1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 #include <linux/part_stat.h>
31 #include <linux/sched/isolation.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
38 #include "blk-mq-debugfs.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct llist_head
, blk_cpu_done
);
45 static DEFINE_PER_CPU(call_single_data_t
, blk_cpu_csd
);
47 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
);
48 static void blk_mq_request_bypass_insert(struct request
*rq
,
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
51 struct list_head
*list
);
52 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
53 struct io_comp_batch
*iob
, unsigned int flags
);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
61 return !list_empty_careful(&hctx
->dispatch
) ||
62 sbitmap_any_bit_set(&hctx
->ctx_map
) ||
63 blk_mq_sched_has_work(hctx
);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
70 struct blk_mq_ctx
*ctx
)
72 const int bit
= ctx
->index_hw
[hctx
->type
];
74 if (!sbitmap_test_bit(&hctx
->ctx_map
, bit
))
75 sbitmap_set_bit(&hctx
->ctx_map
, bit
);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
79 struct blk_mq_ctx
*ctx
)
81 const int bit
= ctx
->index_hw
[hctx
->type
];
83 sbitmap_clear_bit(&hctx
->ctx_map
, bit
);
87 struct block_device
*part
;
88 unsigned int inflight
[2];
91 static bool blk_mq_check_inflight(struct request
*rq
, void *priv
)
93 struct mq_inflight
*mi
= priv
;
95 if (rq
->part
&& blk_do_io_stat(rq
) &&
96 (!bdev_is_partition(mi
->part
) || rq
->part
== mi
->part
) &&
97 blk_mq_rq_state(rq
) == MQ_RQ_IN_FLIGHT
)
98 mi
->inflight
[rq_data_dir(rq
)]++;
103 unsigned int blk_mq_in_flight(struct request_queue
*q
,
104 struct block_device
*part
)
106 struct mq_inflight mi
= { .part
= part
};
108 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
110 return mi
.inflight
[0] + mi
.inflight
[1];
113 void blk_mq_in_flight_rw(struct request_queue
*q
, struct block_device
*part
,
114 unsigned int inflight
[2])
116 struct mq_inflight mi
= { .part
= part
};
118 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_inflight
, &mi
);
119 inflight
[0] = mi
.inflight
[0];
120 inflight
[1] = mi
.inflight
[1];
123 void blk_freeze_queue_start(struct request_queue
*q
)
125 mutex_lock(&q
->mq_freeze_lock
);
126 if (++q
->mq_freeze_depth
== 1) {
127 percpu_ref_kill(&q
->q_usage_counter
);
128 mutex_unlock(&q
->mq_freeze_lock
);
130 blk_mq_run_hw_queues(q
, false);
132 mutex_unlock(&q
->mq_freeze_lock
);
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start
);
137 void blk_mq_freeze_queue_wait(struct request_queue
*q
)
139 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait
);
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue
*q
,
144 unsigned long timeout
)
146 return wait_event_timeout(q
->mq_freeze_wq
,
147 percpu_ref_is_zero(&q
->q_usage_counter
),
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout
);
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
156 void blk_freeze_queue(struct request_queue
*q
)
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
165 blk_freeze_queue_start(q
);
166 blk_mq_freeze_queue_wait(q
);
169 void blk_mq_freeze_queue(struct request_queue
*q
)
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
179 void __blk_mq_unfreeze_queue(struct request_queue
*q
, bool force_atomic
)
181 mutex_lock(&q
->mq_freeze_lock
);
183 q
->q_usage_counter
.data
->force_atomic
= true;
184 q
->mq_freeze_depth
--;
185 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
186 if (!q
->mq_freeze_depth
) {
187 percpu_ref_resurrect(&q
->q_usage_counter
);
188 wake_up_all(&q
->mq_freeze_wq
);
190 mutex_unlock(&q
->mq_freeze_lock
);
193 void blk_mq_unfreeze_queue(struct request_queue
*q
)
195 __blk_mq_unfreeze_queue(q
, false);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue
*q
)
207 spin_lock_irqsave(&q
->queue_lock
, flags
);
208 if (!q
->quiesce_depth
++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED
, q
);
210 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait
);
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set
*set
)
225 if (set
->flags
& BLK_MQ_F_BLOCKING
)
226 synchronize_srcu(set
->srcu
);
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done
);
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
241 void blk_mq_quiesce_queue(struct request_queue
*q
)
243 blk_mq_quiesce_queue_nowait(q
);
244 /* nothing to wait for non-mq queues */
246 blk_mq_wait_quiesce_done(q
->tag_set
);
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue
*q
)
260 bool run_queue
= false;
262 spin_lock_irqsave(&q
->queue_lock
, flags
);
263 if (WARN_ON_ONCE(q
->quiesce_depth
<= 0)) {
265 } else if (!--q
->quiesce_depth
) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED
, q
);
269 spin_unlock_irqrestore(&q
->queue_lock
, flags
);
271 /* dispatch requests which are inserted during quiescing */
273 blk_mq_run_hw_queues(q
, true);
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue
);
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set
*set
)
279 struct request_queue
*q
;
281 mutex_lock(&set
->tag_list_lock
);
282 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
283 if (!blk_queue_skip_tagset_quiesce(q
))
284 blk_mq_quiesce_queue_nowait(q
);
286 blk_mq_wait_quiesce_done(set
);
287 mutex_unlock(&set
->tag_list_lock
);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset
);
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set
*set
)
293 struct request_queue
*q
;
295 mutex_lock(&set
->tag_list_lock
);
296 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
297 if (!blk_queue_skip_tagset_quiesce(q
))
298 blk_mq_unquiesce_queue(q
);
300 mutex_unlock(&set
->tag_list_lock
);
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset
);
304 void blk_mq_wake_waiters(struct request_queue
*q
)
306 struct blk_mq_hw_ctx
*hctx
;
309 queue_for_each_hw_ctx(q
, hctx
, i
)
310 if (blk_mq_hw_queue_mapped(hctx
))
311 blk_mq_tag_wakeup_all(hctx
->tags
, true);
314 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
316 memset(rq
, 0, sizeof(*rq
));
318 INIT_LIST_HEAD(&rq
->queuelist
);
320 rq
->__sector
= (sector_t
) -1;
321 INIT_HLIST_NODE(&rq
->hash
);
322 RB_CLEAR_NODE(&rq
->rb_node
);
323 rq
->tag
= BLK_MQ_NO_TAG
;
324 rq
->internal_tag
= BLK_MQ_NO_TAG
;
325 rq
->start_time_ns
= blk_time_get_ns();
327 blk_crypto_rq_set_defaults(rq
);
329 EXPORT_SYMBOL(blk_rq_init
);
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request
*rq
, u64 alloc_time_ns
)
334 if (blk_mq_need_time_stamp(rq
))
335 rq
->start_time_ns
= blk_time_get_ns();
337 rq
->start_time_ns
= 0;
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 if (blk_queue_rq_alloc_time(rq
->q
))
341 rq
->alloc_time_ns
= alloc_time_ns
?: rq
->start_time_ns
;
343 rq
->alloc_time_ns
= 0;
347 static struct request
*blk_mq_rq_ctx_init(struct blk_mq_alloc_data
*data
,
348 struct blk_mq_tags
*tags
, unsigned int tag
)
350 struct blk_mq_ctx
*ctx
= data
->ctx
;
351 struct blk_mq_hw_ctx
*hctx
= data
->hctx
;
352 struct request_queue
*q
= data
->q
;
353 struct request
*rq
= tags
->static_rqs
[tag
];
358 rq
->cmd_flags
= data
->cmd_flags
;
360 if (data
->flags
& BLK_MQ_REQ_PM
)
361 data
->rq_flags
|= RQF_PM
;
362 if (blk_queue_io_stat(q
))
363 data
->rq_flags
|= RQF_IO_STAT
;
364 rq
->rq_flags
= data
->rq_flags
;
366 if (data
->rq_flags
& RQF_SCHED_TAGS
) {
367 rq
->tag
= BLK_MQ_NO_TAG
;
368 rq
->internal_tag
= tag
;
371 rq
->internal_tag
= BLK_MQ_NO_TAG
;
376 rq
->io_start_time_ns
= 0;
377 rq
->stats_sectors
= 0;
378 rq
->nr_phys_segments
= 0;
379 rq
->nr_integrity_segments
= 0;
381 rq
->end_io_data
= NULL
;
383 blk_crypto_rq_set_defaults(rq
);
384 INIT_LIST_HEAD(&rq
->queuelist
);
385 /* tag was already set */
386 WRITE_ONCE(rq
->deadline
, 0);
389 if (rq
->rq_flags
& RQF_USE_SCHED
) {
390 struct elevator_queue
*e
= data
->q
->elevator
;
392 INIT_HLIST_NODE(&rq
->hash
);
393 RB_CLEAR_NODE(&rq
->rb_node
);
395 if (e
->type
->ops
.prepare_request
)
396 e
->type
->ops
.prepare_request(rq
);
402 static inline struct request
*
403 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data
*data
)
405 unsigned int tag
, tag_offset
;
406 struct blk_mq_tags
*tags
;
408 unsigned long tag_mask
;
411 tag_mask
= blk_mq_get_tags(data
, data
->nr_tags
, &tag_offset
);
412 if (unlikely(!tag_mask
))
415 tags
= blk_mq_tags_from_data(data
);
416 for (i
= 0; tag_mask
; i
++) {
417 if (!(tag_mask
& (1UL << i
)))
419 tag
= tag_offset
+ i
;
420 prefetch(tags
->static_rqs
[tag
]);
421 tag_mask
&= ~(1UL << i
);
422 rq
= blk_mq_rq_ctx_init(data
, tags
, tag
);
423 rq_list_add(data
->cached_rq
, rq
);
426 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
427 blk_mq_add_active_requests(data
->hctx
, nr
);
428 /* caller already holds a reference, add for remainder */
429 percpu_ref_get_many(&data
->q
->q_usage_counter
, nr
- 1);
432 return rq_list_pop(data
->cached_rq
);
435 static struct request
*__blk_mq_alloc_requests(struct blk_mq_alloc_data
*data
)
437 struct request_queue
*q
= data
->q
;
438 u64 alloc_time_ns
= 0;
442 /* alloc_time includes depth and tag waits */
443 if (blk_queue_rq_alloc_time(q
))
444 alloc_time_ns
= blk_time_get_ns();
446 if (data
->cmd_flags
& REQ_NOWAIT
)
447 data
->flags
|= BLK_MQ_REQ_NOWAIT
;
450 data
->ctx
= blk_mq_get_ctx(q
);
451 data
->hctx
= blk_mq_map_queue(q
, data
->cmd_flags
, data
->ctx
);
455 * All requests use scheduler tags when an I/O scheduler is
456 * enabled for the queue.
458 data
->rq_flags
|= RQF_SCHED_TAGS
;
461 * Flush/passthrough requests are special and go directly to the
464 if ((data
->cmd_flags
& REQ_OP_MASK
) != REQ_OP_FLUSH
&&
465 !blk_op_is_passthrough(data
->cmd_flags
)) {
466 struct elevator_mq_ops
*ops
= &q
->elevator
->type
->ops
;
468 WARN_ON_ONCE(data
->flags
& BLK_MQ_REQ_RESERVED
);
470 data
->rq_flags
|= RQF_USE_SCHED
;
471 if (ops
->limit_depth
)
472 ops
->limit_depth(data
->cmd_flags
, data
);
475 blk_mq_tag_busy(data
->hctx
);
478 if (data
->flags
& BLK_MQ_REQ_RESERVED
)
479 data
->rq_flags
|= RQF_RESV
;
482 * Try batched alloc if we want more than 1 tag.
484 if (data
->nr_tags
> 1) {
485 rq
= __blk_mq_alloc_requests_batch(data
);
487 blk_mq_rq_time_init(rq
, alloc_time_ns
);
494 * Waiting allocations only fail because of an inactive hctx. In that
495 * case just retry the hctx assignment and tag allocation as CPU hotplug
496 * should have migrated us to an online CPU by now.
498 tag
= blk_mq_get_tag(data
);
499 if (tag
== BLK_MQ_NO_TAG
) {
500 if (data
->flags
& BLK_MQ_REQ_NOWAIT
)
503 * Give up the CPU and sleep for a random short time to
504 * ensure that thread using a realtime scheduling class
505 * are migrated off the CPU, and thus off the hctx that
512 if (!(data
->rq_flags
& RQF_SCHED_TAGS
))
513 blk_mq_inc_active_requests(data
->hctx
);
514 rq
= blk_mq_rq_ctx_init(data
, blk_mq_tags_from_data(data
), tag
);
515 blk_mq_rq_time_init(rq
, alloc_time_ns
);
519 static struct request
*blk_mq_rq_cache_fill(struct request_queue
*q
,
520 struct blk_plug
*plug
,
522 blk_mq_req_flags_t flags
)
524 struct blk_mq_alloc_data data
= {
528 .nr_tags
= plug
->nr_ios
,
529 .cached_rq
= &plug
->cached_rq
,
533 if (blk_queue_enter(q
, flags
))
538 rq
= __blk_mq_alloc_requests(&data
);
544 static struct request
*blk_mq_alloc_cached_request(struct request_queue
*q
,
546 blk_mq_req_flags_t flags
)
548 struct blk_plug
*plug
= current
->plug
;
554 if (rq_list_empty(plug
->cached_rq
)) {
555 if (plug
->nr_ios
== 1)
557 rq
= blk_mq_rq_cache_fill(q
, plug
, opf
, flags
);
561 rq
= rq_list_peek(&plug
->cached_rq
);
562 if (!rq
|| rq
->q
!= q
)
565 if (blk_mq_get_hctx_type(opf
) != rq
->mq_hctx
->type
)
567 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
570 plug
->cached_rq
= rq_list_next(rq
);
571 blk_mq_rq_time_init(rq
, 0);
575 INIT_LIST_HEAD(&rq
->queuelist
);
579 struct request
*blk_mq_alloc_request(struct request_queue
*q
, blk_opf_t opf
,
580 blk_mq_req_flags_t flags
)
584 rq
= blk_mq_alloc_cached_request(q
, opf
, flags
);
586 struct blk_mq_alloc_data data
= {
594 ret
= blk_queue_enter(q
, flags
);
598 rq
= __blk_mq_alloc_requests(&data
);
603 rq
->__sector
= (sector_t
) -1;
604 rq
->bio
= rq
->biotail
= NULL
;
608 return ERR_PTR(-EWOULDBLOCK
);
610 EXPORT_SYMBOL(blk_mq_alloc_request
);
612 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
,
613 blk_opf_t opf
, blk_mq_req_flags_t flags
, unsigned int hctx_idx
)
615 struct blk_mq_alloc_data data
= {
621 u64 alloc_time_ns
= 0;
627 /* alloc_time includes depth and tag waits */
628 if (blk_queue_rq_alloc_time(q
))
629 alloc_time_ns
= blk_time_get_ns();
632 * If the tag allocator sleeps we could get an allocation for a
633 * different hardware context. No need to complicate the low level
634 * allocator for this for the rare use case of a command tied to
637 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)) ||
638 WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_RESERVED
)))
639 return ERR_PTR(-EINVAL
);
641 if (hctx_idx
>= q
->nr_hw_queues
)
642 return ERR_PTR(-EIO
);
644 ret
= blk_queue_enter(q
, flags
);
649 * Check if the hardware context is actually mapped to anything.
650 * If not tell the caller that it should skip this queue.
653 data
.hctx
= xa_load(&q
->hctx_table
, hctx_idx
);
654 if (!blk_mq_hw_queue_mapped(data
.hctx
))
656 cpu
= cpumask_first_and(data
.hctx
->cpumask
, cpu_online_mask
);
657 if (cpu
>= nr_cpu_ids
)
659 data
.ctx
= __blk_mq_get_ctx(q
, cpu
);
662 data
.rq_flags
|= RQF_SCHED_TAGS
;
664 blk_mq_tag_busy(data
.hctx
);
666 if (flags
& BLK_MQ_REQ_RESERVED
)
667 data
.rq_flags
|= RQF_RESV
;
670 tag
= blk_mq_get_tag(&data
);
671 if (tag
== BLK_MQ_NO_TAG
)
673 if (!(data
.rq_flags
& RQF_SCHED_TAGS
))
674 blk_mq_inc_active_requests(data
.hctx
);
675 rq
= blk_mq_rq_ctx_init(&data
, blk_mq_tags_from_data(&data
), tag
);
676 blk_mq_rq_time_init(rq
, alloc_time_ns
);
678 rq
->__sector
= (sector_t
) -1;
679 rq
->bio
= rq
->biotail
= NULL
;
686 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
688 static void blk_mq_finish_request(struct request
*rq
)
690 struct request_queue
*q
= rq
->q
;
692 blk_zone_finish_request(rq
);
694 if (rq
->rq_flags
& RQF_USE_SCHED
) {
695 q
->elevator
->type
->ops
.finish_request(rq
);
697 * For postflush request that may need to be
698 * completed twice, we should clear this flag
699 * to avoid double finish_request() on the rq.
701 rq
->rq_flags
&= ~RQF_USE_SCHED
;
705 static void __blk_mq_free_request(struct request
*rq
)
707 struct request_queue
*q
= rq
->q
;
708 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
709 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
710 const int sched_tag
= rq
->internal_tag
;
712 blk_crypto_free_request(rq
);
713 blk_pm_mark_last_busy(rq
);
716 if (rq
->tag
!= BLK_MQ_NO_TAG
) {
717 blk_mq_dec_active_requests(hctx
);
718 blk_mq_put_tag(hctx
->tags
, ctx
, rq
->tag
);
720 if (sched_tag
!= BLK_MQ_NO_TAG
)
721 blk_mq_put_tag(hctx
->sched_tags
, ctx
, sched_tag
);
722 blk_mq_sched_restart(hctx
);
726 void blk_mq_free_request(struct request
*rq
)
728 struct request_queue
*q
= rq
->q
;
730 blk_mq_finish_request(rq
);
732 if (unlikely(laptop_mode
&& !blk_rq_is_passthrough(rq
)))
733 laptop_io_completion(q
->disk
->bdi
);
737 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
738 if (req_ref_put_and_test(rq
))
739 __blk_mq_free_request(rq
);
741 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
743 void blk_mq_free_plug_rqs(struct blk_plug
*plug
)
747 while ((rq
= rq_list_pop(&plug
->cached_rq
)) != NULL
)
748 blk_mq_free_request(rq
);
751 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
753 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
754 rq
->q
->disk
? rq
->q
->disk
->disk_name
: "?",
755 (__force
unsigned long long) rq
->cmd_flags
);
757 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
758 (unsigned long long)blk_rq_pos(rq
),
759 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
760 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
761 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
763 EXPORT_SYMBOL(blk_dump_rq_flags
);
765 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
767 if (req
->part
&& blk_do_io_stat(req
)) {
768 const int sgrp
= op_stat_group(req_op(req
));
771 part_stat_add(req
->part
, sectors
[sgrp
], bytes
>> 9);
776 static void blk_print_req_error(struct request
*req
, blk_status_t status
)
778 printk_ratelimited(KERN_ERR
779 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
780 "phys_seg %u prio class %u\n",
781 blk_status_to_str(status
),
782 req
->q
->disk
? req
->q
->disk
->disk_name
: "?",
783 blk_rq_pos(req
), (__force u32
)req_op(req
),
784 blk_op_str(req_op(req
)),
785 (__force u32
)(req
->cmd_flags
& ~REQ_OP_MASK
),
786 req
->nr_phys_segments
,
787 IOPRIO_PRIO_CLASS(req
->ioprio
));
791 * Fully end IO on a request. Does not support partial completions, or
794 static void blk_complete_request(struct request
*req
)
796 const bool is_flush
= (req
->rq_flags
& RQF_FLUSH_SEQ
) != 0;
797 int total_bytes
= blk_rq_bytes(req
);
798 struct bio
*bio
= req
->bio
;
800 trace_block_rq_complete(req
, BLK_STS_OK
, total_bytes
);
805 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
)
806 blk_integrity_complete(req
, total_bytes
);
809 * Upper layers may call blk_crypto_evict_key() anytime after the last
810 * bio_endio(). Therefore, the keyslot must be released before that.
812 blk_crypto_rq_put_keyslot(req
);
814 blk_account_io_completion(req
, total_bytes
);
817 struct bio
*next
= bio
->bi_next
;
819 /* Completion has already been traced */
820 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
822 blk_zone_update_request_bio(req
, bio
);
830 * Reset counters so that the request stacking driver
831 * can find how many bytes remain in the request
841 * blk_update_request - Complete multiple bytes without completing the request
842 * @req: the request being processed
843 * @error: block status code
844 * @nr_bytes: number of bytes to complete for @req
847 * Ends I/O on a number of bytes attached to @req, but doesn't complete
848 * the request structure even if @req doesn't have leftover.
849 * If @req has leftover, sets it up for the next range of segments.
851 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
852 * %false return from this function.
855 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
856 * except in the consistency check at the end of this function.
859 * %false - this request doesn't have any more data
860 * %true - this request has more data
862 bool blk_update_request(struct request
*req
, blk_status_t error
,
863 unsigned int nr_bytes
)
865 bool is_flush
= req
->rq_flags
& RQF_FLUSH_SEQ
;
866 bool quiet
= req
->rq_flags
& RQF_QUIET
;
869 trace_block_rq_complete(req
, error
, nr_bytes
);
874 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
876 blk_integrity_complete(req
, nr_bytes
);
879 * Upper layers may call blk_crypto_evict_key() anytime after the last
880 * bio_endio(). Therefore, the keyslot must be released before that.
882 if (blk_crypto_rq_has_keyslot(req
) && nr_bytes
>= blk_rq_bytes(req
))
883 __blk_crypto_rq_put_keyslot(req
);
885 if (unlikely(error
&& !blk_rq_is_passthrough(req
) && !quiet
) &&
886 !test_bit(GD_DEAD
, &req
->q
->disk
->state
)) {
887 blk_print_req_error(req
, error
);
888 trace_block_rq_error(req
, error
, nr_bytes
);
891 blk_account_io_completion(req
, nr_bytes
);
895 struct bio
*bio
= req
->bio
;
896 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
899 bio
->bi_status
= error
;
901 if (bio_bytes
== bio
->bi_iter
.bi_size
) {
902 req
->bio
= bio
->bi_next
;
903 } else if (bio_is_zone_append(bio
) && error
== BLK_STS_OK
) {
905 * Partial zone append completions cannot be supported
906 * as the BIO fragments may end up not being written
909 bio
->bi_status
= BLK_STS_IOERR
;
912 /* Completion has already been traced */
913 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
915 bio_set_flag(bio
, BIO_QUIET
);
917 bio_advance(bio
, bio_bytes
);
919 /* Don't actually finish bio if it's part of flush sequence */
920 if (!bio
->bi_iter
.bi_size
) {
921 blk_zone_update_request_bio(req
, bio
);
926 total_bytes
+= bio_bytes
;
927 nr_bytes
-= bio_bytes
;
938 * Reset counters so that the request stacking driver
939 * can find how many bytes remain in the request
946 req
->__data_len
-= total_bytes
;
948 /* update sector only for requests with clear definition of sector */
949 if (!blk_rq_is_passthrough(req
))
950 req
->__sector
+= total_bytes
>> 9;
952 /* mixed attributes always follow the first bio */
953 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
954 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
955 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
958 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
960 * If total number of sectors is less than the first segment
961 * size, something has gone terribly wrong.
963 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
964 blk_dump_rq_flags(req
, "request botched");
965 req
->__data_len
= blk_rq_cur_bytes(req
);
968 /* recalculate the number of segments */
969 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
974 EXPORT_SYMBOL_GPL(blk_update_request
);
976 static inline void blk_account_io_done(struct request
*req
, u64 now
)
978 trace_block_io_done(req
);
981 * Account IO completion. flush_rq isn't accounted as a
982 * normal IO on queueing nor completion. Accounting the
983 * containing request is enough.
985 if (blk_do_io_stat(req
) && req
->part
&&
986 !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
987 const int sgrp
= op_stat_group(req_op(req
));
990 update_io_ticks(req
->part
, jiffies
, true);
991 part_stat_inc(req
->part
, ios
[sgrp
]);
992 part_stat_add(req
->part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
993 part_stat_local_dec(req
->part
,
994 in_flight
[op_is_write(req_op(req
))]);
999 static inline void blk_account_io_start(struct request
*req
)
1001 trace_block_io_start(req
);
1003 if (blk_do_io_stat(req
)) {
1005 * All non-passthrough requests are created from a bio with one
1006 * exception: when a flush command that is part of a flush sequence
1007 * generated by the state machine in blk-flush.c is cloned onto the
1008 * lower device by dm-multipath we can get here without a bio.
1011 req
->part
= req
->bio
->bi_bdev
;
1013 req
->part
= req
->q
->disk
->part0
;
1016 update_io_ticks(req
->part
, jiffies
, false);
1017 part_stat_local_inc(req
->part
,
1018 in_flight
[op_is_write(req_op(req
))]);
1023 static inline void __blk_mq_end_request_acct(struct request
*rq
, u64 now
)
1025 if (rq
->rq_flags
& RQF_STATS
)
1026 blk_stat_add(rq
, now
);
1028 blk_mq_sched_completed_request(rq
, now
);
1029 blk_account_io_done(rq
, now
);
1032 inline void __blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1034 if (blk_mq_need_time_stamp(rq
))
1035 __blk_mq_end_request_acct(rq
, blk_time_get_ns());
1037 blk_mq_finish_request(rq
);
1040 rq_qos_done(rq
->q
, rq
);
1041 if (rq
->end_io(rq
, error
) == RQ_END_IO_FREE
)
1042 blk_mq_free_request(rq
);
1044 blk_mq_free_request(rq
);
1047 EXPORT_SYMBOL(__blk_mq_end_request
);
1049 void blk_mq_end_request(struct request
*rq
, blk_status_t error
)
1051 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
1053 __blk_mq_end_request(rq
, error
);
1055 EXPORT_SYMBOL(blk_mq_end_request
);
1057 #define TAG_COMP_BATCH 32
1059 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx
*hctx
,
1060 int *tag_array
, int nr_tags
)
1062 struct request_queue
*q
= hctx
->queue
;
1064 blk_mq_sub_active_requests(hctx
, nr_tags
);
1066 blk_mq_put_tags(hctx
->tags
, tag_array
, nr_tags
);
1067 percpu_ref_put_many(&q
->q_usage_counter
, nr_tags
);
1070 void blk_mq_end_request_batch(struct io_comp_batch
*iob
)
1072 int tags
[TAG_COMP_BATCH
], nr_tags
= 0;
1073 struct blk_mq_hw_ctx
*cur_hctx
= NULL
;
1078 now
= blk_time_get_ns();
1080 while ((rq
= rq_list_pop(&iob
->req_list
)) != NULL
) {
1082 prefetch(rq
->rq_next
);
1084 blk_complete_request(rq
);
1086 __blk_mq_end_request_acct(rq
, now
);
1088 blk_mq_finish_request(rq
);
1090 rq_qos_done(rq
->q
, rq
);
1093 * If end_io handler returns NONE, then it still has
1094 * ownership of the request.
1096 if (rq
->end_io
&& rq
->end_io(rq
, 0) == RQ_END_IO_NONE
)
1099 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1100 if (!req_ref_put_and_test(rq
))
1103 blk_crypto_free_request(rq
);
1104 blk_pm_mark_last_busy(rq
);
1106 if (nr_tags
== TAG_COMP_BATCH
|| cur_hctx
!= rq
->mq_hctx
) {
1108 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1110 cur_hctx
= rq
->mq_hctx
;
1112 tags
[nr_tags
++] = rq
->tag
;
1116 blk_mq_flush_tag_batch(cur_hctx
, tags
, nr_tags
);
1118 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch
);
1120 static void blk_complete_reqs(struct llist_head
*list
)
1122 struct llist_node
*entry
= llist_reverse_order(llist_del_all(list
));
1123 struct request
*rq
, *next
;
1125 llist_for_each_entry_safe(rq
, next
, entry
, ipi_list
)
1126 rq
->q
->mq_ops
->complete(rq
);
1129 static __latent_entropy
void blk_done_softirq(void)
1131 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done
));
1134 static int blk_softirq_cpu_dead(unsigned int cpu
)
1136 blk_complete_reqs(&per_cpu(blk_cpu_done
, cpu
));
1140 static void __blk_mq_complete_request_remote(void *data
)
1142 __raise_softirq_irqoff(BLOCK_SOFTIRQ
);
1145 static inline bool blk_mq_complete_need_ipi(struct request
*rq
)
1147 int cpu
= raw_smp_processor_id();
1149 if (!IS_ENABLED(CONFIG_SMP
) ||
1150 !test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
))
1153 * With force threaded interrupts enabled, raising softirq from an SMP
1154 * function call will always result in waking the ksoftirqd thread.
1155 * This is probably worse than completing the request on a different
1158 if (force_irqthreads())
1161 /* same CPU or cache domain and capacity? Complete locally */
1162 if (cpu
== rq
->mq_ctx
->cpu
||
1163 (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
) &&
1164 cpus_share_cache(cpu
, rq
->mq_ctx
->cpu
) &&
1165 cpus_equal_capacity(cpu
, rq
->mq_ctx
->cpu
)))
1168 /* don't try to IPI to an offline CPU */
1169 return cpu_online(rq
->mq_ctx
->cpu
);
1172 static void blk_mq_complete_send_ipi(struct request
*rq
)
1176 cpu
= rq
->mq_ctx
->cpu
;
1177 if (llist_add(&rq
->ipi_list
, &per_cpu(blk_cpu_done
, cpu
)))
1178 smp_call_function_single_async(cpu
, &per_cpu(blk_cpu_csd
, cpu
));
1181 static void blk_mq_raise_softirq(struct request
*rq
)
1183 struct llist_head
*list
;
1186 list
= this_cpu_ptr(&blk_cpu_done
);
1187 if (llist_add(&rq
->ipi_list
, list
))
1188 raise_softirq(BLOCK_SOFTIRQ
);
1192 bool blk_mq_complete_request_remote(struct request
*rq
)
1194 WRITE_ONCE(rq
->state
, MQ_RQ_COMPLETE
);
1197 * For request which hctx has only one ctx mapping,
1198 * or a polled request, always complete locally,
1199 * it's pointless to redirect the completion.
1201 if ((rq
->mq_hctx
->nr_ctx
== 1 &&
1202 rq
->mq_ctx
->cpu
== raw_smp_processor_id()) ||
1203 rq
->cmd_flags
& REQ_POLLED
)
1206 if (blk_mq_complete_need_ipi(rq
)) {
1207 blk_mq_complete_send_ipi(rq
);
1211 if (rq
->q
->nr_hw_queues
== 1) {
1212 blk_mq_raise_softirq(rq
);
1217 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote
);
1220 * blk_mq_complete_request - end I/O on a request
1221 * @rq: the request being processed
1224 * Complete a request by scheduling the ->complete_rq operation.
1226 void blk_mq_complete_request(struct request
*rq
)
1228 if (!blk_mq_complete_request_remote(rq
))
1229 rq
->q
->mq_ops
->complete(rq
);
1231 EXPORT_SYMBOL(blk_mq_complete_request
);
1234 * blk_mq_start_request - Start processing a request
1235 * @rq: Pointer to request to be started
1237 * Function used by device drivers to notify the block layer that a request
1238 * is going to be processed now, so blk layer can do proper initializations
1239 * such as starting the timeout timer.
1241 void blk_mq_start_request(struct request
*rq
)
1243 struct request_queue
*q
= rq
->q
;
1245 trace_block_rq_issue(rq
);
1247 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
) &&
1248 !blk_rq_is_passthrough(rq
)) {
1249 rq
->io_start_time_ns
= blk_time_get_ns();
1250 rq
->stats_sectors
= blk_rq_sectors(rq
);
1251 rq
->rq_flags
|= RQF_STATS
;
1252 rq_qos_issue(q
, rq
);
1255 WARN_ON_ONCE(blk_mq_rq_state(rq
) != MQ_RQ_IDLE
);
1258 WRITE_ONCE(rq
->state
, MQ_RQ_IN_FLIGHT
);
1259 rq
->mq_hctx
->tags
->rqs
[rq
->tag
] = rq
;
1261 if (blk_integrity_rq(rq
) && req_op(rq
) == REQ_OP_WRITE
)
1262 blk_integrity_prepare(rq
);
1264 if (rq
->bio
&& rq
->bio
->bi_opf
& REQ_POLLED
)
1265 WRITE_ONCE(rq
->bio
->bi_cookie
, rq
->mq_hctx
->queue_num
);
1267 EXPORT_SYMBOL(blk_mq_start_request
);
1270 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1271 * queues. This is important for md arrays to benefit from merging
1274 static inline unsigned short blk_plug_max_rq_count(struct blk_plug
*plug
)
1276 if (plug
->multiple_queues
)
1277 return BLK_MAX_REQUEST_COUNT
* 2;
1278 return BLK_MAX_REQUEST_COUNT
;
1281 static void blk_add_rq_to_plug(struct blk_plug
*plug
, struct request
*rq
)
1283 struct request
*last
= rq_list_peek(&plug
->mq_list
);
1285 if (!plug
->rq_count
) {
1286 trace_block_plug(rq
->q
);
1287 } else if (plug
->rq_count
>= blk_plug_max_rq_count(plug
) ||
1288 (!blk_queue_nomerges(rq
->q
) &&
1289 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1290 blk_mq_flush_plug_list(plug
, false);
1292 trace_block_plug(rq
->q
);
1295 if (!plug
->multiple_queues
&& last
&& last
->q
!= rq
->q
)
1296 plug
->multiple_queues
= true;
1298 * Any request allocated from sched tags can't be issued to
1299 * ->queue_rqs() directly
1301 if (!plug
->has_elevator
&& (rq
->rq_flags
& RQF_SCHED_TAGS
))
1302 plug
->has_elevator
= true;
1304 rq_list_add(&plug
->mq_list
, rq
);
1309 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1310 * @rq: request to insert
1311 * @at_head: insert request at head or tail of queue
1314 * Insert a fully prepared request at the back of the I/O scheduler queue
1315 * for execution. Don't wait for completion.
1318 * This function will invoke @done directly if the queue is dead.
1320 void blk_execute_rq_nowait(struct request
*rq
, bool at_head
)
1322 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1324 WARN_ON(irqs_disabled());
1325 WARN_ON(!blk_rq_is_passthrough(rq
));
1327 blk_account_io_start(rq
);
1329 if (current
->plug
&& !at_head
) {
1330 blk_add_rq_to_plug(current
->plug
, rq
);
1334 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1335 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
1337 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
1339 struct blk_rq_wait
{
1340 struct completion done
;
1344 static enum rq_end_io_ret
blk_end_sync_rq(struct request
*rq
, blk_status_t ret
)
1346 struct blk_rq_wait
*wait
= rq
->end_io_data
;
1349 complete(&wait
->done
);
1350 return RQ_END_IO_NONE
;
1353 bool blk_rq_is_poll(struct request
*rq
)
1357 if (rq
->mq_hctx
->type
!= HCTX_TYPE_POLL
)
1361 EXPORT_SYMBOL_GPL(blk_rq_is_poll
);
1363 static void blk_rq_poll_completion(struct request
*rq
, struct completion
*wait
)
1366 blk_hctx_poll(rq
->q
, rq
->mq_hctx
, NULL
, 0);
1368 } while (!completion_done(wait
));
1372 * blk_execute_rq - insert a request into queue for execution
1373 * @rq: request to insert
1374 * @at_head: insert request at head or tail of queue
1377 * Insert a fully prepared request at the back of the I/O scheduler queue
1378 * for execution and wait for completion.
1379 * Return: The blk_status_t result provided to blk_mq_end_request().
1381 blk_status_t
blk_execute_rq(struct request
*rq
, bool at_head
)
1383 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1384 struct blk_rq_wait wait
= {
1385 .done
= COMPLETION_INITIALIZER_ONSTACK(wait
.done
),
1388 WARN_ON(irqs_disabled());
1389 WARN_ON(!blk_rq_is_passthrough(rq
));
1391 rq
->end_io_data
= &wait
;
1392 rq
->end_io
= blk_end_sync_rq
;
1394 blk_account_io_start(rq
);
1395 blk_mq_insert_request(rq
, at_head
? BLK_MQ_INSERT_AT_HEAD
: 0);
1396 blk_mq_run_hw_queue(hctx
, false);
1398 if (blk_rq_is_poll(rq
))
1399 blk_rq_poll_completion(rq
, &wait
.done
);
1401 blk_wait_io(&wait
.done
);
1405 EXPORT_SYMBOL(blk_execute_rq
);
1407 static void __blk_mq_requeue_request(struct request
*rq
)
1409 struct request_queue
*q
= rq
->q
;
1411 blk_mq_put_driver_tag(rq
);
1413 trace_block_rq_requeue(rq
);
1414 rq_qos_requeue(q
, rq
);
1416 if (blk_mq_request_started(rq
)) {
1417 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
1418 rq
->rq_flags
&= ~RQF_TIMED_OUT
;
1422 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
1424 struct request_queue
*q
= rq
->q
;
1425 unsigned long flags
;
1427 __blk_mq_requeue_request(rq
);
1429 /* this request will be re-inserted to io scheduler queue */
1430 blk_mq_sched_requeue_request(rq
);
1432 spin_lock_irqsave(&q
->requeue_lock
, flags
);
1433 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
1434 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
1436 if (kick_requeue_list
)
1437 blk_mq_kick_requeue_list(q
);
1439 EXPORT_SYMBOL(blk_mq_requeue_request
);
1441 static void blk_mq_requeue_work(struct work_struct
*work
)
1443 struct request_queue
*q
=
1444 container_of(work
, struct request_queue
, requeue_work
.work
);
1446 LIST_HEAD(flush_list
);
1449 spin_lock_irq(&q
->requeue_lock
);
1450 list_splice_init(&q
->requeue_list
, &rq_list
);
1451 list_splice_init(&q
->flush_list
, &flush_list
);
1452 spin_unlock_irq(&q
->requeue_lock
);
1454 while (!list_empty(&rq_list
)) {
1455 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
1457 * If RQF_DONTPREP ist set, the request has been started by the
1458 * driver already and might have driver-specific data allocated
1459 * already. Insert it into the hctx dispatch list to avoid
1460 * block layer merges for the request.
1462 if (rq
->rq_flags
& RQF_DONTPREP
) {
1463 list_del_init(&rq
->queuelist
);
1464 blk_mq_request_bypass_insert(rq
, 0);
1466 list_del_init(&rq
->queuelist
);
1467 blk_mq_insert_request(rq
, BLK_MQ_INSERT_AT_HEAD
);
1471 while (!list_empty(&flush_list
)) {
1472 rq
= list_entry(flush_list
.next
, struct request
, queuelist
);
1473 list_del_init(&rq
->queuelist
);
1474 blk_mq_insert_request(rq
, 0);
1477 blk_mq_run_hw_queues(q
, false);
1480 void blk_mq_kick_requeue_list(struct request_queue
*q
)
1482 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
, 0);
1484 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
1486 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
1487 unsigned long msecs
)
1489 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND
, &q
->requeue_work
,
1490 msecs_to_jiffies(msecs
));
1492 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
1494 static bool blk_is_flush_data_rq(struct request
*rq
)
1496 return (rq
->rq_flags
& RQF_FLUSH_SEQ
) && !is_flush_rq(rq
);
1499 static bool blk_mq_rq_inflight(struct request
*rq
, void *priv
)
1502 * If we find a request that isn't idle we know the queue is busy
1503 * as it's checked in the iter.
1504 * Return false to stop the iteration.
1506 * In case of queue quiesce, if one flush data request is completed,
1507 * don't count it as inflight given the flush sequence is suspended,
1508 * and the original flush data request is invisible to driver, just
1509 * like other pending requests because of quiesce
1511 if (blk_mq_request_started(rq
) && !(blk_queue_quiesced(rq
->q
) &&
1512 blk_is_flush_data_rq(rq
) &&
1513 blk_mq_request_completed(rq
))) {
1523 bool blk_mq_queue_inflight(struct request_queue
*q
)
1527 blk_mq_queue_tag_busy_iter(q
, blk_mq_rq_inflight
, &busy
);
1530 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight
);
1532 static void blk_mq_rq_timed_out(struct request
*req
)
1534 req
->rq_flags
|= RQF_TIMED_OUT
;
1535 if (req
->q
->mq_ops
->timeout
) {
1536 enum blk_eh_timer_return ret
;
1538 ret
= req
->q
->mq_ops
->timeout(req
);
1539 if (ret
== BLK_EH_DONE
)
1541 WARN_ON_ONCE(ret
!= BLK_EH_RESET_TIMER
);
1547 struct blk_expired_data
{
1548 bool has_timedout_rq
;
1550 unsigned long timeout_start
;
1553 static bool blk_mq_req_expired(struct request
*rq
, struct blk_expired_data
*expired
)
1555 unsigned long deadline
;
1557 if (blk_mq_rq_state(rq
) != MQ_RQ_IN_FLIGHT
)
1559 if (rq
->rq_flags
& RQF_TIMED_OUT
)
1562 deadline
= READ_ONCE(rq
->deadline
);
1563 if (time_after_eq(expired
->timeout_start
, deadline
))
1566 if (expired
->next
== 0)
1567 expired
->next
= deadline
;
1568 else if (time_after(expired
->next
, deadline
))
1569 expired
->next
= deadline
;
1573 void blk_mq_put_rq_ref(struct request
*rq
)
1575 if (is_flush_rq(rq
)) {
1576 if (rq
->end_io(rq
, 0) == RQ_END_IO_FREE
)
1577 blk_mq_free_request(rq
);
1578 } else if (req_ref_put_and_test(rq
)) {
1579 __blk_mq_free_request(rq
);
1583 static bool blk_mq_check_expired(struct request
*rq
, void *priv
)
1585 struct blk_expired_data
*expired
= priv
;
1588 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1589 * be reallocated underneath the timeout handler's processing, then
1590 * the expire check is reliable. If the request is not expired, then
1591 * it was completed and reallocated as a new request after returning
1592 * from blk_mq_check_expired().
1594 if (blk_mq_req_expired(rq
, expired
)) {
1595 expired
->has_timedout_rq
= true;
1601 static bool blk_mq_handle_expired(struct request
*rq
, void *priv
)
1603 struct blk_expired_data
*expired
= priv
;
1605 if (blk_mq_req_expired(rq
, expired
))
1606 blk_mq_rq_timed_out(rq
);
1610 static void blk_mq_timeout_work(struct work_struct
*work
)
1612 struct request_queue
*q
=
1613 container_of(work
, struct request_queue
, timeout_work
);
1614 struct blk_expired_data expired
= {
1615 .timeout_start
= jiffies
,
1617 struct blk_mq_hw_ctx
*hctx
;
1620 /* A deadlock might occur if a request is stuck requiring a
1621 * timeout at the same time a queue freeze is waiting
1622 * completion, since the timeout code would not be able to
1623 * acquire the queue reference here.
1625 * That's why we don't use blk_queue_enter here; instead, we use
1626 * percpu_ref_tryget directly, because we need to be able to
1627 * obtain a reference even in the short window between the queue
1628 * starting to freeze, by dropping the first reference in
1629 * blk_freeze_queue_start, and the moment the last request is
1630 * consumed, marked by the instant q_usage_counter reaches
1633 if (!percpu_ref_tryget(&q
->q_usage_counter
))
1636 /* check if there is any timed-out request */
1637 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &expired
);
1638 if (expired
.has_timedout_rq
) {
1640 * Before walking tags, we must ensure any submit started
1641 * before the current time has finished. Since the submit
1642 * uses srcu or rcu, wait for a synchronization point to
1643 * ensure all running submits have finished
1645 blk_mq_wait_quiesce_done(q
->tag_set
);
1648 blk_mq_queue_tag_busy_iter(q
, blk_mq_handle_expired
, &expired
);
1651 if (expired
.next
!= 0) {
1652 mod_timer(&q
->timeout
, expired
.next
);
1655 * Request timeouts are handled as a forward rolling timer. If
1656 * we end up here it means that no requests are pending and
1657 * also that no request has been pending for a while. Mark
1658 * each hctx as idle.
1660 queue_for_each_hw_ctx(q
, hctx
, i
) {
1661 /* the hctx may be unmapped, so check it here */
1662 if (blk_mq_hw_queue_mapped(hctx
))
1663 blk_mq_tag_idle(hctx
);
1669 struct flush_busy_ctx_data
{
1670 struct blk_mq_hw_ctx
*hctx
;
1671 struct list_head
*list
;
1674 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
1676 struct flush_busy_ctx_data
*flush_data
= data
;
1677 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
1678 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1679 enum hctx_type type
= hctx
->type
;
1681 spin_lock(&ctx
->lock
);
1682 list_splice_tail_init(&ctx
->rq_lists
[type
], flush_data
->list
);
1683 sbitmap_clear_bit(sb
, bitnr
);
1684 spin_unlock(&ctx
->lock
);
1689 * Process software queues that have been marked busy, splicing them
1690 * to the for-dispatch
1692 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
1694 struct flush_busy_ctx_data data
= {
1699 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
1701 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
1703 struct dispatch_rq_data
{
1704 struct blk_mq_hw_ctx
*hctx
;
1708 static bool dispatch_rq_from_ctx(struct sbitmap
*sb
, unsigned int bitnr
,
1711 struct dispatch_rq_data
*dispatch_data
= data
;
1712 struct blk_mq_hw_ctx
*hctx
= dispatch_data
->hctx
;
1713 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
1714 enum hctx_type type
= hctx
->type
;
1716 spin_lock(&ctx
->lock
);
1717 if (!list_empty(&ctx
->rq_lists
[type
])) {
1718 dispatch_data
->rq
= list_entry_rq(ctx
->rq_lists
[type
].next
);
1719 list_del_init(&dispatch_data
->rq
->queuelist
);
1720 if (list_empty(&ctx
->rq_lists
[type
]))
1721 sbitmap_clear_bit(sb
, bitnr
);
1723 spin_unlock(&ctx
->lock
);
1725 return !dispatch_data
->rq
;
1728 struct request
*blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx
*hctx
,
1729 struct blk_mq_ctx
*start
)
1731 unsigned off
= start
? start
->index_hw
[hctx
->type
] : 0;
1732 struct dispatch_rq_data data
= {
1737 __sbitmap_for_each_set(&hctx
->ctx_map
, off
,
1738 dispatch_rq_from_ctx
, &data
);
1743 bool __blk_mq_alloc_driver_tag(struct request
*rq
)
1745 struct sbitmap_queue
*bt
= &rq
->mq_hctx
->tags
->bitmap_tags
;
1746 unsigned int tag_offset
= rq
->mq_hctx
->tags
->nr_reserved_tags
;
1749 blk_mq_tag_busy(rq
->mq_hctx
);
1751 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
)) {
1752 bt
= &rq
->mq_hctx
->tags
->breserved_tags
;
1755 if (!hctx_may_queue(rq
->mq_hctx
, bt
))
1759 tag
= __sbitmap_queue_get(bt
);
1760 if (tag
== BLK_MQ_NO_TAG
)
1763 rq
->tag
= tag
+ tag_offset
;
1764 blk_mq_inc_active_requests(rq
->mq_hctx
);
1768 static int blk_mq_dispatch_wake(wait_queue_entry_t
*wait
, unsigned mode
,
1769 int flags
, void *key
)
1771 struct blk_mq_hw_ctx
*hctx
;
1773 hctx
= container_of(wait
, struct blk_mq_hw_ctx
, dispatch_wait
);
1775 spin_lock(&hctx
->dispatch_wait_lock
);
1776 if (!list_empty(&wait
->entry
)) {
1777 struct sbitmap_queue
*sbq
;
1779 list_del_init(&wait
->entry
);
1780 sbq
= &hctx
->tags
->bitmap_tags
;
1781 atomic_dec(&sbq
->ws_active
);
1783 spin_unlock(&hctx
->dispatch_wait_lock
);
1785 blk_mq_run_hw_queue(hctx
, true);
1790 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1791 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1792 * restart. For both cases, take care to check the condition again after
1793 * marking us as waiting.
1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx
*hctx
,
1798 struct sbitmap_queue
*sbq
;
1799 struct wait_queue_head
*wq
;
1800 wait_queue_entry_t
*wait
;
1803 if (!(hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) &&
1804 !(blk_mq_is_shared_tags(hctx
->flags
))) {
1805 blk_mq_sched_mark_restart_hctx(hctx
);
1808 * It's possible that a tag was freed in the window between the
1809 * allocation failure and adding the hardware queue to the wait
1812 * Don't clear RESTART here, someone else could have set it.
1813 * At most this will cost an extra queue run.
1815 return blk_mq_get_driver_tag(rq
);
1818 wait
= &hctx
->dispatch_wait
;
1819 if (!list_empty_careful(&wait
->entry
))
1822 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
))
1823 sbq
= &hctx
->tags
->breserved_tags
;
1825 sbq
= &hctx
->tags
->bitmap_tags
;
1826 wq
= &bt_wait_ptr(sbq
, hctx
)->wait
;
1828 spin_lock_irq(&wq
->lock
);
1829 spin_lock(&hctx
->dispatch_wait_lock
);
1830 if (!list_empty(&wait
->entry
)) {
1831 spin_unlock(&hctx
->dispatch_wait_lock
);
1832 spin_unlock_irq(&wq
->lock
);
1836 atomic_inc(&sbq
->ws_active
);
1837 wait
->flags
&= ~WQ_FLAG_EXCLUSIVE
;
1838 __add_wait_queue(wq
, wait
);
1841 * Add one explicit barrier since blk_mq_get_driver_tag() may
1842 * not imply barrier in case of failure.
1844 * Order adding us to wait queue and allocating driver tag.
1846 * The pair is the one implied in sbitmap_queue_wake_up() which
1847 * orders clearing sbitmap tag bits and waitqueue_active() in
1848 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1850 * Otherwise, re-order of adding wait queue and getting driver tag
1851 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1852 * the waitqueue_active() may not observe us in wait queue.
1857 * It's possible that a tag was freed in the window between the
1858 * allocation failure and adding the hardware queue to the wait
1861 ret
= blk_mq_get_driver_tag(rq
);
1863 spin_unlock(&hctx
->dispatch_wait_lock
);
1864 spin_unlock_irq(&wq
->lock
);
1869 * We got a tag, remove ourselves from the wait queue to ensure
1870 * someone else gets the wakeup.
1872 list_del_init(&wait
->entry
);
1873 atomic_dec(&sbq
->ws_active
);
1874 spin_unlock(&hctx
->dispatch_wait_lock
);
1875 spin_unlock_irq(&wq
->lock
);
1880 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1881 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1883 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1884 * - EWMA is one simple way to compute running average value
1885 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1886 * - take 4 as factor for avoiding to get too small(0) result, and this
1887 * factor doesn't matter because EWMA decreases exponentially
1889 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx
*hctx
, bool busy
)
1893 ewma
= hctx
->dispatch_busy
;
1898 ewma
*= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
- 1;
1900 ewma
+= 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR
;
1901 ewma
/= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT
;
1903 hctx
->dispatch_busy
= ewma
;
1906 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1908 static void blk_mq_handle_dev_resource(struct request
*rq
,
1909 struct list_head
*list
)
1911 list_add(&rq
->queuelist
, list
);
1912 __blk_mq_requeue_request(rq
);
1915 enum prep_dispatch
{
1917 PREP_DISPATCH_NO_TAG
,
1918 PREP_DISPATCH_NO_BUDGET
,
1921 static enum prep_dispatch
blk_mq_prep_dispatch_rq(struct request
*rq
,
1924 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
1925 int budget_token
= -1;
1928 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
1929 if (budget_token
< 0) {
1930 blk_mq_put_driver_tag(rq
);
1931 return PREP_DISPATCH_NO_BUDGET
;
1933 blk_mq_set_rq_budget_token(rq
, budget_token
);
1936 if (!blk_mq_get_driver_tag(rq
)) {
1938 * The initial allocation attempt failed, so we need to
1939 * rerun the hardware queue when a tag is freed. The
1940 * waitqueue takes care of that. If the queue is run
1941 * before we add this entry back on the dispatch list,
1942 * we'll re-run it below.
1944 if (!blk_mq_mark_tag_wait(hctx
, rq
)) {
1946 * All budgets not got from this function will be put
1947 * together during handling partial dispatch
1950 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
1951 return PREP_DISPATCH_NO_TAG
;
1955 return PREP_DISPATCH_OK
;
1958 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1959 static void blk_mq_release_budgets(struct request_queue
*q
,
1960 struct list_head
*list
)
1964 list_for_each_entry(rq
, list
, queuelist
) {
1965 int budget_token
= blk_mq_get_rq_budget_token(rq
);
1967 if (budget_token
>= 0)
1968 blk_mq_put_dispatch_budget(q
, budget_token
);
1973 * blk_mq_commit_rqs will notify driver using bd->last that there is no
1974 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1976 * Attention, we should explicitly call this in unusual cases:
1977 * 1) did not queue everything initially scheduled to queue
1978 * 2) the last attempt to queue a request failed
1980 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx
*hctx
, int queued
,
1983 if (hctx
->queue
->mq_ops
->commit_rqs
&& queued
) {
1984 trace_block_unplug(hctx
->queue
, queued
, !from_schedule
);
1985 hctx
->queue
->mq_ops
->commit_rqs(hctx
);
1990 * Returns true if we did some work AND can potentially do more.
1992 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
,
1993 unsigned int nr_budgets
)
1995 enum prep_dispatch prep
;
1996 struct request_queue
*q
= hctx
->queue
;
1999 blk_status_t ret
= BLK_STS_OK
;
2000 bool needs_resource
= false;
2002 if (list_empty(list
))
2006 * Now process all the entries, sending them to the driver.
2010 struct blk_mq_queue_data bd
;
2012 rq
= list_first_entry(list
, struct request
, queuelist
);
2014 WARN_ON_ONCE(hctx
!= rq
->mq_hctx
);
2015 prep
= blk_mq_prep_dispatch_rq(rq
, !nr_budgets
);
2016 if (prep
!= PREP_DISPATCH_OK
)
2019 list_del_init(&rq
->queuelist
);
2022 bd
.last
= list_empty(list
);
2025 * once the request is queued to lld, no need to cover the
2030 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2035 case BLK_STS_RESOURCE
:
2036 needs_resource
= true;
2038 case BLK_STS_DEV_RESOURCE
:
2039 blk_mq_handle_dev_resource(rq
, list
);
2042 blk_mq_end_request(rq
, ret
);
2044 } while (!list_empty(list
));
2046 /* If we didn't flush the entire list, we could have told the driver
2047 * there was more coming, but that turned out to be a lie.
2049 if (!list_empty(list
) || ret
!= BLK_STS_OK
)
2050 blk_mq_commit_rqs(hctx
, queued
, false);
2053 * Any items that need requeuing? Stuff them into hctx->dispatch,
2054 * that is where we will continue on next queue run.
2056 if (!list_empty(list
)) {
2058 /* For non-shared tags, the RESTART check will suffice */
2059 bool no_tag
= prep
== PREP_DISPATCH_NO_TAG
&&
2060 ((hctx
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
) ||
2061 blk_mq_is_shared_tags(hctx
->flags
));
2064 blk_mq_release_budgets(q
, list
);
2066 spin_lock(&hctx
->lock
);
2067 list_splice_tail_init(list
, &hctx
->dispatch
);
2068 spin_unlock(&hctx
->lock
);
2071 * Order adding requests to hctx->dispatch and checking
2072 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2073 * in blk_mq_sched_restart(). Avoid restart code path to
2074 * miss the new added requests to hctx->dispatch, meantime
2075 * SCHED_RESTART is observed here.
2080 * If SCHED_RESTART was set by the caller of this function and
2081 * it is no longer set that means that it was cleared by another
2082 * thread and hence that a queue rerun is needed.
2084 * If 'no_tag' is set, that means that we failed getting
2085 * a driver tag with an I/O scheduler attached. If our dispatch
2086 * waitqueue is no longer active, ensure that we run the queue
2087 * AFTER adding our entries back to the list.
2089 * If no I/O scheduler has been configured it is possible that
2090 * the hardware queue got stopped and restarted before requests
2091 * were pushed back onto the dispatch list. Rerun the queue to
2092 * avoid starvation. Notes:
2093 * - blk_mq_run_hw_queue() checks whether or not a queue has
2094 * been stopped before rerunning a queue.
2095 * - Some but not all block drivers stop a queue before
2096 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2099 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2100 * bit is set, run queue after a delay to avoid IO stalls
2101 * that could otherwise occur if the queue is idle. We'll do
2102 * similar if we couldn't get budget or couldn't lock a zone
2103 * and SCHED_RESTART is set.
2105 needs_restart
= blk_mq_sched_needs_restart(hctx
);
2106 if (prep
== PREP_DISPATCH_NO_BUDGET
)
2107 needs_resource
= true;
2108 if (!needs_restart
||
2109 (no_tag
&& list_empty_careful(&hctx
->dispatch_wait
.entry
)))
2110 blk_mq_run_hw_queue(hctx
, true);
2111 else if (needs_resource
)
2112 blk_mq_delay_run_hw_queue(hctx
, BLK_MQ_RESOURCE_DELAY
);
2114 blk_mq_update_dispatch_busy(hctx
, true);
2118 blk_mq_update_dispatch_busy(hctx
, false);
2122 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx
*hctx
)
2124 int cpu
= cpumask_first_and(hctx
->cpumask
, cpu_online_mask
);
2126 if (cpu
>= nr_cpu_ids
)
2127 cpu
= cpumask_first(hctx
->cpumask
);
2132 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2133 * it for speeding up the check
2135 static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx
*hctx
)
2137 return hctx
->next_cpu
>= nr_cpu_ids
;
2141 * It'd be great if the workqueue API had a way to pass
2142 * in a mask and had some smarts for more clever placement.
2143 * For now we just round-robin here, switching for every
2144 * BLK_MQ_CPU_WORK_BATCH queued items.
2146 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
2149 int next_cpu
= hctx
->next_cpu
;
2151 /* Switch to unbound if no allowable CPUs in this hctx */
2152 if (hctx
->queue
->nr_hw_queues
== 1 || blk_mq_hctx_empty_cpumask(hctx
))
2153 return WORK_CPU_UNBOUND
;
2155 if (--hctx
->next_cpu_batch
<= 0) {
2157 next_cpu
= cpumask_next_and(next_cpu
, hctx
->cpumask
,
2159 if (next_cpu
>= nr_cpu_ids
)
2160 next_cpu
= blk_mq_first_mapped_cpu(hctx
);
2161 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2165 * Do unbound schedule if we can't find a online CPU for this hctx,
2166 * and it should only happen in the path of handling CPU DEAD.
2168 if (!cpu_online(next_cpu
)) {
2175 * Make sure to re-select CPU next time once after CPUs
2176 * in hctx->cpumask become online again.
2178 hctx
->next_cpu
= next_cpu
;
2179 hctx
->next_cpu_batch
= 1;
2180 return WORK_CPU_UNBOUND
;
2183 hctx
->next_cpu
= next_cpu
;
2188 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2189 * @hctx: Pointer to the hardware queue to run.
2190 * @msecs: Milliseconds of delay to wait before running the queue.
2192 * Run a hardware queue asynchronously with a delay of @msecs.
2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
2196 if (unlikely(blk_mq_hctx_stopped(hctx
)))
2198 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
,
2199 msecs_to_jiffies(msecs
));
2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue
);
2204 * blk_mq_run_hw_queue - Start to run a hardware queue.
2205 * @hctx: Pointer to the hardware queue to run.
2206 * @async: If we want to run the queue asynchronously.
2208 * Check if the request queue is not in a quiesced state and if there are
2209 * pending requests to be sent. If this is true, run the queue to send requests
2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2217 * We can't run the queue inline with interrupts disabled.
2219 WARN_ON_ONCE(!async
&& in_interrupt());
2221 might_sleep_if(!async
&& hctx
->flags
& BLK_MQ_F_BLOCKING
);
2224 * When queue is quiesced, we may be switching io scheduler, or
2225 * updating nr_hw_queues, or other things, and we can't run queue
2226 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2228 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2231 __blk_mq_run_dispatch_ops(hctx
->queue
, false,
2232 need_run
= !blk_queue_quiesced(hctx
->queue
) &&
2233 blk_mq_hctx_has_pending(hctx
));
2238 if (async
|| !cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
)) {
2239 blk_mq_delay_run_hw_queue(hctx
, 0);
2243 blk_mq_run_dispatch_ops(hctx
->queue
,
2244 blk_mq_sched_dispatch_requests(hctx
));
2246 EXPORT_SYMBOL(blk_mq_run_hw_queue
);
2249 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2252 static struct blk_mq_hw_ctx
*blk_mq_get_sq_hctx(struct request_queue
*q
)
2254 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
2256 * If the IO scheduler does not respect hardware queues when
2257 * dispatching, we just don't bother with multiple HW queues and
2258 * dispatch from hctx for the current CPU since running multiple queues
2259 * just causes lock contention inside the scheduler and pointless cache
2262 struct blk_mq_hw_ctx
*hctx
= ctx
->hctxs
[HCTX_TYPE_DEFAULT
];
2264 if (!blk_mq_hctx_stopped(hctx
))
2270 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2271 * @q: Pointer to the request queue to run.
2272 * @async: If we want to run the queue asynchronously.
2274 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
2276 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2280 if (blk_queue_sq_sched(q
))
2281 sq_hctx
= blk_mq_get_sq_hctx(q
);
2282 queue_for_each_hw_ctx(q
, hctx
, i
) {
2283 if (blk_mq_hctx_stopped(hctx
))
2286 * Dispatch from this hctx either if there's no hctx preferred
2287 * by IO scheduler or if it has requests that bypass the
2290 if (!sq_hctx
|| sq_hctx
== hctx
||
2291 !list_empty_careful(&hctx
->dispatch
))
2292 blk_mq_run_hw_queue(hctx
, async
);
2295 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
2298 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2299 * @q: Pointer to the request queue to run.
2300 * @msecs: Milliseconds of delay to wait before running the queues.
2302 void blk_mq_delay_run_hw_queues(struct request_queue
*q
, unsigned long msecs
)
2304 struct blk_mq_hw_ctx
*hctx
, *sq_hctx
;
2308 if (blk_queue_sq_sched(q
))
2309 sq_hctx
= blk_mq_get_sq_hctx(q
);
2310 queue_for_each_hw_ctx(q
, hctx
, i
) {
2311 if (blk_mq_hctx_stopped(hctx
))
2314 * If there is already a run_work pending, leave the
2315 * pending delay untouched. Otherwise, a hctx can stall
2316 * if another hctx is re-delaying the other's work
2317 * before the work executes.
2319 if (delayed_work_pending(&hctx
->run_work
))
2322 * Dispatch from this hctx either if there's no hctx preferred
2323 * by IO scheduler or if it has requests that bypass the
2326 if (!sq_hctx
|| sq_hctx
== hctx
||
2327 !list_empty_careful(&hctx
->dispatch
))
2328 blk_mq_delay_run_hw_queue(hctx
, msecs
);
2331 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues
);
2334 * This function is often used for pausing .queue_rq() by driver when
2335 * there isn't enough resource or some conditions aren't satisfied, and
2336 * BLK_STS_RESOURCE is usually returned.
2338 * We do not guarantee that dispatch can be drained or blocked
2339 * after blk_mq_stop_hw_queue() returns. Please use
2340 * blk_mq_quiesce_queue() for that requirement.
2342 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2344 cancel_delayed_work(&hctx
->run_work
);
2346 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2348 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
2351 * This function is often used for pausing .queue_rq() by driver when
2352 * there isn't enough resource or some conditions aren't satisfied, and
2353 * BLK_STS_RESOURCE is usually returned.
2355 * We do not guarantee that dispatch can be drained or blocked
2356 * after blk_mq_stop_hw_queues() returns. Please use
2357 * blk_mq_quiesce_queue() for that requirement.
2359 void blk_mq_stop_hw_queues(struct request_queue
*q
)
2361 struct blk_mq_hw_ctx
*hctx
;
2364 queue_for_each_hw_ctx(q
, hctx
, i
)
2365 blk_mq_stop_hw_queue(hctx
);
2367 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
2369 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
2371 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2373 blk_mq_run_hw_queue(hctx
, hctx
->flags
& BLK_MQ_F_BLOCKING
);
2375 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
2377 void blk_mq_start_hw_queues(struct request_queue
*q
)
2379 struct blk_mq_hw_ctx
*hctx
;
2382 queue_for_each_hw_ctx(q
, hctx
, i
)
2383 blk_mq_start_hw_queue(hctx
);
2385 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
2387 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
2389 if (!blk_mq_hctx_stopped(hctx
))
2392 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
2393 blk_mq_run_hw_queue(hctx
, async
);
2395 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
2397 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
2399 struct blk_mq_hw_ctx
*hctx
;
2402 queue_for_each_hw_ctx(q
, hctx
, i
)
2403 blk_mq_start_stopped_hw_queue(hctx
, async
||
2404 (hctx
->flags
& BLK_MQ_F_BLOCKING
));
2406 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
2408 static void blk_mq_run_work_fn(struct work_struct
*work
)
2410 struct blk_mq_hw_ctx
*hctx
=
2411 container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
2413 blk_mq_run_dispatch_ops(hctx
->queue
,
2414 blk_mq_sched_dispatch_requests(hctx
));
2418 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2419 * @rq: Pointer to request to be inserted.
2420 * @flags: BLK_MQ_INSERT_*
2422 * Should only be used carefully, when the caller knows we want to
2423 * bypass a potential IO scheduler on the target device.
2425 static void blk_mq_request_bypass_insert(struct request
*rq
, blk_insert_t flags
)
2427 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2429 spin_lock(&hctx
->lock
);
2430 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2431 list_add(&rq
->queuelist
, &hctx
->dispatch
);
2433 list_add_tail(&rq
->queuelist
, &hctx
->dispatch
);
2434 spin_unlock(&hctx
->lock
);
2437 static void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
,
2438 struct blk_mq_ctx
*ctx
, struct list_head
*list
,
2439 bool run_queue_async
)
2442 enum hctx_type type
= hctx
->type
;
2445 * Try to issue requests directly if the hw queue isn't busy to save an
2446 * extra enqueue & dequeue to the sw queue.
2448 if (!hctx
->dispatch_busy
&& !run_queue_async
) {
2449 blk_mq_run_dispatch_ops(hctx
->queue
,
2450 blk_mq_try_issue_list_directly(hctx
, list
));
2451 if (list_empty(list
))
2456 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2459 list_for_each_entry(rq
, list
, queuelist
) {
2460 BUG_ON(rq
->mq_ctx
!= ctx
);
2461 trace_block_rq_insert(rq
);
2462 if (rq
->cmd_flags
& REQ_NOWAIT
)
2463 run_queue_async
= true;
2466 spin_lock(&ctx
->lock
);
2467 list_splice_tail_init(list
, &ctx
->rq_lists
[type
]);
2468 blk_mq_hctx_mark_pending(hctx
, ctx
);
2469 spin_unlock(&ctx
->lock
);
2471 blk_mq_run_hw_queue(hctx
, run_queue_async
);
2474 static void blk_mq_insert_request(struct request
*rq
, blk_insert_t flags
)
2476 struct request_queue
*q
= rq
->q
;
2477 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
2478 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2480 if (blk_rq_is_passthrough(rq
)) {
2482 * Passthrough request have to be added to hctx->dispatch
2483 * directly. The device may be in a situation where it can't
2484 * handle FS request, and always returns BLK_STS_RESOURCE for
2485 * them, which gets them added to hctx->dispatch.
2487 * If a passthrough request is required to unblock the queues,
2488 * and it is added to the scheduler queue, there is no chance to
2489 * dispatch it given we prioritize requests in hctx->dispatch.
2491 blk_mq_request_bypass_insert(rq
, flags
);
2492 } else if (req_op(rq
) == REQ_OP_FLUSH
) {
2494 * Firstly normal IO request is inserted to scheduler queue or
2495 * sw queue, meantime we add flush request to dispatch queue(
2496 * hctx->dispatch) directly and there is at most one in-flight
2497 * flush request for each hw queue, so it doesn't matter to add
2498 * flush request to tail or front of the dispatch queue.
2500 * Secondly in case of NCQ, flush request belongs to non-NCQ
2501 * command, and queueing it will fail when there is any
2502 * in-flight normal IO request(NCQ command). When adding flush
2503 * rq to the front of hctx->dispatch, it is easier to introduce
2504 * extra time to flush rq's latency because of S_SCHED_RESTART
2505 * compared with adding to the tail of dispatch queue, then
2506 * chance of flush merge is increased, and less flush requests
2507 * will be issued to controller. It is observed that ~10% time
2508 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2509 * drive when adding flush rq to the front of hctx->dispatch.
2511 * Simply queue flush rq to the front of hctx->dispatch so that
2512 * intensive flush workloads can benefit in case of NCQ HW.
2514 blk_mq_request_bypass_insert(rq
, BLK_MQ_INSERT_AT_HEAD
);
2515 } else if (q
->elevator
) {
2518 WARN_ON_ONCE(rq
->tag
!= BLK_MQ_NO_TAG
);
2520 list_add(&rq
->queuelist
, &list
);
2521 q
->elevator
->type
->ops
.insert_requests(hctx
, &list
, flags
);
2523 trace_block_rq_insert(rq
);
2525 spin_lock(&ctx
->lock
);
2526 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
2527 list_add(&rq
->queuelist
, &ctx
->rq_lists
[hctx
->type
]);
2529 list_add_tail(&rq
->queuelist
,
2530 &ctx
->rq_lists
[hctx
->type
]);
2531 blk_mq_hctx_mark_pending(hctx
, ctx
);
2532 spin_unlock(&ctx
->lock
);
2536 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
,
2537 unsigned int nr_segs
)
2541 if (bio
->bi_opf
& REQ_RAHEAD
)
2542 rq
->cmd_flags
|= REQ_FAILFAST_MASK
;
2544 rq
->__sector
= bio
->bi_iter
.bi_sector
;
2545 rq
->write_hint
= bio
->bi_write_hint
;
2546 blk_rq_bio_prep(rq
, bio
, nr_segs
);
2547 if (bio_integrity(bio
))
2548 rq
->nr_integrity_segments
= blk_rq_count_integrity_sg(rq
->q
,
2551 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2552 err
= blk_crypto_rq_bio_prep(rq
, bio
, GFP_NOIO
);
2555 blk_account_io_start(rq
);
2558 static blk_status_t
__blk_mq_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2559 struct request
*rq
, bool last
)
2561 struct request_queue
*q
= rq
->q
;
2562 struct blk_mq_queue_data bd
= {
2569 * For OK queue, we are done. For error, caller may kill it.
2570 * Any other error (busy), just add it to our list as we
2571 * previously would have done.
2573 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
2576 blk_mq_update_dispatch_busy(hctx
, false);
2578 case BLK_STS_RESOURCE
:
2579 case BLK_STS_DEV_RESOURCE
:
2580 blk_mq_update_dispatch_busy(hctx
, true);
2581 __blk_mq_requeue_request(rq
);
2584 blk_mq_update_dispatch_busy(hctx
, false);
2591 static bool blk_mq_get_budget_and_tag(struct request
*rq
)
2595 budget_token
= blk_mq_get_dispatch_budget(rq
->q
);
2596 if (budget_token
< 0)
2598 blk_mq_set_rq_budget_token(rq
, budget_token
);
2599 if (!blk_mq_get_driver_tag(rq
)) {
2600 blk_mq_put_dispatch_budget(rq
->q
, budget_token
);
2607 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2608 * @hctx: Pointer of the associated hardware queue.
2609 * @rq: Pointer to request to be sent.
2611 * If the device has enough resources to accept a new request now, send the
2612 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2613 * we can try send it another time in the future. Requests inserted at this
2614 * queue have higher priority.
2616 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx
*hctx
,
2621 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2622 blk_mq_insert_request(rq
, 0);
2626 if ((rq
->rq_flags
& RQF_USE_SCHED
) || !blk_mq_get_budget_and_tag(rq
)) {
2627 blk_mq_insert_request(rq
, 0);
2628 blk_mq_run_hw_queue(hctx
, rq
->cmd_flags
& REQ_NOWAIT
);
2632 ret
= __blk_mq_issue_directly(hctx
, rq
, true);
2636 case BLK_STS_RESOURCE
:
2637 case BLK_STS_DEV_RESOURCE
:
2638 blk_mq_request_bypass_insert(rq
, 0);
2639 blk_mq_run_hw_queue(hctx
, false);
2642 blk_mq_end_request(rq
, ret
);
2647 static blk_status_t
blk_mq_request_issue_directly(struct request
*rq
, bool last
)
2649 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
2651 if (blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(rq
->q
)) {
2652 blk_mq_insert_request(rq
, 0);
2656 if (!blk_mq_get_budget_and_tag(rq
))
2657 return BLK_STS_RESOURCE
;
2658 return __blk_mq_issue_directly(hctx
, rq
, last
);
2661 static void blk_mq_plug_issue_direct(struct blk_plug
*plug
)
2663 struct blk_mq_hw_ctx
*hctx
= NULL
;
2666 blk_status_t ret
= BLK_STS_OK
;
2668 while ((rq
= rq_list_pop(&plug
->mq_list
))) {
2669 bool last
= rq_list_empty(plug
->mq_list
);
2671 if (hctx
!= rq
->mq_hctx
) {
2673 blk_mq_commit_rqs(hctx
, queued
, false);
2679 ret
= blk_mq_request_issue_directly(rq
, last
);
2684 case BLK_STS_RESOURCE
:
2685 case BLK_STS_DEV_RESOURCE
:
2686 blk_mq_request_bypass_insert(rq
, 0);
2687 blk_mq_run_hw_queue(hctx
, false);
2690 blk_mq_end_request(rq
, ret
);
2696 if (ret
!= BLK_STS_OK
)
2697 blk_mq_commit_rqs(hctx
, queued
, false);
2700 static void __blk_mq_flush_plug_list(struct request_queue
*q
,
2701 struct blk_plug
*plug
)
2703 if (blk_queue_quiesced(q
))
2705 q
->mq_ops
->queue_rqs(&plug
->mq_list
);
2708 static void blk_mq_dispatch_plug_list(struct blk_plug
*plug
, bool from_sched
)
2710 struct blk_mq_hw_ctx
*this_hctx
= NULL
;
2711 struct blk_mq_ctx
*this_ctx
= NULL
;
2712 struct request
*requeue_list
= NULL
;
2713 struct request
**requeue_lastp
= &requeue_list
;
2714 unsigned int depth
= 0;
2715 bool is_passthrough
= false;
2719 struct request
*rq
= rq_list_pop(&plug
->mq_list
);
2722 this_hctx
= rq
->mq_hctx
;
2723 this_ctx
= rq
->mq_ctx
;
2724 is_passthrough
= blk_rq_is_passthrough(rq
);
2725 } else if (this_hctx
!= rq
->mq_hctx
|| this_ctx
!= rq
->mq_ctx
||
2726 is_passthrough
!= blk_rq_is_passthrough(rq
)) {
2727 rq_list_add_tail(&requeue_lastp
, rq
);
2730 list_add(&rq
->queuelist
, &list
);
2732 } while (!rq_list_empty(plug
->mq_list
));
2734 plug
->mq_list
= requeue_list
;
2735 trace_block_unplug(this_hctx
->queue
, depth
, !from_sched
);
2737 percpu_ref_get(&this_hctx
->queue
->q_usage_counter
);
2738 /* passthrough requests should never be issued to the I/O scheduler */
2739 if (is_passthrough
) {
2740 spin_lock(&this_hctx
->lock
);
2741 list_splice_tail_init(&list
, &this_hctx
->dispatch
);
2742 spin_unlock(&this_hctx
->lock
);
2743 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2744 } else if (this_hctx
->queue
->elevator
) {
2745 this_hctx
->queue
->elevator
->type
->ops
.insert_requests(this_hctx
,
2747 blk_mq_run_hw_queue(this_hctx
, from_sched
);
2749 blk_mq_insert_requests(this_hctx
, this_ctx
, &list
, from_sched
);
2751 percpu_ref_put(&this_hctx
->queue
->q_usage_counter
);
2754 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2760 * We may have been called recursively midway through handling
2761 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2762 * To avoid mq_list changing under our feet, clear rq_count early and
2763 * bail out specifically if rq_count is 0 rather than checking
2764 * whether the mq_list is empty.
2766 if (plug
->rq_count
== 0)
2768 depth
= plug
->rq_count
;
2771 if (!plug
->multiple_queues
&& !plug
->has_elevator
&& !from_schedule
) {
2772 struct request_queue
*q
;
2774 rq
= rq_list_peek(&plug
->mq_list
);
2776 trace_block_unplug(q
, depth
, true);
2779 * Peek first request and see if we have a ->queue_rqs() hook.
2780 * If we do, we can dispatch the whole plug list in one go. We
2781 * already know at this point that all requests belong to the
2782 * same queue, caller must ensure that's the case.
2784 if (q
->mq_ops
->queue_rqs
) {
2785 blk_mq_run_dispatch_ops(q
,
2786 __blk_mq_flush_plug_list(q
, plug
));
2787 if (rq_list_empty(plug
->mq_list
))
2791 blk_mq_run_dispatch_ops(q
,
2792 blk_mq_plug_issue_direct(plug
));
2793 if (rq_list_empty(plug
->mq_list
))
2798 blk_mq_dispatch_plug_list(plug
, from_schedule
);
2799 } while (!rq_list_empty(plug
->mq_list
));
2802 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx
*hctx
,
2803 struct list_head
*list
)
2806 blk_status_t ret
= BLK_STS_OK
;
2808 while (!list_empty(list
)) {
2809 struct request
*rq
= list_first_entry(list
, struct request
,
2812 list_del_init(&rq
->queuelist
);
2813 ret
= blk_mq_request_issue_directly(rq
, list_empty(list
));
2818 case BLK_STS_RESOURCE
:
2819 case BLK_STS_DEV_RESOURCE
:
2820 blk_mq_request_bypass_insert(rq
, 0);
2821 if (list_empty(list
))
2822 blk_mq_run_hw_queue(hctx
, false);
2825 blk_mq_end_request(rq
, ret
);
2831 if (ret
!= BLK_STS_OK
)
2832 blk_mq_commit_rqs(hctx
, queued
, false);
2835 static bool blk_mq_attempt_bio_merge(struct request_queue
*q
,
2836 struct bio
*bio
, unsigned int nr_segs
)
2838 if (!blk_queue_nomerges(q
) && bio_mergeable(bio
)) {
2839 if (blk_attempt_plug_merge(q
, bio
, nr_segs
))
2841 if (blk_mq_sched_bio_merge(q
, bio
, nr_segs
))
2847 static struct request
*blk_mq_get_new_requests(struct request_queue
*q
,
2848 struct blk_plug
*plug
,
2852 struct blk_mq_alloc_data data
= {
2855 .cmd_flags
= bio
->bi_opf
,
2859 rq_qos_throttle(q
, bio
);
2862 data
.nr_tags
= plug
->nr_ios
;
2864 data
.cached_rq
= &plug
->cached_rq
;
2867 rq
= __blk_mq_alloc_requests(&data
);
2870 rq_qos_cleanup(q
, bio
);
2871 if (bio
->bi_opf
& REQ_NOWAIT
)
2872 bio_wouldblock_error(bio
);
2877 * Check if there is a suitable cached request and return it.
2879 static struct request
*blk_mq_peek_cached_request(struct blk_plug
*plug
,
2880 struct request_queue
*q
, blk_opf_t opf
)
2882 enum hctx_type type
= blk_mq_get_hctx_type(opf
);
2887 rq
= rq_list_peek(&plug
->cached_rq
);
2888 if (!rq
|| rq
->q
!= q
)
2890 if (type
!= rq
->mq_hctx
->type
&&
2891 (type
!= HCTX_TYPE_READ
|| rq
->mq_hctx
->type
!= HCTX_TYPE_DEFAULT
))
2893 if (op_is_flush(rq
->cmd_flags
) != op_is_flush(opf
))
2898 static void blk_mq_use_cached_rq(struct request
*rq
, struct blk_plug
*plug
,
2901 WARN_ON_ONCE(rq_list_peek(&plug
->cached_rq
) != rq
);
2904 * If any qos ->throttle() end up blocking, we will have flushed the
2905 * plug and hence killed the cached_rq list as well. Pop this entry
2906 * before we throttle.
2908 plug
->cached_rq
= rq_list_next(rq
);
2909 rq_qos_throttle(rq
->q
, bio
);
2911 blk_mq_rq_time_init(rq
, 0);
2912 rq
->cmd_flags
= bio
->bi_opf
;
2913 INIT_LIST_HEAD(&rq
->queuelist
);
2916 static bool bio_unaligned(const struct bio
*bio
, struct request_queue
*q
)
2918 unsigned int bs_mask
= queue_logical_block_size(q
) - 1;
2920 /* .bi_sector of any zero sized bio need to be initialized */
2921 if ((bio
->bi_iter
.bi_size
& bs_mask
) ||
2922 ((bio
->bi_iter
.bi_sector
<< SECTOR_SHIFT
) & bs_mask
))
2928 * blk_mq_submit_bio - Create and send a request to block device.
2929 * @bio: Bio pointer.
2931 * Builds up a request structure from @q and @bio and send to the device. The
2932 * request may not be queued directly to hardware if:
2933 * * This request can be merged with another one
2934 * * We want to place request at plug queue for possible future merging
2935 * * There is an IO scheduler active at this queue
2937 * It will not queue the request if there is an error with the bio, or at the
2940 void blk_mq_submit_bio(struct bio
*bio
)
2942 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
2943 struct blk_plug
*plug
= current
->plug
;
2944 const int is_sync
= op_is_sync(bio
->bi_opf
);
2945 struct blk_mq_hw_ctx
*hctx
;
2946 unsigned int nr_segs
;
2951 * If the plug has a cached request for this queue, try to use it.
2953 rq
= blk_mq_peek_cached_request(plug
, q
, bio
->bi_opf
);
2956 * A BIO that was released from a zone write plug has already been
2957 * through the preparation in this function, already holds a reference
2958 * on the queue usage counter, and is the only write BIO in-flight for
2959 * the target zone. Go straight to preparing a request for it.
2961 if (bio_zone_write_plugging(bio
)) {
2962 nr_segs
= bio
->__bi_nr_segments
;
2968 bio
= blk_queue_bounce(bio
, q
);
2971 * The cached request already holds a q_usage_counter reference and we
2972 * don't have to acquire a new one if we use it.
2975 if (unlikely(bio_queue_enter(bio
)))
2980 * Device reconfiguration may change logical block size, so alignment
2981 * check has to be done with queue usage counter held
2983 if (unlikely(bio_unaligned(bio
, q
))) {
2988 bio
= __bio_split_to_limits(bio
, &q
->limits
, &nr_segs
);
2992 if (!bio_integrity_prep(bio
))
2995 if (blk_mq_attempt_bio_merge(q
, bio
, nr_segs
))
2998 if (blk_queue_is_zoned(q
) && blk_zone_plug_bio(bio
, nr_segs
))
3003 rq
= blk_mq_get_new_requests(q
, plug
, bio
, nr_segs
);
3007 blk_mq_use_cached_rq(rq
, plug
, bio
);
3010 trace_block_getrq(bio
);
3012 rq_qos_track(q
, rq
, bio
);
3014 blk_mq_bio_to_request(rq
, bio
, nr_segs
);
3016 ret
= blk_crypto_rq_get_keyslot(rq
);
3017 if (ret
!= BLK_STS_OK
) {
3018 bio
->bi_status
= ret
;
3020 blk_mq_free_request(rq
);
3024 if (bio_zone_write_plugging(bio
))
3025 blk_zone_write_plug_init_request(rq
);
3027 if (op_is_flush(bio
->bi_opf
) && blk_insert_flush(rq
))
3031 blk_add_rq_to_plug(plug
, rq
);
3036 if ((rq
->rq_flags
& RQF_USE_SCHED
) ||
3037 (hctx
->dispatch_busy
&& (q
->nr_hw_queues
== 1 || !is_sync
))) {
3038 blk_mq_insert_request(rq
, 0);
3039 blk_mq_run_hw_queue(hctx
, true);
3041 blk_mq_run_dispatch_ops(q
, blk_mq_try_issue_directly(hctx
, rq
));
3047 * Don't drop the queue reference if we were trying to use a cached
3048 * request and thus didn't acquire one.
3054 #ifdef CONFIG_BLK_MQ_STACKING
3056 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3057 * @rq: the request being queued
3059 blk_status_t
blk_insert_cloned_request(struct request
*rq
)
3061 struct request_queue
*q
= rq
->q
;
3062 unsigned int max_sectors
= blk_queue_get_max_sectors(rq
);
3063 unsigned int max_segments
= blk_rq_get_max_segments(rq
);
3066 if (blk_rq_sectors(rq
) > max_sectors
) {
3068 * SCSI device does not have a good way to return if
3069 * Write Same/Zero is actually supported. If a device rejects
3070 * a non-read/write command (discard, write same,etc.) the
3071 * low-level device driver will set the relevant queue limit to
3072 * 0 to prevent blk-lib from issuing more of the offending
3073 * operations. Commands queued prior to the queue limit being
3074 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3075 * errors being propagated to upper layers.
3077 if (max_sectors
== 0)
3078 return BLK_STS_NOTSUPP
;
3080 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
3081 __func__
, blk_rq_sectors(rq
), max_sectors
);
3082 return BLK_STS_IOERR
;
3086 * The queue settings related to segment counting may differ from the
3089 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
3090 if (rq
->nr_phys_segments
> max_segments
) {
3091 printk(KERN_ERR
"%s: over max segments limit. (%u > %u)\n",
3092 __func__
, rq
->nr_phys_segments
, max_segments
);
3093 return BLK_STS_IOERR
;
3096 if (q
->disk
&& should_fail_request(q
->disk
->part0
, blk_rq_bytes(rq
)))
3097 return BLK_STS_IOERR
;
3099 ret
= blk_crypto_rq_get_keyslot(rq
);
3100 if (ret
!= BLK_STS_OK
)
3103 blk_account_io_start(rq
);
3106 * Since we have a scheduler attached on the top device,
3107 * bypass a potential scheduler on the bottom device for
3110 blk_mq_run_dispatch_ops(q
,
3111 ret
= blk_mq_request_issue_directly(rq
, true));
3113 blk_account_io_done(rq
, blk_time_get_ns());
3116 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
3119 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3120 * @rq: the clone request to be cleaned up
3123 * Free all bios in @rq for a cloned request.
3125 void blk_rq_unprep_clone(struct request
*rq
)
3129 while ((bio
= rq
->bio
) != NULL
) {
3130 rq
->bio
= bio
->bi_next
;
3135 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3138 * blk_rq_prep_clone - Helper function to setup clone request
3139 * @rq: the request to be setup
3140 * @rq_src: original request to be cloned
3141 * @bs: bio_set that bios for clone are allocated from
3142 * @gfp_mask: memory allocation mask for bio
3143 * @bio_ctr: setup function to be called for each clone bio.
3144 * Returns %0 for success, non %0 for failure.
3145 * @data: private data to be passed to @bio_ctr
3148 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3149 * Also, pages which the original bios are pointing to are not copied
3150 * and the cloned bios just point same pages.
3151 * So cloned bios must be completed before original bios, which means
3152 * the caller must complete @rq before @rq_src.
3154 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3155 struct bio_set
*bs
, gfp_t gfp_mask
,
3156 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3159 struct bio
*bio
, *bio_src
;
3164 __rq_for_each_bio(bio_src
, rq_src
) {
3165 bio
= bio_alloc_clone(rq
->q
->disk
->part0
, bio_src
, gfp_mask
,
3170 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3174 rq
->biotail
->bi_next
= bio
;
3177 rq
->bio
= rq
->biotail
= bio
;
3182 /* Copy attributes of the original request to the clone request. */
3183 rq
->__sector
= blk_rq_pos(rq_src
);
3184 rq
->__data_len
= blk_rq_bytes(rq_src
);
3185 if (rq_src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3186 rq
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3187 rq
->special_vec
= rq_src
->special_vec
;
3189 rq
->nr_phys_segments
= rq_src
->nr_phys_segments
;
3190 rq
->ioprio
= rq_src
->ioprio
;
3191 rq
->write_hint
= rq_src
->write_hint
;
3193 if (rq
->bio
&& blk_crypto_rq_bio_prep(rq
, rq
->bio
, gfp_mask
) < 0)
3201 blk_rq_unprep_clone(rq
);
3205 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3206 #endif /* CONFIG_BLK_MQ_STACKING */
3209 * Steal bios from a request and add them to a bio list.
3210 * The request must not have been partially completed before.
3212 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3216 list
->tail
->bi_next
= rq
->bio
;
3218 list
->head
= rq
->bio
;
3219 list
->tail
= rq
->biotail
;
3227 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3229 static size_t order_to_size(unsigned int order
)
3231 return (size_t)PAGE_SIZE
<< order
;
3234 /* called before freeing request pool in @tags */
3235 static void blk_mq_clear_rq_mapping(struct blk_mq_tags
*drv_tags
,
3236 struct blk_mq_tags
*tags
)
3239 unsigned long flags
;
3242 * There is no need to clear mapping if driver tags is not initialized
3243 * or the mapping belongs to the driver tags.
3245 if (!drv_tags
|| drv_tags
== tags
)
3248 list_for_each_entry(page
, &tags
->page_list
, lru
) {
3249 unsigned long start
= (unsigned long)page_address(page
);
3250 unsigned long end
= start
+ order_to_size(page
->private);
3253 for (i
= 0; i
< drv_tags
->nr_tags
; i
++) {
3254 struct request
*rq
= drv_tags
->rqs
[i
];
3255 unsigned long rq_addr
= (unsigned long)rq
;
3257 if (rq_addr
>= start
&& rq_addr
< end
) {
3258 WARN_ON_ONCE(req_ref_read(rq
) != 0);
3259 cmpxchg(&drv_tags
->rqs
[i
], rq
, NULL
);
3265 * Wait until all pending iteration is done.
3267 * Request reference is cleared and it is guaranteed to be observed
3268 * after the ->lock is released.
3270 spin_lock_irqsave(&drv_tags
->lock
, flags
);
3271 spin_unlock_irqrestore(&drv_tags
->lock
, flags
);
3274 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
3275 unsigned int hctx_idx
)
3277 struct blk_mq_tags
*drv_tags
;
3280 if (list_empty(&tags
->page_list
))
3283 if (blk_mq_is_shared_tags(set
->flags
))
3284 drv_tags
= set
->shared_tags
;
3286 drv_tags
= set
->tags
[hctx_idx
];
3288 if (tags
->static_rqs
&& set
->ops
->exit_request
) {
3291 for (i
= 0; i
< tags
->nr_tags
; i
++) {
3292 struct request
*rq
= tags
->static_rqs
[i
];
3296 set
->ops
->exit_request(set
, rq
, hctx_idx
);
3297 tags
->static_rqs
[i
] = NULL
;
3301 blk_mq_clear_rq_mapping(drv_tags
, tags
);
3303 while (!list_empty(&tags
->page_list
)) {
3304 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
3305 list_del_init(&page
->lru
);
3307 * Remove kmemleak object previously allocated in
3308 * blk_mq_alloc_rqs().
3310 kmemleak_free(page_address(page
));
3311 __free_pages(page
, page
->private);
3315 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
3319 kfree(tags
->static_rqs
);
3320 tags
->static_rqs
= NULL
;
3322 blk_mq_free_tags(tags
);
3325 static enum hctx_type
hctx_idx_to_type(struct blk_mq_tag_set
*set
,
3326 unsigned int hctx_idx
)
3330 for (i
= 0; i
< set
->nr_maps
; i
++) {
3331 unsigned int start
= set
->map
[i
].queue_offset
;
3332 unsigned int end
= start
+ set
->map
[i
].nr_queues
;
3334 if (hctx_idx
>= start
&& hctx_idx
< end
)
3338 if (i
>= set
->nr_maps
)
3339 i
= HCTX_TYPE_DEFAULT
;
3344 static int blk_mq_get_hctx_node(struct blk_mq_tag_set
*set
,
3345 unsigned int hctx_idx
)
3347 enum hctx_type type
= hctx_idx_to_type(set
, hctx_idx
);
3349 return blk_mq_hw_queue_to_node(&set
->map
[type
], hctx_idx
);
3352 static struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
3353 unsigned int hctx_idx
,
3354 unsigned int nr_tags
,
3355 unsigned int reserved_tags
)
3357 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3358 struct blk_mq_tags
*tags
;
3360 if (node
== NUMA_NO_NODE
)
3361 node
= set
->numa_node
;
3363 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
, node
,
3364 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
3368 tags
->rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3369 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3374 tags
->static_rqs
= kcalloc_node(nr_tags
, sizeof(struct request
*),
3375 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
3377 if (!tags
->static_rqs
)
3385 blk_mq_free_tags(tags
);
3389 static int blk_mq_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
3390 unsigned int hctx_idx
, int node
)
3394 if (set
->ops
->init_request
) {
3395 ret
= set
->ops
->init_request(set
, rq
, hctx_idx
, node
);
3400 WRITE_ONCE(rq
->state
, MQ_RQ_IDLE
);
3404 static int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
,
3405 struct blk_mq_tags
*tags
,
3406 unsigned int hctx_idx
, unsigned int depth
)
3408 unsigned int i
, j
, entries_per_page
, max_order
= 4;
3409 int node
= blk_mq_get_hctx_node(set
, hctx_idx
);
3410 size_t rq_size
, left
;
3412 if (node
== NUMA_NO_NODE
)
3413 node
= set
->numa_node
;
3415 INIT_LIST_HEAD(&tags
->page_list
);
3418 * rq_size is the size of the request plus driver payload, rounded
3419 * to the cacheline size
3421 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
3423 left
= rq_size
* depth
;
3425 for (i
= 0; i
< depth
; ) {
3426 int this_order
= max_order
;
3431 while (this_order
&& left
< order_to_size(this_order
- 1))
3435 page
= alloc_pages_node(node
,
3436 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
3442 if (order_to_size(this_order
) < rq_size
)
3449 page
->private = this_order
;
3450 list_add_tail(&page
->lru
, &tags
->page_list
);
3452 p
= page_address(page
);
3454 * Allow kmemleak to scan these pages as they contain pointers
3455 * to additional allocations like via ops->init_request().
3457 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
3458 entries_per_page
= order_to_size(this_order
) / rq_size
;
3459 to_do
= min(entries_per_page
, depth
- i
);
3460 left
-= to_do
* rq_size
;
3461 for (j
= 0; j
< to_do
; j
++) {
3462 struct request
*rq
= p
;
3464 tags
->static_rqs
[i
] = rq
;
3465 if (blk_mq_init_request(set
, rq
, hctx_idx
, node
)) {
3466 tags
->static_rqs
[i
] = NULL
;
3477 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3481 struct rq_iter_data
{
3482 struct blk_mq_hw_ctx
*hctx
;
3486 static bool blk_mq_has_request(struct request
*rq
, void *data
)
3488 struct rq_iter_data
*iter_data
= data
;
3490 if (rq
->mq_hctx
!= iter_data
->hctx
)
3492 iter_data
->has_rq
= true;
3496 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx
*hctx
)
3498 struct blk_mq_tags
*tags
= hctx
->sched_tags
?
3499 hctx
->sched_tags
: hctx
->tags
;
3500 struct rq_iter_data data
= {
3504 blk_mq_all_tag_iter(tags
, blk_mq_has_request
, &data
);
3508 static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx
*hctx
,
3509 unsigned int this_cpu
)
3511 enum hctx_type type
= hctx
->type
;
3515 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3516 * might submit IOs on these isolated CPUs, so use the queue map to
3517 * check if all CPUs mapped to this hctx are offline
3519 for_each_online_cpu(cpu
) {
3520 struct blk_mq_hw_ctx
*h
= blk_mq_map_queue_type(hctx
->queue
,
3526 /* this hctx has at least one online CPU */
3527 if (this_cpu
!= cpu
)
3534 static int blk_mq_hctx_notify_offline(unsigned int cpu
, struct hlist_node
*node
)
3536 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3537 struct blk_mq_hw_ctx
, cpuhp_online
);
3539 if (blk_mq_hctx_has_online_cpu(hctx
, cpu
))
3543 * Prevent new request from being allocated on the current hctx.
3545 * The smp_mb__after_atomic() Pairs with the implied barrier in
3546 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3547 * seen once we return from the tag allocator.
3549 set_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3550 smp_mb__after_atomic();
3553 * Try to grab a reference to the queue and wait for any outstanding
3554 * requests. If we could not grab a reference the queue has been
3555 * frozen and there are no requests.
3557 if (percpu_ref_tryget(&hctx
->queue
->q_usage_counter
)) {
3558 while (blk_mq_hctx_has_requests(hctx
))
3560 percpu_ref_put(&hctx
->queue
->q_usage_counter
);
3567 * Check if one CPU is mapped to the specified hctx
3569 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3570 * to be used for scheduling kworker only. For other usage, please call this
3571 * helper for checking if one CPU belongs to the specified hctx
3573 static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu
,
3574 const struct blk_mq_hw_ctx
*hctx
)
3576 struct blk_mq_hw_ctx
*mapped_hctx
= blk_mq_map_queue_type(hctx
->queue
,
3579 return mapped_hctx
== hctx
;
3582 static int blk_mq_hctx_notify_online(unsigned int cpu
, struct hlist_node
*node
)
3584 struct blk_mq_hw_ctx
*hctx
= hlist_entry_safe(node
,
3585 struct blk_mq_hw_ctx
, cpuhp_online
);
3587 if (blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3588 clear_bit(BLK_MQ_S_INACTIVE
, &hctx
->state
);
3593 * 'cpu' is going away. splice any existing rq_list entries from this
3594 * software queue to the hw queue dispatch list, and ensure that it
3597 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
3599 struct blk_mq_hw_ctx
*hctx
;
3600 struct blk_mq_ctx
*ctx
;
3602 enum hctx_type type
;
3604 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
3605 if (!blk_mq_cpu_mapped_to_hctx(cpu
, hctx
))
3608 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
3611 spin_lock(&ctx
->lock
);
3612 if (!list_empty(&ctx
->rq_lists
[type
])) {
3613 list_splice_init(&ctx
->rq_lists
[type
], &tmp
);
3614 blk_mq_hctx_clear_pending(hctx
, ctx
);
3616 spin_unlock(&ctx
->lock
);
3618 if (list_empty(&tmp
))
3621 spin_lock(&hctx
->lock
);
3622 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
3623 spin_unlock(&hctx
->lock
);
3625 blk_mq_run_hw_queue(hctx
, true);
3629 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
3631 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3632 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3633 &hctx
->cpuhp_online
);
3634 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
3639 * Before freeing hw queue, clearing the flush request reference in
3640 * tags->rqs[] for avoiding potential UAF.
3642 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags
*tags
,
3643 unsigned int queue_depth
, struct request
*flush_rq
)
3646 unsigned long flags
;
3648 /* The hw queue may not be mapped yet */
3652 WARN_ON_ONCE(req_ref_read(flush_rq
) != 0);
3654 for (i
= 0; i
< queue_depth
; i
++)
3655 cmpxchg(&tags
->rqs
[i
], flush_rq
, NULL
);
3658 * Wait until all pending iteration is done.
3660 * Request reference is cleared and it is guaranteed to be observed
3661 * after the ->lock is released.
3663 spin_lock_irqsave(&tags
->lock
, flags
);
3664 spin_unlock_irqrestore(&tags
->lock
, flags
);
3667 /* hctx->ctxs will be freed in queue's release handler */
3668 static void blk_mq_exit_hctx(struct request_queue
*q
,
3669 struct blk_mq_tag_set
*set
,
3670 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
3672 struct request
*flush_rq
= hctx
->fq
->flush_rq
;
3674 if (blk_mq_hw_queue_mapped(hctx
))
3675 blk_mq_tag_idle(hctx
);
3677 if (blk_queue_init_done(q
))
3678 blk_mq_clear_flush_rq_mapping(set
->tags
[hctx_idx
],
3679 set
->queue_depth
, flush_rq
);
3680 if (set
->ops
->exit_request
)
3681 set
->ops
->exit_request(set
, flush_rq
, hctx_idx
);
3683 if (set
->ops
->exit_hctx
)
3684 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3686 blk_mq_remove_cpuhp(hctx
);
3688 xa_erase(&q
->hctx_table
, hctx_idx
);
3690 spin_lock(&q
->unused_hctx_lock
);
3691 list_add(&hctx
->hctx_list
, &q
->unused_hctx_list
);
3692 spin_unlock(&q
->unused_hctx_lock
);
3695 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
3696 struct blk_mq_tag_set
*set
, int nr_queue
)
3698 struct blk_mq_hw_ctx
*hctx
;
3701 queue_for_each_hw_ctx(q
, hctx
, i
) {
3704 blk_mq_exit_hctx(q
, set
, hctx
, i
);
3708 static int blk_mq_init_hctx(struct request_queue
*q
,
3709 struct blk_mq_tag_set
*set
,
3710 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
3712 hctx
->queue_num
= hctx_idx
;
3714 if (!(hctx
->flags
& BLK_MQ_F_STACKING
))
3715 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE
,
3716 &hctx
->cpuhp_online
);
3717 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
3719 hctx
->tags
= set
->tags
[hctx_idx
];
3721 if (set
->ops
->init_hctx
&&
3722 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
3723 goto unregister_cpu_notifier
;
3725 if (blk_mq_init_request(set
, hctx
->fq
->flush_rq
, hctx_idx
,
3729 if (xa_insert(&q
->hctx_table
, hctx_idx
, hctx
, GFP_KERNEL
))
3735 if (set
->ops
->exit_request
)
3736 set
->ops
->exit_request(set
, hctx
->fq
->flush_rq
, hctx_idx
);
3738 if (set
->ops
->exit_hctx
)
3739 set
->ops
->exit_hctx(hctx
, hctx_idx
);
3740 unregister_cpu_notifier
:
3741 blk_mq_remove_cpuhp(hctx
);
3745 static struct blk_mq_hw_ctx
*
3746 blk_mq_alloc_hctx(struct request_queue
*q
, struct blk_mq_tag_set
*set
,
3749 struct blk_mq_hw_ctx
*hctx
;
3750 gfp_t gfp
= GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
;
3752 hctx
= kzalloc_node(sizeof(struct blk_mq_hw_ctx
), gfp
, node
);
3754 goto fail_alloc_hctx
;
3756 if (!zalloc_cpumask_var_node(&hctx
->cpumask
, gfp
, node
))
3759 atomic_set(&hctx
->nr_active
, 0);
3760 if (node
== NUMA_NO_NODE
)
3761 node
= set
->numa_node
;
3762 hctx
->numa_node
= node
;
3764 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
3765 spin_lock_init(&hctx
->lock
);
3766 INIT_LIST_HEAD(&hctx
->dispatch
);
3768 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_QUEUE_SHARED
;
3770 INIT_LIST_HEAD(&hctx
->hctx_list
);
3773 * Allocate space for all possible cpus to avoid allocation at
3776 hctx
->ctxs
= kmalloc_array_node(nr_cpu_ids
, sizeof(void *),
3781 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8),
3782 gfp
, node
, false, false))
3786 spin_lock_init(&hctx
->dispatch_wait_lock
);
3787 init_waitqueue_func_entry(&hctx
->dispatch_wait
, blk_mq_dispatch_wake
);
3788 INIT_LIST_HEAD(&hctx
->dispatch_wait
.entry
);
3790 hctx
->fq
= blk_alloc_flush_queue(hctx
->numa_node
, set
->cmd_size
, gfp
);
3794 blk_mq_hctx_kobj_init(hctx
);
3799 sbitmap_free(&hctx
->ctx_map
);
3803 free_cpumask_var(hctx
->cpumask
);
3810 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
3811 unsigned int nr_hw_queues
)
3813 struct blk_mq_tag_set
*set
= q
->tag_set
;
3816 for_each_possible_cpu(i
) {
3817 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
3818 struct blk_mq_hw_ctx
*hctx
;
3822 spin_lock_init(&__ctx
->lock
);
3823 for (k
= HCTX_TYPE_DEFAULT
; k
< HCTX_MAX_TYPES
; k
++)
3824 INIT_LIST_HEAD(&__ctx
->rq_lists
[k
]);
3829 * Set local node, IFF we have more than one hw queue. If
3830 * not, we remain on the home node of the device
3832 for (j
= 0; j
< set
->nr_maps
; j
++) {
3833 hctx
= blk_mq_map_queue_type(q
, j
, i
);
3834 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
3835 hctx
->numa_node
= cpu_to_node(i
);
3840 struct blk_mq_tags
*blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3841 unsigned int hctx_idx
,
3844 struct blk_mq_tags
*tags
;
3847 tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, depth
, set
->reserved_tags
);
3851 ret
= blk_mq_alloc_rqs(set
, tags
, hctx_idx
, depth
);
3853 blk_mq_free_rq_map(tags
);
3860 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set
*set
,
3863 if (blk_mq_is_shared_tags(set
->flags
)) {
3864 set
->tags
[hctx_idx
] = set
->shared_tags
;
3869 set
->tags
[hctx_idx
] = blk_mq_alloc_map_and_rqs(set
, hctx_idx
,
3872 return set
->tags
[hctx_idx
];
3875 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
3876 struct blk_mq_tags
*tags
,
3877 unsigned int hctx_idx
)
3880 blk_mq_free_rqs(set
, tags
, hctx_idx
);
3881 blk_mq_free_rq_map(tags
);
3885 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set
*set
,
3886 unsigned int hctx_idx
)
3888 if (!blk_mq_is_shared_tags(set
->flags
))
3889 blk_mq_free_map_and_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
3891 set
->tags
[hctx_idx
] = NULL
;
3894 static void blk_mq_map_swqueue(struct request_queue
*q
)
3896 unsigned int j
, hctx_idx
;
3898 struct blk_mq_hw_ctx
*hctx
;
3899 struct blk_mq_ctx
*ctx
;
3900 struct blk_mq_tag_set
*set
= q
->tag_set
;
3902 queue_for_each_hw_ctx(q
, hctx
, i
) {
3903 cpumask_clear(hctx
->cpumask
);
3905 hctx
->dispatch_from
= NULL
;
3909 * Map software to hardware queues.
3911 * If the cpu isn't present, the cpu is mapped to first hctx.
3913 for_each_possible_cpu(i
) {
3915 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
3916 for (j
= 0; j
< set
->nr_maps
; j
++) {
3917 if (!set
->map
[j
].nr_queues
) {
3918 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
3919 HCTX_TYPE_DEFAULT
, i
);
3922 hctx_idx
= set
->map
[j
].mq_map
[i
];
3923 /* unmapped hw queue can be remapped after CPU topo changed */
3924 if (!set
->tags
[hctx_idx
] &&
3925 !__blk_mq_alloc_map_and_rqs(set
, hctx_idx
)) {
3927 * If tags initialization fail for some hctx,
3928 * that hctx won't be brought online. In this
3929 * case, remap the current ctx to hctx[0] which
3930 * is guaranteed to always have tags allocated
3932 set
->map
[j
].mq_map
[i
] = 0;
3935 hctx
= blk_mq_map_queue_type(q
, j
, i
);
3936 ctx
->hctxs
[j
] = hctx
;
3938 * If the CPU is already set in the mask, then we've
3939 * mapped this one already. This can happen if
3940 * devices share queues across queue maps.
3942 if (cpumask_test_cpu(i
, hctx
->cpumask
))
3945 cpumask_set_cpu(i
, hctx
->cpumask
);
3947 ctx
->index_hw
[hctx
->type
] = hctx
->nr_ctx
;
3948 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
3951 * If the nr_ctx type overflows, we have exceeded the
3952 * amount of sw queues we can support.
3954 BUG_ON(!hctx
->nr_ctx
);
3957 for (; j
< HCTX_MAX_TYPES
; j
++)
3958 ctx
->hctxs
[j
] = blk_mq_map_queue_type(q
,
3959 HCTX_TYPE_DEFAULT
, i
);
3962 queue_for_each_hw_ctx(q
, hctx
, i
) {
3966 * If no software queues are mapped to this hardware queue,
3967 * disable it and free the request entries.
3969 if (!hctx
->nr_ctx
) {
3970 /* Never unmap queue 0. We need it as a
3971 * fallback in case of a new remap fails
3975 __blk_mq_free_map_and_rqs(set
, i
);
3981 hctx
->tags
= set
->tags
[i
];
3982 WARN_ON(!hctx
->tags
);
3985 * Set the map size to the number of mapped software queues.
3986 * This is more accurate and more efficient than looping
3987 * over all possibly mapped software queues.
3989 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
3992 * Rule out isolated CPUs from hctx->cpumask to avoid
3993 * running block kworker on isolated CPUs
3995 for_each_cpu(cpu
, hctx
->cpumask
) {
3996 if (cpu_is_isolated(cpu
))
3997 cpumask_clear_cpu(cpu
, hctx
->cpumask
);
4001 * Initialize batch roundrobin counts
4003 hctx
->next_cpu
= blk_mq_first_mapped_cpu(hctx
);
4004 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
4009 * Caller needs to ensure that we're either frozen/quiesced, or that
4010 * the queue isn't live yet.
4012 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
4014 struct blk_mq_hw_ctx
*hctx
;
4017 queue_for_each_hw_ctx(q
, hctx
, i
) {
4019 hctx
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4021 blk_mq_tag_idle(hctx
);
4022 hctx
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4027 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set
*set
,
4030 struct request_queue
*q
;
4032 lockdep_assert_held(&set
->tag_list_lock
);
4034 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4035 blk_mq_freeze_queue(q
);
4036 queue_set_hctx_shared(q
, shared
);
4037 blk_mq_unfreeze_queue(q
);
4041 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
4043 struct blk_mq_tag_set
*set
= q
->tag_set
;
4045 mutex_lock(&set
->tag_list_lock
);
4046 list_del(&q
->tag_set_list
);
4047 if (list_is_singular(&set
->tag_list
)) {
4048 /* just transitioned to unshared */
4049 set
->flags
&= ~BLK_MQ_F_TAG_QUEUE_SHARED
;
4050 /* update existing queue */
4051 blk_mq_update_tag_set_shared(set
, false);
4053 mutex_unlock(&set
->tag_list_lock
);
4054 INIT_LIST_HEAD(&q
->tag_set_list
);
4057 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
4058 struct request_queue
*q
)
4060 mutex_lock(&set
->tag_list_lock
);
4063 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4065 if (!list_empty(&set
->tag_list
) &&
4066 !(set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)) {
4067 set
->flags
|= BLK_MQ_F_TAG_QUEUE_SHARED
;
4068 /* update existing queue */
4069 blk_mq_update_tag_set_shared(set
, true);
4071 if (set
->flags
& BLK_MQ_F_TAG_QUEUE_SHARED
)
4072 queue_set_hctx_shared(q
, true);
4073 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
4075 mutex_unlock(&set
->tag_list_lock
);
4078 /* All allocations will be freed in release handler of q->mq_kobj */
4079 static int blk_mq_alloc_ctxs(struct request_queue
*q
)
4081 struct blk_mq_ctxs
*ctxs
;
4084 ctxs
= kzalloc(sizeof(*ctxs
), GFP_KERNEL
);
4088 ctxs
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
4089 if (!ctxs
->queue_ctx
)
4092 for_each_possible_cpu(cpu
) {
4093 struct blk_mq_ctx
*ctx
= per_cpu_ptr(ctxs
->queue_ctx
, cpu
);
4097 q
->mq_kobj
= &ctxs
->kobj
;
4098 q
->queue_ctx
= ctxs
->queue_ctx
;
4107 * It is the actual release handler for mq, but we do it from
4108 * request queue's release handler for avoiding use-after-free
4109 * and headache because q->mq_kobj shouldn't have been introduced,
4110 * but we can't group ctx/kctx kobj without it.
4112 void blk_mq_release(struct request_queue
*q
)
4114 struct blk_mq_hw_ctx
*hctx
, *next
;
4117 queue_for_each_hw_ctx(q
, hctx
, i
)
4118 WARN_ON_ONCE(hctx
&& list_empty(&hctx
->hctx_list
));
4120 /* all hctx are in .unused_hctx_list now */
4121 list_for_each_entry_safe(hctx
, next
, &q
->unused_hctx_list
, hctx_list
) {
4122 list_del_init(&hctx
->hctx_list
);
4123 kobject_put(&hctx
->kobj
);
4126 xa_destroy(&q
->hctx_table
);
4129 * release .mq_kobj and sw queue's kobject now because
4130 * both share lifetime with request queue.
4132 blk_mq_sysfs_deinit(q
);
4135 static bool blk_mq_can_poll(struct blk_mq_tag_set
*set
)
4137 return set
->nr_maps
> HCTX_TYPE_POLL
&&
4138 set
->map
[HCTX_TYPE_POLL
].nr_queues
;
4141 struct request_queue
*blk_mq_alloc_queue(struct blk_mq_tag_set
*set
,
4142 struct queue_limits
*lim
, void *queuedata
)
4144 struct queue_limits default_lim
= { };
4145 struct request_queue
*q
;
4150 lim
->features
|= BLK_FEAT_IO_STAT
| BLK_FEAT_NOWAIT
;
4151 if (blk_mq_can_poll(set
))
4152 lim
->features
|= BLK_FEAT_POLL
;
4154 q
= blk_alloc_queue(lim
, set
->numa_node
);
4157 q
->queuedata
= queuedata
;
4158 ret
= blk_mq_init_allocated_queue(set
, q
);
4161 return ERR_PTR(ret
);
4165 EXPORT_SYMBOL(blk_mq_alloc_queue
);
4168 * blk_mq_destroy_queue - shutdown a request queue
4169 * @q: request queue to shutdown
4171 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4172 * requests will be failed with -ENODEV. The caller is responsible for dropping
4173 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4175 * Context: can sleep
4177 void blk_mq_destroy_queue(struct request_queue
*q
)
4179 WARN_ON_ONCE(!queue_is_mq(q
));
4180 WARN_ON_ONCE(blk_queue_registered(q
));
4184 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
4185 blk_queue_start_drain(q
);
4186 blk_mq_freeze_queue_wait(q
);
4189 blk_mq_cancel_work_sync(q
);
4190 blk_mq_exit_queue(q
);
4192 EXPORT_SYMBOL(blk_mq_destroy_queue
);
4194 struct gendisk
*__blk_mq_alloc_disk(struct blk_mq_tag_set
*set
,
4195 struct queue_limits
*lim
, void *queuedata
,
4196 struct lock_class_key
*lkclass
)
4198 struct request_queue
*q
;
4199 struct gendisk
*disk
;
4201 q
= blk_mq_alloc_queue(set
, lim
, queuedata
);
4205 disk
= __alloc_disk_node(q
, set
->numa_node
, lkclass
);
4207 blk_mq_destroy_queue(q
);
4209 return ERR_PTR(-ENOMEM
);
4211 set_bit(GD_OWNS_QUEUE
, &disk
->state
);
4214 EXPORT_SYMBOL(__blk_mq_alloc_disk
);
4216 struct gendisk
*blk_mq_alloc_disk_for_queue(struct request_queue
*q
,
4217 struct lock_class_key
*lkclass
)
4219 struct gendisk
*disk
;
4221 if (!blk_get_queue(q
))
4223 disk
= __alloc_disk_node(q
, NUMA_NO_NODE
, lkclass
);
4228 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue
);
4230 static struct blk_mq_hw_ctx
*blk_mq_alloc_and_init_hctx(
4231 struct blk_mq_tag_set
*set
, struct request_queue
*q
,
4232 int hctx_idx
, int node
)
4234 struct blk_mq_hw_ctx
*hctx
= NULL
, *tmp
;
4236 /* reuse dead hctx first */
4237 spin_lock(&q
->unused_hctx_lock
);
4238 list_for_each_entry(tmp
, &q
->unused_hctx_list
, hctx_list
) {
4239 if (tmp
->numa_node
== node
) {
4245 list_del_init(&hctx
->hctx_list
);
4246 spin_unlock(&q
->unused_hctx_lock
);
4249 hctx
= blk_mq_alloc_hctx(q
, set
, node
);
4253 if (blk_mq_init_hctx(q
, set
, hctx
, hctx_idx
))
4259 kobject_put(&hctx
->kobj
);
4264 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
4265 struct request_queue
*q
)
4267 struct blk_mq_hw_ctx
*hctx
;
4270 /* protect against switching io scheduler */
4271 mutex_lock(&q
->sysfs_lock
);
4272 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4274 int node
= blk_mq_get_hctx_node(set
, i
);
4275 struct blk_mq_hw_ctx
*old_hctx
= xa_load(&q
->hctx_table
, i
);
4278 old_node
= old_hctx
->numa_node
;
4279 blk_mq_exit_hctx(q
, set
, old_hctx
, i
);
4282 if (!blk_mq_alloc_and_init_hctx(set
, q
, i
, node
)) {
4285 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4287 hctx
= blk_mq_alloc_and_init_hctx(set
, q
, i
, old_node
);
4288 WARN_ON_ONCE(!hctx
);
4292 * Increasing nr_hw_queues fails. Free the newly allocated
4293 * hctxs and keep the previous q->nr_hw_queues.
4295 if (i
!= set
->nr_hw_queues
) {
4296 j
= q
->nr_hw_queues
;
4299 q
->nr_hw_queues
= set
->nr_hw_queues
;
4302 xa_for_each_start(&q
->hctx_table
, j
, hctx
, j
)
4303 blk_mq_exit_hctx(q
, set
, hctx
, j
);
4304 mutex_unlock(&q
->sysfs_lock
);
4307 int blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
4308 struct request_queue
*q
)
4310 /* mark the queue as mq asap */
4311 q
->mq_ops
= set
->ops
;
4313 if (blk_mq_alloc_ctxs(q
))
4316 /* init q->mq_kobj and sw queues' kobjects */
4317 blk_mq_sysfs_init(q
);
4319 INIT_LIST_HEAD(&q
->unused_hctx_list
);
4320 spin_lock_init(&q
->unused_hctx_lock
);
4322 xa_init(&q
->hctx_table
);
4324 blk_mq_realloc_hw_ctxs(set
, q
);
4325 if (!q
->nr_hw_queues
)
4328 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
4329 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
4333 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
4335 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
4336 INIT_LIST_HEAD(&q
->flush_list
);
4337 INIT_LIST_HEAD(&q
->requeue_list
);
4338 spin_lock_init(&q
->requeue_lock
);
4340 q
->nr_requests
= set
->queue_depth
;
4342 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
4343 blk_mq_add_queue_tag_set(set
, q
);
4344 blk_mq_map_swqueue(q
);
4353 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
4355 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4356 void blk_mq_exit_queue(struct request_queue
*q
)
4358 struct blk_mq_tag_set
*set
= q
->tag_set
;
4360 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4361 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
4362 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4363 blk_mq_del_queue_tag_set(q
);
4366 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
4370 if (blk_mq_is_shared_tags(set
->flags
)) {
4371 set
->shared_tags
= blk_mq_alloc_map_and_rqs(set
,
4374 if (!set
->shared_tags
)
4378 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
4379 if (!__blk_mq_alloc_map_and_rqs(set
, i
))
4388 __blk_mq_free_map_and_rqs(set
, i
);
4390 if (blk_mq_is_shared_tags(set
->flags
)) {
4391 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4392 BLK_MQ_NO_HCTX_IDX
);
4399 * Allocate the request maps associated with this tag_set. Note that this
4400 * may reduce the depth asked for, if memory is tight. set->queue_depth
4401 * will be updated to reflect the allocated depth.
4403 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set
*set
)
4408 depth
= set
->queue_depth
;
4410 err
= __blk_mq_alloc_rq_maps(set
);
4414 set
->queue_depth
>>= 1;
4415 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
4419 } while (set
->queue_depth
);
4421 if (!set
->queue_depth
|| err
) {
4422 pr_err("blk-mq: failed to allocate request map\n");
4426 if (depth
!= set
->queue_depth
)
4427 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4428 depth
, set
->queue_depth
);
4433 static void blk_mq_update_queue_map(struct blk_mq_tag_set
*set
)
4436 * blk_mq_map_queues() and multiple .map_queues() implementations
4437 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4438 * number of hardware queues.
4440 if (set
->nr_maps
== 1)
4441 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
= set
->nr_hw_queues
;
4443 if (set
->ops
->map_queues
) {
4447 * transport .map_queues is usually done in the following
4450 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4451 * mask = get_cpu_mask(queue)
4452 * for_each_cpu(cpu, mask)
4453 * set->map[x].mq_map[cpu] = queue;
4456 * When we need to remap, the table has to be cleared for
4457 * killing stale mapping since one CPU may not be mapped
4460 for (i
= 0; i
< set
->nr_maps
; i
++)
4461 blk_mq_clear_mq_map(&set
->map
[i
]);
4463 set
->ops
->map_queues(set
);
4465 BUG_ON(set
->nr_maps
> 1);
4466 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
4470 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set
*set
,
4471 int new_nr_hw_queues
)
4473 struct blk_mq_tags
**new_tags
;
4476 if (set
->nr_hw_queues
>= new_nr_hw_queues
)
4479 new_tags
= kcalloc_node(new_nr_hw_queues
, sizeof(struct blk_mq_tags
*),
4480 GFP_KERNEL
, set
->numa_node
);
4485 memcpy(new_tags
, set
->tags
, set
->nr_hw_queues
*
4486 sizeof(*set
->tags
));
4488 set
->tags
= new_tags
;
4490 for (i
= set
->nr_hw_queues
; i
< new_nr_hw_queues
; i
++) {
4491 if (!__blk_mq_alloc_map_and_rqs(set
, i
)) {
4492 while (--i
>= set
->nr_hw_queues
)
4493 __blk_mq_free_map_and_rqs(set
, i
);
4500 set
->nr_hw_queues
= new_nr_hw_queues
;
4505 * Alloc a tag set to be associated with one or more request queues.
4506 * May fail with EINVAL for various error conditions. May adjust the
4507 * requested depth down, if it's too large. In that case, the set
4508 * value will be stored in set->queue_depth.
4510 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
4514 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
4516 if (!set
->nr_hw_queues
)
4518 if (!set
->queue_depth
)
4520 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
4523 if (!set
->ops
->queue_rq
)
4526 if (!set
->ops
->get_budget
^ !set
->ops
->put_budget
)
4529 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
4530 pr_info("blk-mq: reduced tag depth to %u\n",
4532 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
4537 else if (set
->nr_maps
> HCTX_MAX_TYPES
)
4541 * If a crashdump is active, then we are potentially in a very
4542 * memory constrained environment. Limit us to 64 tags to prevent
4543 * using too much memory.
4545 if (is_kdump_kernel())
4546 set
->queue_depth
= min(64U, set
->queue_depth
);
4549 * There is no use for more h/w queues than cpus if we just have
4552 if (set
->nr_maps
== 1 && set
->nr_hw_queues
> nr_cpu_ids
)
4553 set
->nr_hw_queues
= nr_cpu_ids
;
4555 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4556 set
->srcu
= kmalloc(sizeof(*set
->srcu
), GFP_KERNEL
);
4559 ret
= init_srcu_struct(set
->srcu
);
4565 set
->tags
= kcalloc_node(set
->nr_hw_queues
,
4566 sizeof(struct blk_mq_tags
*), GFP_KERNEL
,
4569 goto out_cleanup_srcu
;
4571 for (i
= 0; i
< set
->nr_maps
; i
++) {
4572 set
->map
[i
].mq_map
= kcalloc_node(nr_cpu_ids
,
4573 sizeof(set
->map
[i
].mq_map
[0]),
4574 GFP_KERNEL
, set
->numa_node
);
4575 if (!set
->map
[i
].mq_map
)
4576 goto out_free_mq_map
;
4577 set
->map
[i
].nr_queues
= set
->nr_hw_queues
;
4580 blk_mq_update_queue_map(set
);
4582 ret
= blk_mq_alloc_set_map_and_rqs(set
);
4584 goto out_free_mq_map
;
4586 mutex_init(&set
->tag_list_lock
);
4587 INIT_LIST_HEAD(&set
->tag_list
);
4592 for (i
= 0; i
< set
->nr_maps
; i
++) {
4593 kfree(set
->map
[i
].mq_map
);
4594 set
->map
[i
].mq_map
= NULL
;
4599 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4600 cleanup_srcu_struct(set
->srcu
);
4602 if (set
->flags
& BLK_MQ_F_BLOCKING
)
4606 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
4608 /* allocate and initialize a tagset for a simple single-queue device */
4609 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set
*set
,
4610 const struct blk_mq_ops
*ops
, unsigned int queue_depth
,
4611 unsigned int set_flags
)
4613 memset(set
, 0, sizeof(*set
));
4615 set
->nr_hw_queues
= 1;
4617 set
->queue_depth
= queue_depth
;
4618 set
->numa_node
= NUMA_NO_NODE
;
4619 set
->flags
= set_flags
;
4620 return blk_mq_alloc_tag_set(set
);
4622 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set
);
4624 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
4628 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
4629 __blk_mq_free_map_and_rqs(set
, i
);
4631 if (blk_mq_is_shared_tags(set
->flags
)) {
4632 blk_mq_free_map_and_rqs(set
, set
->shared_tags
,
4633 BLK_MQ_NO_HCTX_IDX
);
4636 for (j
= 0; j
< set
->nr_maps
; j
++) {
4637 kfree(set
->map
[j
].mq_map
);
4638 set
->map
[j
].mq_map
= NULL
;
4643 if (set
->flags
& BLK_MQ_F_BLOCKING
) {
4644 cleanup_srcu_struct(set
->srcu
);
4648 EXPORT_SYMBOL(blk_mq_free_tag_set
);
4650 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
4652 struct blk_mq_tag_set
*set
= q
->tag_set
;
4653 struct blk_mq_hw_ctx
*hctx
;
4657 if (WARN_ON_ONCE(!q
->mq_freeze_depth
))
4663 if (q
->nr_requests
== nr
)
4666 blk_mq_quiesce_queue(q
);
4669 queue_for_each_hw_ctx(q
, hctx
, i
) {
4673 * If we're using an MQ scheduler, just update the scheduler
4674 * queue depth. This is similar to what the old code would do.
4676 if (hctx
->sched_tags
) {
4677 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
4680 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
, nr
,
4685 if (q
->elevator
&& q
->elevator
->type
->ops
.depth_updated
)
4686 q
->elevator
->type
->ops
.depth_updated(hctx
);
4689 q
->nr_requests
= nr
;
4690 if (blk_mq_is_shared_tags(set
->flags
)) {
4692 blk_mq_tag_update_sched_shared_tags(q
);
4694 blk_mq_tag_resize_shared_tags(set
, nr
);
4698 blk_mq_unquiesce_queue(q
);
4704 * request_queue and elevator_type pair.
4705 * It is just used by __blk_mq_update_nr_hw_queues to cache
4706 * the elevator_type associated with a request_queue.
4708 struct blk_mq_qe_pair
{
4709 struct list_head node
;
4710 struct request_queue
*q
;
4711 struct elevator_type
*type
;
4715 * Cache the elevator_type in qe pair list and switch the
4716 * io scheduler to 'none'
4718 static bool blk_mq_elv_switch_none(struct list_head
*head
,
4719 struct request_queue
*q
)
4721 struct blk_mq_qe_pair
*qe
;
4723 qe
= kmalloc(sizeof(*qe
), GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
);
4727 /* q->elevator needs protection from ->sysfs_lock */
4728 mutex_lock(&q
->sysfs_lock
);
4730 /* the check has to be done with holding sysfs_lock */
4736 INIT_LIST_HEAD(&qe
->node
);
4738 qe
->type
= q
->elevator
->type
;
4739 /* keep a reference to the elevator module as we'll switch back */
4740 __elevator_get(qe
->type
);
4741 list_add(&qe
->node
, head
);
4742 elevator_disable(q
);
4744 mutex_unlock(&q
->sysfs_lock
);
4749 static struct blk_mq_qe_pair
*blk_lookup_qe_pair(struct list_head
*head
,
4750 struct request_queue
*q
)
4752 struct blk_mq_qe_pair
*qe
;
4754 list_for_each_entry(qe
, head
, node
)
4761 static void blk_mq_elv_switch_back(struct list_head
*head
,
4762 struct request_queue
*q
)
4764 struct blk_mq_qe_pair
*qe
;
4765 struct elevator_type
*t
;
4767 qe
= blk_lookup_qe_pair(head
, q
);
4771 list_del(&qe
->node
);
4774 mutex_lock(&q
->sysfs_lock
);
4775 elevator_switch(q
, t
);
4776 /* drop the reference acquired in blk_mq_elv_switch_none */
4778 mutex_unlock(&q
->sysfs_lock
);
4781 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
,
4784 struct request_queue
*q
;
4786 int prev_nr_hw_queues
= set
->nr_hw_queues
;
4789 lockdep_assert_held(&set
->tag_list_lock
);
4791 if (set
->nr_maps
== 1 && nr_hw_queues
> nr_cpu_ids
)
4792 nr_hw_queues
= nr_cpu_ids
;
4793 if (nr_hw_queues
< 1)
4795 if (set
->nr_maps
== 1 && nr_hw_queues
== set
->nr_hw_queues
)
4798 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4799 blk_mq_freeze_queue(q
);
4801 * Switch IO scheduler to 'none', cleaning up the data associated
4802 * with the previous scheduler. We will switch back once we are done
4803 * updating the new sw to hw queue mappings.
4805 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4806 if (!blk_mq_elv_switch_none(&head
, q
))
4809 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4810 blk_mq_debugfs_unregister_hctxs(q
);
4811 blk_mq_sysfs_unregister_hctxs(q
);
4814 if (blk_mq_realloc_tag_set_tags(set
, nr_hw_queues
) < 0)
4818 blk_mq_update_queue_map(set
);
4819 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4820 struct queue_limits lim
;
4822 blk_mq_realloc_hw_ctxs(set
, q
);
4824 if (q
->nr_hw_queues
!= set
->nr_hw_queues
) {
4825 int i
= prev_nr_hw_queues
;
4827 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4828 nr_hw_queues
, prev_nr_hw_queues
);
4829 for (; i
< set
->nr_hw_queues
; i
++)
4830 __blk_mq_free_map_and_rqs(set
, i
);
4832 set
->nr_hw_queues
= prev_nr_hw_queues
;
4835 lim
= queue_limits_start_update(q
);
4836 if (blk_mq_can_poll(set
))
4837 lim
.features
|= BLK_FEAT_POLL
;
4839 lim
.features
&= ~BLK_FEAT_POLL
;
4840 if (queue_limits_commit_update(q
, &lim
) < 0)
4841 pr_warn("updating the poll flag failed\n");
4842 blk_mq_map_swqueue(q
);
4846 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
4847 blk_mq_sysfs_register_hctxs(q
);
4848 blk_mq_debugfs_register_hctxs(q
);
4852 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4853 blk_mq_elv_switch_back(&head
, q
);
4855 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
4856 blk_mq_unfreeze_queue(q
);
4858 /* Free the excess tags when nr_hw_queues shrink. */
4859 for (i
= set
->nr_hw_queues
; i
< prev_nr_hw_queues
; i
++)
4860 __blk_mq_free_map_and_rqs(set
, i
);
4863 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
4865 mutex_lock(&set
->tag_list_lock
);
4866 __blk_mq_update_nr_hw_queues(set
, nr_hw_queues
);
4867 mutex_unlock(&set
->tag_list_lock
);
4869 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
4871 static int blk_hctx_poll(struct request_queue
*q
, struct blk_mq_hw_ctx
*hctx
,
4872 struct io_comp_batch
*iob
, unsigned int flags
)
4874 long state
= get_current_state();
4878 ret
= q
->mq_ops
->poll(hctx
, iob
);
4880 __set_current_state(TASK_RUNNING
);
4884 if (signal_pending_state(state
, current
))
4885 __set_current_state(TASK_RUNNING
);
4886 if (task_is_running(current
))
4889 if (ret
< 0 || (flags
& BLK_POLL_ONESHOT
))
4892 } while (!need_resched());
4894 __set_current_state(TASK_RUNNING
);
4898 int blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
,
4899 struct io_comp_batch
*iob
, unsigned int flags
)
4901 struct blk_mq_hw_ctx
*hctx
= xa_load(&q
->hctx_table
, cookie
);
4903 return blk_hctx_poll(q
, hctx
, iob
, flags
);
4906 int blk_rq_poll(struct request
*rq
, struct io_comp_batch
*iob
,
4907 unsigned int poll_flags
)
4909 struct request_queue
*q
= rq
->q
;
4912 if (!blk_rq_is_poll(rq
))
4914 if (!percpu_ref_tryget(&q
->q_usage_counter
))
4917 ret
= blk_hctx_poll(q
, rq
->mq_hctx
, iob
, poll_flags
);
4922 EXPORT_SYMBOL_GPL(blk_rq_poll
);
4924 unsigned int blk_mq_rq_cpu(struct request
*rq
)
4926 return rq
->mq_ctx
->cpu
;
4928 EXPORT_SYMBOL(blk_mq_rq_cpu
);
4930 void blk_mq_cancel_work_sync(struct request_queue
*q
)
4932 struct blk_mq_hw_ctx
*hctx
;
4935 cancel_delayed_work_sync(&q
->requeue_work
);
4937 queue_for_each_hw_ctx(q
, hctx
, i
)
4938 cancel_delayed_work_sync(&hctx
->run_work
);
4941 static int __init
blk_mq_init(void)
4945 for_each_possible_cpu(i
)
4946 init_llist_head(&per_cpu(blk_cpu_done
, i
));
4947 for_each_possible_cpu(i
)
4948 INIT_CSD(&per_cpu(blk_cpu_csd
, i
),
4949 __blk_mq_complete_request_remote
, NULL
);
4950 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
);
4952 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD
,
4953 "block/softirq:dead", NULL
,
4954 blk_softirq_cpu_dead
);
4955 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
4956 blk_mq_hctx_notify_dead
);
4957 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE
, "block/mq:online",
4958 blk_mq_hctx_notify_online
,
4959 blk_mq_hctx_notify_offline
);
4962 subsys_initcall(blk_mq_init
);