,
2464 int stack_size)
2466 int arg_size, off;
2467 u8 *prog;
2469 /* Generally speaking, the compiler will pass the arguments
2470 * on-stack with "push" instruction, which will take 8-byte
2471 * on the stack. In this case, there won't be garbage values
2472 * while we copy the arguments from origin stack frame to current
2473 * in BPF_DW.
2475 * However, sometimes the compiler will only allocate 4-byte on
2476 * the stack for the arguments. For now, this case will only
2477 * happen if there is only one argument on-stack and its size
2478 * not more than 4 byte. In this case, there will be garbage
2479 * values on the upper 4-byte where we store the argument on
2480 * current stack frame.
2482 * arguments on origin stack:
2484 * stack_arg_1(4-byte) xxx(4-byte)
2486 * what we copy:
2488 * stack_arg_1(8-byte): stack_arg_1(origin) xxx
2490 * and the xxx is the garbage values which we should clean here.
2492 if (nr_stack_slots != 1)
2493 return;
2495 /* the size of the last argument */
2496 arg_size = m->arg_size[m->nr_args - 1];
2497 if (arg_size <= 4) {
2498 off = -(stack_size - 4);
2499 prog = *pprog;
2500 /* mov DWORD PTR [rbp + off], 0 */
2501 if (!is_imm8(off))
2502 EMIT2_off32(0xC7, 0x85, off);
2503 else
2504 EMIT3(0xC7, 0x45, off);
2505 EMIT(0, 4);
2506 *pprog = prog;
2510 /* get the count of the regs that are used to pass arguments */
2511 static int get_nr_used_regs(const struct btf_func_model *m)
2513 int i, arg_regs, nr_used_regs = 0;
2515 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2516 arg_regs = (m->arg_size[i] + 7) / 8;
2517 if (nr_used_regs + arg_regs <= 6)
2518 nr_used_regs += arg_regs;
2520 if (nr_used_regs >= 6)
2521 break;
2524 return nr_used_regs;
2527 static void save_args(const struct btf_func_model *m, u8 **prog,
2528 int stack_size, bool for_call_origin)
2530 int arg_regs, first_off = 0, nr_regs = 0, nr_stack_slots = 0;
2531 int i, j;
2533 /* Store function arguments to stack.
2534 * For a function that accepts two pointers the sequence will be:
2535 * mov QWORD PTR [rbp-0x10],rdi
2536 * mov QWORD PTR [rbp-0x8],rsi
2538 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2539 arg_regs = (m->arg_size[i] + 7) / 8;
2541 /* According to the research of Yonghong, struct members
2542 * should be all in register or all on the stack.
2543 * Meanwhile, the compiler will pass the argument on regs
2544 * if the remaining regs can hold the argument.
2546 * Disorder of the args can happen. For example:
2548 * struct foo_struct {
2549 * long a;
2550 * int b;
2551 * };
2552 * int foo(char, char, char, char, char, struct foo_struct,
2553 * char);
2555 * the arg1-5,arg7 will be passed by regs, and arg6 will
2556 * by stack.
2558 if (nr_regs + arg_regs > 6) {
2559 /* copy function arguments from origin stack frame
2560 * into current stack frame.
2562 * The starting address of the arguments on-stack
2563 * is:
2564 * rbp + 8(push rbp) +
2565 * 8(return addr of origin call) +
2566 * 8(return addr of the caller)
2567 * which means: rbp + 24
2569 for (j = 0; j < arg_regs; j++) {
2570 emit_ldx(prog, BPF_DW, BPF_REG_0, BPF_REG_FP,
2571 nr_stack_slots * 8 + 0x18);
2572 emit_stx(prog, BPF_DW, BPF_REG_FP, BPF_REG_0,
2573 -stack_size);
2575 if (!nr_stack_slots)
2576 first_off = stack_size;
2577 stack_size -= 8;
2578 nr_stack_slots++;
2580 } else {
2581 /* Only copy the arguments on-stack to current
2582 * 'stack_size' and ignore the regs, used to
2583 * prepare the arguments on-stack for origin call.
2585 if (for_call_origin) {
2586 nr_regs += arg_regs;
2587 continue;
2590 /* copy the arguments from regs into stack */
2591 for (j = 0; j < arg_regs; j++) {
2592 emit_stx(prog, BPF_DW, BPF_REG_FP,
2593 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2594 -stack_size);
2595 stack_size -= 8;
2596 nr_regs++;
2601 clean_stack_garbage(m, prog, nr_stack_slots, first_off);
2604 static void restore_regs(const struct btf_func_model *m, u8 **prog,
2605 int stack_size)
2607 int i, j, arg_regs, nr_regs = 0;
2609 /* Restore function arguments from stack.
2610 * For a function that accepts two pointers the sequence will be:
2611 * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
2612 * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
2614 * The logic here is similar to what we do in save_args()
2616 for (i = 0; i < min_t(int, m->nr_args, MAX_BPF_FUNC_ARGS); i++) {
2617 arg_regs = (m->arg_size[i] + 7) / 8;
2618 if (nr_regs + arg_regs <= 6) {
2619 for (j = 0; j < arg_regs; j++) {
2620 emit_ldx(prog, BPF_DW,
2621 nr_regs == 5 ? X86_REG_R9 : BPF_REG_1 + nr_regs,
2622 BPF_REG_FP,
2623 -stack_size);
2624 stack_size -= 8;
2625 nr_regs++;
2627 } else {
2628 stack_size -= 8 * arg_regs;
2631 if (nr_regs >= 6)
2632 break;
2636 static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog,
2637 struct bpf_tramp_link *l, int stack_size,
2638 int run_ctx_off, bool save_ret,
2639 void *image, void *rw_image)
2641 u8 *prog = *pprog;
2642 u8 *jmp_insn;
2643 int ctx_cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
2644 struct bpf_prog *p = l->link.prog;
2645 u64 cookie = l->cookie;
2647 /* mov rdi, cookie */
2648 emit_mov_imm64(&prog, BPF_REG_1, (long) cookie >> 32, (u32) (long) cookie);
2650 /* Prepare struct bpf_tramp_run_ctx.
2652 * bpf_tramp_run_ctx is already preserved by
2653 * arch_prepare_bpf_trampoline().
2655 * mov QWORD PTR [rbp - run_ctx_off + ctx_cookie_off], rdi
2657 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_1, -run_ctx_off + ctx_cookie_off);
2659 /* arg1: mov rdi, progs[i] */
2660 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2661 /* arg2: lea rsi, [rbp - ctx_cookie_off] */
2662 if (!is_imm8(-run_ctx_off))
2663 EMIT3_off32(0x48, 0x8D, 0xB5, -run_ctx_off);
2664 else
2665 EMIT4(0x48, 0x8D, 0x75, -run_ctx_off);
2667 if (emit_rsb_call(&prog, bpf_trampoline_enter(p), image + (prog - (u8 *)rw_image)))
2668 return -EINVAL;
2669 /* remember prog start time returned by __bpf_prog_enter */
2670 emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
2672 /* if (__bpf_prog_enter*(prog) == 0)
2673 * goto skip_exec_of_prog;
2675 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
2676 /* emit 2 nops that will be replaced with JE insn */
2677 jmp_insn = prog;
2678 emit_nops(&prog, 2);
2680 /* arg1: lea rdi, [rbp - stack_size] */
2681 if (!is_imm8(-stack_size))
2682 EMIT3_off32(0x48, 0x8D, 0xBD, -stack_size);
2683 else
2684 EMIT4(0x48, 0x8D, 0x7D, -stack_size);
2685 /* arg2: progs[i]->insnsi for interpreter */
2686 if (!p->jited)
2687 emit_mov_imm64(&prog, BPF_REG_2,
2688 (long) p->insnsi >> 32,
2689 (u32) (long) p->insnsi);
2690 /* call JITed bpf program or interpreter */
2691 if (emit_rsb_call(&prog, p->bpf_func, image + (prog - (u8 *)rw_image)))
2692 return -EINVAL;
2695 * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return
2696 * of the previous call which is then passed on the stack to
2697 * the next BPF program.
2699 * BPF_TRAMP_FENTRY trampoline may need to return the return
2700 * value of BPF_PROG_TYPE_STRUCT_OPS prog.
2702 if (save_ret)
2703 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2705 /* replace 2 nops with JE insn, since jmp target is known */
2706 jmp_insn[0] = X86_JE;
2707 jmp_insn[1] = prog - jmp_insn - 2;
2709 /* arg1: mov rdi, progs[i] */
2710 emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p);
2711 /* arg2: mov rsi, rbx <- start time in nsec */
2712 emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
2713 /* arg3: lea rdx, [rbp - run_ctx_off] */
2714 if (!is_imm8(-run_ctx_off))
2715 EMIT3_off32(0x48, 0x8D, 0x95, -run_ctx_off);
2716 else
2717 EMIT4(0x48, 0x8D, 0x55, -run_ctx_off);
2718 if (emit_rsb_call(&prog, bpf_trampoline_exit(p), image + (prog - (u8 *)rw_image)))
2719 return -EINVAL;
2721 *pprog = prog;
2722 return 0;
2725 static void emit_align(u8 **pprog, u32 align)
2727 u8 *target, *prog = *pprog;
2729 target = PTR_ALIGN(prog, align);
2730 if (target != prog)
2731 emit_nops(&prog, target - prog);
2733 *pprog = prog;
2736 static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond)
2738 u8 *prog = *pprog;
2739 s64 offset;
2741 offset = func - (ip + 2 + 4);
2742 if (!is_simm32(offset)) {
2743 pr_err("Target %p is out of range\n", func);
2744 return -EINVAL;
2746 EMIT2_off32(0x0F, jmp_cond + 0x10, offset);
2747 *pprog = prog;
2748 return 0;
2751 static int invoke_bpf(const struct btf_func_model *m, u8 **pprog,
2752 struct bpf_tramp_links *tl, int stack_size,
2753 int run_ctx_off, bool save_ret,
2754 void *image, void *rw_image)
2756 int i;
2757 u8 *prog = *pprog;
2759 for (i = 0; i < tl->nr_links; i++) {
2760 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size,
2761 run_ctx_off, save_ret, image, rw_image))
2762 return -EINVAL;
2764 *pprog = prog;
2765 return 0;
2768 static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog,
2769 struct bpf_tramp_links *tl, int stack_size,
2770 int run_ctx_off, u8 **branches,
2771 void *image, void *rw_image)
2773 u8 *prog = *pprog;
2774 int i;
2776 /* The first fmod_ret program will receive a garbage return value.
2777 * Set this to 0 to avoid confusing the program.
2779 emit_mov_imm32(&prog, false, BPF_REG_0, 0);
2780 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
2781 for (i = 0; i < tl->nr_links; i++) {
2782 if (invoke_bpf_prog(m, &prog, tl->links[i], stack_size, run_ctx_off, true,
2783 image, rw_image))
2784 return -EINVAL;
2786 /* mod_ret prog stored return value into [rbp - 8]. Emit:
2787 * if (*(u64 *)(rbp - 8) != 0)
2788 * goto do_fexit;
2790 /* cmp QWORD PTR [rbp - 0x8], 0x0 */
2791 EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00);
2793 /* Save the location of the branch and Generate 6 nops
2794 * (4 bytes for an offset and 2 bytes for the jump) These nops
2795 * are replaced with a conditional jump once do_fexit (i.e. the
2796 * start of the fexit invocation) is finalized.
2798 branches[i] = prog;
2799 emit_nops(&prog, 4 + 2);
2802 *pprog = prog;
2803 return 0;
2806 /* mov rax, qword ptr [rbp - rounded_stack_depth - 8] */
2807 #define LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack) \
2808 __LOAD_TCC_PTR(-round_up(stack, 8) - 8)
2810 /* Example:
2811 * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
2812 * its 'struct btf_func_model' will be nr_args=2
2813 * The assembly code when eth_type_trans is executing after trampoline:
2815 * push rbp
2816 * mov rbp, rsp
2817 * sub rsp, 16 // space for skb and dev
2818 * push rbx // temp regs to pass start time
2819 * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
2820 * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
2821 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2822 * mov rbx, rax // remember start time in bpf stats are enabled
2823 * lea rdi, [rbp - 16] // R1==ctx of bpf prog
2824 * call addr_of_jited_FENTRY_prog
2825 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2826 * mov rsi, rbx // prog start time
2827 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2828 * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
2829 * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
2830 * pop rbx
2831 * leave
2832 * ret
2834 * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
2835 * replaced with 'call generated_bpf_trampoline'. When it returns
2836 * eth_type_trans will continue executing with original skb and dev pointers.
2838 * The assembly code when eth_type_trans is called from trampoline:
2840 * push rbp
2841 * mov rbp, rsp
2842 * sub rsp, 24 // space for skb, dev, return value
2843 * push rbx // temp regs to pass start time
2844 * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
2845 * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
2846 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2847 * mov rbx, rax // remember start time if bpf stats are enabled
2848 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2849 * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
2850 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2851 * mov rsi, rbx // prog start time
2852 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2853 * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
2854 * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
2855 * call eth_type_trans+5 // execute body of eth_type_trans
2856 * mov qword ptr [rbp - 8], rax // save return value
2857 * call __bpf_prog_enter // rcu_read_lock and preempt_disable
2858 * mov rbx, rax // remember start time in bpf stats are enabled
2859 * lea rdi, [rbp - 24] // R1==ctx of bpf prog
2860 * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
2861 * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
2862 * mov rsi, rbx // prog start time
2863 * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
2864 * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
2865 * pop rbx
2866 * leave
2867 * add rsp, 8 // skip eth_type_trans's frame
2868 * ret // return to its caller
2870 static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *rw_image,
2871 void *rw_image_end, void *image,
2872 const struct btf_func_model *m, u32 flags,
2873 struct bpf_tramp_links *tlinks,
2874 void *func_addr)
2876 int i, ret, nr_regs = m->nr_args, stack_size = 0;
2877 int regs_off, nregs_off, ip_off, run_ctx_off, arg_stack_off, rbx_off;
2878 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2879 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2880 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2881 void *orig_call = func_addr;
2882 u8 **branches = NULL;
2883 u8 *prog;
2884 bool save_ret;
2887 * F_INDIRECT is only compatible with F_RET_FENTRY_RET, it is
2888 * explicitly incompatible with F_CALL_ORIG | F_SKIP_FRAME | F_IP_ARG
2889 * because @func_addr.
2891 WARN_ON_ONCE((flags & BPF_TRAMP_F_INDIRECT) &&
2892 (flags & ~(BPF_TRAMP_F_INDIRECT | BPF_TRAMP_F_RET_FENTRY_RET)));
2894 /* extra registers for struct arguments */
2895 for (i = 0; i < m->nr_args; i++) {
2896 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2897 nr_regs += (m->arg_size[i] + 7) / 8 - 1;
2900 /* x86-64 supports up to MAX_BPF_FUNC_ARGS arguments. 1-6
2901 * are passed through regs, the remains are through stack.
2903 if (nr_regs > MAX_BPF_FUNC_ARGS)
2904 return -ENOTSUPP;
2906 /* Generated trampoline stack layout:
2908 * RBP + 8 [ return address ]
2909 * RBP + 0 [ RBP ]
2911 * RBP - 8 [ return value ] BPF_TRAMP_F_CALL_ORIG or
2912 * BPF_TRAMP_F_RET_FENTRY_RET flags
2914 * [ reg_argN ] always
2915 * [ ... ]
2916 * RBP - regs_off [ reg_arg1 ] program's ctx pointer
2918 * RBP - nregs_off [ regs count ] always
2920 * RBP - ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag
2922 * RBP - rbx_off [ rbx value ] always
2924 * RBP - run_ctx_off [ bpf_tramp_run_ctx ]
2926 * [ stack_argN ] BPF_TRAMP_F_CALL_ORIG
2927 * [ ... ]
2928 * [ stack_arg2 ]
2929 * RBP - arg_stack_off [ stack_arg1 ]
2930 * RSP [ tail_call_cnt_ptr ] BPF_TRAMP_F_TAIL_CALL_CTX
2933 /* room for return value of orig_call or fentry prog */
2934 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2935 if (save_ret)
2936 stack_size += 8;
2938 stack_size += nr_regs * 8;
2939 regs_off = stack_size;
2941 /* regs count */
2942 stack_size += 8;
2943 nregs_off = stack_size;
2945 if (flags & BPF_TRAMP_F_IP_ARG)
2946 stack_size += 8; /* room for IP address argument */
2948 ip_off = stack_size;
2950 stack_size += 8;
2951 rbx_off = stack_size;
2953 stack_size += (sizeof(struct bpf_tramp_run_ctx) + 7) & ~0x7;
2954 run_ctx_off = stack_size;
2956 if (nr_regs > 6 && (flags & BPF_TRAMP_F_CALL_ORIG)) {
2957 /* the space that used to pass arguments on-stack */
2958 stack_size += (nr_regs - get_nr_used_regs(m)) * 8;
2959 /* make sure the stack pointer is 16-byte aligned if we
2960 * need pass arguments on stack, which means
2961 * [stack_size + 8(rbp) + 8(rip) + 8(origin rip)]
2962 * should be 16-byte aligned. Following code depend on
2963 * that stack_size is already 8-byte aligned.
2965 stack_size += (stack_size % 16) ? 0 : 8;
2968 arg_stack_off = stack_size;
2970 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2971 /* skip patched call instruction and point orig_call to actual
2972 * body of the kernel function.
2974 if (is_endbr(*(u32 *)orig_call))
2975 orig_call += ENDBR_INSN_SIZE;
2976 orig_call += X86_PATCH_SIZE;
2979 prog = rw_image;
2981 if (flags & BPF_TRAMP_F_INDIRECT) {
2983 * Indirect call for bpf_struct_ops
2985 emit_cfi(&prog, cfi_get_func_hash(func_addr));
2986 } else {
2988 * Direct-call fentry stub, as such it needs accounting for the
2989 * __fentry__ call.
2991 x86_call_depth_emit_accounting(&prog, NULL, image);
2993 EMIT1(0x55); /* push rbp */
2994 EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
2995 if (!is_imm8(stack_size)) {
2996 /* sub rsp, stack_size */
2997 EMIT3_off32(0x48, 0x81, 0xEC, stack_size);
2998 } else {
2999 /* sub rsp, stack_size */
3000 EMIT4(0x48, 0x83, 0xEC, stack_size);
3002 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX)
3003 EMIT1(0x50); /* push rax */
3004 /* mov QWORD PTR [rbp - rbx_off], rbx */
3005 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_6, -rbx_off);
3007 /* Store number of argument registers of the traced function:
3008 * mov rax, nr_regs
3009 * mov QWORD PTR [rbp - nregs_off], rax
3011 emit_mov_imm64(&prog, BPF_REG_0, 0, (u32) nr_regs);
3012 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -nregs_off);
3014 if (flags & BPF_TRAMP_F_IP_ARG) {
3015 /* Store IP address of the traced function:
3016 * movabsq rax, func_addr
3017 * mov QWORD PTR [rbp - ip_off], rax
3019 emit_mov_imm64(&prog, BPF_REG_0, (long) func_addr >> 32, (u32) (long) func_addr);
3020 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -ip_off);
3023 save_args(m, &prog, regs_off, false);
3025 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3026 /* arg1: mov rdi, im */
3027 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3028 if (emit_rsb_call(&prog, __bpf_tramp_enter,
3029 image + (prog - (u8 *)rw_image))) {
3030 ret = -EINVAL;
3031 goto cleanup;
3035 if (fentry->nr_links) {
3036 if (invoke_bpf(m, &prog, fentry, regs_off, run_ctx_off,
3037 flags & BPF_TRAMP_F_RET_FENTRY_RET, image, rw_image))
3038 return -EINVAL;
3041 if (fmod_ret->nr_links) {
3042 branches = kcalloc(fmod_ret->nr_links, sizeof(u8 *),
3043 GFP_KERNEL);
3044 if (!branches)
3045 return -ENOMEM;
3047 if (invoke_bpf_mod_ret(m, &prog, fmod_ret, regs_off,
3048 run_ctx_off, branches, image, rw_image)) {
3049 ret = -EINVAL;
3050 goto cleanup;
3054 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3055 restore_regs(m, &prog, regs_off);
3056 save_args(m, &prog, arg_stack_off, true);
3058 if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3059 /* Before calling the original function, load the
3060 * tail_call_cnt_ptr from stack to rax.
3062 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3065 if (flags & BPF_TRAMP_F_ORIG_STACK) {
3066 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, 8);
3067 EMIT2(0xff, 0xd3); /* call *rbx */
3068 } else {
3069 /* call original function */
3070 if (emit_rsb_call(&prog, orig_call, image + (prog - (u8 *)rw_image))) {
3071 ret = -EINVAL;
3072 goto cleanup;
3075 /* remember return value in a stack for bpf prog to access */
3076 emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
3077 im->ip_after_call = image + (prog - (u8 *)rw_image);
3078 emit_nops(&prog, X86_PATCH_SIZE);
3081 if (fmod_ret->nr_links) {
3082 /* From Intel 64 and IA-32 Architectures Optimization
3083 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3084 * Coding Rule 11: All branch targets should be 16-byte
3085 * aligned.
3087 emit_align(&prog, 16);
3088 /* Update the branches saved in invoke_bpf_mod_ret with the
3089 * aligned address of do_fexit.
3091 for (i = 0; i < fmod_ret->nr_links; i++) {
3092 emit_cond_near_jump(&branches[i], image + (prog - (u8 *)rw_image),
3093 image + (branches[i] - (u8 *)rw_image), X86_JNE);
3097 if (fexit->nr_links) {
3098 if (invoke_bpf(m, &prog, fexit, regs_off, run_ctx_off,
3099 false, image, rw_image)) {
3100 ret = -EINVAL;
3101 goto cleanup;
3105 if (flags & BPF_TRAMP_F_RESTORE_REGS)
3106 restore_regs(m, &prog, regs_off);
3108 /* This needs to be done regardless. If there were fmod_ret programs,
3109 * the return value is only updated on the stack and still needs to be
3110 * restored to R0.
3112 if (flags & BPF_TRAMP_F_CALL_ORIG) {
3113 im->ip_epilogue = image + (prog - (u8 *)rw_image);
3114 /* arg1: mov rdi, im */
3115 emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im);
3116 if (emit_rsb_call(&prog, __bpf_tramp_exit, image + (prog - (u8 *)rw_image))) {
3117 ret = -EINVAL;
3118 goto cleanup;
3120 } else if (flags & BPF_TRAMP_F_TAIL_CALL_CTX) {
3121 /* Before running the original function, load the
3122 * tail_call_cnt_ptr from stack to rax.
3124 LOAD_TRAMP_TAIL_CALL_CNT_PTR(stack_size);
3127 /* restore return value of orig_call or fentry prog back into RAX */
3128 if (save_ret)
3129 emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
3131 emit_ldx(&prog, BPF_DW, BPF_REG_6, BPF_REG_FP, -rbx_off);
3132 EMIT1(0xC9); /* leave */
3133 if (flags & BPF_TRAMP_F_SKIP_FRAME) {
3134 /* skip our return address and return to parent */
3135 EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
3137 emit_return(&prog, image + (prog - (u8 *)rw_image));
3138 /* Make sure the trampoline generation logic doesn't overflow */
3139 if (WARN_ON_ONCE(prog > (u8 *)rw_image_end - BPF_INSN_SAFETY)) {
3140 ret = -EFAULT;
3141 goto cleanup;
3143 ret = prog - (u8 *)rw_image + BPF_INSN_SAFETY;
3145 cleanup:
3146 kfree(branches);
3147 return ret;
3150 void *arch_alloc_bpf_trampoline(unsigned int size)
3152 return bpf_prog_pack_alloc(size, jit_fill_hole);
3155 void arch_free_bpf_trampoline(void *image, unsigned int size)
3157 bpf_prog_pack_free(image, size);
3160 int arch_protect_bpf_trampoline(void *image, unsigned int size)
3162 return 0;
3165 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
3166 const struct btf_func_model *m, u32 flags,
3167 struct bpf_tramp_links *tlinks,
3168 void *func_addr)
3170 void *rw_image, *tmp;
3171 int ret;
3172 u32 size = image_end - image;
3174 /* rw_image doesn't need to be in module memory range, so we can
3175 * use kvmalloc.
3177 rw_image = kvmalloc(size, GFP_KERNEL);
3178 if (!rw_image)
3179 return -ENOMEM;
3181 ret = __arch_prepare_bpf_trampoline(im, rw_image, rw_image + size, image, m,
3182 flags, tlinks, func_addr);
3183 if (ret < 0)
3184 goto out;
3186 tmp = bpf_arch_text_copy(image, rw_image, size);
3187 if (IS_ERR(tmp))
3188 ret = PTR_ERR(tmp);
3189 out:
3190 kvfree(rw_image);
3191 return ret;
3194 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
3195 struct bpf_tramp_links *tlinks, void *func_addr)
3197 struct bpf_tramp_image im;
3198 void *image;
3199 int ret;
3201 /* Allocate a temporary buffer for __arch_prepare_bpf_trampoline().
3202 * This will NOT cause fragmentation in direct map, as we do not
3203 * call set_memory_*() on this buffer.
3205 * We cannot use kvmalloc here, because we need image to be in
3206 * module memory range.
3208 image = bpf_jit_alloc_exec(PAGE_SIZE);
3209 if (!image)
3210 return -ENOMEM;
3212 ret = __arch_prepare_bpf_trampoline(&im, image, image + PAGE_SIZE, image,
3213 m, flags, tlinks, func_addr);
3214 bpf_jit_free_exec(image);
3215 return ret;
3218 static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs, u8 *image, u8 *buf)
3220 u8 *jg_reloc, *prog = *pprog;
3221 int pivot, err, jg_bytes = 1;
3222 s64 jg_offset;
3224 if (a == b) {
3225 /* Leaf node of recursion, i.e. not a range of indices
3226 * anymore.
3228 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3229 if (!is_simm32(progs[a]))
3230 return -1;
3231 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3),
3232 progs[a]);
3233 err = emit_cond_near_jump(&prog, /* je func */
3234 (void *)progs[a], image + (prog - buf),
3235 X86_JE);
3236 if (err)
3237 return err;
3239 emit_indirect_jump(&prog, 2 /* rdx */, image + (prog - buf));
3241 *pprog = prog;
3242 return 0;
3245 /* Not a leaf node, so we pivot, and recursively descend into
3246 * the lower and upper ranges.
3248 pivot = (b - a) / 2;
3249 EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */
3250 if (!is_simm32(progs[a + pivot]))
3251 return -1;
3252 EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]);
3254 if (pivot > 2) { /* jg upper_part */
3255 /* Require near jump. */
3256 jg_bytes = 4;
3257 EMIT2_off32(0x0F, X86_JG + 0x10, 0);
3258 } else {
3259 EMIT2(X86_JG, 0);
3261 jg_reloc = prog;
3263 err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */
3264 progs, image, buf);
3265 if (err)
3266 return err;
3268 /* From Intel 64 and IA-32 Architectures Optimization
3269 * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler
3270 * Coding Rule 11: All branch targets should be 16-byte
3271 * aligned.
3273 emit_align(&prog, 16);
3274 jg_offset = prog - jg_reloc;
3275 emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes);
3277 err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */
3278 b, progs, image, buf);
3279 if (err)
3280 return err;
3282 *pprog = prog;
3283 return 0;
3286 static int cmp_ips(const void *a, const void *b)
3288 const s64 *ipa = a;
3289 const s64 *ipb = b;
3291 if (*ipa > *ipb)
3292 return 1;
3293 if (*ipa < *ipb)
3294 return -1;
3295 return 0;
3298 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs)
3300 u8 *prog = buf;
3302 sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL);
3303 return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs, image, buf);
3306 struct x64_jit_data {
3307 struct bpf_binary_header *rw_header;
3308 struct bpf_binary_header *header;
3309 int *addrs;
3310 u8 *image;
3311 int proglen;
3312 struct jit_context ctx;
3315 #define MAX_PASSES 20
3316 #define PADDING_PASSES (MAX_PASSES - 5)
3318 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
3320 struct bpf_binary_header *rw_header = NULL;
3321 struct bpf_binary_header *header = NULL;
3322 struct bpf_prog *tmp, *orig_prog = prog;
3323 struct x64_jit_data *jit_data;
3324 int proglen, oldproglen = 0;
3325 struct jit_context ctx = {};
3326 bool tmp_blinded = false;
3327 bool extra_pass = false;
3328 bool padding = false;
3329 u8 *rw_image = NULL;
3330 u8 *image = NULL;
3331 int *addrs;
3332 int pass;
3333 int i;
3335 if (!prog->jit_requested)
3336 return orig_prog;
3338 tmp = bpf_jit_blind_constants(prog);
3340 * If blinding was requested and we failed during blinding,
3341 * we must fall back to the interpreter.
3343 if (IS_ERR(tmp))
3344 return orig_prog;
3345 if (tmp != prog) {
3346 tmp_blinded = true;
3347 prog = tmp;
3350 jit_data = prog->aux->jit_data;
3351 if (!jit_data) {
3352 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
3353 if (!jit_data) {
3354 prog = orig_prog;
3355 goto out;
3357 prog->aux->jit_data = jit_data;
3359 addrs = jit_data->addrs;
3360 if (addrs) {
3361 ctx = jit_data->ctx;
3362 oldproglen = jit_data->proglen;
3363 image = jit_data->image;
3364 header = jit_data->header;
3365 rw_header = jit_data->rw_header;
3366 rw_image = (void *)rw_header + ((void *)image - (void *)header);
3367 extra_pass = true;
3368 padding = true;
3369 goto skip_init_addrs;
3371 addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
3372 if (!addrs) {
3373 prog = orig_prog;
3374 goto out_addrs;
3378 * Before first pass, make a rough estimation of addrs[]
3379 * each BPF instruction is translated to less than 64 bytes
3381 for (proglen = 0, i = 0; i <= prog->len; i++) {
3382 proglen += 64;
3383 addrs[i] = proglen;
3385 ctx.cleanup_addr = proglen;
3386 skip_init_addrs:
3389 * JITed image shrinks with every pass and the loop iterates
3390 * until the image stops shrinking. Very large BPF programs
3391 * may converge on the last pass. In such case do one more
3392 * pass to emit the final image.
3394 for (pass = 0; pass < MAX_PASSES || image; pass++) {
3395 if (!padding && pass >= PADDING_PASSES)
3396 padding = true;
3397 proglen = do_jit(prog, addrs, image, rw_image, oldproglen, &ctx, padding);
3398 if (proglen <= 0) {
3399 out_image:
3400 image = NULL;
3401 if (header) {
3402 bpf_arch_text_copy(&header->size, &rw_header->size,
3403 sizeof(rw_header->size));
3404 bpf_jit_binary_pack_free(header, rw_header);
3406 /* Fall back to interpreter mode */
3407 prog = orig_prog;
3408 if (extra_pass) {
3409 prog->bpf_func = NULL;
3410 prog->jited = 0;
3411 prog->jited_len = 0;
3413 goto out_addrs;
3415 if (image) {
3416 if (proglen != oldproglen) {
3417 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
3418 proglen, oldproglen);
3419 goto out_image;
3421 break;
3423 if (proglen == oldproglen) {
3425 * The number of entries in extable is the number of BPF_LDX
3426 * insns that access kernel memory via "pointer to BTF type".
3427 * The verifier changed their opcode from LDX|MEM|size
3428 * to LDX|PROBE_MEM|size to make JITing easier.
3430 u32 align = __alignof__(struct exception_table_entry);
3431 u32 extable_size = prog->aux->num_exentries *
3432 sizeof(struct exception_table_entry);
3434 /* allocate module memory for x86 insns and extable */
3435 header = bpf_jit_binary_pack_alloc(roundup(proglen, align) + extable_size,
3436 &image, align, &rw_header, &rw_image,
3437 jit_fill_hole);
3438 if (!header) {
3439 prog = orig_prog;
3440 goto out_addrs;
3442 prog->aux->extable = (void *) image + roundup(proglen, align);
3444 oldproglen = proglen;
3445 cond_resched();
3448 if (bpf_jit_enable > 1)
3449 bpf_jit_dump(prog->len, proglen, pass + 1, rw_image);
3451 if (image) {
3452 if (!prog->is_func || extra_pass) {
3454 * bpf_jit_binary_pack_finalize fails in two scenarios:
3455 * 1) header is not pointing to proper module memory;
3456 * 2) the arch doesn't support bpf_arch_text_copy().
3458 * Both cases are serious bugs and justify WARN_ON.
3460 if (WARN_ON(bpf_jit_binary_pack_finalize(header, rw_header))) {
3461 /* header has been freed */
3462 header = NULL;
3463 goto out_image;
3466 bpf_tail_call_direct_fixup(prog);
3467 } else {
3468 jit_data->addrs = addrs;
3469 jit_data->ctx = ctx;
3470 jit_data->proglen = proglen;
3471 jit_data->image = image;
3472 jit_data->header = header;
3473 jit_data->rw_header = rw_header;
3476 * ctx.prog_offset is used when CFI preambles put code *before*
3477 * the function. See emit_cfi(). For FineIBT specifically this code
3478 * can also be executed and bpf_prog_kallsyms_add() will
3479 * generate an additional symbol to cover this, hence also
3480 * decrement proglen.
3482 prog->bpf_func = (void *)image + cfi_get_offset();
3483 prog->jited = 1;
3484 prog->jited_len = proglen - cfi_get_offset();
3485 } else {
3486 prog = orig_prog;
3489 if (!image || !prog->is_func || extra_pass) {
3490 if (image)
3491 bpf_prog_fill_jited_linfo(prog, addrs + 1);
3492 out_addrs:
3493 kvfree(addrs);
3494 kfree(jit_data);
3495 prog->aux->jit_data = NULL;
3497 out:
3498 if (tmp_blinded)
3499 bpf_jit_prog_release_other(prog, prog == orig_prog ?
3500 tmp : orig_prog);
3501 return prog;
3504 bool bpf_jit_supports_kfunc_call(void)
3506 return true;
3509 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
3511 if (text_poke_copy(dst, src, len) == NULL)
3512 return ERR_PTR(-EINVAL);
3513 return dst;
3516 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
3517 bool bpf_jit_supports_subprog_tailcalls(void)
3519 return true;
3522 bool bpf_jit_supports_percpu_insn(void)
3524 return true;
3527 void bpf_jit_free(struct bpf_prog *prog)
3529 if (prog->jited) {
3530 struct x64_jit_data *jit_data = prog->aux->jit_data;
3531 struct bpf_binary_header *hdr;
3534 * If we fail the final pass of JIT (from jit_subprogs),
3535 * the program may not be finalized yet. Call finalize here
3536 * before freeing it.
3538 if (jit_data) {
3539 bpf_jit_binary_pack_finalize(jit_data->header,
3540 jit_data->rw_header);
3541 kvfree(jit_data->addrs);
3542 kfree(jit_data);
3544 prog->bpf_func = (void *)prog->bpf_func - cfi_get_offset();
3545 hdr = bpf_jit_binary_pack_hdr(prog);
3546 bpf_jit_binary_pack_free(hdr, NULL);
3547 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
3550 bpf_prog_unlock_free(prog);
3553 bool bpf_jit_supports_exceptions(void)
3555 /* We unwind through both kernel frames (starting from within bpf_throw
3556 * call) and BPF frames. Therefore we require ORC unwinder to be enabled
3557 * to walk kernel frames and reach BPF frames in the stack trace.
3559 return IS_ENABLED(CONFIG_UNWINDER_ORC);
3562 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
3564 #if defined(CONFIG_UNWINDER_ORC)
3565 struct unwind_state state;
3566 unsigned long addr;
3568 for (unwind_start(&state, current, NULL, NULL); !unwind_done(&state);
3569 unwind_next_frame(&state)) {
3570 addr = unwind_get_return_address(&state);
3571 if (!addr || !consume_fn(cookie, (u64)addr, (u64)state.sp, (u64)state.bp))
3572 break;
3574 return;
3575 #endif
3576 WARN(1, "verification of programs using bpf_throw should have failed\n");
3579 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3580 struct bpf_prog *new, struct bpf_prog *old)
3582 u8 *old_addr, *new_addr, *old_bypass_addr;
3583 int ret;
3585 old_bypass_addr = old ? NULL : poke->bypass_addr;
3586 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
3587 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
3590 * On program loading or teardown, the program's kallsym entry
3591 * might not be in place, so we use __bpf_arch_text_poke to skip
3592 * the kallsyms check.
3594 if (new) {
3595 ret = __bpf_arch_text_poke(poke->tailcall_target,
3596 BPF_MOD_JUMP,
3597 old_addr, new_addr);
3598 BUG_ON(ret < 0);
3599 if (!old) {
3600 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3601 BPF_MOD_JUMP,
3602 poke->bypass_addr,
3603 NULL);
3604 BUG_ON(ret < 0);
3606 } else {
3607 ret = __bpf_arch_text_poke(poke->tailcall_bypass,
3608 BPF_MOD_JUMP,
3609 old_bypass_addr,
3610 poke->bypass_addr);
3611 BUG_ON(ret < 0);
3612 /* let other CPUs finish the execution of program
3613 * so that it will not possible to expose them
3614 * to invalid nop, stack unwind, nop state
3616 if (!ret)
3617 synchronize_rcu();
3618 ret = __bpf_arch_text_poke(poke->tailcall_target,
3619 BPF_MOD_JUMP,
3620 old_addr, NULL);
3621 BUG_ON(ret < 0);
3625 bool bpf_jit_supports_arena(void)
3627 return true;
3630 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
3632 if (!in_arena)
3633 return true;
3634 switch (insn->code) {
3635 case BPF_STX | BPF_ATOMIC | BPF_W:
3636 case BPF_STX | BPF_ATOMIC | BPF_DW:
3637 if (insn->imm == (BPF_AND | BPF_FETCH) ||
3638 insn->imm == (BPF_OR | BPF_FETCH) ||
3639 insn->imm == (BPF_XOR | BPF_FETCH))
3640 return false;
3642 return true;
3645 bool bpf_jit_supports_ptr_xchg(void)
3647 return true;
3650 /* x86-64 JIT emits its own code to filter user addresses so return 0 here */
3651 u64 bpf_arch_uaddress_limit(void)
3653 return 0;