drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / block / blk-mq.c
blob4b2c8e940f5913001956ff8a6e7f450c756e34be
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
63 blk_mq_sched_has_work(hctx);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
72 const int bit = ctx->index_hw[hctx->type];
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
81 const int bit = ctx->index_hw[hctx->type];
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
86 struct mq_inflight {
87 struct block_device *part;
88 unsigned int inflight[2];
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 struct mq_inflight *mi = priv;
95 if (rq->part && blk_do_io_stat(rq) &&
96 (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 mi->inflight[rq_data_dir(rq)]++;
100 return true;
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
106 struct mq_inflight mi = { .part = part };
108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 return mi.inflight[0] + mi.inflight[1];
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
116 struct mq_inflight mi = { .part = part };
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
123 void blk_freeze_queue_start(struct request_queue *q)
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 mutex_unlock(&q->mq_freeze_lock);
129 if (queue_is_mq(q))
130 blk_mq_run_hw_queues(q, false);
131 } else {
132 mutex_unlock(&q->mq_freeze_lock);
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
148 timeout);
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
156 void blk_freeze_queue(struct request_queue *q)
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
165 blk_freeze_queue_start(q);
166 blk_mq_freeze_queue_wait(q);
169 void blk_mq_freeze_queue(struct request_queue *q)
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
175 blk_freeze_queue(q);
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 mutex_lock(&q->mq_freeze_lock);
182 if (force_atomic)
183 q->q_usage_counter.data->force_atomic = true;
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
187 percpu_ref_resurrect(&q->q_usage_counter);
188 wake_up_all(&q->mq_freeze_wq);
190 mutex_unlock(&q->mq_freeze_lock);
193 void blk_mq_unfreeze_queue(struct request_queue *q)
195 __blk_mq_unfreeze_queue(q, false);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
205 unsigned long flags;
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
227 else
228 synchronize_rcu();
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
234 * @q: request queue.
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
241 void blk_mq_quiesce_queue(struct request_queue *q)
243 blk_mq_quiesce_queue_nowait(q);
244 /* nothing to wait for non-mq queues */
245 if (queue_is_mq(q))
246 blk_mq_wait_quiesce_done(q->tag_set);
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
252 * @q: request queue.
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue *q)
259 unsigned long flags;
260 bool run_queue = false;
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
267 run_queue = true;
269 spin_unlock_irqrestore(&q->queue_lock, flags);
271 /* dispatch requests which are inserted during quiescing */
272 if (run_queue)
273 blk_mq_run_hw_queues(q, true);
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 struct request_queue *q;
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
286 blk_mq_wait_quiesce_done(set);
287 mutex_unlock(&set->tag_list_lock);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 struct request_queue *q;
295 mutex_lock(&set->tag_list_lock);
296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 if (!blk_queue_skip_tagset_quiesce(q))
298 blk_mq_unquiesce_queue(q);
300 mutex_unlock(&set->tag_list_lock);
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 void blk_mq_wake_waiters(struct request_queue *q)
306 struct blk_mq_hw_ctx *hctx;
307 unsigned long i;
309 queue_for_each_hw_ctx(q, hctx, i)
310 if (blk_mq_hw_queue_mapped(hctx))
311 blk_mq_tag_wakeup_all(hctx->tags, true);
314 void blk_rq_init(struct request_queue *q, struct request *rq)
316 memset(rq, 0, sizeof(*rq));
318 INIT_LIST_HEAD(&rq->queuelist);
319 rq->q = q;
320 rq->__sector = (sector_t) -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->tag = BLK_MQ_NO_TAG;
324 rq->internal_tag = BLK_MQ_NO_TAG;
325 rq->start_time_ns = blk_time_get_ns();
326 rq->part = NULL;
327 blk_crypto_rq_set_defaults(rq);
329 EXPORT_SYMBOL(blk_rq_init);
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 if (blk_mq_need_time_stamp(rq))
335 rq->start_time_ns = blk_time_get_ns();
336 else
337 rq->start_time_ns = 0;
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 if (blk_queue_rq_alloc_time(rq->q))
341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
342 else
343 rq->alloc_time_ns = 0;
344 #endif
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 struct blk_mq_tags *tags, unsigned int tag)
350 struct blk_mq_ctx *ctx = data->ctx;
351 struct blk_mq_hw_ctx *hctx = data->hctx;
352 struct request_queue *q = data->q;
353 struct request *rq = tags->static_rqs[tag];
355 rq->q = q;
356 rq->mq_ctx = ctx;
357 rq->mq_hctx = hctx;
358 rq->cmd_flags = data->cmd_flags;
360 if (data->flags & BLK_MQ_REQ_PM)
361 data->rq_flags |= RQF_PM;
362 if (blk_queue_io_stat(q))
363 data->rq_flags |= RQF_IO_STAT;
364 rq->rq_flags = data->rq_flags;
366 if (data->rq_flags & RQF_SCHED_TAGS) {
367 rq->tag = BLK_MQ_NO_TAG;
368 rq->internal_tag = tag;
369 } else {
370 rq->tag = tag;
371 rq->internal_tag = BLK_MQ_NO_TAG;
373 rq->timeout = 0;
375 rq->part = NULL;
376 rq->io_start_time_ns = 0;
377 rq->stats_sectors = 0;
378 rq->nr_phys_segments = 0;
379 rq->nr_integrity_segments = 0;
380 rq->end_io = NULL;
381 rq->end_io_data = NULL;
383 blk_crypto_rq_set_defaults(rq);
384 INIT_LIST_HEAD(&rq->queuelist);
385 /* tag was already set */
386 WRITE_ONCE(rq->deadline, 0);
387 req_ref_set(rq, 1);
389 if (rq->rq_flags & RQF_USE_SCHED) {
390 struct elevator_queue *e = data->q->elevator;
392 INIT_HLIST_NODE(&rq->hash);
393 RB_CLEAR_NODE(&rq->rb_node);
395 if (e->type->ops.prepare_request)
396 e->type->ops.prepare_request(rq);
399 return rq;
402 static inline struct request *
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
405 unsigned int tag, tag_offset;
406 struct blk_mq_tags *tags;
407 struct request *rq;
408 unsigned long tag_mask;
409 int i, nr = 0;
411 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
412 if (unlikely(!tag_mask))
413 return NULL;
415 tags = blk_mq_tags_from_data(data);
416 for (i = 0; tag_mask; i++) {
417 if (!(tag_mask & (1UL << i)))
418 continue;
419 tag = tag_offset + i;
420 prefetch(tags->static_rqs[tag]);
421 tag_mask &= ~(1UL << i);
422 rq = blk_mq_rq_ctx_init(data, tags, tag);
423 rq_list_add(data->cached_rq, rq);
424 nr++;
426 if (!(data->rq_flags & RQF_SCHED_TAGS))
427 blk_mq_add_active_requests(data->hctx, nr);
428 /* caller already holds a reference, add for remainder */
429 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
430 data->nr_tags -= nr;
432 return rq_list_pop(data->cached_rq);
435 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 struct request_queue *q = data->q;
438 u64 alloc_time_ns = 0;
439 struct request *rq;
440 unsigned int tag;
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q))
444 alloc_time_ns = blk_time_get_ns();
446 if (data->cmd_flags & REQ_NOWAIT)
447 data->flags |= BLK_MQ_REQ_NOWAIT;
449 retry:
450 data->ctx = blk_mq_get_ctx(q);
451 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
453 if (q->elevator) {
455 * All requests use scheduler tags when an I/O scheduler is
456 * enabled for the queue.
458 data->rq_flags |= RQF_SCHED_TAGS;
461 * Flush/passthrough requests are special and go directly to the
462 * dispatch list.
464 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
465 !blk_op_is_passthrough(data->cmd_flags)) {
466 struct elevator_mq_ops *ops = &q->elevator->type->ops;
468 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
470 data->rq_flags |= RQF_USE_SCHED;
471 if (ops->limit_depth)
472 ops->limit_depth(data->cmd_flags, data);
474 } else {
475 blk_mq_tag_busy(data->hctx);
478 if (data->flags & BLK_MQ_REQ_RESERVED)
479 data->rq_flags |= RQF_RESV;
482 * Try batched alloc if we want more than 1 tag.
484 if (data->nr_tags > 1) {
485 rq = __blk_mq_alloc_requests_batch(data);
486 if (rq) {
487 blk_mq_rq_time_init(rq, alloc_time_ns);
488 return rq;
490 data->nr_tags = 1;
494 * Waiting allocations only fail because of an inactive hctx. In that
495 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 * should have migrated us to an online CPU by now.
498 tag = blk_mq_get_tag(data);
499 if (tag == BLK_MQ_NO_TAG) {
500 if (data->flags & BLK_MQ_REQ_NOWAIT)
501 return NULL;
503 * Give up the CPU and sleep for a random short time to
504 * ensure that thread using a realtime scheduling class
505 * are migrated off the CPU, and thus off the hctx that
506 * is going away.
508 msleep(3);
509 goto retry;
512 if (!(data->rq_flags & RQF_SCHED_TAGS))
513 blk_mq_inc_active_requests(data->hctx);
514 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
515 blk_mq_rq_time_init(rq, alloc_time_ns);
516 return rq;
519 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
520 struct blk_plug *plug,
521 blk_opf_t opf,
522 blk_mq_req_flags_t flags)
524 struct blk_mq_alloc_data data = {
525 .q = q,
526 .flags = flags,
527 .cmd_flags = opf,
528 .nr_tags = plug->nr_ios,
529 .cached_rq = &plug->cached_rq,
531 struct request *rq;
533 if (blk_queue_enter(q, flags))
534 return NULL;
536 plug->nr_ios = 1;
538 rq = __blk_mq_alloc_requests(&data);
539 if (unlikely(!rq))
540 blk_queue_exit(q);
541 return rq;
544 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
545 blk_opf_t opf,
546 blk_mq_req_flags_t flags)
548 struct blk_plug *plug = current->plug;
549 struct request *rq;
551 if (!plug)
552 return NULL;
554 if (rq_list_empty(plug->cached_rq)) {
555 if (plug->nr_ios == 1)
556 return NULL;
557 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
558 if (!rq)
559 return NULL;
560 } else {
561 rq = rq_list_peek(&plug->cached_rq);
562 if (!rq || rq->q != q)
563 return NULL;
565 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
566 return NULL;
567 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
568 return NULL;
570 plug->cached_rq = rq_list_next(rq);
571 blk_mq_rq_time_init(rq, 0);
574 rq->cmd_flags = opf;
575 INIT_LIST_HEAD(&rq->queuelist);
576 return rq;
579 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
580 blk_mq_req_flags_t flags)
582 struct request *rq;
584 rq = blk_mq_alloc_cached_request(q, opf, flags);
585 if (!rq) {
586 struct blk_mq_alloc_data data = {
587 .q = q,
588 .flags = flags,
589 .cmd_flags = opf,
590 .nr_tags = 1,
592 int ret;
594 ret = blk_queue_enter(q, flags);
595 if (ret)
596 return ERR_PTR(ret);
598 rq = __blk_mq_alloc_requests(&data);
599 if (!rq)
600 goto out_queue_exit;
602 rq->__data_len = 0;
603 rq->__sector = (sector_t) -1;
604 rq->bio = rq->biotail = NULL;
605 return rq;
606 out_queue_exit:
607 blk_queue_exit(q);
608 return ERR_PTR(-EWOULDBLOCK);
610 EXPORT_SYMBOL(blk_mq_alloc_request);
612 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
613 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
615 struct blk_mq_alloc_data data = {
616 .q = q,
617 .flags = flags,
618 .cmd_flags = opf,
619 .nr_tags = 1,
621 u64 alloc_time_ns = 0;
622 struct request *rq;
623 unsigned int cpu;
624 unsigned int tag;
625 int ret;
627 /* alloc_time includes depth and tag waits */
628 if (blk_queue_rq_alloc_time(q))
629 alloc_time_ns = blk_time_get_ns();
632 * If the tag allocator sleeps we could get an allocation for a
633 * different hardware context. No need to complicate the low level
634 * allocator for this for the rare use case of a command tied to
635 * a specific queue.
637 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
638 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
639 return ERR_PTR(-EINVAL);
641 if (hctx_idx >= q->nr_hw_queues)
642 return ERR_PTR(-EIO);
644 ret = blk_queue_enter(q, flags);
645 if (ret)
646 return ERR_PTR(ret);
649 * Check if the hardware context is actually mapped to anything.
650 * If not tell the caller that it should skip this queue.
652 ret = -EXDEV;
653 data.hctx = xa_load(&q->hctx_table, hctx_idx);
654 if (!blk_mq_hw_queue_mapped(data.hctx))
655 goto out_queue_exit;
656 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
657 if (cpu >= nr_cpu_ids)
658 goto out_queue_exit;
659 data.ctx = __blk_mq_get_ctx(q, cpu);
661 if (q->elevator)
662 data.rq_flags |= RQF_SCHED_TAGS;
663 else
664 blk_mq_tag_busy(data.hctx);
666 if (flags & BLK_MQ_REQ_RESERVED)
667 data.rq_flags |= RQF_RESV;
669 ret = -EWOULDBLOCK;
670 tag = blk_mq_get_tag(&data);
671 if (tag == BLK_MQ_NO_TAG)
672 goto out_queue_exit;
673 if (!(data.rq_flags & RQF_SCHED_TAGS))
674 blk_mq_inc_active_requests(data.hctx);
675 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
676 blk_mq_rq_time_init(rq, alloc_time_ns);
677 rq->__data_len = 0;
678 rq->__sector = (sector_t) -1;
679 rq->bio = rq->biotail = NULL;
680 return rq;
682 out_queue_exit:
683 blk_queue_exit(q);
684 return ERR_PTR(ret);
686 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
688 static void blk_mq_finish_request(struct request *rq)
690 struct request_queue *q = rq->q;
692 blk_zone_finish_request(rq);
694 if (rq->rq_flags & RQF_USE_SCHED) {
695 q->elevator->type->ops.finish_request(rq);
697 * For postflush request that may need to be
698 * completed twice, we should clear this flag
699 * to avoid double finish_request() on the rq.
701 rq->rq_flags &= ~RQF_USE_SCHED;
705 static void __blk_mq_free_request(struct request *rq)
707 struct request_queue *q = rq->q;
708 struct blk_mq_ctx *ctx = rq->mq_ctx;
709 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710 const int sched_tag = rq->internal_tag;
712 blk_crypto_free_request(rq);
713 blk_pm_mark_last_busy(rq);
714 rq->mq_hctx = NULL;
716 if (rq->tag != BLK_MQ_NO_TAG) {
717 blk_mq_dec_active_requests(hctx);
718 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 if (sched_tag != BLK_MQ_NO_TAG)
721 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722 blk_mq_sched_restart(hctx);
723 blk_queue_exit(q);
726 void blk_mq_free_request(struct request *rq)
728 struct request_queue *q = rq->q;
730 blk_mq_finish_request(rq);
732 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733 laptop_io_completion(q->disk->bdi);
735 rq_qos_done(q, rq);
737 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738 if (req_ref_put_and_test(rq))
739 __blk_mq_free_request(rq);
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
745 struct request *rq;
747 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748 blk_mq_free_request(rq);
751 void blk_dump_rq_flags(struct request *rq, char *msg)
753 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754 rq->q->disk ? rq->q->disk->disk_name : "?",
755 (__force unsigned long long) rq->cmd_flags);
757 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
758 (unsigned long long)blk_rq_pos(rq),
759 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
761 rq->bio, rq->biotail, blk_rq_bytes(rq));
763 EXPORT_SYMBOL(blk_dump_rq_flags);
765 static void blk_account_io_completion(struct request *req, unsigned int bytes)
767 if (req->part && blk_do_io_stat(req)) {
768 const int sgrp = op_stat_group(req_op(req));
770 part_stat_lock();
771 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
772 part_stat_unlock();
776 static void blk_print_req_error(struct request *req, blk_status_t status)
778 printk_ratelimited(KERN_ERR
779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780 "phys_seg %u prio class %u\n",
781 blk_status_to_str(status),
782 req->q->disk ? req->q->disk->disk_name : "?",
783 blk_rq_pos(req), (__force u32)req_op(req),
784 blk_op_str(req_op(req)),
785 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
786 req->nr_phys_segments,
787 IOPRIO_PRIO_CLASS(req->ioprio));
791 * Fully end IO on a request. Does not support partial completions, or
792 * errors.
794 static void blk_complete_request(struct request *req)
796 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
797 int total_bytes = blk_rq_bytes(req);
798 struct bio *bio = req->bio;
800 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
802 if (!bio)
803 return;
805 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
806 blk_integrity_complete(req, total_bytes);
809 * Upper layers may call blk_crypto_evict_key() anytime after the last
810 * bio_endio(). Therefore, the keyslot must be released before that.
812 blk_crypto_rq_put_keyslot(req);
814 blk_account_io_completion(req, total_bytes);
816 do {
817 struct bio *next = bio->bi_next;
819 /* Completion has already been traced */
820 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
822 blk_zone_update_request_bio(req, bio);
824 if (!is_flush)
825 bio_endio(bio);
826 bio = next;
827 } while (bio);
830 * Reset counters so that the request stacking driver
831 * can find how many bytes remain in the request
832 * later.
834 if (!req->end_io) {
835 req->bio = NULL;
836 req->__data_len = 0;
841 * blk_update_request - Complete multiple bytes without completing the request
842 * @req: the request being processed
843 * @error: block status code
844 * @nr_bytes: number of bytes to complete for @req
846 * Description:
847 * Ends I/O on a number of bytes attached to @req, but doesn't complete
848 * the request structure even if @req doesn't have leftover.
849 * If @req has leftover, sets it up for the next range of segments.
851 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
852 * %false return from this function.
854 * Note:
855 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
856 * except in the consistency check at the end of this function.
858 * Return:
859 * %false - this request doesn't have any more data
860 * %true - this request has more data
862 bool blk_update_request(struct request *req, blk_status_t error,
863 unsigned int nr_bytes)
865 bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
866 bool quiet = req->rq_flags & RQF_QUIET;
867 int total_bytes;
869 trace_block_rq_complete(req, error, nr_bytes);
871 if (!req->bio)
872 return false;
874 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
875 error == BLK_STS_OK)
876 blk_integrity_complete(req, nr_bytes);
879 * Upper layers may call blk_crypto_evict_key() anytime after the last
880 * bio_endio(). Therefore, the keyslot must be released before that.
882 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
883 __blk_crypto_rq_put_keyslot(req);
885 if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
886 !test_bit(GD_DEAD, &req->q->disk->state)) {
887 blk_print_req_error(req, error);
888 trace_block_rq_error(req, error, nr_bytes);
891 blk_account_io_completion(req, nr_bytes);
893 total_bytes = 0;
894 while (req->bio) {
895 struct bio *bio = req->bio;
896 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
898 if (unlikely(error))
899 bio->bi_status = error;
901 if (bio_bytes == bio->bi_iter.bi_size) {
902 req->bio = bio->bi_next;
903 } else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
905 * Partial zone append completions cannot be supported
906 * as the BIO fragments may end up not being written
907 * sequentially.
909 bio->bi_status = BLK_STS_IOERR;
912 /* Completion has already been traced */
913 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
914 if (unlikely(quiet))
915 bio_set_flag(bio, BIO_QUIET);
917 bio_advance(bio, bio_bytes);
919 /* Don't actually finish bio if it's part of flush sequence */
920 if (!bio->bi_iter.bi_size) {
921 blk_zone_update_request_bio(req, bio);
922 if (!is_flush)
923 bio_endio(bio);
926 total_bytes += bio_bytes;
927 nr_bytes -= bio_bytes;
929 if (!nr_bytes)
930 break;
934 * completely done
936 if (!req->bio) {
938 * Reset counters so that the request stacking driver
939 * can find how many bytes remain in the request
940 * later.
942 req->__data_len = 0;
943 return false;
946 req->__data_len -= total_bytes;
948 /* update sector only for requests with clear definition of sector */
949 if (!blk_rq_is_passthrough(req))
950 req->__sector += total_bytes >> 9;
952 /* mixed attributes always follow the first bio */
953 if (req->rq_flags & RQF_MIXED_MERGE) {
954 req->cmd_flags &= ~REQ_FAILFAST_MASK;
955 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
958 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
960 * If total number of sectors is less than the first segment
961 * size, something has gone terribly wrong.
963 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
964 blk_dump_rq_flags(req, "request botched");
965 req->__data_len = blk_rq_cur_bytes(req);
968 /* recalculate the number of segments */
969 req->nr_phys_segments = blk_recalc_rq_segments(req);
972 return true;
974 EXPORT_SYMBOL_GPL(blk_update_request);
976 static inline void blk_account_io_done(struct request *req, u64 now)
978 trace_block_io_done(req);
981 * Account IO completion. flush_rq isn't accounted as a
982 * normal IO on queueing nor completion. Accounting the
983 * containing request is enough.
985 if (blk_do_io_stat(req) && req->part &&
986 !(req->rq_flags & RQF_FLUSH_SEQ)) {
987 const int sgrp = op_stat_group(req_op(req));
989 part_stat_lock();
990 update_io_ticks(req->part, jiffies, true);
991 part_stat_inc(req->part, ios[sgrp]);
992 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
993 part_stat_local_dec(req->part,
994 in_flight[op_is_write(req_op(req))]);
995 part_stat_unlock();
999 static inline void blk_account_io_start(struct request *req)
1001 trace_block_io_start(req);
1003 if (blk_do_io_stat(req)) {
1005 * All non-passthrough requests are created from a bio with one
1006 * exception: when a flush command that is part of a flush sequence
1007 * generated by the state machine in blk-flush.c is cloned onto the
1008 * lower device by dm-multipath we can get here without a bio.
1010 if (req->bio)
1011 req->part = req->bio->bi_bdev;
1012 else
1013 req->part = req->q->disk->part0;
1015 part_stat_lock();
1016 update_io_ticks(req->part, jiffies, false);
1017 part_stat_local_inc(req->part,
1018 in_flight[op_is_write(req_op(req))]);
1019 part_stat_unlock();
1023 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1025 if (rq->rq_flags & RQF_STATS)
1026 blk_stat_add(rq, now);
1028 blk_mq_sched_completed_request(rq, now);
1029 blk_account_io_done(rq, now);
1032 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1034 if (blk_mq_need_time_stamp(rq))
1035 __blk_mq_end_request_acct(rq, blk_time_get_ns());
1037 blk_mq_finish_request(rq);
1039 if (rq->end_io) {
1040 rq_qos_done(rq->q, rq);
1041 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1042 blk_mq_free_request(rq);
1043 } else {
1044 blk_mq_free_request(rq);
1047 EXPORT_SYMBOL(__blk_mq_end_request);
1049 void blk_mq_end_request(struct request *rq, blk_status_t error)
1051 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1052 BUG();
1053 __blk_mq_end_request(rq, error);
1055 EXPORT_SYMBOL(blk_mq_end_request);
1057 #define TAG_COMP_BATCH 32
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1060 int *tag_array, int nr_tags)
1062 struct request_queue *q = hctx->queue;
1064 blk_mq_sub_active_requests(hctx, nr_tags);
1066 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1067 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1070 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1072 int tags[TAG_COMP_BATCH], nr_tags = 0;
1073 struct blk_mq_hw_ctx *cur_hctx = NULL;
1074 struct request *rq;
1075 u64 now = 0;
1077 if (iob->need_ts)
1078 now = blk_time_get_ns();
1080 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1081 prefetch(rq->bio);
1082 prefetch(rq->rq_next);
1084 blk_complete_request(rq);
1085 if (iob->need_ts)
1086 __blk_mq_end_request_acct(rq, now);
1088 blk_mq_finish_request(rq);
1090 rq_qos_done(rq->q, rq);
1093 * If end_io handler returns NONE, then it still has
1094 * ownership of the request.
1096 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1097 continue;
1099 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1100 if (!req_ref_put_and_test(rq))
1101 continue;
1103 blk_crypto_free_request(rq);
1104 blk_pm_mark_last_busy(rq);
1106 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1107 if (cur_hctx)
1108 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1109 nr_tags = 0;
1110 cur_hctx = rq->mq_hctx;
1112 tags[nr_tags++] = rq->tag;
1115 if (nr_tags)
1116 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1118 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1120 static void blk_complete_reqs(struct llist_head *list)
1122 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1123 struct request *rq, *next;
1125 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1126 rq->q->mq_ops->complete(rq);
1129 static __latent_entropy void blk_done_softirq(void)
1131 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1134 static int blk_softirq_cpu_dead(unsigned int cpu)
1136 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1137 return 0;
1140 static void __blk_mq_complete_request_remote(void *data)
1142 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1145 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1147 int cpu = raw_smp_processor_id();
1149 if (!IS_ENABLED(CONFIG_SMP) ||
1150 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1151 return false;
1153 * With force threaded interrupts enabled, raising softirq from an SMP
1154 * function call will always result in waking the ksoftirqd thread.
1155 * This is probably worse than completing the request on a different
1156 * cache domain.
1158 if (force_irqthreads())
1159 return false;
1161 /* same CPU or cache domain and capacity? Complete locally */
1162 if (cpu == rq->mq_ctx->cpu ||
1163 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1164 cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1165 cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1166 return false;
1168 /* don't try to IPI to an offline CPU */
1169 return cpu_online(rq->mq_ctx->cpu);
1172 static void blk_mq_complete_send_ipi(struct request *rq)
1174 unsigned int cpu;
1176 cpu = rq->mq_ctx->cpu;
1177 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1178 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1181 static void blk_mq_raise_softirq(struct request *rq)
1183 struct llist_head *list;
1185 preempt_disable();
1186 list = this_cpu_ptr(&blk_cpu_done);
1187 if (llist_add(&rq->ipi_list, list))
1188 raise_softirq(BLOCK_SOFTIRQ);
1189 preempt_enable();
1192 bool blk_mq_complete_request_remote(struct request *rq)
1194 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1197 * For request which hctx has only one ctx mapping,
1198 * or a polled request, always complete locally,
1199 * it's pointless to redirect the completion.
1201 if ((rq->mq_hctx->nr_ctx == 1 &&
1202 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1203 rq->cmd_flags & REQ_POLLED)
1204 return false;
1206 if (blk_mq_complete_need_ipi(rq)) {
1207 blk_mq_complete_send_ipi(rq);
1208 return true;
1211 if (rq->q->nr_hw_queues == 1) {
1212 blk_mq_raise_softirq(rq);
1213 return true;
1215 return false;
1217 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1220 * blk_mq_complete_request - end I/O on a request
1221 * @rq: the request being processed
1223 * Description:
1224 * Complete a request by scheduling the ->complete_rq operation.
1226 void blk_mq_complete_request(struct request *rq)
1228 if (!blk_mq_complete_request_remote(rq))
1229 rq->q->mq_ops->complete(rq);
1231 EXPORT_SYMBOL(blk_mq_complete_request);
1234 * blk_mq_start_request - Start processing a request
1235 * @rq: Pointer to request to be started
1237 * Function used by device drivers to notify the block layer that a request
1238 * is going to be processed now, so blk layer can do proper initializations
1239 * such as starting the timeout timer.
1241 void blk_mq_start_request(struct request *rq)
1243 struct request_queue *q = rq->q;
1245 trace_block_rq_issue(rq);
1247 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1248 !blk_rq_is_passthrough(rq)) {
1249 rq->io_start_time_ns = blk_time_get_ns();
1250 rq->stats_sectors = blk_rq_sectors(rq);
1251 rq->rq_flags |= RQF_STATS;
1252 rq_qos_issue(q, rq);
1255 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1257 blk_add_timer(rq);
1258 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1259 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1261 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1262 blk_integrity_prepare(rq);
1264 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1265 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1267 EXPORT_SYMBOL(blk_mq_start_request);
1270 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1271 * queues. This is important for md arrays to benefit from merging
1272 * requests.
1274 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1276 if (plug->multiple_queues)
1277 return BLK_MAX_REQUEST_COUNT * 2;
1278 return BLK_MAX_REQUEST_COUNT;
1281 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1283 struct request *last = rq_list_peek(&plug->mq_list);
1285 if (!plug->rq_count) {
1286 trace_block_plug(rq->q);
1287 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1288 (!blk_queue_nomerges(rq->q) &&
1289 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1290 blk_mq_flush_plug_list(plug, false);
1291 last = NULL;
1292 trace_block_plug(rq->q);
1295 if (!plug->multiple_queues && last && last->q != rq->q)
1296 plug->multiple_queues = true;
1298 * Any request allocated from sched tags can't be issued to
1299 * ->queue_rqs() directly
1301 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1302 plug->has_elevator = true;
1303 rq->rq_next = NULL;
1304 rq_list_add(&plug->mq_list, rq);
1305 plug->rq_count++;
1309 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1310 * @rq: request to insert
1311 * @at_head: insert request at head or tail of queue
1313 * Description:
1314 * Insert a fully prepared request at the back of the I/O scheduler queue
1315 * for execution. Don't wait for completion.
1317 * Note:
1318 * This function will invoke @done directly if the queue is dead.
1320 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1322 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1324 WARN_ON(irqs_disabled());
1325 WARN_ON(!blk_rq_is_passthrough(rq));
1327 blk_account_io_start(rq);
1329 if (current->plug && !at_head) {
1330 blk_add_rq_to_plug(current->plug, rq);
1331 return;
1334 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1335 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1337 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1339 struct blk_rq_wait {
1340 struct completion done;
1341 blk_status_t ret;
1344 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1346 struct blk_rq_wait *wait = rq->end_io_data;
1348 wait->ret = ret;
1349 complete(&wait->done);
1350 return RQ_END_IO_NONE;
1353 bool blk_rq_is_poll(struct request *rq)
1355 if (!rq->mq_hctx)
1356 return false;
1357 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1358 return false;
1359 return true;
1361 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1363 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1365 do {
1366 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1367 cond_resched();
1368 } while (!completion_done(wait));
1372 * blk_execute_rq - insert a request into queue for execution
1373 * @rq: request to insert
1374 * @at_head: insert request at head or tail of queue
1376 * Description:
1377 * Insert a fully prepared request at the back of the I/O scheduler queue
1378 * for execution and wait for completion.
1379 * Return: The blk_status_t result provided to blk_mq_end_request().
1381 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1383 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1384 struct blk_rq_wait wait = {
1385 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1388 WARN_ON(irqs_disabled());
1389 WARN_ON(!blk_rq_is_passthrough(rq));
1391 rq->end_io_data = &wait;
1392 rq->end_io = blk_end_sync_rq;
1394 blk_account_io_start(rq);
1395 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1396 blk_mq_run_hw_queue(hctx, false);
1398 if (blk_rq_is_poll(rq))
1399 blk_rq_poll_completion(rq, &wait.done);
1400 else
1401 blk_wait_io(&wait.done);
1403 return wait.ret;
1405 EXPORT_SYMBOL(blk_execute_rq);
1407 static void __blk_mq_requeue_request(struct request *rq)
1409 struct request_queue *q = rq->q;
1411 blk_mq_put_driver_tag(rq);
1413 trace_block_rq_requeue(rq);
1414 rq_qos_requeue(q, rq);
1416 if (blk_mq_request_started(rq)) {
1417 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1418 rq->rq_flags &= ~RQF_TIMED_OUT;
1422 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1424 struct request_queue *q = rq->q;
1425 unsigned long flags;
1427 __blk_mq_requeue_request(rq);
1429 /* this request will be re-inserted to io scheduler queue */
1430 blk_mq_sched_requeue_request(rq);
1432 spin_lock_irqsave(&q->requeue_lock, flags);
1433 list_add_tail(&rq->queuelist, &q->requeue_list);
1434 spin_unlock_irqrestore(&q->requeue_lock, flags);
1436 if (kick_requeue_list)
1437 blk_mq_kick_requeue_list(q);
1439 EXPORT_SYMBOL(blk_mq_requeue_request);
1441 static void blk_mq_requeue_work(struct work_struct *work)
1443 struct request_queue *q =
1444 container_of(work, struct request_queue, requeue_work.work);
1445 LIST_HEAD(rq_list);
1446 LIST_HEAD(flush_list);
1447 struct request *rq;
1449 spin_lock_irq(&q->requeue_lock);
1450 list_splice_init(&q->requeue_list, &rq_list);
1451 list_splice_init(&q->flush_list, &flush_list);
1452 spin_unlock_irq(&q->requeue_lock);
1454 while (!list_empty(&rq_list)) {
1455 rq = list_entry(rq_list.next, struct request, queuelist);
1457 * If RQF_DONTPREP ist set, the request has been started by the
1458 * driver already and might have driver-specific data allocated
1459 * already. Insert it into the hctx dispatch list to avoid
1460 * block layer merges for the request.
1462 if (rq->rq_flags & RQF_DONTPREP) {
1463 list_del_init(&rq->queuelist);
1464 blk_mq_request_bypass_insert(rq, 0);
1465 } else {
1466 list_del_init(&rq->queuelist);
1467 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1471 while (!list_empty(&flush_list)) {
1472 rq = list_entry(flush_list.next, struct request, queuelist);
1473 list_del_init(&rq->queuelist);
1474 blk_mq_insert_request(rq, 0);
1477 blk_mq_run_hw_queues(q, false);
1480 void blk_mq_kick_requeue_list(struct request_queue *q)
1482 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1484 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1486 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1487 unsigned long msecs)
1489 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1490 msecs_to_jiffies(msecs));
1492 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1494 static bool blk_is_flush_data_rq(struct request *rq)
1496 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1499 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1502 * If we find a request that isn't idle we know the queue is busy
1503 * as it's checked in the iter.
1504 * Return false to stop the iteration.
1506 * In case of queue quiesce, if one flush data request is completed,
1507 * don't count it as inflight given the flush sequence is suspended,
1508 * and the original flush data request is invisible to driver, just
1509 * like other pending requests because of quiesce
1511 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1512 blk_is_flush_data_rq(rq) &&
1513 blk_mq_request_completed(rq))) {
1514 bool *busy = priv;
1516 *busy = true;
1517 return false;
1520 return true;
1523 bool blk_mq_queue_inflight(struct request_queue *q)
1525 bool busy = false;
1527 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1528 return busy;
1530 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1532 static void blk_mq_rq_timed_out(struct request *req)
1534 req->rq_flags |= RQF_TIMED_OUT;
1535 if (req->q->mq_ops->timeout) {
1536 enum blk_eh_timer_return ret;
1538 ret = req->q->mq_ops->timeout(req);
1539 if (ret == BLK_EH_DONE)
1540 return;
1541 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1544 blk_add_timer(req);
1547 struct blk_expired_data {
1548 bool has_timedout_rq;
1549 unsigned long next;
1550 unsigned long timeout_start;
1553 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1555 unsigned long deadline;
1557 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1558 return false;
1559 if (rq->rq_flags & RQF_TIMED_OUT)
1560 return false;
1562 deadline = READ_ONCE(rq->deadline);
1563 if (time_after_eq(expired->timeout_start, deadline))
1564 return true;
1566 if (expired->next == 0)
1567 expired->next = deadline;
1568 else if (time_after(expired->next, deadline))
1569 expired->next = deadline;
1570 return false;
1573 void blk_mq_put_rq_ref(struct request *rq)
1575 if (is_flush_rq(rq)) {
1576 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1577 blk_mq_free_request(rq);
1578 } else if (req_ref_put_and_test(rq)) {
1579 __blk_mq_free_request(rq);
1583 static bool blk_mq_check_expired(struct request *rq, void *priv)
1585 struct blk_expired_data *expired = priv;
1588 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1589 * be reallocated underneath the timeout handler's processing, then
1590 * the expire check is reliable. If the request is not expired, then
1591 * it was completed and reallocated as a new request after returning
1592 * from blk_mq_check_expired().
1594 if (blk_mq_req_expired(rq, expired)) {
1595 expired->has_timedout_rq = true;
1596 return false;
1598 return true;
1601 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1603 struct blk_expired_data *expired = priv;
1605 if (blk_mq_req_expired(rq, expired))
1606 blk_mq_rq_timed_out(rq);
1607 return true;
1610 static void blk_mq_timeout_work(struct work_struct *work)
1612 struct request_queue *q =
1613 container_of(work, struct request_queue, timeout_work);
1614 struct blk_expired_data expired = {
1615 .timeout_start = jiffies,
1617 struct blk_mq_hw_ctx *hctx;
1618 unsigned long i;
1620 /* A deadlock might occur if a request is stuck requiring a
1621 * timeout at the same time a queue freeze is waiting
1622 * completion, since the timeout code would not be able to
1623 * acquire the queue reference here.
1625 * That's why we don't use blk_queue_enter here; instead, we use
1626 * percpu_ref_tryget directly, because we need to be able to
1627 * obtain a reference even in the short window between the queue
1628 * starting to freeze, by dropping the first reference in
1629 * blk_freeze_queue_start, and the moment the last request is
1630 * consumed, marked by the instant q_usage_counter reaches
1631 * zero.
1633 if (!percpu_ref_tryget(&q->q_usage_counter))
1634 return;
1636 /* check if there is any timed-out request */
1637 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1638 if (expired.has_timedout_rq) {
1640 * Before walking tags, we must ensure any submit started
1641 * before the current time has finished. Since the submit
1642 * uses srcu or rcu, wait for a synchronization point to
1643 * ensure all running submits have finished
1645 blk_mq_wait_quiesce_done(q->tag_set);
1647 expired.next = 0;
1648 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1651 if (expired.next != 0) {
1652 mod_timer(&q->timeout, expired.next);
1653 } else {
1655 * Request timeouts are handled as a forward rolling timer. If
1656 * we end up here it means that no requests are pending and
1657 * also that no request has been pending for a while. Mark
1658 * each hctx as idle.
1660 queue_for_each_hw_ctx(q, hctx, i) {
1661 /* the hctx may be unmapped, so check it here */
1662 if (blk_mq_hw_queue_mapped(hctx))
1663 blk_mq_tag_idle(hctx);
1666 blk_queue_exit(q);
1669 struct flush_busy_ctx_data {
1670 struct blk_mq_hw_ctx *hctx;
1671 struct list_head *list;
1674 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1676 struct flush_busy_ctx_data *flush_data = data;
1677 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1678 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1679 enum hctx_type type = hctx->type;
1681 spin_lock(&ctx->lock);
1682 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1683 sbitmap_clear_bit(sb, bitnr);
1684 spin_unlock(&ctx->lock);
1685 return true;
1689 * Process software queues that have been marked busy, splicing them
1690 * to the for-dispatch
1692 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1694 struct flush_busy_ctx_data data = {
1695 .hctx = hctx,
1696 .list = list,
1699 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1701 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1703 struct dispatch_rq_data {
1704 struct blk_mq_hw_ctx *hctx;
1705 struct request *rq;
1708 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1709 void *data)
1711 struct dispatch_rq_data *dispatch_data = data;
1712 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1713 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1714 enum hctx_type type = hctx->type;
1716 spin_lock(&ctx->lock);
1717 if (!list_empty(&ctx->rq_lists[type])) {
1718 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1719 list_del_init(&dispatch_data->rq->queuelist);
1720 if (list_empty(&ctx->rq_lists[type]))
1721 sbitmap_clear_bit(sb, bitnr);
1723 spin_unlock(&ctx->lock);
1725 return !dispatch_data->rq;
1728 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1729 struct blk_mq_ctx *start)
1731 unsigned off = start ? start->index_hw[hctx->type] : 0;
1732 struct dispatch_rq_data data = {
1733 .hctx = hctx,
1734 .rq = NULL,
1737 __sbitmap_for_each_set(&hctx->ctx_map, off,
1738 dispatch_rq_from_ctx, &data);
1740 return data.rq;
1743 bool __blk_mq_alloc_driver_tag(struct request *rq)
1745 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1746 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1747 int tag;
1749 blk_mq_tag_busy(rq->mq_hctx);
1751 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1752 bt = &rq->mq_hctx->tags->breserved_tags;
1753 tag_offset = 0;
1754 } else {
1755 if (!hctx_may_queue(rq->mq_hctx, bt))
1756 return false;
1759 tag = __sbitmap_queue_get(bt);
1760 if (tag == BLK_MQ_NO_TAG)
1761 return false;
1763 rq->tag = tag + tag_offset;
1764 blk_mq_inc_active_requests(rq->mq_hctx);
1765 return true;
1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1769 int flags, void *key)
1771 struct blk_mq_hw_ctx *hctx;
1773 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1775 spin_lock(&hctx->dispatch_wait_lock);
1776 if (!list_empty(&wait->entry)) {
1777 struct sbitmap_queue *sbq;
1779 list_del_init(&wait->entry);
1780 sbq = &hctx->tags->bitmap_tags;
1781 atomic_dec(&sbq->ws_active);
1783 spin_unlock(&hctx->dispatch_wait_lock);
1785 blk_mq_run_hw_queue(hctx, true);
1786 return 1;
1790 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1791 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1792 * restart. For both cases, take care to check the condition again after
1793 * marking us as waiting.
1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1796 struct request *rq)
1798 struct sbitmap_queue *sbq;
1799 struct wait_queue_head *wq;
1800 wait_queue_entry_t *wait;
1801 bool ret;
1803 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1804 !(blk_mq_is_shared_tags(hctx->flags))) {
1805 blk_mq_sched_mark_restart_hctx(hctx);
1808 * It's possible that a tag was freed in the window between the
1809 * allocation failure and adding the hardware queue to the wait
1810 * queue.
1812 * Don't clear RESTART here, someone else could have set it.
1813 * At most this will cost an extra queue run.
1815 return blk_mq_get_driver_tag(rq);
1818 wait = &hctx->dispatch_wait;
1819 if (!list_empty_careful(&wait->entry))
1820 return false;
1822 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1823 sbq = &hctx->tags->breserved_tags;
1824 else
1825 sbq = &hctx->tags->bitmap_tags;
1826 wq = &bt_wait_ptr(sbq, hctx)->wait;
1828 spin_lock_irq(&wq->lock);
1829 spin_lock(&hctx->dispatch_wait_lock);
1830 if (!list_empty(&wait->entry)) {
1831 spin_unlock(&hctx->dispatch_wait_lock);
1832 spin_unlock_irq(&wq->lock);
1833 return false;
1836 atomic_inc(&sbq->ws_active);
1837 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1838 __add_wait_queue(wq, wait);
1841 * Add one explicit barrier since blk_mq_get_driver_tag() may
1842 * not imply barrier in case of failure.
1844 * Order adding us to wait queue and allocating driver tag.
1846 * The pair is the one implied in sbitmap_queue_wake_up() which
1847 * orders clearing sbitmap tag bits and waitqueue_active() in
1848 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1850 * Otherwise, re-order of adding wait queue and getting driver tag
1851 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1852 * the waitqueue_active() may not observe us in wait queue.
1854 smp_mb();
1857 * It's possible that a tag was freed in the window between the
1858 * allocation failure and adding the hardware queue to the wait
1859 * queue.
1861 ret = blk_mq_get_driver_tag(rq);
1862 if (!ret) {
1863 spin_unlock(&hctx->dispatch_wait_lock);
1864 spin_unlock_irq(&wq->lock);
1865 return false;
1869 * We got a tag, remove ourselves from the wait queue to ensure
1870 * someone else gets the wakeup.
1872 list_del_init(&wait->entry);
1873 atomic_dec(&sbq->ws_active);
1874 spin_unlock(&hctx->dispatch_wait_lock);
1875 spin_unlock_irq(&wq->lock);
1877 return true;
1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1881 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1883 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1884 * - EWMA is one simple way to compute running average value
1885 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1886 * - take 4 as factor for avoiding to get too small(0) result, and this
1887 * factor doesn't matter because EWMA decreases exponentially
1889 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1891 unsigned int ewma;
1893 ewma = hctx->dispatch_busy;
1895 if (!ewma && !busy)
1896 return;
1898 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1899 if (busy)
1900 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1901 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1903 hctx->dispatch_busy = ewma;
1906 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1908 static void blk_mq_handle_dev_resource(struct request *rq,
1909 struct list_head *list)
1911 list_add(&rq->queuelist, list);
1912 __blk_mq_requeue_request(rq);
1915 enum prep_dispatch {
1916 PREP_DISPATCH_OK,
1917 PREP_DISPATCH_NO_TAG,
1918 PREP_DISPATCH_NO_BUDGET,
1921 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1922 bool need_budget)
1924 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1925 int budget_token = -1;
1927 if (need_budget) {
1928 budget_token = blk_mq_get_dispatch_budget(rq->q);
1929 if (budget_token < 0) {
1930 blk_mq_put_driver_tag(rq);
1931 return PREP_DISPATCH_NO_BUDGET;
1933 blk_mq_set_rq_budget_token(rq, budget_token);
1936 if (!blk_mq_get_driver_tag(rq)) {
1938 * The initial allocation attempt failed, so we need to
1939 * rerun the hardware queue when a tag is freed. The
1940 * waitqueue takes care of that. If the queue is run
1941 * before we add this entry back on the dispatch list,
1942 * we'll re-run it below.
1944 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1946 * All budgets not got from this function will be put
1947 * together during handling partial dispatch
1949 if (need_budget)
1950 blk_mq_put_dispatch_budget(rq->q, budget_token);
1951 return PREP_DISPATCH_NO_TAG;
1955 return PREP_DISPATCH_OK;
1958 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1959 static void blk_mq_release_budgets(struct request_queue *q,
1960 struct list_head *list)
1962 struct request *rq;
1964 list_for_each_entry(rq, list, queuelist) {
1965 int budget_token = blk_mq_get_rq_budget_token(rq);
1967 if (budget_token >= 0)
1968 blk_mq_put_dispatch_budget(q, budget_token);
1973 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1974 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1975 * details)
1976 * Attention, we should explicitly call this in unusual cases:
1977 * 1) did not queue everything initially scheduled to queue
1978 * 2) the last attempt to queue a request failed
1980 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1981 bool from_schedule)
1983 if (hctx->queue->mq_ops->commit_rqs && queued) {
1984 trace_block_unplug(hctx->queue, queued, !from_schedule);
1985 hctx->queue->mq_ops->commit_rqs(hctx);
1990 * Returns true if we did some work AND can potentially do more.
1992 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1993 unsigned int nr_budgets)
1995 enum prep_dispatch prep;
1996 struct request_queue *q = hctx->queue;
1997 struct request *rq;
1998 int queued;
1999 blk_status_t ret = BLK_STS_OK;
2000 bool needs_resource = false;
2002 if (list_empty(list))
2003 return false;
2006 * Now process all the entries, sending them to the driver.
2008 queued = 0;
2009 do {
2010 struct blk_mq_queue_data bd;
2012 rq = list_first_entry(list, struct request, queuelist);
2014 WARN_ON_ONCE(hctx != rq->mq_hctx);
2015 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2016 if (prep != PREP_DISPATCH_OK)
2017 break;
2019 list_del_init(&rq->queuelist);
2021 bd.rq = rq;
2022 bd.last = list_empty(list);
2025 * once the request is queued to lld, no need to cover the
2026 * budget any more
2028 if (nr_budgets)
2029 nr_budgets--;
2030 ret = q->mq_ops->queue_rq(hctx, &bd);
2031 switch (ret) {
2032 case BLK_STS_OK:
2033 queued++;
2034 break;
2035 case BLK_STS_RESOURCE:
2036 needs_resource = true;
2037 fallthrough;
2038 case BLK_STS_DEV_RESOURCE:
2039 blk_mq_handle_dev_resource(rq, list);
2040 goto out;
2041 default:
2042 blk_mq_end_request(rq, ret);
2044 } while (!list_empty(list));
2045 out:
2046 /* If we didn't flush the entire list, we could have told the driver
2047 * there was more coming, but that turned out to be a lie.
2049 if (!list_empty(list) || ret != BLK_STS_OK)
2050 blk_mq_commit_rqs(hctx, queued, false);
2053 * Any items that need requeuing? Stuff them into hctx->dispatch,
2054 * that is where we will continue on next queue run.
2056 if (!list_empty(list)) {
2057 bool needs_restart;
2058 /* For non-shared tags, the RESTART check will suffice */
2059 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2060 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2061 blk_mq_is_shared_tags(hctx->flags));
2063 if (nr_budgets)
2064 blk_mq_release_budgets(q, list);
2066 spin_lock(&hctx->lock);
2067 list_splice_tail_init(list, &hctx->dispatch);
2068 spin_unlock(&hctx->lock);
2071 * Order adding requests to hctx->dispatch and checking
2072 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2073 * in blk_mq_sched_restart(). Avoid restart code path to
2074 * miss the new added requests to hctx->dispatch, meantime
2075 * SCHED_RESTART is observed here.
2077 smp_mb();
2080 * If SCHED_RESTART was set by the caller of this function and
2081 * it is no longer set that means that it was cleared by another
2082 * thread and hence that a queue rerun is needed.
2084 * If 'no_tag' is set, that means that we failed getting
2085 * a driver tag with an I/O scheduler attached. If our dispatch
2086 * waitqueue is no longer active, ensure that we run the queue
2087 * AFTER adding our entries back to the list.
2089 * If no I/O scheduler has been configured it is possible that
2090 * the hardware queue got stopped and restarted before requests
2091 * were pushed back onto the dispatch list. Rerun the queue to
2092 * avoid starvation. Notes:
2093 * - blk_mq_run_hw_queue() checks whether or not a queue has
2094 * been stopped before rerunning a queue.
2095 * - Some but not all block drivers stop a queue before
2096 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2097 * and dm-rq.
2099 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2100 * bit is set, run queue after a delay to avoid IO stalls
2101 * that could otherwise occur if the queue is idle. We'll do
2102 * similar if we couldn't get budget or couldn't lock a zone
2103 * and SCHED_RESTART is set.
2105 needs_restart = blk_mq_sched_needs_restart(hctx);
2106 if (prep == PREP_DISPATCH_NO_BUDGET)
2107 needs_resource = true;
2108 if (!needs_restart ||
2109 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2110 blk_mq_run_hw_queue(hctx, true);
2111 else if (needs_resource)
2112 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2114 blk_mq_update_dispatch_busy(hctx, true);
2115 return false;
2118 blk_mq_update_dispatch_busy(hctx, false);
2119 return true;
2122 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2124 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2126 if (cpu >= nr_cpu_ids)
2127 cpu = cpumask_first(hctx->cpumask);
2128 return cpu;
2132 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2133 * it for speeding up the check
2135 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2137 return hctx->next_cpu >= nr_cpu_ids;
2141 * It'd be great if the workqueue API had a way to pass
2142 * in a mask and had some smarts for more clever placement.
2143 * For now we just round-robin here, switching for every
2144 * BLK_MQ_CPU_WORK_BATCH queued items.
2146 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2148 bool tried = false;
2149 int next_cpu = hctx->next_cpu;
2151 /* Switch to unbound if no allowable CPUs in this hctx */
2152 if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2153 return WORK_CPU_UNBOUND;
2155 if (--hctx->next_cpu_batch <= 0) {
2156 select_cpu:
2157 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2158 cpu_online_mask);
2159 if (next_cpu >= nr_cpu_ids)
2160 next_cpu = blk_mq_first_mapped_cpu(hctx);
2161 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2165 * Do unbound schedule if we can't find a online CPU for this hctx,
2166 * and it should only happen in the path of handling CPU DEAD.
2168 if (!cpu_online(next_cpu)) {
2169 if (!tried) {
2170 tried = true;
2171 goto select_cpu;
2175 * Make sure to re-select CPU next time once after CPUs
2176 * in hctx->cpumask become online again.
2178 hctx->next_cpu = next_cpu;
2179 hctx->next_cpu_batch = 1;
2180 return WORK_CPU_UNBOUND;
2183 hctx->next_cpu = next_cpu;
2184 return next_cpu;
2188 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2189 * @hctx: Pointer to the hardware queue to run.
2190 * @msecs: Milliseconds of delay to wait before running the queue.
2192 * Run a hardware queue asynchronously with a delay of @msecs.
2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2196 if (unlikely(blk_mq_hctx_stopped(hctx)))
2197 return;
2198 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2199 msecs_to_jiffies(msecs));
2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2204 * blk_mq_run_hw_queue - Start to run a hardware queue.
2205 * @hctx: Pointer to the hardware queue to run.
2206 * @async: If we want to run the queue asynchronously.
2208 * Check if the request queue is not in a quiesced state and if there are
2209 * pending requests to be sent. If this is true, run the queue to send requests
2210 * to hardware.
2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2214 bool need_run;
2217 * We can't run the queue inline with interrupts disabled.
2219 WARN_ON_ONCE(!async && in_interrupt());
2221 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2224 * When queue is quiesced, we may be switching io scheduler, or
2225 * updating nr_hw_queues, or other things, and we can't run queue
2226 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2228 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2229 * quiesced.
2231 __blk_mq_run_dispatch_ops(hctx->queue, false,
2232 need_run = !blk_queue_quiesced(hctx->queue) &&
2233 blk_mq_hctx_has_pending(hctx));
2235 if (!need_run)
2236 return;
2238 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2239 blk_mq_delay_run_hw_queue(hctx, 0);
2240 return;
2243 blk_mq_run_dispatch_ops(hctx->queue,
2244 blk_mq_sched_dispatch_requests(hctx));
2246 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2249 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2250 * scheduler.
2252 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2254 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2256 * If the IO scheduler does not respect hardware queues when
2257 * dispatching, we just don't bother with multiple HW queues and
2258 * dispatch from hctx for the current CPU since running multiple queues
2259 * just causes lock contention inside the scheduler and pointless cache
2260 * bouncing.
2262 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2264 if (!blk_mq_hctx_stopped(hctx))
2265 return hctx;
2266 return NULL;
2270 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2271 * @q: Pointer to the request queue to run.
2272 * @async: If we want to run the queue asynchronously.
2274 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2276 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2277 unsigned long i;
2279 sq_hctx = NULL;
2280 if (blk_queue_sq_sched(q))
2281 sq_hctx = blk_mq_get_sq_hctx(q);
2282 queue_for_each_hw_ctx(q, hctx, i) {
2283 if (blk_mq_hctx_stopped(hctx))
2284 continue;
2286 * Dispatch from this hctx either if there's no hctx preferred
2287 * by IO scheduler or if it has requests that bypass the
2288 * scheduler.
2290 if (!sq_hctx || sq_hctx == hctx ||
2291 !list_empty_careful(&hctx->dispatch))
2292 blk_mq_run_hw_queue(hctx, async);
2295 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2298 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2299 * @q: Pointer to the request queue to run.
2300 * @msecs: Milliseconds of delay to wait before running the queues.
2302 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2304 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2305 unsigned long i;
2307 sq_hctx = NULL;
2308 if (blk_queue_sq_sched(q))
2309 sq_hctx = blk_mq_get_sq_hctx(q);
2310 queue_for_each_hw_ctx(q, hctx, i) {
2311 if (blk_mq_hctx_stopped(hctx))
2312 continue;
2314 * If there is already a run_work pending, leave the
2315 * pending delay untouched. Otherwise, a hctx can stall
2316 * if another hctx is re-delaying the other's work
2317 * before the work executes.
2319 if (delayed_work_pending(&hctx->run_work))
2320 continue;
2322 * Dispatch from this hctx either if there's no hctx preferred
2323 * by IO scheduler or if it has requests that bypass the
2324 * scheduler.
2326 if (!sq_hctx || sq_hctx == hctx ||
2327 !list_empty_careful(&hctx->dispatch))
2328 blk_mq_delay_run_hw_queue(hctx, msecs);
2331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2334 * This function is often used for pausing .queue_rq() by driver when
2335 * there isn't enough resource or some conditions aren't satisfied, and
2336 * BLK_STS_RESOURCE is usually returned.
2338 * We do not guarantee that dispatch can be drained or blocked
2339 * after blk_mq_stop_hw_queue() returns. Please use
2340 * blk_mq_quiesce_queue() for that requirement.
2342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2344 cancel_delayed_work(&hctx->run_work);
2346 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2348 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2351 * This function is often used for pausing .queue_rq() by driver when
2352 * there isn't enough resource or some conditions aren't satisfied, and
2353 * BLK_STS_RESOURCE is usually returned.
2355 * We do not guarantee that dispatch can be drained or blocked
2356 * after blk_mq_stop_hw_queues() returns. Please use
2357 * blk_mq_quiesce_queue() for that requirement.
2359 void blk_mq_stop_hw_queues(struct request_queue *q)
2361 struct blk_mq_hw_ctx *hctx;
2362 unsigned long i;
2364 queue_for_each_hw_ctx(q, hctx, i)
2365 blk_mq_stop_hw_queue(hctx);
2367 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2371 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2373 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2375 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2377 void blk_mq_start_hw_queues(struct request_queue *q)
2379 struct blk_mq_hw_ctx *hctx;
2380 unsigned long i;
2382 queue_for_each_hw_ctx(q, hctx, i)
2383 blk_mq_start_hw_queue(hctx);
2385 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2389 if (!blk_mq_hctx_stopped(hctx))
2390 return;
2392 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2393 blk_mq_run_hw_queue(hctx, async);
2395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2397 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2399 struct blk_mq_hw_ctx *hctx;
2400 unsigned long i;
2402 queue_for_each_hw_ctx(q, hctx, i)
2403 blk_mq_start_stopped_hw_queue(hctx, async ||
2404 (hctx->flags & BLK_MQ_F_BLOCKING));
2406 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2408 static void blk_mq_run_work_fn(struct work_struct *work)
2410 struct blk_mq_hw_ctx *hctx =
2411 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2413 blk_mq_run_dispatch_ops(hctx->queue,
2414 blk_mq_sched_dispatch_requests(hctx));
2418 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2419 * @rq: Pointer to request to be inserted.
2420 * @flags: BLK_MQ_INSERT_*
2422 * Should only be used carefully, when the caller knows we want to
2423 * bypass a potential IO scheduler on the target device.
2425 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2427 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2429 spin_lock(&hctx->lock);
2430 if (flags & BLK_MQ_INSERT_AT_HEAD)
2431 list_add(&rq->queuelist, &hctx->dispatch);
2432 else
2433 list_add_tail(&rq->queuelist, &hctx->dispatch);
2434 spin_unlock(&hctx->lock);
2437 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2438 struct blk_mq_ctx *ctx, struct list_head *list,
2439 bool run_queue_async)
2441 struct request *rq;
2442 enum hctx_type type = hctx->type;
2445 * Try to issue requests directly if the hw queue isn't busy to save an
2446 * extra enqueue & dequeue to the sw queue.
2448 if (!hctx->dispatch_busy && !run_queue_async) {
2449 blk_mq_run_dispatch_ops(hctx->queue,
2450 blk_mq_try_issue_list_directly(hctx, list));
2451 if (list_empty(list))
2452 goto out;
2456 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2457 * offline now
2459 list_for_each_entry(rq, list, queuelist) {
2460 BUG_ON(rq->mq_ctx != ctx);
2461 trace_block_rq_insert(rq);
2462 if (rq->cmd_flags & REQ_NOWAIT)
2463 run_queue_async = true;
2466 spin_lock(&ctx->lock);
2467 list_splice_tail_init(list, &ctx->rq_lists[type]);
2468 blk_mq_hctx_mark_pending(hctx, ctx);
2469 spin_unlock(&ctx->lock);
2470 out:
2471 blk_mq_run_hw_queue(hctx, run_queue_async);
2474 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2476 struct request_queue *q = rq->q;
2477 struct blk_mq_ctx *ctx = rq->mq_ctx;
2478 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2480 if (blk_rq_is_passthrough(rq)) {
2482 * Passthrough request have to be added to hctx->dispatch
2483 * directly. The device may be in a situation where it can't
2484 * handle FS request, and always returns BLK_STS_RESOURCE for
2485 * them, which gets them added to hctx->dispatch.
2487 * If a passthrough request is required to unblock the queues,
2488 * and it is added to the scheduler queue, there is no chance to
2489 * dispatch it given we prioritize requests in hctx->dispatch.
2491 blk_mq_request_bypass_insert(rq, flags);
2492 } else if (req_op(rq) == REQ_OP_FLUSH) {
2494 * Firstly normal IO request is inserted to scheduler queue or
2495 * sw queue, meantime we add flush request to dispatch queue(
2496 * hctx->dispatch) directly and there is at most one in-flight
2497 * flush request for each hw queue, so it doesn't matter to add
2498 * flush request to tail or front of the dispatch queue.
2500 * Secondly in case of NCQ, flush request belongs to non-NCQ
2501 * command, and queueing it will fail when there is any
2502 * in-flight normal IO request(NCQ command). When adding flush
2503 * rq to the front of hctx->dispatch, it is easier to introduce
2504 * extra time to flush rq's latency because of S_SCHED_RESTART
2505 * compared with adding to the tail of dispatch queue, then
2506 * chance of flush merge is increased, and less flush requests
2507 * will be issued to controller. It is observed that ~10% time
2508 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2509 * drive when adding flush rq to the front of hctx->dispatch.
2511 * Simply queue flush rq to the front of hctx->dispatch so that
2512 * intensive flush workloads can benefit in case of NCQ HW.
2514 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2515 } else if (q->elevator) {
2516 LIST_HEAD(list);
2518 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2520 list_add(&rq->queuelist, &list);
2521 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2522 } else {
2523 trace_block_rq_insert(rq);
2525 spin_lock(&ctx->lock);
2526 if (flags & BLK_MQ_INSERT_AT_HEAD)
2527 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2528 else
2529 list_add_tail(&rq->queuelist,
2530 &ctx->rq_lists[hctx->type]);
2531 blk_mq_hctx_mark_pending(hctx, ctx);
2532 spin_unlock(&ctx->lock);
2536 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2537 unsigned int nr_segs)
2539 int err;
2541 if (bio->bi_opf & REQ_RAHEAD)
2542 rq->cmd_flags |= REQ_FAILFAST_MASK;
2544 rq->__sector = bio->bi_iter.bi_sector;
2545 rq->write_hint = bio->bi_write_hint;
2546 blk_rq_bio_prep(rq, bio, nr_segs);
2547 if (bio_integrity(bio))
2548 rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2549 bio);
2551 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2552 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2553 WARN_ON_ONCE(err);
2555 blk_account_io_start(rq);
2558 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2559 struct request *rq, bool last)
2561 struct request_queue *q = rq->q;
2562 struct blk_mq_queue_data bd = {
2563 .rq = rq,
2564 .last = last,
2566 blk_status_t ret;
2569 * For OK queue, we are done. For error, caller may kill it.
2570 * Any other error (busy), just add it to our list as we
2571 * previously would have done.
2573 ret = q->mq_ops->queue_rq(hctx, &bd);
2574 switch (ret) {
2575 case BLK_STS_OK:
2576 blk_mq_update_dispatch_busy(hctx, false);
2577 break;
2578 case BLK_STS_RESOURCE:
2579 case BLK_STS_DEV_RESOURCE:
2580 blk_mq_update_dispatch_busy(hctx, true);
2581 __blk_mq_requeue_request(rq);
2582 break;
2583 default:
2584 blk_mq_update_dispatch_busy(hctx, false);
2585 break;
2588 return ret;
2591 static bool blk_mq_get_budget_and_tag(struct request *rq)
2593 int budget_token;
2595 budget_token = blk_mq_get_dispatch_budget(rq->q);
2596 if (budget_token < 0)
2597 return false;
2598 blk_mq_set_rq_budget_token(rq, budget_token);
2599 if (!blk_mq_get_driver_tag(rq)) {
2600 blk_mq_put_dispatch_budget(rq->q, budget_token);
2601 return false;
2603 return true;
2607 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2608 * @hctx: Pointer of the associated hardware queue.
2609 * @rq: Pointer to request to be sent.
2611 * If the device has enough resources to accept a new request now, send the
2612 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2613 * we can try send it another time in the future. Requests inserted at this
2614 * queue have higher priority.
2616 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2617 struct request *rq)
2619 blk_status_t ret;
2621 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2622 blk_mq_insert_request(rq, 0);
2623 return;
2626 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2627 blk_mq_insert_request(rq, 0);
2628 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2629 return;
2632 ret = __blk_mq_issue_directly(hctx, rq, true);
2633 switch (ret) {
2634 case BLK_STS_OK:
2635 break;
2636 case BLK_STS_RESOURCE:
2637 case BLK_STS_DEV_RESOURCE:
2638 blk_mq_request_bypass_insert(rq, 0);
2639 blk_mq_run_hw_queue(hctx, false);
2640 break;
2641 default:
2642 blk_mq_end_request(rq, ret);
2643 break;
2647 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2649 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2651 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2652 blk_mq_insert_request(rq, 0);
2653 return BLK_STS_OK;
2656 if (!blk_mq_get_budget_and_tag(rq))
2657 return BLK_STS_RESOURCE;
2658 return __blk_mq_issue_directly(hctx, rq, last);
2661 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2663 struct blk_mq_hw_ctx *hctx = NULL;
2664 struct request *rq;
2665 int queued = 0;
2666 blk_status_t ret = BLK_STS_OK;
2668 while ((rq = rq_list_pop(&plug->mq_list))) {
2669 bool last = rq_list_empty(plug->mq_list);
2671 if (hctx != rq->mq_hctx) {
2672 if (hctx) {
2673 blk_mq_commit_rqs(hctx, queued, false);
2674 queued = 0;
2676 hctx = rq->mq_hctx;
2679 ret = blk_mq_request_issue_directly(rq, last);
2680 switch (ret) {
2681 case BLK_STS_OK:
2682 queued++;
2683 break;
2684 case BLK_STS_RESOURCE:
2685 case BLK_STS_DEV_RESOURCE:
2686 blk_mq_request_bypass_insert(rq, 0);
2687 blk_mq_run_hw_queue(hctx, false);
2688 goto out;
2689 default:
2690 blk_mq_end_request(rq, ret);
2691 break;
2695 out:
2696 if (ret != BLK_STS_OK)
2697 blk_mq_commit_rqs(hctx, queued, false);
2700 static void __blk_mq_flush_plug_list(struct request_queue *q,
2701 struct blk_plug *plug)
2703 if (blk_queue_quiesced(q))
2704 return;
2705 q->mq_ops->queue_rqs(&plug->mq_list);
2708 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2710 struct blk_mq_hw_ctx *this_hctx = NULL;
2711 struct blk_mq_ctx *this_ctx = NULL;
2712 struct request *requeue_list = NULL;
2713 struct request **requeue_lastp = &requeue_list;
2714 unsigned int depth = 0;
2715 bool is_passthrough = false;
2716 LIST_HEAD(list);
2718 do {
2719 struct request *rq = rq_list_pop(&plug->mq_list);
2721 if (!this_hctx) {
2722 this_hctx = rq->mq_hctx;
2723 this_ctx = rq->mq_ctx;
2724 is_passthrough = blk_rq_is_passthrough(rq);
2725 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2726 is_passthrough != blk_rq_is_passthrough(rq)) {
2727 rq_list_add_tail(&requeue_lastp, rq);
2728 continue;
2730 list_add(&rq->queuelist, &list);
2731 depth++;
2732 } while (!rq_list_empty(plug->mq_list));
2734 plug->mq_list = requeue_list;
2735 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2737 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2738 /* passthrough requests should never be issued to the I/O scheduler */
2739 if (is_passthrough) {
2740 spin_lock(&this_hctx->lock);
2741 list_splice_tail_init(&list, &this_hctx->dispatch);
2742 spin_unlock(&this_hctx->lock);
2743 blk_mq_run_hw_queue(this_hctx, from_sched);
2744 } else if (this_hctx->queue->elevator) {
2745 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2746 &list, 0);
2747 blk_mq_run_hw_queue(this_hctx, from_sched);
2748 } else {
2749 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2751 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2754 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2756 struct request *rq;
2757 unsigned int depth;
2760 * We may have been called recursively midway through handling
2761 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2762 * To avoid mq_list changing under our feet, clear rq_count early and
2763 * bail out specifically if rq_count is 0 rather than checking
2764 * whether the mq_list is empty.
2766 if (plug->rq_count == 0)
2767 return;
2768 depth = plug->rq_count;
2769 plug->rq_count = 0;
2771 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2772 struct request_queue *q;
2774 rq = rq_list_peek(&plug->mq_list);
2775 q = rq->q;
2776 trace_block_unplug(q, depth, true);
2779 * Peek first request and see if we have a ->queue_rqs() hook.
2780 * If we do, we can dispatch the whole plug list in one go. We
2781 * already know at this point that all requests belong to the
2782 * same queue, caller must ensure that's the case.
2784 if (q->mq_ops->queue_rqs) {
2785 blk_mq_run_dispatch_ops(q,
2786 __blk_mq_flush_plug_list(q, plug));
2787 if (rq_list_empty(plug->mq_list))
2788 return;
2791 blk_mq_run_dispatch_ops(q,
2792 blk_mq_plug_issue_direct(plug));
2793 if (rq_list_empty(plug->mq_list))
2794 return;
2797 do {
2798 blk_mq_dispatch_plug_list(plug, from_schedule);
2799 } while (!rq_list_empty(plug->mq_list));
2802 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2803 struct list_head *list)
2805 int queued = 0;
2806 blk_status_t ret = BLK_STS_OK;
2808 while (!list_empty(list)) {
2809 struct request *rq = list_first_entry(list, struct request,
2810 queuelist);
2812 list_del_init(&rq->queuelist);
2813 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2814 switch (ret) {
2815 case BLK_STS_OK:
2816 queued++;
2817 break;
2818 case BLK_STS_RESOURCE:
2819 case BLK_STS_DEV_RESOURCE:
2820 blk_mq_request_bypass_insert(rq, 0);
2821 if (list_empty(list))
2822 blk_mq_run_hw_queue(hctx, false);
2823 goto out;
2824 default:
2825 blk_mq_end_request(rq, ret);
2826 break;
2830 out:
2831 if (ret != BLK_STS_OK)
2832 blk_mq_commit_rqs(hctx, queued, false);
2835 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2836 struct bio *bio, unsigned int nr_segs)
2838 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2839 if (blk_attempt_plug_merge(q, bio, nr_segs))
2840 return true;
2841 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2842 return true;
2844 return false;
2847 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2848 struct blk_plug *plug,
2849 struct bio *bio,
2850 unsigned int nsegs)
2852 struct blk_mq_alloc_data data = {
2853 .q = q,
2854 .nr_tags = 1,
2855 .cmd_flags = bio->bi_opf,
2857 struct request *rq;
2859 rq_qos_throttle(q, bio);
2861 if (plug) {
2862 data.nr_tags = plug->nr_ios;
2863 plug->nr_ios = 1;
2864 data.cached_rq = &plug->cached_rq;
2867 rq = __blk_mq_alloc_requests(&data);
2868 if (rq)
2869 return rq;
2870 rq_qos_cleanup(q, bio);
2871 if (bio->bi_opf & REQ_NOWAIT)
2872 bio_wouldblock_error(bio);
2873 return NULL;
2877 * Check if there is a suitable cached request and return it.
2879 static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2880 struct request_queue *q, blk_opf_t opf)
2882 enum hctx_type type = blk_mq_get_hctx_type(opf);
2883 struct request *rq;
2885 if (!plug)
2886 return NULL;
2887 rq = rq_list_peek(&plug->cached_rq);
2888 if (!rq || rq->q != q)
2889 return NULL;
2890 if (type != rq->mq_hctx->type &&
2891 (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2892 return NULL;
2893 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2894 return NULL;
2895 return rq;
2898 static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2899 struct bio *bio)
2901 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2904 * If any qos ->throttle() end up blocking, we will have flushed the
2905 * plug and hence killed the cached_rq list as well. Pop this entry
2906 * before we throttle.
2908 plug->cached_rq = rq_list_next(rq);
2909 rq_qos_throttle(rq->q, bio);
2911 blk_mq_rq_time_init(rq, 0);
2912 rq->cmd_flags = bio->bi_opf;
2913 INIT_LIST_HEAD(&rq->queuelist);
2916 static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
2918 unsigned int bs_mask = queue_logical_block_size(q) - 1;
2920 /* .bi_sector of any zero sized bio need to be initialized */
2921 if ((bio->bi_iter.bi_size & bs_mask) ||
2922 ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
2923 return true;
2924 return false;
2928 * blk_mq_submit_bio - Create and send a request to block device.
2929 * @bio: Bio pointer.
2931 * Builds up a request structure from @q and @bio and send to the device. The
2932 * request may not be queued directly to hardware if:
2933 * * This request can be merged with another one
2934 * * We want to place request at plug queue for possible future merging
2935 * * There is an IO scheduler active at this queue
2937 * It will not queue the request if there is an error with the bio, or at the
2938 * request creation.
2940 void blk_mq_submit_bio(struct bio *bio)
2942 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2943 struct blk_plug *plug = current->plug;
2944 const int is_sync = op_is_sync(bio->bi_opf);
2945 struct blk_mq_hw_ctx *hctx;
2946 unsigned int nr_segs;
2947 struct request *rq;
2948 blk_status_t ret;
2951 * If the plug has a cached request for this queue, try to use it.
2953 rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2956 * A BIO that was released from a zone write plug has already been
2957 * through the preparation in this function, already holds a reference
2958 * on the queue usage counter, and is the only write BIO in-flight for
2959 * the target zone. Go straight to preparing a request for it.
2961 if (bio_zone_write_plugging(bio)) {
2962 nr_segs = bio->__bi_nr_segments;
2963 if (rq)
2964 blk_queue_exit(q);
2965 goto new_request;
2968 bio = blk_queue_bounce(bio, q);
2971 * The cached request already holds a q_usage_counter reference and we
2972 * don't have to acquire a new one if we use it.
2974 if (!rq) {
2975 if (unlikely(bio_queue_enter(bio)))
2976 return;
2980 * Device reconfiguration may change logical block size, so alignment
2981 * check has to be done with queue usage counter held
2983 if (unlikely(bio_unaligned(bio, q))) {
2984 bio_io_error(bio);
2985 goto queue_exit;
2988 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2989 if (!bio)
2990 goto queue_exit;
2992 if (!bio_integrity_prep(bio))
2993 goto queue_exit;
2995 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2996 goto queue_exit;
2998 if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
2999 goto queue_exit;
3001 new_request:
3002 if (!rq) {
3003 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3004 if (unlikely(!rq))
3005 goto queue_exit;
3006 } else {
3007 blk_mq_use_cached_rq(rq, plug, bio);
3010 trace_block_getrq(bio);
3012 rq_qos_track(q, rq, bio);
3014 blk_mq_bio_to_request(rq, bio, nr_segs);
3016 ret = blk_crypto_rq_get_keyslot(rq);
3017 if (ret != BLK_STS_OK) {
3018 bio->bi_status = ret;
3019 bio_endio(bio);
3020 blk_mq_free_request(rq);
3021 return;
3024 if (bio_zone_write_plugging(bio))
3025 blk_zone_write_plug_init_request(rq);
3027 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3028 return;
3030 if (plug) {
3031 blk_add_rq_to_plug(plug, rq);
3032 return;
3035 hctx = rq->mq_hctx;
3036 if ((rq->rq_flags & RQF_USE_SCHED) ||
3037 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3038 blk_mq_insert_request(rq, 0);
3039 blk_mq_run_hw_queue(hctx, true);
3040 } else {
3041 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3043 return;
3045 queue_exit:
3047 * Don't drop the queue reference if we were trying to use a cached
3048 * request and thus didn't acquire one.
3050 if (!rq)
3051 blk_queue_exit(q);
3054 #ifdef CONFIG_BLK_MQ_STACKING
3056 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3057 * @rq: the request being queued
3059 blk_status_t blk_insert_cloned_request(struct request *rq)
3061 struct request_queue *q = rq->q;
3062 unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3063 unsigned int max_segments = blk_rq_get_max_segments(rq);
3064 blk_status_t ret;
3066 if (blk_rq_sectors(rq) > max_sectors) {
3068 * SCSI device does not have a good way to return if
3069 * Write Same/Zero is actually supported. If a device rejects
3070 * a non-read/write command (discard, write same,etc.) the
3071 * low-level device driver will set the relevant queue limit to
3072 * 0 to prevent blk-lib from issuing more of the offending
3073 * operations. Commands queued prior to the queue limit being
3074 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3075 * errors being propagated to upper layers.
3077 if (max_sectors == 0)
3078 return BLK_STS_NOTSUPP;
3080 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3081 __func__, blk_rq_sectors(rq), max_sectors);
3082 return BLK_STS_IOERR;
3086 * The queue settings related to segment counting may differ from the
3087 * original queue.
3089 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3090 if (rq->nr_phys_segments > max_segments) {
3091 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3092 __func__, rq->nr_phys_segments, max_segments);
3093 return BLK_STS_IOERR;
3096 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3097 return BLK_STS_IOERR;
3099 ret = blk_crypto_rq_get_keyslot(rq);
3100 if (ret != BLK_STS_OK)
3101 return ret;
3103 blk_account_io_start(rq);
3106 * Since we have a scheduler attached on the top device,
3107 * bypass a potential scheduler on the bottom device for
3108 * insert.
3110 blk_mq_run_dispatch_ops(q,
3111 ret = blk_mq_request_issue_directly(rq, true));
3112 if (ret)
3113 blk_account_io_done(rq, blk_time_get_ns());
3114 return ret;
3116 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3119 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3120 * @rq: the clone request to be cleaned up
3122 * Description:
3123 * Free all bios in @rq for a cloned request.
3125 void blk_rq_unprep_clone(struct request *rq)
3127 struct bio *bio;
3129 while ((bio = rq->bio) != NULL) {
3130 rq->bio = bio->bi_next;
3132 bio_put(bio);
3135 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3138 * blk_rq_prep_clone - Helper function to setup clone request
3139 * @rq: the request to be setup
3140 * @rq_src: original request to be cloned
3141 * @bs: bio_set that bios for clone are allocated from
3142 * @gfp_mask: memory allocation mask for bio
3143 * @bio_ctr: setup function to be called for each clone bio.
3144 * Returns %0 for success, non %0 for failure.
3145 * @data: private data to be passed to @bio_ctr
3147 * Description:
3148 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3149 * Also, pages which the original bios are pointing to are not copied
3150 * and the cloned bios just point same pages.
3151 * So cloned bios must be completed before original bios, which means
3152 * the caller must complete @rq before @rq_src.
3154 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3155 struct bio_set *bs, gfp_t gfp_mask,
3156 int (*bio_ctr)(struct bio *, struct bio *, void *),
3157 void *data)
3159 struct bio *bio, *bio_src;
3161 if (!bs)
3162 bs = &fs_bio_set;
3164 __rq_for_each_bio(bio_src, rq_src) {
3165 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3166 bs);
3167 if (!bio)
3168 goto free_and_out;
3170 if (bio_ctr && bio_ctr(bio, bio_src, data))
3171 goto free_and_out;
3173 if (rq->bio) {
3174 rq->biotail->bi_next = bio;
3175 rq->biotail = bio;
3176 } else {
3177 rq->bio = rq->biotail = bio;
3179 bio = NULL;
3182 /* Copy attributes of the original request to the clone request. */
3183 rq->__sector = blk_rq_pos(rq_src);
3184 rq->__data_len = blk_rq_bytes(rq_src);
3185 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3186 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3187 rq->special_vec = rq_src->special_vec;
3189 rq->nr_phys_segments = rq_src->nr_phys_segments;
3190 rq->ioprio = rq_src->ioprio;
3191 rq->write_hint = rq_src->write_hint;
3193 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3194 goto free_and_out;
3196 return 0;
3198 free_and_out:
3199 if (bio)
3200 bio_put(bio);
3201 blk_rq_unprep_clone(rq);
3203 return -ENOMEM;
3205 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3206 #endif /* CONFIG_BLK_MQ_STACKING */
3209 * Steal bios from a request and add them to a bio list.
3210 * The request must not have been partially completed before.
3212 void blk_steal_bios(struct bio_list *list, struct request *rq)
3214 if (rq->bio) {
3215 if (list->tail)
3216 list->tail->bi_next = rq->bio;
3217 else
3218 list->head = rq->bio;
3219 list->tail = rq->biotail;
3221 rq->bio = NULL;
3222 rq->biotail = NULL;
3225 rq->__data_len = 0;
3227 EXPORT_SYMBOL_GPL(blk_steal_bios);
3229 static size_t order_to_size(unsigned int order)
3231 return (size_t)PAGE_SIZE << order;
3234 /* called before freeing request pool in @tags */
3235 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3236 struct blk_mq_tags *tags)
3238 struct page *page;
3239 unsigned long flags;
3242 * There is no need to clear mapping if driver tags is not initialized
3243 * or the mapping belongs to the driver tags.
3245 if (!drv_tags || drv_tags == tags)
3246 return;
3248 list_for_each_entry(page, &tags->page_list, lru) {
3249 unsigned long start = (unsigned long)page_address(page);
3250 unsigned long end = start + order_to_size(page->private);
3251 int i;
3253 for (i = 0; i < drv_tags->nr_tags; i++) {
3254 struct request *rq = drv_tags->rqs[i];
3255 unsigned long rq_addr = (unsigned long)rq;
3257 if (rq_addr >= start && rq_addr < end) {
3258 WARN_ON_ONCE(req_ref_read(rq) != 0);
3259 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3265 * Wait until all pending iteration is done.
3267 * Request reference is cleared and it is guaranteed to be observed
3268 * after the ->lock is released.
3270 spin_lock_irqsave(&drv_tags->lock, flags);
3271 spin_unlock_irqrestore(&drv_tags->lock, flags);
3274 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3275 unsigned int hctx_idx)
3277 struct blk_mq_tags *drv_tags;
3278 struct page *page;
3280 if (list_empty(&tags->page_list))
3281 return;
3283 if (blk_mq_is_shared_tags(set->flags))
3284 drv_tags = set->shared_tags;
3285 else
3286 drv_tags = set->tags[hctx_idx];
3288 if (tags->static_rqs && set->ops->exit_request) {
3289 int i;
3291 for (i = 0; i < tags->nr_tags; i++) {
3292 struct request *rq = tags->static_rqs[i];
3294 if (!rq)
3295 continue;
3296 set->ops->exit_request(set, rq, hctx_idx);
3297 tags->static_rqs[i] = NULL;
3301 blk_mq_clear_rq_mapping(drv_tags, tags);
3303 while (!list_empty(&tags->page_list)) {
3304 page = list_first_entry(&tags->page_list, struct page, lru);
3305 list_del_init(&page->lru);
3307 * Remove kmemleak object previously allocated in
3308 * blk_mq_alloc_rqs().
3310 kmemleak_free(page_address(page));
3311 __free_pages(page, page->private);
3315 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3317 kfree(tags->rqs);
3318 tags->rqs = NULL;
3319 kfree(tags->static_rqs);
3320 tags->static_rqs = NULL;
3322 blk_mq_free_tags(tags);
3325 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3326 unsigned int hctx_idx)
3328 int i;
3330 for (i = 0; i < set->nr_maps; i++) {
3331 unsigned int start = set->map[i].queue_offset;
3332 unsigned int end = start + set->map[i].nr_queues;
3334 if (hctx_idx >= start && hctx_idx < end)
3335 break;
3338 if (i >= set->nr_maps)
3339 i = HCTX_TYPE_DEFAULT;
3341 return i;
3344 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3345 unsigned int hctx_idx)
3347 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3349 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3352 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3353 unsigned int hctx_idx,
3354 unsigned int nr_tags,
3355 unsigned int reserved_tags)
3357 int node = blk_mq_get_hctx_node(set, hctx_idx);
3358 struct blk_mq_tags *tags;
3360 if (node == NUMA_NO_NODE)
3361 node = set->numa_node;
3363 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3364 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3365 if (!tags)
3366 return NULL;
3368 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3369 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3370 node);
3371 if (!tags->rqs)
3372 goto err_free_tags;
3374 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3375 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3376 node);
3377 if (!tags->static_rqs)
3378 goto err_free_rqs;
3380 return tags;
3382 err_free_rqs:
3383 kfree(tags->rqs);
3384 err_free_tags:
3385 blk_mq_free_tags(tags);
3386 return NULL;
3389 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3390 unsigned int hctx_idx, int node)
3392 int ret;
3394 if (set->ops->init_request) {
3395 ret = set->ops->init_request(set, rq, hctx_idx, node);
3396 if (ret)
3397 return ret;
3400 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3401 return 0;
3404 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3405 struct blk_mq_tags *tags,
3406 unsigned int hctx_idx, unsigned int depth)
3408 unsigned int i, j, entries_per_page, max_order = 4;
3409 int node = blk_mq_get_hctx_node(set, hctx_idx);
3410 size_t rq_size, left;
3412 if (node == NUMA_NO_NODE)
3413 node = set->numa_node;
3415 INIT_LIST_HEAD(&tags->page_list);
3418 * rq_size is the size of the request plus driver payload, rounded
3419 * to the cacheline size
3421 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3422 cache_line_size());
3423 left = rq_size * depth;
3425 for (i = 0; i < depth; ) {
3426 int this_order = max_order;
3427 struct page *page;
3428 int to_do;
3429 void *p;
3431 while (this_order && left < order_to_size(this_order - 1))
3432 this_order--;
3434 do {
3435 page = alloc_pages_node(node,
3436 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3437 this_order);
3438 if (page)
3439 break;
3440 if (!this_order--)
3441 break;
3442 if (order_to_size(this_order) < rq_size)
3443 break;
3444 } while (1);
3446 if (!page)
3447 goto fail;
3449 page->private = this_order;
3450 list_add_tail(&page->lru, &tags->page_list);
3452 p = page_address(page);
3454 * Allow kmemleak to scan these pages as they contain pointers
3455 * to additional allocations like via ops->init_request().
3457 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3458 entries_per_page = order_to_size(this_order) / rq_size;
3459 to_do = min(entries_per_page, depth - i);
3460 left -= to_do * rq_size;
3461 for (j = 0; j < to_do; j++) {
3462 struct request *rq = p;
3464 tags->static_rqs[i] = rq;
3465 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3466 tags->static_rqs[i] = NULL;
3467 goto fail;
3470 p += rq_size;
3471 i++;
3474 return 0;
3476 fail:
3477 blk_mq_free_rqs(set, tags, hctx_idx);
3478 return -ENOMEM;
3481 struct rq_iter_data {
3482 struct blk_mq_hw_ctx *hctx;
3483 bool has_rq;
3486 static bool blk_mq_has_request(struct request *rq, void *data)
3488 struct rq_iter_data *iter_data = data;
3490 if (rq->mq_hctx != iter_data->hctx)
3491 return true;
3492 iter_data->has_rq = true;
3493 return false;
3496 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3498 struct blk_mq_tags *tags = hctx->sched_tags ?
3499 hctx->sched_tags : hctx->tags;
3500 struct rq_iter_data data = {
3501 .hctx = hctx,
3504 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3505 return data.has_rq;
3508 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3509 unsigned int this_cpu)
3511 enum hctx_type type = hctx->type;
3512 int cpu;
3515 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3516 * might submit IOs on these isolated CPUs, so use the queue map to
3517 * check if all CPUs mapped to this hctx are offline
3519 for_each_online_cpu(cpu) {
3520 struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3521 type, cpu);
3523 if (h != hctx)
3524 continue;
3526 /* this hctx has at least one online CPU */
3527 if (this_cpu != cpu)
3528 return true;
3531 return false;
3534 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3536 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3537 struct blk_mq_hw_ctx, cpuhp_online);
3539 if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3540 return 0;
3543 * Prevent new request from being allocated on the current hctx.
3545 * The smp_mb__after_atomic() Pairs with the implied barrier in
3546 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3547 * seen once we return from the tag allocator.
3549 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3550 smp_mb__after_atomic();
3553 * Try to grab a reference to the queue and wait for any outstanding
3554 * requests. If we could not grab a reference the queue has been
3555 * frozen and there are no requests.
3557 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3558 while (blk_mq_hctx_has_requests(hctx))
3559 msleep(5);
3560 percpu_ref_put(&hctx->queue->q_usage_counter);
3563 return 0;
3567 * Check if one CPU is mapped to the specified hctx
3569 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3570 * to be used for scheduling kworker only. For other usage, please call this
3571 * helper for checking if one CPU belongs to the specified hctx
3573 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3574 const struct blk_mq_hw_ctx *hctx)
3576 struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3577 hctx->type, cpu);
3579 return mapped_hctx == hctx;
3582 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3584 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3585 struct blk_mq_hw_ctx, cpuhp_online);
3587 if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3588 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3589 return 0;
3593 * 'cpu' is going away. splice any existing rq_list entries from this
3594 * software queue to the hw queue dispatch list, and ensure that it
3595 * gets run.
3597 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3599 struct blk_mq_hw_ctx *hctx;
3600 struct blk_mq_ctx *ctx;
3601 LIST_HEAD(tmp);
3602 enum hctx_type type;
3604 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3605 if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3606 return 0;
3608 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3609 type = hctx->type;
3611 spin_lock(&ctx->lock);
3612 if (!list_empty(&ctx->rq_lists[type])) {
3613 list_splice_init(&ctx->rq_lists[type], &tmp);
3614 blk_mq_hctx_clear_pending(hctx, ctx);
3616 spin_unlock(&ctx->lock);
3618 if (list_empty(&tmp))
3619 return 0;
3621 spin_lock(&hctx->lock);
3622 list_splice_tail_init(&tmp, &hctx->dispatch);
3623 spin_unlock(&hctx->lock);
3625 blk_mq_run_hw_queue(hctx, true);
3626 return 0;
3629 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3631 if (!(hctx->flags & BLK_MQ_F_STACKING))
3632 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3633 &hctx->cpuhp_online);
3634 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3635 &hctx->cpuhp_dead);
3639 * Before freeing hw queue, clearing the flush request reference in
3640 * tags->rqs[] for avoiding potential UAF.
3642 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3643 unsigned int queue_depth, struct request *flush_rq)
3645 int i;
3646 unsigned long flags;
3648 /* The hw queue may not be mapped yet */
3649 if (!tags)
3650 return;
3652 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3654 for (i = 0; i < queue_depth; i++)
3655 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3658 * Wait until all pending iteration is done.
3660 * Request reference is cleared and it is guaranteed to be observed
3661 * after the ->lock is released.
3663 spin_lock_irqsave(&tags->lock, flags);
3664 spin_unlock_irqrestore(&tags->lock, flags);
3667 /* hctx->ctxs will be freed in queue's release handler */
3668 static void blk_mq_exit_hctx(struct request_queue *q,
3669 struct blk_mq_tag_set *set,
3670 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3672 struct request *flush_rq = hctx->fq->flush_rq;
3674 if (blk_mq_hw_queue_mapped(hctx))
3675 blk_mq_tag_idle(hctx);
3677 if (blk_queue_init_done(q))
3678 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3679 set->queue_depth, flush_rq);
3680 if (set->ops->exit_request)
3681 set->ops->exit_request(set, flush_rq, hctx_idx);
3683 if (set->ops->exit_hctx)
3684 set->ops->exit_hctx(hctx, hctx_idx);
3686 blk_mq_remove_cpuhp(hctx);
3688 xa_erase(&q->hctx_table, hctx_idx);
3690 spin_lock(&q->unused_hctx_lock);
3691 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3692 spin_unlock(&q->unused_hctx_lock);
3695 static void blk_mq_exit_hw_queues(struct request_queue *q,
3696 struct blk_mq_tag_set *set, int nr_queue)
3698 struct blk_mq_hw_ctx *hctx;
3699 unsigned long i;
3701 queue_for_each_hw_ctx(q, hctx, i) {
3702 if (i == nr_queue)
3703 break;
3704 blk_mq_exit_hctx(q, set, hctx, i);
3708 static int blk_mq_init_hctx(struct request_queue *q,
3709 struct blk_mq_tag_set *set,
3710 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3712 hctx->queue_num = hctx_idx;
3714 if (!(hctx->flags & BLK_MQ_F_STACKING))
3715 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3716 &hctx->cpuhp_online);
3717 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3719 hctx->tags = set->tags[hctx_idx];
3721 if (set->ops->init_hctx &&
3722 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3723 goto unregister_cpu_notifier;
3725 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3726 hctx->numa_node))
3727 goto exit_hctx;
3729 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3730 goto exit_flush_rq;
3732 return 0;
3734 exit_flush_rq:
3735 if (set->ops->exit_request)
3736 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3737 exit_hctx:
3738 if (set->ops->exit_hctx)
3739 set->ops->exit_hctx(hctx, hctx_idx);
3740 unregister_cpu_notifier:
3741 blk_mq_remove_cpuhp(hctx);
3742 return -1;
3745 static struct blk_mq_hw_ctx *
3746 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3747 int node)
3749 struct blk_mq_hw_ctx *hctx;
3750 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3752 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3753 if (!hctx)
3754 goto fail_alloc_hctx;
3756 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3757 goto free_hctx;
3759 atomic_set(&hctx->nr_active, 0);
3760 if (node == NUMA_NO_NODE)
3761 node = set->numa_node;
3762 hctx->numa_node = node;
3764 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3765 spin_lock_init(&hctx->lock);
3766 INIT_LIST_HEAD(&hctx->dispatch);
3767 hctx->queue = q;
3768 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3770 INIT_LIST_HEAD(&hctx->hctx_list);
3773 * Allocate space for all possible cpus to avoid allocation at
3774 * runtime
3776 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3777 gfp, node);
3778 if (!hctx->ctxs)
3779 goto free_cpumask;
3781 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3782 gfp, node, false, false))
3783 goto free_ctxs;
3784 hctx->nr_ctx = 0;
3786 spin_lock_init(&hctx->dispatch_wait_lock);
3787 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3788 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3790 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3791 if (!hctx->fq)
3792 goto free_bitmap;
3794 blk_mq_hctx_kobj_init(hctx);
3796 return hctx;
3798 free_bitmap:
3799 sbitmap_free(&hctx->ctx_map);
3800 free_ctxs:
3801 kfree(hctx->ctxs);
3802 free_cpumask:
3803 free_cpumask_var(hctx->cpumask);
3804 free_hctx:
3805 kfree(hctx);
3806 fail_alloc_hctx:
3807 return NULL;
3810 static void blk_mq_init_cpu_queues(struct request_queue *q,
3811 unsigned int nr_hw_queues)
3813 struct blk_mq_tag_set *set = q->tag_set;
3814 unsigned int i, j;
3816 for_each_possible_cpu(i) {
3817 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3818 struct blk_mq_hw_ctx *hctx;
3819 int k;
3821 __ctx->cpu = i;
3822 spin_lock_init(&__ctx->lock);
3823 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3824 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3826 __ctx->queue = q;
3829 * Set local node, IFF we have more than one hw queue. If
3830 * not, we remain on the home node of the device
3832 for (j = 0; j < set->nr_maps; j++) {
3833 hctx = blk_mq_map_queue_type(q, j, i);
3834 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3835 hctx->numa_node = cpu_to_node(i);
3840 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3841 unsigned int hctx_idx,
3842 unsigned int depth)
3844 struct blk_mq_tags *tags;
3845 int ret;
3847 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3848 if (!tags)
3849 return NULL;
3851 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3852 if (ret) {
3853 blk_mq_free_rq_map(tags);
3854 return NULL;
3857 return tags;
3860 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3861 int hctx_idx)
3863 if (blk_mq_is_shared_tags(set->flags)) {
3864 set->tags[hctx_idx] = set->shared_tags;
3866 return true;
3869 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3870 set->queue_depth);
3872 return set->tags[hctx_idx];
3875 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3876 struct blk_mq_tags *tags,
3877 unsigned int hctx_idx)
3879 if (tags) {
3880 blk_mq_free_rqs(set, tags, hctx_idx);
3881 blk_mq_free_rq_map(tags);
3885 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3886 unsigned int hctx_idx)
3888 if (!blk_mq_is_shared_tags(set->flags))
3889 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3891 set->tags[hctx_idx] = NULL;
3894 static void blk_mq_map_swqueue(struct request_queue *q)
3896 unsigned int j, hctx_idx;
3897 unsigned long i;
3898 struct blk_mq_hw_ctx *hctx;
3899 struct blk_mq_ctx *ctx;
3900 struct blk_mq_tag_set *set = q->tag_set;
3902 queue_for_each_hw_ctx(q, hctx, i) {
3903 cpumask_clear(hctx->cpumask);
3904 hctx->nr_ctx = 0;
3905 hctx->dispatch_from = NULL;
3909 * Map software to hardware queues.
3911 * If the cpu isn't present, the cpu is mapped to first hctx.
3913 for_each_possible_cpu(i) {
3915 ctx = per_cpu_ptr(q->queue_ctx, i);
3916 for (j = 0; j < set->nr_maps; j++) {
3917 if (!set->map[j].nr_queues) {
3918 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3919 HCTX_TYPE_DEFAULT, i);
3920 continue;
3922 hctx_idx = set->map[j].mq_map[i];
3923 /* unmapped hw queue can be remapped after CPU topo changed */
3924 if (!set->tags[hctx_idx] &&
3925 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3927 * If tags initialization fail for some hctx,
3928 * that hctx won't be brought online. In this
3929 * case, remap the current ctx to hctx[0] which
3930 * is guaranteed to always have tags allocated
3932 set->map[j].mq_map[i] = 0;
3935 hctx = blk_mq_map_queue_type(q, j, i);
3936 ctx->hctxs[j] = hctx;
3938 * If the CPU is already set in the mask, then we've
3939 * mapped this one already. This can happen if
3940 * devices share queues across queue maps.
3942 if (cpumask_test_cpu(i, hctx->cpumask))
3943 continue;
3945 cpumask_set_cpu(i, hctx->cpumask);
3946 hctx->type = j;
3947 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3948 hctx->ctxs[hctx->nr_ctx++] = ctx;
3951 * If the nr_ctx type overflows, we have exceeded the
3952 * amount of sw queues we can support.
3954 BUG_ON(!hctx->nr_ctx);
3957 for (; j < HCTX_MAX_TYPES; j++)
3958 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3959 HCTX_TYPE_DEFAULT, i);
3962 queue_for_each_hw_ctx(q, hctx, i) {
3963 int cpu;
3966 * If no software queues are mapped to this hardware queue,
3967 * disable it and free the request entries.
3969 if (!hctx->nr_ctx) {
3970 /* Never unmap queue 0. We need it as a
3971 * fallback in case of a new remap fails
3972 * allocation
3974 if (i)
3975 __blk_mq_free_map_and_rqs(set, i);
3977 hctx->tags = NULL;
3978 continue;
3981 hctx->tags = set->tags[i];
3982 WARN_ON(!hctx->tags);
3985 * Set the map size to the number of mapped software queues.
3986 * This is more accurate and more efficient than looping
3987 * over all possibly mapped software queues.
3989 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3992 * Rule out isolated CPUs from hctx->cpumask to avoid
3993 * running block kworker on isolated CPUs
3995 for_each_cpu(cpu, hctx->cpumask) {
3996 if (cpu_is_isolated(cpu))
3997 cpumask_clear_cpu(cpu, hctx->cpumask);
4001 * Initialize batch roundrobin counts
4003 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4004 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4009 * Caller needs to ensure that we're either frozen/quiesced, or that
4010 * the queue isn't live yet.
4012 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4014 struct blk_mq_hw_ctx *hctx;
4015 unsigned long i;
4017 queue_for_each_hw_ctx(q, hctx, i) {
4018 if (shared) {
4019 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4020 } else {
4021 blk_mq_tag_idle(hctx);
4022 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4027 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4028 bool shared)
4030 struct request_queue *q;
4032 lockdep_assert_held(&set->tag_list_lock);
4034 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4035 blk_mq_freeze_queue(q);
4036 queue_set_hctx_shared(q, shared);
4037 blk_mq_unfreeze_queue(q);
4041 static void blk_mq_del_queue_tag_set(struct request_queue *q)
4043 struct blk_mq_tag_set *set = q->tag_set;
4045 mutex_lock(&set->tag_list_lock);
4046 list_del(&q->tag_set_list);
4047 if (list_is_singular(&set->tag_list)) {
4048 /* just transitioned to unshared */
4049 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4050 /* update existing queue */
4051 blk_mq_update_tag_set_shared(set, false);
4053 mutex_unlock(&set->tag_list_lock);
4054 INIT_LIST_HEAD(&q->tag_set_list);
4057 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4058 struct request_queue *q)
4060 mutex_lock(&set->tag_list_lock);
4063 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4065 if (!list_empty(&set->tag_list) &&
4066 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4067 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4068 /* update existing queue */
4069 blk_mq_update_tag_set_shared(set, true);
4071 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4072 queue_set_hctx_shared(q, true);
4073 list_add_tail(&q->tag_set_list, &set->tag_list);
4075 mutex_unlock(&set->tag_list_lock);
4078 /* All allocations will be freed in release handler of q->mq_kobj */
4079 static int blk_mq_alloc_ctxs(struct request_queue *q)
4081 struct blk_mq_ctxs *ctxs;
4082 int cpu;
4084 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4085 if (!ctxs)
4086 return -ENOMEM;
4088 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4089 if (!ctxs->queue_ctx)
4090 goto fail;
4092 for_each_possible_cpu(cpu) {
4093 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4094 ctx->ctxs = ctxs;
4097 q->mq_kobj = &ctxs->kobj;
4098 q->queue_ctx = ctxs->queue_ctx;
4100 return 0;
4101 fail:
4102 kfree(ctxs);
4103 return -ENOMEM;
4107 * It is the actual release handler for mq, but we do it from
4108 * request queue's release handler for avoiding use-after-free
4109 * and headache because q->mq_kobj shouldn't have been introduced,
4110 * but we can't group ctx/kctx kobj without it.
4112 void blk_mq_release(struct request_queue *q)
4114 struct blk_mq_hw_ctx *hctx, *next;
4115 unsigned long i;
4117 queue_for_each_hw_ctx(q, hctx, i)
4118 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4120 /* all hctx are in .unused_hctx_list now */
4121 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4122 list_del_init(&hctx->hctx_list);
4123 kobject_put(&hctx->kobj);
4126 xa_destroy(&q->hctx_table);
4129 * release .mq_kobj and sw queue's kobject now because
4130 * both share lifetime with request queue.
4132 blk_mq_sysfs_deinit(q);
4135 static bool blk_mq_can_poll(struct blk_mq_tag_set *set)
4137 return set->nr_maps > HCTX_TYPE_POLL &&
4138 set->map[HCTX_TYPE_POLL].nr_queues;
4141 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4142 struct queue_limits *lim, void *queuedata)
4144 struct queue_limits default_lim = { };
4145 struct request_queue *q;
4146 int ret;
4148 if (!lim)
4149 lim = &default_lim;
4150 lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4151 if (blk_mq_can_poll(set))
4152 lim->features |= BLK_FEAT_POLL;
4154 q = blk_alloc_queue(lim, set->numa_node);
4155 if (IS_ERR(q))
4156 return q;
4157 q->queuedata = queuedata;
4158 ret = blk_mq_init_allocated_queue(set, q);
4159 if (ret) {
4160 blk_put_queue(q);
4161 return ERR_PTR(ret);
4163 return q;
4165 EXPORT_SYMBOL(blk_mq_alloc_queue);
4168 * blk_mq_destroy_queue - shutdown a request queue
4169 * @q: request queue to shutdown
4171 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4172 * requests will be failed with -ENODEV. The caller is responsible for dropping
4173 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4175 * Context: can sleep
4177 void blk_mq_destroy_queue(struct request_queue *q)
4179 WARN_ON_ONCE(!queue_is_mq(q));
4180 WARN_ON_ONCE(blk_queue_registered(q));
4182 might_sleep();
4184 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4185 blk_queue_start_drain(q);
4186 blk_mq_freeze_queue_wait(q);
4188 blk_sync_queue(q);
4189 blk_mq_cancel_work_sync(q);
4190 blk_mq_exit_queue(q);
4192 EXPORT_SYMBOL(blk_mq_destroy_queue);
4194 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4195 struct queue_limits *lim, void *queuedata,
4196 struct lock_class_key *lkclass)
4198 struct request_queue *q;
4199 struct gendisk *disk;
4201 q = blk_mq_alloc_queue(set, lim, queuedata);
4202 if (IS_ERR(q))
4203 return ERR_CAST(q);
4205 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4206 if (!disk) {
4207 blk_mq_destroy_queue(q);
4208 blk_put_queue(q);
4209 return ERR_PTR(-ENOMEM);
4211 set_bit(GD_OWNS_QUEUE, &disk->state);
4212 return disk;
4214 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4216 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4217 struct lock_class_key *lkclass)
4219 struct gendisk *disk;
4221 if (!blk_get_queue(q))
4222 return NULL;
4223 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4224 if (!disk)
4225 blk_put_queue(q);
4226 return disk;
4228 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4230 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4231 struct blk_mq_tag_set *set, struct request_queue *q,
4232 int hctx_idx, int node)
4234 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4236 /* reuse dead hctx first */
4237 spin_lock(&q->unused_hctx_lock);
4238 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4239 if (tmp->numa_node == node) {
4240 hctx = tmp;
4241 break;
4244 if (hctx)
4245 list_del_init(&hctx->hctx_list);
4246 spin_unlock(&q->unused_hctx_lock);
4248 if (!hctx)
4249 hctx = blk_mq_alloc_hctx(q, set, node);
4250 if (!hctx)
4251 goto fail;
4253 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4254 goto free_hctx;
4256 return hctx;
4258 free_hctx:
4259 kobject_put(&hctx->kobj);
4260 fail:
4261 return NULL;
4264 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4265 struct request_queue *q)
4267 struct blk_mq_hw_ctx *hctx;
4268 unsigned long i, j;
4270 /* protect against switching io scheduler */
4271 mutex_lock(&q->sysfs_lock);
4272 for (i = 0; i < set->nr_hw_queues; i++) {
4273 int old_node;
4274 int node = blk_mq_get_hctx_node(set, i);
4275 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4277 if (old_hctx) {
4278 old_node = old_hctx->numa_node;
4279 blk_mq_exit_hctx(q, set, old_hctx, i);
4282 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4283 if (!old_hctx)
4284 break;
4285 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4286 node, old_node);
4287 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4288 WARN_ON_ONCE(!hctx);
4292 * Increasing nr_hw_queues fails. Free the newly allocated
4293 * hctxs and keep the previous q->nr_hw_queues.
4295 if (i != set->nr_hw_queues) {
4296 j = q->nr_hw_queues;
4297 } else {
4298 j = i;
4299 q->nr_hw_queues = set->nr_hw_queues;
4302 xa_for_each_start(&q->hctx_table, j, hctx, j)
4303 blk_mq_exit_hctx(q, set, hctx, j);
4304 mutex_unlock(&q->sysfs_lock);
4307 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4308 struct request_queue *q)
4310 /* mark the queue as mq asap */
4311 q->mq_ops = set->ops;
4313 if (blk_mq_alloc_ctxs(q))
4314 goto err_exit;
4316 /* init q->mq_kobj and sw queues' kobjects */
4317 blk_mq_sysfs_init(q);
4319 INIT_LIST_HEAD(&q->unused_hctx_list);
4320 spin_lock_init(&q->unused_hctx_lock);
4322 xa_init(&q->hctx_table);
4324 blk_mq_realloc_hw_ctxs(set, q);
4325 if (!q->nr_hw_queues)
4326 goto err_hctxs;
4328 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4329 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4331 q->tag_set = set;
4333 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4335 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4336 INIT_LIST_HEAD(&q->flush_list);
4337 INIT_LIST_HEAD(&q->requeue_list);
4338 spin_lock_init(&q->requeue_lock);
4340 q->nr_requests = set->queue_depth;
4342 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4343 blk_mq_add_queue_tag_set(set, q);
4344 blk_mq_map_swqueue(q);
4345 return 0;
4347 err_hctxs:
4348 blk_mq_release(q);
4349 err_exit:
4350 q->mq_ops = NULL;
4351 return -ENOMEM;
4353 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4355 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4356 void blk_mq_exit_queue(struct request_queue *q)
4358 struct blk_mq_tag_set *set = q->tag_set;
4360 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4361 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4362 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4363 blk_mq_del_queue_tag_set(q);
4366 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4368 int i;
4370 if (blk_mq_is_shared_tags(set->flags)) {
4371 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4372 BLK_MQ_NO_HCTX_IDX,
4373 set->queue_depth);
4374 if (!set->shared_tags)
4375 return -ENOMEM;
4378 for (i = 0; i < set->nr_hw_queues; i++) {
4379 if (!__blk_mq_alloc_map_and_rqs(set, i))
4380 goto out_unwind;
4381 cond_resched();
4384 return 0;
4386 out_unwind:
4387 while (--i >= 0)
4388 __blk_mq_free_map_and_rqs(set, i);
4390 if (blk_mq_is_shared_tags(set->flags)) {
4391 blk_mq_free_map_and_rqs(set, set->shared_tags,
4392 BLK_MQ_NO_HCTX_IDX);
4395 return -ENOMEM;
4399 * Allocate the request maps associated with this tag_set. Note that this
4400 * may reduce the depth asked for, if memory is tight. set->queue_depth
4401 * will be updated to reflect the allocated depth.
4403 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4405 unsigned int depth;
4406 int err;
4408 depth = set->queue_depth;
4409 do {
4410 err = __blk_mq_alloc_rq_maps(set);
4411 if (!err)
4412 break;
4414 set->queue_depth >>= 1;
4415 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4416 err = -ENOMEM;
4417 break;
4419 } while (set->queue_depth);
4421 if (!set->queue_depth || err) {
4422 pr_err("blk-mq: failed to allocate request map\n");
4423 return -ENOMEM;
4426 if (depth != set->queue_depth)
4427 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4428 depth, set->queue_depth);
4430 return 0;
4433 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4436 * blk_mq_map_queues() and multiple .map_queues() implementations
4437 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4438 * number of hardware queues.
4440 if (set->nr_maps == 1)
4441 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4443 if (set->ops->map_queues) {
4444 int i;
4447 * transport .map_queues is usually done in the following
4448 * way:
4450 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4451 * mask = get_cpu_mask(queue)
4452 * for_each_cpu(cpu, mask)
4453 * set->map[x].mq_map[cpu] = queue;
4456 * When we need to remap, the table has to be cleared for
4457 * killing stale mapping since one CPU may not be mapped
4458 * to any hw queue.
4460 for (i = 0; i < set->nr_maps; i++)
4461 blk_mq_clear_mq_map(&set->map[i]);
4463 set->ops->map_queues(set);
4464 } else {
4465 BUG_ON(set->nr_maps > 1);
4466 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4470 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4471 int new_nr_hw_queues)
4473 struct blk_mq_tags **new_tags;
4474 int i;
4476 if (set->nr_hw_queues >= new_nr_hw_queues)
4477 goto done;
4479 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4480 GFP_KERNEL, set->numa_node);
4481 if (!new_tags)
4482 return -ENOMEM;
4484 if (set->tags)
4485 memcpy(new_tags, set->tags, set->nr_hw_queues *
4486 sizeof(*set->tags));
4487 kfree(set->tags);
4488 set->tags = new_tags;
4490 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4491 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4492 while (--i >= set->nr_hw_queues)
4493 __blk_mq_free_map_and_rqs(set, i);
4494 return -ENOMEM;
4496 cond_resched();
4499 done:
4500 set->nr_hw_queues = new_nr_hw_queues;
4501 return 0;
4505 * Alloc a tag set to be associated with one or more request queues.
4506 * May fail with EINVAL for various error conditions. May adjust the
4507 * requested depth down, if it's too large. In that case, the set
4508 * value will be stored in set->queue_depth.
4510 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4512 int i, ret;
4514 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4516 if (!set->nr_hw_queues)
4517 return -EINVAL;
4518 if (!set->queue_depth)
4519 return -EINVAL;
4520 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4521 return -EINVAL;
4523 if (!set->ops->queue_rq)
4524 return -EINVAL;
4526 if (!set->ops->get_budget ^ !set->ops->put_budget)
4527 return -EINVAL;
4529 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4530 pr_info("blk-mq: reduced tag depth to %u\n",
4531 BLK_MQ_MAX_DEPTH);
4532 set->queue_depth = BLK_MQ_MAX_DEPTH;
4535 if (!set->nr_maps)
4536 set->nr_maps = 1;
4537 else if (set->nr_maps > HCTX_MAX_TYPES)
4538 return -EINVAL;
4541 * If a crashdump is active, then we are potentially in a very
4542 * memory constrained environment. Limit us to 64 tags to prevent
4543 * using too much memory.
4545 if (is_kdump_kernel())
4546 set->queue_depth = min(64U, set->queue_depth);
4549 * There is no use for more h/w queues than cpus if we just have
4550 * a single map
4552 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4553 set->nr_hw_queues = nr_cpu_ids;
4555 if (set->flags & BLK_MQ_F_BLOCKING) {
4556 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4557 if (!set->srcu)
4558 return -ENOMEM;
4559 ret = init_srcu_struct(set->srcu);
4560 if (ret)
4561 goto out_free_srcu;
4564 ret = -ENOMEM;
4565 set->tags = kcalloc_node(set->nr_hw_queues,
4566 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4567 set->numa_node);
4568 if (!set->tags)
4569 goto out_cleanup_srcu;
4571 for (i = 0; i < set->nr_maps; i++) {
4572 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4573 sizeof(set->map[i].mq_map[0]),
4574 GFP_KERNEL, set->numa_node);
4575 if (!set->map[i].mq_map)
4576 goto out_free_mq_map;
4577 set->map[i].nr_queues = set->nr_hw_queues;
4580 blk_mq_update_queue_map(set);
4582 ret = blk_mq_alloc_set_map_and_rqs(set);
4583 if (ret)
4584 goto out_free_mq_map;
4586 mutex_init(&set->tag_list_lock);
4587 INIT_LIST_HEAD(&set->tag_list);
4589 return 0;
4591 out_free_mq_map:
4592 for (i = 0; i < set->nr_maps; i++) {
4593 kfree(set->map[i].mq_map);
4594 set->map[i].mq_map = NULL;
4596 kfree(set->tags);
4597 set->tags = NULL;
4598 out_cleanup_srcu:
4599 if (set->flags & BLK_MQ_F_BLOCKING)
4600 cleanup_srcu_struct(set->srcu);
4601 out_free_srcu:
4602 if (set->flags & BLK_MQ_F_BLOCKING)
4603 kfree(set->srcu);
4604 return ret;
4606 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4608 /* allocate and initialize a tagset for a simple single-queue device */
4609 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4610 const struct blk_mq_ops *ops, unsigned int queue_depth,
4611 unsigned int set_flags)
4613 memset(set, 0, sizeof(*set));
4614 set->ops = ops;
4615 set->nr_hw_queues = 1;
4616 set->nr_maps = 1;
4617 set->queue_depth = queue_depth;
4618 set->numa_node = NUMA_NO_NODE;
4619 set->flags = set_flags;
4620 return blk_mq_alloc_tag_set(set);
4622 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4624 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4626 int i, j;
4628 for (i = 0; i < set->nr_hw_queues; i++)
4629 __blk_mq_free_map_and_rqs(set, i);
4631 if (blk_mq_is_shared_tags(set->flags)) {
4632 blk_mq_free_map_and_rqs(set, set->shared_tags,
4633 BLK_MQ_NO_HCTX_IDX);
4636 for (j = 0; j < set->nr_maps; j++) {
4637 kfree(set->map[j].mq_map);
4638 set->map[j].mq_map = NULL;
4641 kfree(set->tags);
4642 set->tags = NULL;
4643 if (set->flags & BLK_MQ_F_BLOCKING) {
4644 cleanup_srcu_struct(set->srcu);
4645 kfree(set->srcu);
4648 EXPORT_SYMBOL(blk_mq_free_tag_set);
4650 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4652 struct blk_mq_tag_set *set = q->tag_set;
4653 struct blk_mq_hw_ctx *hctx;
4654 int ret;
4655 unsigned long i;
4657 if (WARN_ON_ONCE(!q->mq_freeze_depth))
4658 return -EINVAL;
4660 if (!set)
4661 return -EINVAL;
4663 if (q->nr_requests == nr)
4664 return 0;
4666 blk_mq_quiesce_queue(q);
4668 ret = 0;
4669 queue_for_each_hw_ctx(q, hctx, i) {
4670 if (!hctx->tags)
4671 continue;
4673 * If we're using an MQ scheduler, just update the scheduler
4674 * queue depth. This is similar to what the old code would do.
4676 if (hctx->sched_tags) {
4677 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4678 nr, true);
4679 } else {
4680 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4681 false);
4683 if (ret)
4684 break;
4685 if (q->elevator && q->elevator->type->ops.depth_updated)
4686 q->elevator->type->ops.depth_updated(hctx);
4688 if (!ret) {
4689 q->nr_requests = nr;
4690 if (blk_mq_is_shared_tags(set->flags)) {
4691 if (q->elevator)
4692 blk_mq_tag_update_sched_shared_tags(q);
4693 else
4694 blk_mq_tag_resize_shared_tags(set, nr);
4698 blk_mq_unquiesce_queue(q);
4700 return ret;
4704 * request_queue and elevator_type pair.
4705 * It is just used by __blk_mq_update_nr_hw_queues to cache
4706 * the elevator_type associated with a request_queue.
4708 struct blk_mq_qe_pair {
4709 struct list_head node;
4710 struct request_queue *q;
4711 struct elevator_type *type;
4715 * Cache the elevator_type in qe pair list and switch the
4716 * io scheduler to 'none'
4718 static bool blk_mq_elv_switch_none(struct list_head *head,
4719 struct request_queue *q)
4721 struct blk_mq_qe_pair *qe;
4723 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4724 if (!qe)
4725 return false;
4727 /* q->elevator needs protection from ->sysfs_lock */
4728 mutex_lock(&q->sysfs_lock);
4730 /* the check has to be done with holding sysfs_lock */
4731 if (!q->elevator) {
4732 kfree(qe);
4733 goto unlock;
4736 INIT_LIST_HEAD(&qe->node);
4737 qe->q = q;
4738 qe->type = q->elevator->type;
4739 /* keep a reference to the elevator module as we'll switch back */
4740 __elevator_get(qe->type);
4741 list_add(&qe->node, head);
4742 elevator_disable(q);
4743 unlock:
4744 mutex_unlock(&q->sysfs_lock);
4746 return true;
4749 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4750 struct request_queue *q)
4752 struct blk_mq_qe_pair *qe;
4754 list_for_each_entry(qe, head, node)
4755 if (qe->q == q)
4756 return qe;
4758 return NULL;
4761 static void blk_mq_elv_switch_back(struct list_head *head,
4762 struct request_queue *q)
4764 struct blk_mq_qe_pair *qe;
4765 struct elevator_type *t;
4767 qe = blk_lookup_qe_pair(head, q);
4768 if (!qe)
4769 return;
4770 t = qe->type;
4771 list_del(&qe->node);
4772 kfree(qe);
4774 mutex_lock(&q->sysfs_lock);
4775 elevator_switch(q, t);
4776 /* drop the reference acquired in blk_mq_elv_switch_none */
4777 elevator_put(t);
4778 mutex_unlock(&q->sysfs_lock);
4781 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4782 int nr_hw_queues)
4784 struct request_queue *q;
4785 LIST_HEAD(head);
4786 int prev_nr_hw_queues = set->nr_hw_queues;
4787 int i;
4789 lockdep_assert_held(&set->tag_list_lock);
4791 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4792 nr_hw_queues = nr_cpu_ids;
4793 if (nr_hw_queues < 1)
4794 return;
4795 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4796 return;
4798 list_for_each_entry(q, &set->tag_list, tag_set_list)
4799 blk_mq_freeze_queue(q);
4801 * Switch IO scheduler to 'none', cleaning up the data associated
4802 * with the previous scheduler. We will switch back once we are done
4803 * updating the new sw to hw queue mappings.
4805 list_for_each_entry(q, &set->tag_list, tag_set_list)
4806 if (!blk_mq_elv_switch_none(&head, q))
4807 goto switch_back;
4809 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4810 blk_mq_debugfs_unregister_hctxs(q);
4811 blk_mq_sysfs_unregister_hctxs(q);
4814 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4815 goto reregister;
4817 fallback:
4818 blk_mq_update_queue_map(set);
4819 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4820 struct queue_limits lim;
4822 blk_mq_realloc_hw_ctxs(set, q);
4824 if (q->nr_hw_queues != set->nr_hw_queues) {
4825 int i = prev_nr_hw_queues;
4827 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4828 nr_hw_queues, prev_nr_hw_queues);
4829 for (; i < set->nr_hw_queues; i++)
4830 __blk_mq_free_map_and_rqs(set, i);
4832 set->nr_hw_queues = prev_nr_hw_queues;
4833 goto fallback;
4835 lim = queue_limits_start_update(q);
4836 if (blk_mq_can_poll(set))
4837 lim.features |= BLK_FEAT_POLL;
4838 else
4839 lim.features &= ~BLK_FEAT_POLL;
4840 if (queue_limits_commit_update(q, &lim) < 0)
4841 pr_warn("updating the poll flag failed\n");
4842 blk_mq_map_swqueue(q);
4845 reregister:
4846 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4847 blk_mq_sysfs_register_hctxs(q);
4848 blk_mq_debugfs_register_hctxs(q);
4851 switch_back:
4852 list_for_each_entry(q, &set->tag_list, tag_set_list)
4853 blk_mq_elv_switch_back(&head, q);
4855 list_for_each_entry(q, &set->tag_list, tag_set_list)
4856 blk_mq_unfreeze_queue(q);
4858 /* Free the excess tags when nr_hw_queues shrink. */
4859 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4860 __blk_mq_free_map_and_rqs(set, i);
4863 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4865 mutex_lock(&set->tag_list_lock);
4866 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4867 mutex_unlock(&set->tag_list_lock);
4869 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4871 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4872 struct io_comp_batch *iob, unsigned int flags)
4874 long state = get_current_state();
4875 int ret;
4877 do {
4878 ret = q->mq_ops->poll(hctx, iob);
4879 if (ret > 0) {
4880 __set_current_state(TASK_RUNNING);
4881 return ret;
4884 if (signal_pending_state(state, current))
4885 __set_current_state(TASK_RUNNING);
4886 if (task_is_running(current))
4887 return 1;
4889 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4890 break;
4891 cpu_relax();
4892 } while (!need_resched());
4894 __set_current_state(TASK_RUNNING);
4895 return 0;
4898 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4899 struct io_comp_batch *iob, unsigned int flags)
4901 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4903 return blk_hctx_poll(q, hctx, iob, flags);
4906 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4907 unsigned int poll_flags)
4909 struct request_queue *q = rq->q;
4910 int ret;
4912 if (!blk_rq_is_poll(rq))
4913 return 0;
4914 if (!percpu_ref_tryget(&q->q_usage_counter))
4915 return 0;
4917 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4918 blk_queue_exit(q);
4920 return ret;
4922 EXPORT_SYMBOL_GPL(blk_rq_poll);
4924 unsigned int blk_mq_rq_cpu(struct request *rq)
4926 return rq->mq_ctx->cpu;
4928 EXPORT_SYMBOL(blk_mq_rq_cpu);
4930 void blk_mq_cancel_work_sync(struct request_queue *q)
4932 struct blk_mq_hw_ctx *hctx;
4933 unsigned long i;
4935 cancel_delayed_work_sync(&q->requeue_work);
4937 queue_for_each_hw_ctx(q, hctx, i)
4938 cancel_delayed_work_sync(&hctx->run_work);
4941 static int __init blk_mq_init(void)
4943 int i;
4945 for_each_possible_cpu(i)
4946 init_llist_head(&per_cpu(blk_cpu_done, i));
4947 for_each_possible_cpu(i)
4948 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4949 __blk_mq_complete_request_remote, NULL);
4950 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4952 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4953 "block/softirq:dead", NULL,
4954 blk_softirq_cpu_dead);
4955 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4956 blk_mq_hctx_notify_dead);
4957 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4958 blk_mq_hctx_notify_online,
4959 blk_mq_hctx_notify_offline);
4960 return 0;
4962 subsys_initcall(blk_mq_init);