1 // SPDX-License-Identifier: GPL-2.0
3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
6 * Copyright (C) 2017 Facebook
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/module.h>
12 #include <linux/sbitmap.h>
14 #include <trace/events/block.h>
19 #include "blk-mq-debugfs.h"
20 #include "blk-mq-sched.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/kyber.h>
26 * Scheduling domains: the device is divided into multiple domains based on the
37 static const char *kyber_domain_names
[] = {
38 [KYBER_READ
] = "READ",
39 [KYBER_WRITE
] = "WRITE",
40 [KYBER_DISCARD
] = "DISCARD",
41 [KYBER_OTHER
] = "OTHER",
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
50 KYBER_ASYNC_PERCENT
= 75,
54 * Maximum device-wide depth for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate the
57 * device with only a fraction of the maximum possible queue depth. So, we cap
58 * these to a reasonable value.
60 static const unsigned int kyber_depth
[] = {
68 * Default latency targets for each scheduling domain.
70 static const u64 kyber_latency_targets
[] = {
71 [KYBER_READ
] = 2ULL * NSEC_PER_MSEC
,
72 [KYBER_WRITE
] = 10ULL * NSEC_PER_MSEC
,
73 [KYBER_DISCARD
] = 5ULL * NSEC_PER_SEC
,
77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
80 static const unsigned int kyber_batch_size
[] = {
88 * Requests latencies are recorded in a histogram with buckets defined relative
89 * to the target latency:
91 * <= 1/4 * target latency
92 * <= 1/2 * target latency
93 * <= 3/4 * target latency
95 * <= 1 1/4 * target latency
96 * <= 1 1/2 * target latency
97 * <= 1 3/4 * target latency
98 * > 1 3/4 * target latency
102 * The width of the latency histogram buckets is
103 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
105 KYBER_LATENCY_SHIFT
= 2,
107 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
110 KYBER_GOOD_BUCKETS
= 1 << KYBER_LATENCY_SHIFT
,
111 /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
112 KYBER_LATENCY_BUCKETS
= 2 << KYBER_LATENCY_SHIFT
,
116 * We measure both the total latency and the I/O latency (i.e., latency after
117 * submitting to the device).
124 static const char *kyber_latency_type_names
[] = {
125 [KYBER_TOTAL_LATENCY
] = "total",
126 [KYBER_IO_LATENCY
] = "I/O",
130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
131 * domain except for KYBER_OTHER.
133 struct kyber_cpu_latency
{
134 atomic_t buckets
[KYBER_OTHER
][2][KYBER_LATENCY_BUCKETS
];
138 * There is a same mapping between ctx & hctx and kcq & khd,
139 * we use request->mq_ctx->index_hw to index the kcq in khd.
141 struct kyber_ctx_queue
{
143 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
144 * Also protect the rqs on rq_list when merge.
147 struct list_head rq_list
[KYBER_NUM_DOMAINS
];
148 } ____cacheline_aligned_in_smp
;
150 struct kyber_queue_data
{
151 struct request_queue
*q
;
155 * Each scheduling domain has a limited number of in-flight requests
156 * device-wide, limited by these tokens.
158 struct sbitmap_queue domain_tokens
[KYBER_NUM_DOMAINS
];
161 * Async request percentage, converted to per-word depth for
162 * sbitmap_get_shallow().
164 unsigned int async_depth
;
166 struct kyber_cpu_latency __percpu
*cpu_latency
;
168 /* Timer for stats aggregation and adjusting domain tokens. */
169 struct timer_list timer
;
171 unsigned int latency_buckets
[KYBER_OTHER
][2][KYBER_LATENCY_BUCKETS
];
173 unsigned long latency_timeout
[KYBER_OTHER
];
175 int domain_p99
[KYBER_OTHER
];
177 /* Target latencies in nanoseconds. */
178 u64 latency_targets
[KYBER_OTHER
];
181 struct kyber_hctx_data
{
183 struct list_head rqs
[KYBER_NUM_DOMAINS
];
184 unsigned int cur_domain
;
185 unsigned int batching
;
186 struct kyber_ctx_queue
*kcqs
;
187 struct sbitmap kcq_map
[KYBER_NUM_DOMAINS
];
188 struct sbq_wait domain_wait
[KYBER_NUM_DOMAINS
];
189 struct sbq_wait_state
*domain_ws
[KYBER_NUM_DOMAINS
];
190 atomic_t wait_index
[KYBER_NUM_DOMAINS
];
193 static int kyber_domain_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
196 static unsigned int kyber_sched_domain(blk_opf_t opf
)
198 switch (opf
& REQ_OP_MASK
) {
204 return KYBER_DISCARD
;
210 static void flush_latency_buckets(struct kyber_queue_data
*kqd
,
211 struct kyber_cpu_latency
*cpu_latency
,
212 unsigned int sched_domain
, unsigned int type
)
214 unsigned int *buckets
= kqd
->latency_buckets
[sched_domain
][type
];
215 atomic_t
*cpu_buckets
= cpu_latency
->buckets
[sched_domain
][type
];
218 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
; bucket
++)
219 buckets
[bucket
] += atomic_xchg(&cpu_buckets
[bucket
], 0);
223 * Calculate the histogram bucket with the given percentile rank, or -1 if there
224 * aren't enough samples yet.
226 static int calculate_percentile(struct kyber_queue_data
*kqd
,
227 unsigned int sched_domain
, unsigned int type
,
228 unsigned int percentile
)
230 unsigned int *buckets
= kqd
->latency_buckets
[sched_domain
][type
];
231 unsigned int bucket
, samples
= 0, percentile_samples
;
233 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
; bucket
++)
234 samples
+= buckets
[bucket
];
240 * We do the calculation once we have 500 samples or one second passes
241 * since the first sample was recorded, whichever comes first.
243 if (!kqd
->latency_timeout
[sched_domain
])
244 kqd
->latency_timeout
[sched_domain
] = max(jiffies
+ HZ
, 1UL);
246 time_is_after_jiffies(kqd
->latency_timeout
[sched_domain
])) {
249 kqd
->latency_timeout
[sched_domain
] = 0;
251 percentile_samples
= DIV_ROUND_UP(samples
* percentile
, 100);
252 for (bucket
= 0; bucket
< KYBER_LATENCY_BUCKETS
- 1; bucket
++) {
253 if (buckets
[bucket
] >= percentile_samples
)
255 percentile_samples
-= buckets
[bucket
];
257 memset(buckets
, 0, sizeof(kqd
->latency_buckets
[sched_domain
][type
]));
259 trace_kyber_latency(kqd
->dev
, kyber_domain_names
[sched_domain
],
260 kyber_latency_type_names
[type
], percentile
,
261 bucket
+ 1, 1 << KYBER_LATENCY_SHIFT
, samples
);
266 static void kyber_resize_domain(struct kyber_queue_data
*kqd
,
267 unsigned int sched_domain
, unsigned int depth
)
269 depth
= clamp(depth
, 1U, kyber_depth
[sched_domain
]);
270 if (depth
!= kqd
->domain_tokens
[sched_domain
].sb
.depth
) {
271 sbitmap_queue_resize(&kqd
->domain_tokens
[sched_domain
], depth
);
272 trace_kyber_adjust(kqd
->dev
, kyber_domain_names
[sched_domain
],
277 static void kyber_timer_fn(struct timer_list
*t
)
279 struct kyber_queue_data
*kqd
= from_timer(kqd
, t
, timer
);
280 unsigned int sched_domain
;
284 /* Sum all of the per-cpu latency histograms. */
285 for_each_online_cpu(cpu
) {
286 struct kyber_cpu_latency
*cpu_latency
;
288 cpu_latency
= per_cpu_ptr(kqd
->cpu_latency
, cpu
);
289 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
290 flush_latency_buckets(kqd
, cpu_latency
, sched_domain
,
291 KYBER_TOTAL_LATENCY
);
292 flush_latency_buckets(kqd
, cpu_latency
, sched_domain
,
298 * Check if any domains have a high I/O latency, which might indicate
299 * congestion in the device. Note that we use the p90; we don't want to
300 * be too sensitive to outliers here.
302 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
305 p90
= calculate_percentile(kqd
, sched_domain
, KYBER_IO_LATENCY
,
307 if (p90
>= KYBER_GOOD_BUCKETS
)
312 * Adjust the scheduling domain depths. If we determined that there was
313 * congestion, we throttle all domains with good latencies. Either way,
314 * we ease up on throttling domains with bad latencies.
316 for (sched_domain
= 0; sched_domain
< KYBER_OTHER
; sched_domain
++) {
317 unsigned int orig_depth
, depth
;
320 p99
= calculate_percentile(kqd
, sched_domain
,
321 KYBER_TOTAL_LATENCY
, 99);
323 * This is kind of subtle: different domains will not
324 * necessarily have enough samples to calculate the latency
325 * percentiles during the same window, so we have to remember
326 * the p99 for the next time we observe congestion; once we do,
327 * we don't want to throttle again until we get more data, so we
332 p99
= kqd
->domain_p99
[sched_domain
];
333 kqd
->domain_p99
[sched_domain
] = -1;
334 } else if (p99
>= 0) {
335 kqd
->domain_p99
[sched_domain
] = p99
;
341 * If this domain has bad latency, throttle less. Otherwise,
342 * throttle more iff we determined that there is congestion.
344 * The new depth is scaled linearly with the p99 latency vs the
345 * latency target. E.g., if the p99 is 3/4 of the target, then
346 * we throttle down to 3/4 of the current depth, and if the p99
347 * is 2x the target, then we double the depth.
349 if (bad
|| p99
>= KYBER_GOOD_BUCKETS
) {
350 orig_depth
= kqd
->domain_tokens
[sched_domain
].sb
.depth
;
351 depth
= (orig_depth
* (p99
+ 1)) >> KYBER_LATENCY_SHIFT
;
352 kyber_resize_domain(kqd
, sched_domain
, depth
);
357 static struct kyber_queue_data
*kyber_queue_data_alloc(struct request_queue
*q
)
359 struct kyber_queue_data
*kqd
;
363 kqd
= kzalloc_node(sizeof(*kqd
), GFP_KERNEL
, q
->node
);
368 kqd
->dev
= disk_devt(q
->disk
);
370 kqd
->cpu_latency
= alloc_percpu_gfp(struct kyber_cpu_latency
,
371 GFP_KERNEL
| __GFP_ZERO
);
372 if (!kqd
->cpu_latency
)
375 timer_setup(&kqd
->timer
, kyber_timer_fn
, 0);
377 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
378 WARN_ON(!kyber_depth
[i
]);
379 WARN_ON(!kyber_batch_size
[i
]);
380 ret
= sbitmap_queue_init_node(&kqd
->domain_tokens
[i
],
381 kyber_depth
[i
], -1, false,
382 GFP_KERNEL
, q
->node
);
385 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
390 for (i
= 0; i
< KYBER_OTHER
; i
++) {
391 kqd
->domain_p99
[i
] = -1;
392 kqd
->latency_targets
[i
] = kyber_latency_targets
[i
];
398 free_percpu(kqd
->cpu_latency
);
405 static int kyber_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
407 struct kyber_queue_data
*kqd
;
408 struct elevator_queue
*eq
;
410 eq
= elevator_alloc(q
, e
);
414 kqd
= kyber_queue_data_alloc(q
);
416 kobject_put(&eq
->kobj
);
420 blk_stat_enable_accounting(q
);
422 blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED
, q
);
424 eq
->elevator_data
= kqd
;
430 static void kyber_exit_sched(struct elevator_queue
*e
)
432 struct kyber_queue_data
*kqd
= e
->elevator_data
;
435 timer_shutdown_sync(&kqd
->timer
);
436 blk_stat_disable_accounting(kqd
->q
);
438 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
439 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
440 free_percpu(kqd
->cpu_latency
);
444 static void kyber_ctx_queue_init(struct kyber_ctx_queue
*kcq
)
448 spin_lock_init(&kcq
->lock
);
449 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
450 INIT_LIST_HEAD(&kcq
->rq_list
[i
]);
453 static void kyber_depth_updated(struct blk_mq_hw_ctx
*hctx
)
455 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
456 struct blk_mq_tags
*tags
= hctx
->sched_tags
;
457 unsigned int shift
= tags
->bitmap_tags
.sb
.shift
;
459 kqd
->async_depth
= (1U << shift
) * KYBER_ASYNC_PERCENT
/ 100U;
461 sbitmap_queue_min_shallow_depth(&tags
->bitmap_tags
, kqd
->async_depth
);
464 static int kyber_init_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
466 struct kyber_hctx_data
*khd
;
469 khd
= kmalloc_node(sizeof(*khd
), GFP_KERNEL
, hctx
->numa_node
);
473 khd
->kcqs
= kmalloc_array_node(hctx
->nr_ctx
,
474 sizeof(struct kyber_ctx_queue
),
475 GFP_KERNEL
, hctx
->numa_node
);
479 for (i
= 0; i
< hctx
->nr_ctx
; i
++)
480 kyber_ctx_queue_init(&khd
->kcqs
[i
]);
482 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
483 if (sbitmap_init_node(&khd
->kcq_map
[i
], hctx
->nr_ctx
,
484 ilog2(8), GFP_KERNEL
, hctx
->numa_node
,
487 sbitmap_free(&khd
->kcq_map
[i
]);
492 spin_lock_init(&khd
->lock
);
494 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
495 INIT_LIST_HEAD(&khd
->rqs
[i
]);
496 khd
->domain_wait
[i
].sbq
= NULL
;
497 init_waitqueue_func_entry(&khd
->domain_wait
[i
].wait
,
499 khd
->domain_wait
[i
].wait
.private = hctx
;
500 INIT_LIST_HEAD(&khd
->domain_wait
[i
].wait
.entry
);
501 atomic_set(&khd
->wait_index
[i
], 0);
507 hctx
->sched_data
= khd
;
508 kyber_depth_updated(hctx
);
519 static void kyber_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
521 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
524 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
525 sbitmap_free(&khd
->kcq_map
[i
]);
527 kfree(hctx
->sched_data
);
530 static int rq_get_domain_token(struct request
*rq
)
532 return (long)rq
->elv
.priv
[0];
535 static void rq_set_domain_token(struct request
*rq
, int token
)
537 rq
->elv
.priv
[0] = (void *)(long)token
;
540 static void rq_clear_domain_token(struct kyber_queue_data
*kqd
,
543 unsigned int sched_domain
;
546 nr
= rq_get_domain_token(rq
);
548 sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
549 sbitmap_queue_clear(&kqd
->domain_tokens
[sched_domain
], nr
,
554 static void kyber_limit_depth(blk_opf_t opf
, struct blk_mq_alloc_data
*data
)
557 * We use the scheduler tags as per-hardware queue queueing tokens.
558 * Async requests can be limited at this stage.
560 if (!op_is_sync(opf
)) {
561 struct kyber_queue_data
*kqd
= data
->q
->elevator
->elevator_data
;
563 data
->shallow_depth
= kqd
->async_depth
;
567 static bool kyber_bio_merge(struct request_queue
*q
, struct bio
*bio
,
568 unsigned int nr_segs
)
570 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
571 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, bio
->bi_opf
, ctx
);
572 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
573 struct kyber_ctx_queue
*kcq
= &khd
->kcqs
[ctx
->index_hw
[hctx
->type
]];
574 unsigned int sched_domain
= kyber_sched_domain(bio
->bi_opf
);
575 struct list_head
*rq_list
= &kcq
->rq_list
[sched_domain
];
578 spin_lock(&kcq
->lock
);
579 merged
= blk_bio_list_merge(hctx
->queue
, rq_list
, bio
, nr_segs
);
580 spin_unlock(&kcq
->lock
);
585 static void kyber_prepare_request(struct request
*rq
)
587 rq_set_domain_token(rq
, -1);
590 static void kyber_insert_requests(struct blk_mq_hw_ctx
*hctx
,
591 struct list_head
*rq_list
,
594 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
595 struct request
*rq
, *next
;
597 list_for_each_entry_safe(rq
, next
, rq_list
, queuelist
) {
598 unsigned int sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
599 struct kyber_ctx_queue
*kcq
= &khd
->kcqs
[rq
->mq_ctx
->index_hw
[hctx
->type
]];
600 struct list_head
*head
= &kcq
->rq_list
[sched_domain
];
602 spin_lock(&kcq
->lock
);
603 trace_block_rq_insert(rq
);
604 if (flags
& BLK_MQ_INSERT_AT_HEAD
)
605 list_move(&rq
->queuelist
, head
);
607 list_move_tail(&rq
->queuelist
, head
);
608 sbitmap_set_bit(&khd
->kcq_map
[sched_domain
],
609 rq
->mq_ctx
->index_hw
[hctx
->type
]);
610 spin_unlock(&kcq
->lock
);
614 static void kyber_finish_request(struct request
*rq
)
616 struct kyber_queue_data
*kqd
= rq
->q
->elevator
->elevator_data
;
618 rq_clear_domain_token(kqd
, rq
);
621 static void add_latency_sample(struct kyber_cpu_latency
*cpu_latency
,
622 unsigned int sched_domain
, unsigned int type
,
623 u64 target
, u64 latency
)
629 divisor
= max_t(u64
, target
>> KYBER_LATENCY_SHIFT
, 1);
630 bucket
= min_t(unsigned int, div64_u64(latency
- 1, divisor
),
631 KYBER_LATENCY_BUCKETS
- 1);
636 atomic_inc(&cpu_latency
->buckets
[sched_domain
][type
][bucket
]);
639 static void kyber_completed_request(struct request
*rq
, u64 now
)
641 struct kyber_queue_data
*kqd
= rq
->q
->elevator
->elevator_data
;
642 struct kyber_cpu_latency
*cpu_latency
;
643 unsigned int sched_domain
;
646 sched_domain
= kyber_sched_domain(rq
->cmd_flags
);
647 if (sched_domain
== KYBER_OTHER
)
650 cpu_latency
= get_cpu_ptr(kqd
->cpu_latency
);
651 target
= kqd
->latency_targets
[sched_domain
];
652 add_latency_sample(cpu_latency
, sched_domain
, KYBER_TOTAL_LATENCY
,
653 target
, now
- rq
->start_time_ns
);
654 add_latency_sample(cpu_latency
, sched_domain
, KYBER_IO_LATENCY
, target
,
655 now
- rq
->io_start_time_ns
);
656 put_cpu_ptr(kqd
->cpu_latency
);
658 timer_reduce(&kqd
->timer
, jiffies
+ HZ
/ 10);
661 struct flush_kcq_data
{
662 struct kyber_hctx_data
*khd
;
663 unsigned int sched_domain
;
664 struct list_head
*list
;
667 static bool flush_busy_kcq(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
669 struct flush_kcq_data
*flush_data
= data
;
670 struct kyber_ctx_queue
*kcq
= &flush_data
->khd
->kcqs
[bitnr
];
672 spin_lock(&kcq
->lock
);
673 list_splice_tail_init(&kcq
->rq_list
[flush_data
->sched_domain
],
675 sbitmap_clear_bit(sb
, bitnr
);
676 spin_unlock(&kcq
->lock
);
681 static void kyber_flush_busy_kcqs(struct kyber_hctx_data
*khd
,
682 unsigned int sched_domain
,
683 struct list_head
*list
)
685 struct flush_kcq_data data
= {
687 .sched_domain
= sched_domain
,
691 sbitmap_for_each_set(&khd
->kcq_map
[sched_domain
],
692 flush_busy_kcq
, &data
);
695 static int kyber_domain_wake(wait_queue_entry_t
*wqe
, unsigned mode
, int flags
,
698 struct blk_mq_hw_ctx
*hctx
= READ_ONCE(wqe
->private);
699 struct sbq_wait
*wait
= container_of(wqe
, struct sbq_wait
, wait
);
701 sbitmap_del_wait_queue(wait
);
702 blk_mq_run_hw_queue(hctx
, true);
706 static int kyber_get_domain_token(struct kyber_queue_data
*kqd
,
707 struct kyber_hctx_data
*khd
,
708 struct blk_mq_hw_ctx
*hctx
)
710 unsigned int sched_domain
= khd
->cur_domain
;
711 struct sbitmap_queue
*domain_tokens
= &kqd
->domain_tokens
[sched_domain
];
712 struct sbq_wait
*wait
= &khd
->domain_wait
[sched_domain
];
713 struct sbq_wait_state
*ws
;
716 nr
= __sbitmap_queue_get(domain_tokens
);
719 * If we failed to get a domain token, make sure the hardware queue is
720 * run when one becomes available. Note that this is serialized on
721 * khd->lock, but we still need to be careful about the waker.
723 if (nr
< 0 && list_empty_careful(&wait
->wait
.entry
)) {
724 ws
= sbq_wait_ptr(domain_tokens
,
725 &khd
->wait_index
[sched_domain
]);
726 khd
->domain_ws
[sched_domain
] = ws
;
727 sbitmap_add_wait_queue(domain_tokens
, ws
, wait
);
730 * Try again in case a token was freed before we got on the wait
733 nr
= __sbitmap_queue_get(domain_tokens
);
737 * If we got a token while we were on the wait queue, remove ourselves
738 * from the wait queue to ensure that all wake ups make forward
739 * progress. It's possible that the waker already deleted the entry
740 * between the !list_empty_careful() check and us grabbing the lock, but
741 * list_del_init() is okay with that.
743 if (nr
>= 0 && !list_empty_careful(&wait
->wait
.entry
)) {
744 ws
= khd
->domain_ws
[sched_domain
];
745 spin_lock_irq(&ws
->wait
.lock
);
746 sbitmap_del_wait_queue(wait
);
747 spin_unlock_irq(&ws
->wait
.lock
);
753 static struct request
*
754 kyber_dispatch_cur_domain(struct kyber_queue_data
*kqd
,
755 struct kyber_hctx_data
*khd
,
756 struct blk_mq_hw_ctx
*hctx
)
758 struct list_head
*rqs
;
762 rqs
= &khd
->rqs
[khd
->cur_domain
];
765 * If we already have a flushed request, then we just need to get a
766 * token for it. Otherwise, if there are pending requests in the kcqs,
767 * flush the kcqs, but only if we can get a token. If not, we should
768 * leave the requests in the kcqs so that they can be merged. Note that
769 * khd->lock serializes the flushes, so if we observed any bit set in
770 * the kcq_map, we will always get a request.
772 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
774 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
777 rq_set_domain_token(rq
, nr
);
778 list_del_init(&rq
->queuelist
);
781 trace_kyber_throttled(kqd
->dev
,
782 kyber_domain_names
[khd
->cur_domain
]);
784 } else if (sbitmap_any_bit_set(&khd
->kcq_map
[khd
->cur_domain
])) {
785 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
787 kyber_flush_busy_kcqs(khd
, khd
->cur_domain
, rqs
);
788 rq
= list_first_entry(rqs
, struct request
, queuelist
);
790 rq_set_domain_token(rq
, nr
);
791 list_del_init(&rq
->queuelist
);
794 trace_kyber_throttled(kqd
->dev
,
795 kyber_domain_names
[khd
->cur_domain
]);
799 /* There were either no pending requests or no tokens. */
803 static struct request
*kyber_dispatch_request(struct blk_mq_hw_ctx
*hctx
)
805 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
806 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
810 spin_lock(&khd
->lock
);
813 * First, if we are still entitled to batch, try to dispatch a request
816 if (khd
->batching
< kyber_batch_size
[khd
->cur_domain
]) {
817 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
);
824 * 1. We were no longer entitled to a batch.
825 * 2. The domain we were batching didn't have any requests.
826 * 3. The domain we were batching was out of tokens.
828 * Start another batch. Note that this wraps back around to the original
829 * domain if no other domains have requests or tokens.
832 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
833 if (khd
->cur_domain
== KYBER_NUM_DOMAINS
- 1)
838 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
);
845 spin_unlock(&khd
->lock
);
849 static bool kyber_has_work(struct blk_mq_hw_ctx
*hctx
)
851 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
854 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
855 if (!list_empty_careful(&khd
->rqs
[i
]) ||
856 sbitmap_any_bit_set(&khd
->kcq_map
[i
]))
863 #define KYBER_LAT_SHOW_STORE(domain, name) \
864 static ssize_t kyber_##name##_lat_show(struct elevator_queue *e, \
867 struct kyber_queue_data *kqd = e->elevator_data; \
869 return sprintf(page, "%llu\n", kqd->latency_targets[domain]); \
872 static ssize_t kyber_##name##_lat_store(struct elevator_queue *e, \
873 const char *page, size_t count) \
875 struct kyber_queue_data *kqd = e->elevator_data; \
876 unsigned long long nsec; \
879 ret = kstrtoull(page, 10, &nsec); \
883 kqd->latency_targets[domain] = nsec; \
887 KYBER_LAT_SHOW_STORE(KYBER_READ
, read
);
888 KYBER_LAT_SHOW_STORE(KYBER_WRITE
, write
);
889 #undef KYBER_LAT_SHOW_STORE
891 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
892 static struct elv_fs_entry kyber_sched_attrs
[] = {
893 KYBER_LAT_ATTR(read
),
894 KYBER_LAT_ATTR(write
),
897 #undef KYBER_LAT_ATTR
899 #ifdef CONFIG_BLK_DEBUG_FS
900 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
901 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
903 struct request_queue *q = data; \
904 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
906 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
910 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
911 __acquires(&khd->lock) \
913 struct blk_mq_hw_ctx *hctx = m->private; \
914 struct kyber_hctx_data *khd = hctx->sched_data; \
916 spin_lock(&khd->lock); \
917 return seq_list_start(&khd->rqs[domain], *pos); \
920 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
923 struct blk_mq_hw_ctx *hctx = m->private; \
924 struct kyber_hctx_data *khd = hctx->sched_data; \
926 return seq_list_next(v, &khd->rqs[domain], pos); \
929 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
930 __releases(&khd->lock) \
932 struct blk_mq_hw_ctx *hctx = m->private; \
933 struct kyber_hctx_data *khd = hctx->sched_data; \
935 spin_unlock(&khd->lock); \
938 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
939 .start = kyber_##name##_rqs_start, \
940 .next = kyber_##name##_rqs_next, \
941 .stop = kyber_##name##_rqs_stop, \
942 .show = blk_mq_debugfs_rq_show, \
945 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
947 struct blk_mq_hw_ctx *hctx = data; \
948 struct kyber_hctx_data *khd = hctx->sched_data; \
949 wait_queue_entry_t *wait = &khd->domain_wait[domain].wait; \
951 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
954 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ
, read
)
955 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE
, write
)
956 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD
, discard
)
957 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER
, other
)
958 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
960 static int kyber_async_depth_show(void *data
, struct seq_file
*m
)
962 struct request_queue
*q
= data
;
963 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
965 seq_printf(m
, "%u\n", kqd
->async_depth
);
969 static int kyber_cur_domain_show(void *data
, struct seq_file
*m
)
971 struct blk_mq_hw_ctx
*hctx
= data
;
972 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
974 seq_printf(m
, "%s\n", kyber_domain_names
[khd
->cur_domain
]);
978 static int kyber_batching_show(void *data
, struct seq_file
*m
)
980 struct blk_mq_hw_ctx
*hctx
= data
;
981 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
983 seq_printf(m
, "%u\n", khd
->batching
);
987 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
988 {#name "_tokens", 0400, kyber_##name##_tokens_show}
989 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs
[] = {
990 KYBER_QUEUE_DOMAIN_ATTRS(read
),
991 KYBER_QUEUE_DOMAIN_ATTRS(write
),
992 KYBER_QUEUE_DOMAIN_ATTRS(discard
),
993 KYBER_QUEUE_DOMAIN_ATTRS(other
),
994 {"async_depth", 0400, kyber_async_depth_show
},
997 #undef KYBER_QUEUE_DOMAIN_ATTRS
999 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
1000 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
1001 {#name "_waiting", 0400, kyber_##name##_waiting_show}
1002 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs
[] = {
1003 KYBER_HCTX_DOMAIN_ATTRS(read
),
1004 KYBER_HCTX_DOMAIN_ATTRS(write
),
1005 KYBER_HCTX_DOMAIN_ATTRS(discard
),
1006 KYBER_HCTX_DOMAIN_ATTRS(other
),
1007 {"cur_domain", 0400, kyber_cur_domain_show
},
1008 {"batching", 0400, kyber_batching_show
},
1011 #undef KYBER_HCTX_DOMAIN_ATTRS
1014 static struct elevator_type kyber_sched
= {
1016 .init_sched
= kyber_init_sched
,
1017 .exit_sched
= kyber_exit_sched
,
1018 .init_hctx
= kyber_init_hctx
,
1019 .exit_hctx
= kyber_exit_hctx
,
1020 .limit_depth
= kyber_limit_depth
,
1021 .bio_merge
= kyber_bio_merge
,
1022 .prepare_request
= kyber_prepare_request
,
1023 .insert_requests
= kyber_insert_requests
,
1024 .finish_request
= kyber_finish_request
,
1025 .requeue_request
= kyber_finish_request
,
1026 .completed_request
= kyber_completed_request
,
1027 .dispatch_request
= kyber_dispatch_request
,
1028 .has_work
= kyber_has_work
,
1029 .depth_updated
= kyber_depth_updated
,
1031 #ifdef CONFIG_BLK_DEBUG_FS
1032 .queue_debugfs_attrs
= kyber_queue_debugfs_attrs
,
1033 .hctx_debugfs_attrs
= kyber_hctx_debugfs_attrs
,
1035 .elevator_attrs
= kyber_sched_attrs
,
1036 .elevator_name
= "kyber",
1037 .elevator_owner
= THIS_MODULE
,
1040 static int __init
kyber_init(void)
1042 return elv_register(&kyber_sched
);
1045 static void __exit
kyber_exit(void)
1047 elv_unregister(&kyber_sched
);
1050 module_init(kyber_init
);
1051 module_exit(kyber_exit
);
1053 MODULE_AUTHOR("Omar Sandoval");
1054 MODULE_LICENSE("GPL");
1055 MODULE_DESCRIPTION("Kyber I/O scheduler");