1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "efi: " fmt
4 #include <linux/init.h>
5 #include <linux/kernel.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
8 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/memblock.h>
12 #include <linux/acpi.h>
13 #include <linux/dmi.h>
15 #include <asm/e820/api.h>
17 #include <asm/uv/uv.h>
18 #include <asm/cpu_device_id.h>
19 #include <asm/realmode.h>
20 #include <asm/reboot.h>
22 #define EFI_MIN_RESERVE 5120
24 #define EFI_DUMMY_GUID \
25 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
27 #define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */
28 #define QUARK_SECURITY_HEADER_SIZE 0x400
31 * Header prepended to the standard EFI capsule on Quark systems the are based
32 * on Intel firmware BSP.
33 * @csh_signature: Unique identifier to sanity check signed module
35 * @version: Current version of CSH used. Should be one for Quark A0.
36 * @modulesize: Size of the entire module including the module header
38 * @security_version_number_index: Index of SVN to use for validation of signed
40 * @security_version_number: Used to prevent against roll back of modules.
41 * @rsvd_module_id: Currently unused for Clanton (Quark).
42 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is
44 * @rsvd_date: BCD representation of build date as yyyymmdd, where
45 * yyyy=4 digit year, mm=1-12, dd=1-31.
46 * @headersize: Total length of the header including including any
47 * padding optionally added by the signing tool.
48 * @hash_algo: What Hash is used in the module signing.
49 * @cryp_algo: What Crypto is used in the module signing.
50 * @keysize: Total length of the key data including including any
51 * padding optionally added by the signing tool.
52 * @signaturesize: Total length of the signature including including any
53 * padding optionally added by the signing tool.
54 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the
55 * chain, if there is a next header.
56 * @rsvd: Reserved, padding structure to required size.
58 * See also QuartSecurityHeader_t in
59 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
60 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
62 struct quark_security_header
{
66 u32 security_version_number_index
;
67 u32 security_version_number
;
69 u32 rsvd_module_vendor
;
80 static const efi_char16_t efi_dummy_name
[] = L
"DUMMY";
82 static bool efi_no_storage_paranoia
;
85 * Some firmware implementations refuse to boot if there's insufficient
86 * space in the variable store. The implementation of garbage collection
87 * in some FW versions causes stale (deleted) variables to take up space
88 * longer than intended and space is only freed once the store becomes
89 * almost completely full.
91 * Enabling this option disables the space checks in
92 * efi_query_variable_store() and forces garbage collection.
94 * Only enable this option if deleting EFI variables does not free up
95 * space in your variable store, e.g. if despite deleting variables
96 * you're unable to create new ones.
98 static int __init
setup_storage_paranoia(char *arg
)
100 efi_no_storage_paranoia
= true;
103 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
106 * Deleting the dummy variable which kicks off garbage collection
108 void efi_delete_dummy_variable(void)
110 efi
.set_variable_nonblocking((efi_char16_t
*)efi_dummy_name
,
112 EFI_VARIABLE_NON_VOLATILE
|
113 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
114 EFI_VARIABLE_RUNTIME_ACCESS
, 0, NULL
);
117 u64
efivar_reserved_space(void)
119 if (efi_no_storage_paranoia
)
121 return EFI_MIN_RESERVE
;
123 EXPORT_SYMBOL_GPL(efivar_reserved_space
);
126 * In the nonblocking case we do not attempt to perform garbage
127 * collection if we do not have enough free space. Rather, we do the
128 * bare minimum check and give up immediately if the available space
129 * is below EFI_MIN_RESERVE.
131 * This function is intended to be small and simple because it is
132 * invoked from crash handler paths.
135 query_variable_store_nonblocking(u32 attributes
, unsigned long size
)
138 u64 storage_size
, remaining_size
, max_size
;
140 status
= efi
.query_variable_info_nonblocking(attributes
, &storage_size
,
143 if (status
!= EFI_SUCCESS
)
146 if (remaining_size
- size
< EFI_MIN_RESERVE
)
147 return EFI_OUT_OF_RESOURCES
;
153 * Some firmware implementations refuse to boot if there's insufficient space
154 * in the variable store. Ensure that we never use more than a safe limit.
156 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
159 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
,
163 u64 storage_size
, remaining_size
, max_size
;
165 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
169 return query_variable_store_nonblocking(attributes
, size
);
171 status
= efi
.query_variable_info(attributes
, &storage_size
,
172 &remaining_size
, &max_size
);
173 if (status
!= EFI_SUCCESS
)
177 * We account for that by refusing the write if permitting it would
178 * reduce the available space to under 5KB. This figure was provided by
179 * Samsung, so should be safe.
181 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
182 !efi_no_storage_paranoia
) {
185 * Triggering garbage collection may require that the firmware
186 * generate a real EFI_OUT_OF_RESOURCES error. We can force
187 * that by attempting to use more space than is available.
189 unsigned long dummy_size
= remaining_size
+ 1024;
190 void *dummy
= kzalloc(dummy_size
, GFP_KERNEL
);
193 return EFI_OUT_OF_RESOURCES
;
195 status
= efi
.set_variable((efi_char16_t
*)efi_dummy_name
,
197 EFI_VARIABLE_NON_VOLATILE
|
198 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
199 EFI_VARIABLE_RUNTIME_ACCESS
,
202 if (status
== EFI_SUCCESS
) {
204 * This should have failed, so if it didn't make sure
205 * that we delete it...
207 efi_delete_dummy_variable();
213 * The runtime code may now have triggered a garbage collection
214 * run, so check the variable info again
216 status
= efi
.query_variable_info(attributes
, &storage_size
,
217 &remaining_size
, &max_size
);
219 if (status
!= EFI_SUCCESS
)
223 * There still isn't enough room, so return an error
225 if (remaining_size
- size
< EFI_MIN_RESERVE
)
226 return EFI_OUT_OF_RESOURCES
;
231 EXPORT_SYMBOL_GPL(efi_query_variable_store
);
234 * The UEFI specification makes it clear that the operating system is
235 * free to do whatever it wants with boot services code after
236 * ExitBootServices() has been called. Ignoring this recommendation a
237 * significant bunch of EFI implementations continue calling into boot
238 * services code (SetVirtualAddressMap). In order to work around such
239 * buggy implementations we reserve boot services region during EFI
240 * init and make sure it stays executable. Then, after
241 * SetVirtualAddressMap(), it is discarded.
243 * However, some boot services regions contain data that is required
244 * by drivers, so we need to track which memory ranges can never be
245 * freed. This is done by tagging those regions with the
246 * EFI_MEMORY_RUNTIME attribute.
248 * Any driver that wants to mark a region as reserved must use
249 * efi_mem_reserve() which will insert a new EFI memory descriptor
250 * into efi.memmap (splitting existing regions if necessary) and tag
251 * it with EFI_MEMORY_RUNTIME.
253 void __init
efi_arch_mem_reserve(phys_addr_t addr
, u64 size
)
255 struct efi_memory_map_data data
= { 0 };
256 struct efi_mem_range mr
;
257 efi_memory_desc_t md
;
261 if (efi_mem_desc_lookup(addr
, &md
) ||
262 md
.type
!= EFI_BOOT_SERVICES_DATA
) {
263 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr
);
267 if (addr
+ size
> md
.phys_addr
+ (md
.num_pages
<< EFI_PAGE_SHIFT
)) {
268 pr_err("Region spans EFI memory descriptors, %pa\n", &addr
);
272 size
+= addr
% EFI_PAGE_SIZE
;
273 size
= round_up(size
, EFI_PAGE_SIZE
);
274 addr
= round_down(addr
, EFI_PAGE_SIZE
);
276 mr
.range
.start
= addr
;
277 mr
.range
.end
= addr
+ size
- 1;
278 mr
.attribute
= md
.attribute
| EFI_MEMORY_RUNTIME
;
280 num_entries
= efi_memmap_split_count(&md
, &mr
.range
);
281 num_entries
+= efi
.memmap
.nr_map
;
283 if (efi_memmap_alloc(num_entries
, &data
) != 0) {
284 pr_err("Could not allocate boot services memmap\n");
288 new = early_memremap_prot(data
.phys_map
, data
.size
,
289 pgprot_val(pgprot_encrypted(FIXMAP_PAGE_NORMAL
)));
291 pr_err("Failed to map new boot services memmap\n");
295 efi_memmap_insert(&efi
.memmap
, new, &mr
);
296 early_memunmap(new, data
.size
);
298 efi_memmap_install(&data
);
299 e820__range_update(addr
, size
, E820_TYPE_RAM
, E820_TYPE_RESERVED
);
300 e820__update_table(e820_table
);
304 * Helper function for efi_reserve_boot_services() to figure out if we
305 * can free regions in efi_free_boot_services().
307 * Use this function to ensure we do not free regions owned by somebody
308 * else. We must only reserve (and then free) regions:
310 * - Not within any part of the kernel
311 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
313 static __init
bool can_free_region(u64 start
, u64 size
)
315 if (start
+ size
> __pa_symbol(_text
) && start
<= __pa_symbol(_end
))
318 if (!e820__mapped_all(start
, start
+size
, E820_TYPE_RAM
))
324 void __init
efi_reserve_boot_services(void)
326 efi_memory_desc_t
*md
;
328 if (!efi_enabled(EFI_MEMMAP
))
331 for_each_efi_memory_desc(md
) {
332 u64 start
= md
->phys_addr
;
333 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
334 bool already_reserved
;
336 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
337 md
->type
!= EFI_BOOT_SERVICES_DATA
)
340 already_reserved
= memblock_is_region_reserved(start
, size
);
343 * Because the following memblock_reserve() is paired
344 * with memblock_free_late() for this region in
345 * efi_free_boot_services(), we must be extremely
346 * careful not to reserve, and subsequently free,
347 * critical regions of memory (like the kernel image) or
348 * those regions that somebody else has already
351 * A good example of a critical region that must not be
352 * freed is page zero (first 4Kb of memory), which may
353 * contain boot services code/data but is marked
354 * E820_TYPE_RESERVED by trim_bios_range().
356 if (!already_reserved
) {
357 memblock_reserve(start
, size
);
360 * If we are the first to reserve the region, no
361 * one else cares about it. We own it and can
364 if (can_free_region(start
, size
))
369 * We don't own the region. We must not free it.
371 * Setting this bit for a boot services region really
372 * doesn't make sense as far as the firmware is
373 * concerned, but it does provide us with a way to tag
374 * those regions that must not be paired with
375 * memblock_free_late().
377 md
->attribute
|= EFI_MEMORY_RUNTIME
;
382 * Apart from having VA mappings for EFI boot services code/data regions,
383 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
384 * unmap both 1:1 and VA mappings.
386 static void __init
efi_unmap_pages(efi_memory_desc_t
*md
)
388 pgd_t
*pgd
= efi_mm
.pgd
;
389 u64 pa
= md
->phys_addr
;
390 u64 va
= md
->virt_addr
;
393 * EFI mixed mode has all RAM mapped to access arguments while making
394 * EFI runtime calls, hence don't unmap EFI boot services code/data
400 if (kernel_unmap_pages_in_pgd(pgd
, pa
, md
->num_pages
))
401 pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa
);
403 if (kernel_unmap_pages_in_pgd(pgd
, va
, md
->num_pages
))
404 pr_err("Failed to unmap VA mapping for 0x%llx\n", va
);
407 void __init
efi_free_boot_services(void)
409 struct efi_memory_map_data data
= { 0 };
410 efi_memory_desc_t
*md
;
414 /* Keep all regions for /sys/kernel/debug/efi */
415 if (efi_enabled(EFI_DBG
))
418 for_each_efi_memory_desc(md
) {
419 unsigned long long start
= md
->phys_addr
;
420 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
423 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
424 md
->type
!= EFI_BOOT_SERVICES_DATA
) {
429 /* Do not free, someone else owns it: */
430 if (md
->attribute
& EFI_MEMORY_RUNTIME
) {
436 * Before calling set_virtual_address_map(), EFI boot services
437 * code/data regions were mapped as a quirk for buggy firmware.
438 * Unmap them from efi_pgd before freeing them up.
443 * Nasty quirk: if all sub-1MB memory is used for boot
444 * services, we can get here without having allocated the
445 * real mode trampoline. It's too late to hand boot services
446 * memory back to the memblock allocator, so instead
447 * try to manually allocate the trampoline if needed.
449 * I've seen this on a Dell XPS 13 9350 with firmware
450 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
451 * grub2-efi on a hard disk. (And no, I don't know why
452 * this happened, but Linux should still try to boot rather
455 rm_size
= real_mode_size_needed();
456 if (rm_size
&& (start
+ rm_size
) < (1<<20) && size
>= rm_size
) {
457 set_real_mode_mem(start
);
463 * Don't free memory under 1M for two reasons:
464 * - BIOS might clobber it
465 * - Crash kernel needs it to be reserved
467 if (start
+ size
< SZ_1M
)
470 size
-= (SZ_1M
- start
);
474 memblock_free_late(start
, size
);
480 if (efi_memmap_alloc(num_entries
, &data
) != 0) {
481 pr_err("Failed to allocate new EFI memmap\n");
485 new = memremap(data
.phys_map
, data
.size
, MEMREMAP_WB
);
487 pr_err("Failed to map new EFI memmap\n");
492 * Build a new EFI memmap that excludes any boot services
493 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
494 * regions have now been freed.
497 for_each_efi_memory_desc(md
) {
498 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) &&
499 (md
->type
== EFI_BOOT_SERVICES_CODE
||
500 md
->type
== EFI_BOOT_SERVICES_DATA
))
503 memcpy(new_md
, md
, efi
.memmap
.desc_size
);
504 new_md
+= efi
.memmap
.desc_size
;
509 if (efi_memmap_install(&data
) != 0) {
510 pr_err("Could not install new EFI memmap\n");
516 * A number of config table entries get remapped to virtual addresses
517 * after entering EFI virtual mode. However, the kexec kernel requires
518 * their physical addresses therefore we pass them via setup_data and
519 * correct those entries to their respective physical addresses here.
521 * Currently only handles smbios which is necessary for some firmware
524 int __init
efi_reuse_config(u64 tables
, int nr_tables
)
528 struct efi_setup_data
*data
;
536 if (!efi_enabled(EFI_64BIT
))
539 data
= early_memremap(efi_setup
, sizeof(*data
));
548 sz
= sizeof(efi_config_table_64_t
);
550 p
= tablep
= early_memremap(tables
, nr_tables
* sz
);
552 pr_err("Could not map Configuration table!\n");
557 for (i
= 0; i
< nr_tables
; i
++) {
560 guid
= ((efi_config_table_64_t
*)p
)->guid
;
562 if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
))
563 ((efi_config_table_64_t
*)p
)->table
= data
->smbios
;
566 early_memunmap(tablep
, nr_tables
* sz
);
569 early_memunmap(data
, sizeof(*data
));
574 void __init
efi_apply_memmap_quirks(void)
577 * Once setup is done earlier, unmap the EFI memory map on mismatched
578 * firmware/kernel architectures since there is no support for runtime
581 if (!efi_runtime_supported()) {
582 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
588 * For most modern platforms the preferred method of powering off is via
589 * ACPI. However, there are some that are known to require the use of
590 * EFI runtime services and for which ACPI does not work at all.
592 * Using EFI is a last resort, to be used only if no other option
595 bool efi_reboot_required(void)
597 if (!acpi_gbl_reduced_hardware
)
600 efi_reboot_quirk_mode
= EFI_RESET_WARM
;
604 bool efi_poweroff_required(void)
606 return acpi_gbl_reduced_hardware
|| acpi_no_s5
;
609 #ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
611 static int qrk_capsule_setup_info(struct capsule_info
*cap_info
, void **pkbuff
,
614 struct quark_security_header
*csh
= *pkbuff
;
616 /* Only process data block that is larger than the security header */
617 if (hdr_bytes
< sizeof(struct quark_security_header
))
620 if (csh
->csh_signature
!= QUARK_CSH_SIGNATURE
||
621 csh
->headersize
!= QUARK_SECURITY_HEADER_SIZE
)
624 /* Only process data block if EFI header is included */
625 if (hdr_bytes
< QUARK_SECURITY_HEADER_SIZE
+
626 sizeof(efi_capsule_header_t
))
629 pr_debug("Quark security header detected\n");
631 if (csh
->rsvd_next_header
!= 0) {
632 pr_err("multiple Quark security headers not supported\n");
636 *pkbuff
+= csh
->headersize
;
637 cap_info
->total_size
= csh
->headersize
;
640 * Update the first page pointer to skip over the CSH header.
642 cap_info
->phys
[0] += csh
->headersize
;
645 * cap_info->capsule should point at a virtual mapping of the entire
646 * capsule, starting at the capsule header. Our image has the Quark
647 * security header prepended, so we cannot rely on the default vmap()
648 * mapping created by the generic capsule code.
649 * Given that the Quark firmware does not appear to care about the
650 * virtual mapping, let's just point cap_info->capsule at our copy
651 * of the capsule header.
653 cap_info
->capsule
= &cap_info
->header
;
658 static const struct x86_cpu_id efi_capsule_quirk_ids
[] = {
659 X86_MATCH_VENDOR_FAM_MODEL(INTEL
, 5, INTEL_FAM5_QUARK_X1000
,
660 &qrk_capsule_setup_info
),
664 int efi_capsule_setup_info(struct capsule_info
*cap_info
, void *kbuff
,
667 int (*quirk_handler
)(struct capsule_info
*, void **, size_t);
668 const struct x86_cpu_id
*id
;
671 if (hdr_bytes
< sizeof(efi_capsule_header_t
))
674 cap_info
->total_size
= 0;
676 id
= x86_match_cpu(efi_capsule_quirk_ids
);
679 * The quirk handler is supposed to return
680 * - a value > 0 if the setup should continue, after advancing
682 * - 0 if not enough hdr_bytes are available yet
683 * - a negative error code otherwise
685 quirk_handler
= (typeof(quirk_handler
))id
->driver_data
;
686 ret
= quirk_handler(cap_info
, &kbuff
, hdr_bytes
);
691 memcpy(&cap_info
->header
, kbuff
, sizeof(cap_info
->header
));
693 cap_info
->total_size
+= cap_info
->header
.imagesize
;
695 return __efi_capsule_setup_info(cap_info
);
701 * If any access by any efi runtime service causes a page fault, then,
702 * 1. If it's efi_reset_system(), reboot through BIOS.
703 * 2. If any other efi runtime service, then
704 * a. Return error status to the efi caller process.
705 * b. Disable EFI Runtime Services forever and
706 * c. Freeze efi_rts_wq and schedule new process.
708 * @return: Returns, if the page fault is not handled. This function
709 * will never return if the page fault is handled successfully.
711 void efi_crash_gracefully_on_page_fault(unsigned long phys_addr
)
713 if (!IS_ENABLED(CONFIG_X86_64
))
717 * If we get an interrupt/NMI while processing an EFI runtime service
718 * then this is a regular OOPS, not an EFI failure.
724 * Make sure that an efi runtime service caused the page fault.
725 * READ_ONCE() because we might be OOPSing in a different thread,
726 * and we don't want to trip KTSAN while trying to OOPS.
728 if (READ_ONCE(efi_rts_work
.efi_rts_id
) == EFI_NONE
||
729 current_work() != &efi_rts_work
.work
)
733 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
734 * page faulting on these addresses isn't expected.
736 if (phys_addr
<= 0x0fff)
740 * Print stack trace as it might be useful to know which EFI Runtime
743 WARN(1, FW_BUG
"Page fault caused by firmware at PA: 0x%lx\n",
747 * Buggy efi_reset_system() is handled differently from other EFI
748 * Runtime Services as it doesn't use efi_rts_wq. Although,
749 * native_machine_emergency_restart() says that machine_real_restart()
750 * could fail, it's better not to complicate this fault handler
751 * because this case occurs *very* rarely and hence could be improved
752 * on a need by basis.
754 if (efi_rts_work
.efi_rts_id
== EFI_RESET_SYSTEM
) {
755 pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
756 machine_real_restart(MRR_BIOS
);
761 * Before calling EFI Runtime Service, the kernel has switched the
762 * calling process to efi_mm. Hence, switch back to task_mm.
764 arch_efi_call_virt_teardown();
766 /* Signal error status to the efi caller process */
767 efi_rts_work
.status
= EFI_ABORTED
;
768 complete(&efi_rts_work
.efi_rts_comp
);
770 clear_bit(EFI_RUNTIME_SERVICES
, &efi
.flags
);
771 pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
774 * Call schedule() in an infinite loop, so that any spurious wake ups
775 * will never run efi_rts_wq again.
778 set_current_state(TASK_IDLE
);