1 // SPDX-License-Identifier: GPL-2.0-only
3 * Framework for buffer objects that can be shared across devices/subsystems.
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/module.h>
23 #include <linux/seq_file.h>
24 #include <linux/sync_file.h>
25 #include <linux/poll.h>
26 #include <linux/dma-resv.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
31 #include <uapi/linux/dma-buf.h>
32 #include <uapi/linux/magic.h>
34 #include "dma-buf-sysfs-stats.h"
36 static inline int is_dma_buf_file(struct file
*);
38 #if IS_ENABLED(CONFIG_DEBUG_FS)
39 static DEFINE_MUTEX(debugfs_list_mutex
);
40 static LIST_HEAD(debugfs_list
);
42 static void __dma_buf_debugfs_list_add(struct dma_buf
*dmabuf
)
44 mutex_lock(&debugfs_list_mutex
);
45 list_add(&dmabuf
->list_node
, &debugfs_list
);
46 mutex_unlock(&debugfs_list_mutex
);
49 static void __dma_buf_debugfs_list_del(struct dma_buf
*dmabuf
)
54 mutex_lock(&debugfs_list_mutex
);
55 list_del(&dmabuf
->list_node
);
56 mutex_unlock(&debugfs_list_mutex
);
59 static void __dma_buf_debugfs_list_add(struct dma_buf
*dmabuf
)
63 static void __dma_buf_debugfs_list_del(struct file
*file
)
68 static char *dmabuffs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
70 struct dma_buf
*dmabuf
;
71 char name
[DMA_BUF_NAME_LEN
];
74 dmabuf
= dentry
->d_fsdata
;
75 spin_lock(&dmabuf
->name_lock
);
77 ret
= strscpy(name
, dmabuf
->name
, sizeof(name
));
78 spin_unlock(&dmabuf
->name_lock
);
80 return dynamic_dname(buffer
, buflen
, "/%s:%s",
81 dentry
->d_name
.name
, ret
> 0 ? name
: "");
84 static void dma_buf_release(struct dentry
*dentry
)
86 struct dma_buf
*dmabuf
;
88 dmabuf
= dentry
->d_fsdata
;
89 if (unlikely(!dmabuf
))
92 BUG_ON(dmabuf
->vmapping_counter
);
95 * If you hit this BUG() it could mean:
96 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
97 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
99 BUG_ON(dmabuf
->cb_in
.active
|| dmabuf
->cb_out
.active
);
101 dma_buf_stats_teardown(dmabuf
);
102 dmabuf
->ops
->release(dmabuf
);
104 if (dmabuf
->resv
== (struct dma_resv
*)&dmabuf
[1])
105 dma_resv_fini(dmabuf
->resv
);
107 WARN_ON(!list_empty(&dmabuf
->attachments
));
108 module_put(dmabuf
->owner
);
113 static int dma_buf_file_release(struct inode
*inode
, struct file
*file
)
115 if (!is_dma_buf_file(file
))
118 __dma_buf_debugfs_list_del(file
->private_data
);
123 static const struct dentry_operations dma_buf_dentry_ops
= {
124 .d_dname
= dmabuffs_dname
,
125 .d_release
= dma_buf_release
,
128 static struct vfsmount
*dma_buf_mnt
;
130 static int dma_buf_fs_init_context(struct fs_context
*fc
)
132 struct pseudo_fs_context
*ctx
;
134 ctx
= init_pseudo(fc
, DMA_BUF_MAGIC
);
137 ctx
->dops
= &dma_buf_dentry_ops
;
141 static struct file_system_type dma_buf_fs_type
= {
143 .init_fs_context
= dma_buf_fs_init_context
,
144 .kill_sb
= kill_anon_super
,
147 static int dma_buf_mmap_internal(struct file
*file
, struct vm_area_struct
*vma
)
149 struct dma_buf
*dmabuf
;
151 if (!is_dma_buf_file(file
))
154 dmabuf
= file
->private_data
;
156 /* check if buffer supports mmap */
157 if (!dmabuf
->ops
->mmap
)
160 /* check for overflowing the buffer's size */
161 if (vma
->vm_pgoff
+ vma_pages(vma
) >
162 dmabuf
->size
>> PAGE_SHIFT
)
165 return dmabuf
->ops
->mmap(dmabuf
, vma
);
168 static loff_t
dma_buf_llseek(struct file
*file
, loff_t offset
, int whence
)
170 struct dma_buf
*dmabuf
;
173 if (!is_dma_buf_file(file
))
176 dmabuf
= file
->private_data
;
178 /* only support discovering the end of the buffer,
179 but also allow SEEK_SET to maintain the idiomatic
180 SEEK_END(0), SEEK_CUR(0) pattern */
181 if (whence
== SEEK_END
)
183 else if (whence
== SEEK_SET
)
191 return base
+ offset
;
195 * DOC: implicit fence polling
197 * To support cross-device and cross-driver synchronization of buffer access
198 * implicit fences (represented internally in the kernel with &struct dma_fence)
199 * can be attached to a &dma_buf. The glue for that and a few related things are
200 * provided in the &dma_resv structure.
202 * Userspace can query the state of these implicitly tracked fences using poll()
203 * and related system calls:
205 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
206 * most recent write or exclusive fence.
208 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
209 * all attached fences, shared and exclusive ones.
211 * Note that this only signals the completion of the respective fences, i.e. the
212 * DMA transfers are complete. Cache flushing and any other necessary
213 * preparations before CPU access can begin still need to happen.
215 * As an alternative to poll(), the set of fences on DMA buffer can be
216 * exported as a &sync_file using &dma_buf_sync_file_export.
219 static void dma_buf_poll_cb(struct dma_fence
*fence
, struct dma_fence_cb
*cb
)
221 struct dma_buf_poll_cb_t
*dcb
= (struct dma_buf_poll_cb_t
*)cb
;
222 struct dma_buf
*dmabuf
= container_of(dcb
->poll
, struct dma_buf
, poll
);
225 spin_lock_irqsave(&dcb
->poll
->lock
, flags
);
226 wake_up_locked_poll(dcb
->poll
, dcb
->active
);
228 spin_unlock_irqrestore(&dcb
->poll
->lock
, flags
);
229 dma_fence_put(fence
);
230 /* Paired with get_file in dma_buf_poll */
234 static bool dma_buf_poll_add_cb(struct dma_resv
*resv
, bool write
,
235 struct dma_buf_poll_cb_t
*dcb
)
237 struct dma_resv_iter cursor
;
238 struct dma_fence
*fence
;
241 dma_resv_for_each_fence(&cursor
, resv
, dma_resv_usage_rw(write
),
243 dma_fence_get(fence
);
244 r
= dma_fence_add_callback(fence
, &dcb
->cb
, dma_buf_poll_cb
);
247 dma_fence_put(fence
);
253 static __poll_t
dma_buf_poll(struct file
*file
, poll_table
*poll
)
255 struct dma_buf
*dmabuf
;
256 struct dma_resv
*resv
;
259 dmabuf
= file
->private_data
;
260 if (!dmabuf
|| !dmabuf
->resv
)
265 poll_wait(file
, &dmabuf
->poll
, poll
);
267 events
= poll_requested_events(poll
) & (EPOLLIN
| EPOLLOUT
);
271 dma_resv_lock(resv
, NULL
);
273 if (events
& EPOLLOUT
) {
274 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_out
;
276 /* Check that callback isn't busy */
277 spin_lock_irq(&dmabuf
->poll
.lock
);
281 dcb
->active
= EPOLLOUT
;
282 spin_unlock_irq(&dmabuf
->poll
.lock
);
284 if (events
& EPOLLOUT
) {
285 /* Paired with fput in dma_buf_poll_cb */
286 get_file(dmabuf
->file
);
288 if (!dma_buf_poll_add_cb(resv
, true, dcb
))
289 /* No callback queued, wake up any other waiters */
290 dma_buf_poll_cb(NULL
, &dcb
->cb
);
296 if (events
& EPOLLIN
) {
297 struct dma_buf_poll_cb_t
*dcb
= &dmabuf
->cb_in
;
299 /* Check that callback isn't busy */
300 spin_lock_irq(&dmabuf
->poll
.lock
);
304 dcb
->active
= EPOLLIN
;
305 spin_unlock_irq(&dmabuf
->poll
.lock
);
307 if (events
& EPOLLIN
) {
308 /* Paired with fput in dma_buf_poll_cb */
309 get_file(dmabuf
->file
);
311 if (!dma_buf_poll_add_cb(resv
, false, dcb
))
312 /* No callback queued, wake up any other waiters */
313 dma_buf_poll_cb(NULL
, &dcb
->cb
);
319 dma_resv_unlock(resv
);
324 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
325 * It could support changing the name of the dma-buf if the same
326 * piece of memory is used for multiple purpose between different devices.
328 * @dmabuf: [in] dmabuf buffer that will be renamed.
329 * @buf: [in] A piece of userspace memory that contains the name of
332 * Returns 0 on success. If the dma-buf buffer is already attached to
333 * devices, return -EBUSY.
336 static long dma_buf_set_name(struct dma_buf
*dmabuf
, const char __user
*buf
)
338 char *name
= strndup_user(buf
, DMA_BUF_NAME_LEN
);
341 return PTR_ERR(name
);
343 spin_lock(&dmabuf
->name_lock
);
346 spin_unlock(&dmabuf
->name_lock
);
351 #if IS_ENABLED(CONFIG_SYNC_FILE)
352 static long dma_buf_export_sync_file(struct dma_buf
*dmabuf
,
353 void __user
*user_data
)
355 struct dma_buf_export_sync_file arg
;
356 enum dma_resv_usage usage
;
357 struct dma_fence
*fence
= NULL
;
358 struct sync_file
*sync_file
;
361 if (copy_from_user(&arg
, user_data
, sizeof(arg
)))
364 if (arg
.flags
& ~DMA_BUF_SYNC_RW
)
367 if ((arg
.flags
& DMA_BUF_SYNC_RW
) == 0)
370 fd
= get_unused_fd_flags(O_CLOEXEC
);
374 usage
= dma_resv_usage_rw(arg
.flags
& DMA_BUF_SYNC_WRITE
);
375 ret
= dma_resv_get_singleton(dmabuf
->resv
, usage
, &fence
);
380 fence
= dma_fence_get_stub();
382 sync_file
= sync_file_create(fence
);
384 dma_fence_put(fence
);
392 if (copy_to_user(user_data
, &arg
, sizeof(arg
))) {
397 fd_install(fd
, sync_file
->file
);
402 fput(sync_file
->file
);
408 static long dma_buf_import_sync_file(struct dma_buf
*dmabuf
,
409 const void __user
*user_data
)
411 struct dma_buf_import_sync_file arg
;
412 struct dma_fence
*fence
, *f
;
413 enum dma_resv_usage usage
;
414 struct dma_fence_unwrap iter
;
415 unsigned int num_fences
;
418 if (copy_from_user(&arg
, user_data
, sizeof(arg
)))
421 if (arg
.flags
& ~DMA_BUF_SYNC_RW
)
424 if ((arg
.flags
& DMA_BUF_SYNC_RW
) == 0)
427 fence
= sync_file_get_fence(arg
.fd
);
431 usage
= (arg
.flags
& DMA_BUF_SYNC_WRITE
) ? DMA_RESV_USAGE_WRITE
:
435 dma_fence_unwrap_for_each(f
, &iter
, fence
)
438 if (num_fences
> 0) {
439 dma_resv_lock(dmabuf
->resv
, NULL
);
441 ret
= dma_resv_reserve_fences(dmabuf
->resv
, num_fences
);
443 dma_fence_unwrap_for_each(f
, &iter
, fence
)
444 dma_resv_add_fence(dmabuf
->resv
, f
, usage
);
447 dma_resv_unlock(dmabuf
->resv
);
450 dma_fence_put(fence
);
456 static long dma_buf_ioctl(struct file
*file
,
457 unsigned int cmd
, unsigned long arg
)
459 struct dma_buf
*dmabuf
;
460 struct dma_buf_sync sync
;
461 enum dma_data_direction direction
;
464 dmabuf
= file
->private_data
;
467 case DMA_BUF_IOCTL_SYNC
:
468 if (copy_from_user(&sync
, (void __user
*) arg
, sizeof(sync
)))
471 if (sync
.flags
& ~DMA_BUF_SYNC_VALID_FLAGS_MASK
)
474 switch (sync
.flags
& DMA_BUF_SYNC_RW
) {
475 case DMA_BUF_SYNC_READ
:
476 direction
= DMA_FROM_DEVICE
;
478 case DMA_BUF_SYNC_WRITE
:
479 direction
= DMA_TO_DEVICE
;
481 case DMA_BUF_SYNC_RW
:
482 direction
= DMA_BIDIRECTIONAL
;
488 if (sync
.flags
& DMA_BUF_SYNC_END
)
489 ret
= dma_buf_end_cpu_access(dmabuf
, direction
);
491 ret
= dma_buf_begin_cpu_access(dmabuf
, direction
);
495 case DMA_BUF_SET_NAME_A
:
496 case DMA_BUF_SET_NAME_B
:
497 return dma_buf_set_name(dmabuf
, (const char __user
*)arg
);
499 #if IS_ENABLED(CONFIG_SYNC_FILE)
500 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE
:
501 return dma_buf_export_sync_file(dmabuf
, (void __user
*)arg
);
502 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE
:
503 return dma_buf_import_sync_file(dmabuf
, (const void __user
*)arg
);
511 static void dma_buf_show_fdinfo(struct seq_file
*m
, struct file
*file
)
513 struct dma_buf
*dmabuf
= file
->private_data
;
515 seq_printf(m
, "size:\t%zu\n", dmabuf
->size
);
516 /* Don't count the temporary reference taken inside procfs seq_show */
517 seq_printf(m
, "count:\t%ld\n", file_count(dmabuf
->file
) - 1);
518 seq_printf(m
, "exp_name:\t%s\n", dmabuf
->exp_name
);
519 spin_lock(&dmabuf
->name_lock
);
521 seq_printf(m
, "name:\t%s\n", dmabuf
->name
);
522 spin_unlock(&dmabuf
->name_lock
);
525 static const struct file_operations dma_buf_fops
= {
526 .release
= dma_buf_file_release
,
527 .mmap
= dma_buf_mmap_internal
,
528 .llseek
= dma_buf_llseek
,
529 .poll
= dma_buf_poll
,
530 .unlocked_ioctl
= dma_buf_ioctl
,
531 .compat_ioctl
= compat_ptr_ioctl
,
532 .show_fdinfo
= dma_buf_show_fdinfo
,
536 * is_dma_buf_file - Check if struct file* is associated with dma_buf
538 static inline int is_dma_buf_file(struct file
*file
)
540 return file
->f_op
== &dma_buf_fops
;
543 static struct file
*dma_buf_getfile(size_t size
, int flags
)
545 static atomic64_t dmabuf_inode
= ATOMIC64_INIT(0);
546 struct inode
*inode
= alloc_anon_inode(dma_buf_mnt
->mnt_sb
);
550 return ERR_CAST(inode
);
552 inode
->i_size
= size
;
553 inode_set_bytes(inode
, size
);
556 * The ->i_ino acquired from get_next_ino() is not unique thus
557 * not suitable for using it as dentry name by dmabuf stats.
558 * Override ->i_ino with the unique and dmabuffs specific
561 inode
->i_ino
= atomic64_add_return(1, &dmabuf_inode
);
562 flags
&= O_ACCMODE
| O_NONBLOCK
;
563 file
= alloc_file_pseudo(inode
, dma_buf_mnt
, "dmabuf",
564 flags
, &dma_buf_fops
);
576 * DOC: dma buf device access
578 * For device DMA access to a shared DMA buffer the usual sequence of operations
581 * 1. The exporter defines his exporter instance using
582 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
583 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
584 * as a file descriptor by calling dma_buf_fd().
586 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
587 * to share with: First the file descriptor is converted to a &dma_buf using
588 * dma_buf_get(). Then the buffer is attached to the device using
591 * Up to this stage the exporter is still free to migrate or reallocate the
594 * 3. Once the buffer is attached to all devices userspace can initiate DMA
595 * access to the shared buffer. In the kernel this is done by calling
596 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
598 * 4. Once a driver is done with a shared buffer it needs to call
599 * dma_buf_detach() (after cleaning up any mappings) and then release the
600 * reference acquired with dma_buf_get() by calling dma_buf_put().
602 * For the detailed semantics exporters are expected to implement see
607 * dma_buf_export - Creates a new dma_buf, and associates an anon file
608 * with this buffer, so it can be exported.
609 * Also connect the allocator specific data and ops to the buffer.
610 * Additionally, provide a name string for exporter; useful in debugging.
612 * @exp_info: [in] holds all the export related information provided
613 * by the exporter. see &struct dma_buf_export_info
614 * for further details.
616 * Returns, on success, a newly created struct dma_buf object, which wraps the
617 * supplied private data and operations for struct dma_buf_ops. On either
618 * missing ops, or error in allocating struct dma_buf, will return negative
621 * For most cases the easiest way to create @exp_info is through the
622 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
624 struct dma_buf
*dma_buf_export(const struct dma_buf_export_info
*exp_info
)
626 struct dma_buf
*dmabuf
;
627 struct dma_resv
*resv
= exp_info
->resv
;
629 size_t alloc_size
= sizeof(struct dma_buf
);
632 if (WARN_ON(!exp_info
->priv
|| !exp_info
->ops
633 || !exp_info
->ops
->map_dma_buf
634 || !exp_info
->ops
->unmap_dma_buf
635 || !exp_info
->ops
->release
))
636 return ERR_PTR(-EINVAL
);
638 if (WARN_ON(exp_info
->ops
->cache_sgt_mapping
&&
639 (exp_info
->ops
->pin
|| exp_info
->ops
->unpin
)))
640 return ERR_PTR(-EINVAL
);
642 if (WARN_ON(!exp_info
->ops
->pin
!= !exp_info
->ops
->unpin
))
643 return ERR_PTR(-EINVAL
);
645 if (!try_module_get(exp_info
->owner
))
646 return ERR_PTR(-ENOENT
);
648 file
= dma_buf_getfile(exp_info
->size
, exp_info
->flags
);
655 alloc_size
+= sizeof(struct dma_resv
);
657 /* prevent &dma_buf[1] == dma_buf->resv */
659 dmabuf
= kzalloc(alloc_size
, GFP_KERNEL
);
665 dmabuf
->priv
= exp_info
->priv
;
666 dmabuf
->ops
= exp_info
->ops
;
667 dmabuf
->size
= exp_info
->size
;
668 dmabuf
->exp_name
= exp_info
->exp_name
;
669 dmabuf
->owner
= exp_info
->owner
;
670 spin_lock_init(&dmabuf
->name_lock
);
671 init_waitqueue_head(&dmabuf
->poll
);
672 dmabuf
->cb_in
.poll
= dmabuf
->cb_out
.poll
= &dmabuf
->poll
;
673 dmabuf
->cb_in
.active
= dmabuf
->cb_out
.active
= 0;
674 INIT_LIST_HEAD(&dmabuf
->attachments
);
677 dmabuf
->resv
= (struct dma_resv
*)&dmabuf
[1];
678 dma_resv_init(dmabuf
->resv
);
683 ret
= dma_buf_stats_setup(dmabuf
, file
);
687 file
->private_data
= dmabuf
;
688 file
->f_path
.dentry
->d_fsdata
= dmabuf
;
691 __dma_buf_debugfs_list_add(dmabuf
);
697 dma_resv_fini(dmabuf
->resv
);
702 module_put(exp_info
->owner
);
705 EXPORT_SYMBOL_NS_GPL(dma_buf_export
, DMA_BUF
);
708 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
709 * @dmabuf: [in] pointer to dma_buf for which fd is required.
710 * @flags: [in] flags to give to fd
712 * On success, returns an associated 'fd'. Else, returns error.
714 int dma_buf_fd(struct dma_buf
*dmabuf
, int flags
)
718 if (!dmabuf
|| !dmabuf
->file
)
721 fd
= get_unused_fd_flags(flags
);
725 fd_install(fd
, dmabuf
->file
);
729 EXPORT_SYMBOL_NS_GPL(dma_buf_fd
, DMA_BUF
);
732 * dma_buf_get - returns the struct dma_buf related to an fd
733 * @fd: [in] fd associated with the struct dma_buf to be returned
735 * On success, returns the struct dma_buf associated with an fd; uses
736 * file's refcounting done by fget to increase refcount. returns ERR_PTR
739 struct dma_buf
*dma_buf_get(int fd
)
746 return ERR_PTR(-EBADF
);
748 if (!is_dma_buf_file(file
)) {
750 return ERR_PTR(-EINVAL
);
753 return file
->private_data
;
755 EXPORT_SYMBOL_NS_GPL(dma_buf_get
, DMA_BUF
);
758 * dma_buf_put - decreases refcount of the buffer
759 * @dmabuf: [in] buffer to reduce refcount of
761 * Uses file's refcounting done implicitly by fput().
763 * If, as a result of this call, the refcount becomes 0, the 'release' file
764 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
765 * in turn, and frees the memory allocated for dmabuf when exported.
767 void dma_buf_put(struct dma_buf
*dmabuf
)
769 if (WARN_ON(!dmabuf
|| !dmabuf
->file
))
774 EXPORT_SYMBOL_NS_GPL(dma_buf_put
, DMA_BUF
);
776 static void mangle_sg_table(struct sg_table
*sg_table
)
778 #ifdef CONFIG_DMABUF_DEBUG
780 struct scatterlist
*sg
;
782 /* To catch abuse of the underlying struct page by importers mix
783 * up the bits, but take care to preserve the low SG_ bits to
784 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
785 * before passing the sgt back to the exporter. */
786 for_each_sgtable_sg(sg_table
, sg
, i
)
787 sg
->page_link
^= ~0xffUL
;
791 static struct sg_table
* __map_dma_buf(struct dma_buf_attachment
*attach
,
792 enum dma_data_direction direction
)
794 struct sg_table
*sg_table
;
797 sg_table
= attach
->dmabuf
->ops
->map_dma_buf(attach
, direction
);
798 if (IS_ERR_OR_NULL(sg_table
))
801 if (!dma_buf_attachment_is_dynamic(attach
)) {
802 ret
= dma_resv_wait_timeout(attach
->dmabuf
->resv
,
803 DMA_RESV_USAGE_KERNEL
, true,
804 MAX_SCHEDULE_TIMEOUT
);
806 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
,
812 mangle_sg_table(sg_table
);
817 * DOC: locking convention
819 * In order to avoid deadlock situations between dma-buf exports and importers,
820 * all dma-buf API users must follow the common dma-buf locking convention.
822 * Convention for importers
824 * 1. Importers must hold the dma-buf reservation lock when calling these
829 * - dma_buf_map_attachment()
830 * - dma_buf_unmap_attachment()
834 * 2. Importers must not hold the dma-buf reservation lock when calling these
838 * - dma_buf_dynamic_attach()
845 * - dma_buf_begin_cpu_access()
846 * - dma_buf_end_cpu_access()
847 * - dma_buf_map_attachment_unlocked()
848 * - dma_buf_unmap_attachment_unlocked()
849 * - dma_buf_vmap_unlocked()
850 * - dma_buf_vunmap_unlocked()
852 * Convention for exporters
854 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
855 * reservation and exporter can take the lock:
857 * - &dma_buf_ops.attach()
858 * - &dma_buf_ops.detach()
859 * - &dma_buf_ops.release()
860 * - &dma_buf_ops.begin_cpu_access()
861 * - &dma_buf_ops.end_cpu_access()
862 * - &dma_buf_ops.mmap()
864 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
865 * reservation and exporter can't take the lock:
867 * - &dma_buf_ops.pin()
868 * - &dma_buf_ops.unpin()
869 * - &dma_buf_ops.map_dma_buf()
870 * - &dma_buf_ops.unmap_dma_buf()
871 * - &dma_buf_ops.vmap()
872 * - &dma_buf_ops.vunmap()
874 * 3. Exporters must hold the dma-buf reservation lock when calling these
877 * - dma_buf_move_notify()
881 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
882 * @dmabuf: [in] buffer to attach device to.
883 * @dev: [in] device to be attached.
884 * @importer_ops: [in] importer operations for the attachment
885 * @importer_priv: [in] importer private pointer for the attachment
887 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
888 * must be cleaned up by calling dma_buf_detach().
890 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
895 * A pointer to newly created &dma_buf_attachment on success, or a negative
896 * error code wrapped into a pointer on failure.
898 * Note that this can fail if the backing storage of @dmabuf is in a place not
899 * accessible to @dev, and cannot be moved to a more suitable place. This is
900 * indicated with the error code -EBUSY.
902 struct dma_buf_attachment
*
903 dma_buf_dynamic_attach(struct dma_buf
*dmabuf
, struct device
*dev
,
904 const struct dma_buf_attach_ops
*importer_ops
,
907 struct dma_buf_attachment
*attach
;
910 if (WARN_ON(!dmabuf
|| !dev
))
911 return ERR_PTR(-EINVAL
);
913 if (WARN_ON(importer_ops
&& !importer_ops
->move_notify
))
914 return ERR_PTR(-EINVAL
);
916 attach
= kzalloc(sizeof(*attach
), GFP_KERNEL
);
918 return ERR_PTR(-ENOMEM
);
921 attach
->dmabuf
= dmabuf
;
923 attach
->peer2peer
= importer_ops
->allow_peer2peer
;
924 attach
->importer_ops
= importer_ops
;
925 attach
->importer_priv
= importer_priv
;
927 if (dmabuf
->ops
->attach
) {
928 ret
= dmabuf
->ops
->attach(dmabuf
, attach
);
932 dma_resv_lock(dmabuf
->resv
, NULL
);
933 list_add(&attach
->node
, &dmabuf
->attachments
);
934 dma_resv_unlock(dmabuf
->resv
);
936 /* When either the importer or the exporter can't handle dynamic
937 * mappings we cache the mapping here to avoid issues with the
938 * reservation object lock.
940 if (dma_buf_attachment_is_dynamic(attach
) !=
941 dma_buf_is_dynamic(dmabuf
)) {
942 struct sg_table
*sgt
;
944 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
945 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
946 ret
= dmabuf
->ops
->pin(attach
);
951 sgt
= __map_dma_buf(attach
, DMA_BIDIRECTIONAL
);
953 sgt
= ERR_PTR(-ENOMEM
);
958 dma_resv_unlock(attach
->dmabuf
->resv
);
960 attach
->dir
= DMA_BIDIRECTIONAL
;
970 if (dma_buf_is_dynamic(attach
->dmabuf
))
971 dmabuf
->ops
->unpin(attach
);
974 dma_resv_unlock(attach
->dmabuf
->resv
);
976 dma_buf_detach(dmabuf
, attach
);
979 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach
, DMA_BUF
);
982 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
983 * @dmabuf: [in] buffer to attach device to.
984 * @dev: [in] device to be attached.
986 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
989 struct dma_buf_attachment
*dma_buf_attach(struct dma_buf
*dmabuf
,
992 return dma_buf_dynamic_attach(dmabuf
, dev
, NULL
, NULL
);
994 EXPORT_SYMBOL_NS_GPL(dma_buf_attach
, DMA_BUF
);
996 static void __unmap_dma_buf(struct dma_buf_attachment
*attach
,
997 struct sg_table
*sg_table
,
998 enum dma_data_direction direction
)
1000 /* uses XOR, hence this unmangles */
1001 mangle_sg_table(sg_table
);
1003 attach
->dmabuf
->ops
->unmap_dma_buf(attach
, sg_table
, direction
);
1007 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
1008 * @dmabuf: [in] buffer to detach from.
1009 * @attach: [in] attachment to be detached; is free'd after this call.
1011 * Clean up a device attachment obtained by calling dma_buf_attach().
1013 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1015 void dma_buf_detach(struct dma_buf
*dmabuf
, struct dma_buf_attachment
*attach
)
1017 if (WARN_ON(!dmabuf
|| !attach
|| dmabuf
!= attach
->dmabuf
))
1020 dma_resv_lock(dmabuf
->resv
, NULL
);
1024 __unmap_dma_buf(attach
, attach
->sgt
, attach
->dir
);
1026 if (dma_buf_is_dynamic(attach
->dmabuf
))
1027 dmabuf
->ops
->unpin(attach
);
1029 list_del(&attach
->node
);
1031 dma_resv_unlock(dmabuf
->resv
);
1033 if (dmabuf
->ops
->detach
)
1034 dmabuf
->ops
->detach(dmabuf
, attach
);
1038 EXPORT_SYMBOL_NS_GPL(dma_buf_detach
, DMA_BUF
);
1041 * dma_buf_pin - Lock down the DMA-buf
1042 * @attach: [in] attachment which should be pinned
1044 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1045 * call this, and only for limited use cases like scanout and not for temporary
1046 * pin operations. It is not permitted to allow userspace to pin arbitrary
1047 * amounts of buffers through this interface.
1049 * Buffers must be unpinned by calling dma_buf_unpin().
1052 * 0 on success, negative error code on failure.
1054 int dma_buf_pin(struct dma_buf_attachment
*attach
)
1056 struct dma_buf
*dmabuf
= attach
->dmabuf
;
1059 WARN_ON(!dma_buf_attachment_is_dynamic(attach
));
1061 dma_resv_assert_held(dmabuf
->resv
);
1063 if (dmabuf
->ops
->pin
)
1064 ret
= dmabuf
->ops
->pin(attach
);
1068 EXPORT_SYMBOL_NS_GPL(dma_buf_pin
, DMA_BUF
);
1071 * dma_buf_unpin - Unpin a DMA-buf
1072 * @attach: [in] attachment which should be unpinned
1074 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1075 * any mapping of @attach again and inform the importer through
1076 * &dma_buf_attach_ops.move_notify.
1078 void dma_buf_unpin(struct dma_buf_attachment
*attach
)
1080 struct dma_buf
*dmabuf
= attach
->dmabuf
;
1082 WARN_ON(!dma_buf_attachment_is_dynamic(attach
));
1084 dma_resv_assert_held(dmabuf
->resv
);
1086 if (dmabuf
->ops
->unpin
)
1087 dmabuf
->ops
->unpin(attach
);
1089 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin
, DMA_BUF
);
1092 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1093 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1095 * @attach: [in] attachment whose scatterlist is to be returned
1096 * @direction: [in] direction of DMA transfer
1098 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1099 * on error. May return -EINTR if it is interrupted by a signal.
1101 * On success, the DMA addresses and lengths in the returned scatterlist are
1102 * PAGE_SIZE aligned.
1104 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1105 * the underlying backing storage is pinned for as long as a mapping exists,
1106 * therefore users/importers should not hold onto a mapping for undue amounts of
1109 * Important: Dynamic importers must wait for the exclusive fence of the struct
1110 * dma_resv attached to the DMA-BUF first.
1112 struct sg_table
*dma_buf_map_attachment(struct dma_buf_attachment
*attach
,
1113 enum dma_data_direction direction
)
1115 struct sg_table
*sg_table
;
1120 if (WARN_ON(!attach
|| !attach
->dmabuf
))
1121 return ERR_PTR(-EINVAL
);
1123 dma_resv_assert_held(attach
->dmabuf
->resv
);
1127 * Two mappings with different directions for the same
1128 * attachment are not allowed.
1130 if (attach
->dir
!= direction
&&
1131 attach
->dir
!= DMA_BIDIRECTIONAL
)
1132 return ERR_PTR(-EBUSY
);
1137 if (dma_buf_is_dynamic(attach
->dmabuf
)) {
1138 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
)) {
1139 r
= attach
->dmabuf
->ops
->pin(attach
);
1145 sg_table
= __map_dma_buf(attach
, direction
);
1147 sg_table
= ERR_PTR(-ENOMEM
);
1149 if (IS_ERR(sg_table
) && dma_buf_is_dynamic(attach
->dmabuf
) &&
1150 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
1151 attach
->dmabuf
->ops
->unpin(attach
);
1153 if (!IS_ERR(sg_table
) && attach
->dmabuf
->ops
->cache_sgt_mapping
) {
1154 attach
->sgt
= sg_table
;
1155 attach
->dir
= direction
;
1158 #ifdef CONFIG_DMA_API_DEBUG
1159 if (!IS_ERR(sg_table
)) {
1160 struct scatterlist
*sg
;
1165 for_each_sgtable_dma_sg(sg_table
, sg
, i
) {
1166 addr
= sg_dma_address(sg
);
1167 len
= sg_dma_len(sg
);
1168 if (!PAGE_ALIGNED(addr
) || !PAGE_ALIGNED(len
)) {
1169 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1170 __func__
, addr
, len
);
1174 #endif /* CONFIG_DMA_API_DEBUG */
1177 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment
, DMA_BUF
);
1180 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1181 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1183 * @attach: [in] attachment whose scatterlist is to be returned
1184 * @direction: [in] direction of DMA transfer
1186 * Unlocked variant of dma_buf_map_attachment().
1189 dma_buf_map_attachment_unlocked(struct dma_buf_attachment
*attach
,
1190 enum dma_data_direction direction
)
1192 struct sg_table
*sg_table
;
1196 if (WARN_ON(!attach
|| !attach
->dmabuf
))
1197 return ERR_PTR(-EINVAL
);
1199 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
1200 sg_table
= dma_buf_map_attachment(attach
, direction
);
1201 dma_resv_unlock(attach
->dmabuf
->resv
);
1205 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked
, DMA_BUF
);
1208 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1209 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1211 * @attach: [in] attachment to unmap buffer from
1212 * @sg_table: [in] scatterlist info of the buffer to unmap
1213 * @direction: [in] direction of DMA transfer
1215 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1217 void dma_buf_unmap_attachment(struct dma_buf_attachment
*attach
,
1218 struct sg_table
*sg_table
,
1219 enum dma_data_direction direction
)
1223 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
1226 dma_resv_assert_held(attach
->dmabuf
->resv
);
1228 if (attach
->sgt
== sg_table
)
1231 __unmap_dma_buf(attach
, sg_table
, direction
);
1233 if (dma_buf_is_dynamic(attach
->dmabuf
) &&
1234 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY
))
1235 dma_buf_unpin(attach
);
1237 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment
, DMA_BUF
);
1240 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1241 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1243 * @attach: [in] attachment to unmap buffer from
1244 * @sg_table: [in] scatterlist info of the buffer to unmap
1245 * @direction: [in] direction of DMA transfer
1247 * Unlocked variant of dma_buf_unmap_attachment().
1249 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment
*attach
,
1250 struct sg_table
*sg_table
,
1251 enum dma_data_direction direction
)
1255 if (WARN_ON(!attach
|| !attach
->dmabuf
|| !sg_table
))
1258 dma_resv_lock(attach
->dmabuf
->resv
, NULL
);
1259 dma_buf_unmap_attachment(attach
, sg_table
, direction
);
1260 dma_resv_unlock(attach
->dmabuf
->resv
);
1262 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked
, DMA_BUF
);
1265 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1267 * @dmabuf: [in] buffer which is moving
1269 * Informs all attachments that they need to destroy and recreate all their
1272 void dma_buf_move_notify(struct dma_buf
*dmabuf
)
1274 struct dma_buf_attachment
*attach
;
1276 dma_resv_assert_held(dmabuf
->resv
);
1278 list_for_each_entry(attach
, &dmabuf
->attachments
, node
)
1279 if (attach
->importer_ops
)
1280 attach
->importer_ops
->move_notify(attach
);
1282 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify
, DMA_BUF
);
1287 * There are multiple reasons for supporting CPU access to a dma buffer object:
1289 * - Fallback operations in the kernel, for example when a device is connected
1290 * over USB and the kernel needs to shuffle the data around first before
1291 * sending it away. Cache coherency is handled by bracketing any transactions
1292 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1295 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1296 * vmap interface is introduced. Note that on very old 32-bit architectures
1297 * vmalloc space might be limited and result in vmap calls failing.
1301 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1302 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1304 * The vmap call can fail if there is no vmap support in the exporter, or if
1305 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1306 * count for all vmap access and calls down into the exporter's vmap function
1307 * only when no vmapping exists, and only unmaps it once. Protection against
1308 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1310 * - For full compatibility on the importer side with existing userspace
1311 * interfaces, which might already support mmap'ing buffers. This is needed in
1312 * many processing pipelines (e.g. feeding a software rendered image into a
1313 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1314 * framework already supported this and for DMA buffer file descriptors to
1315 * replace ION buffers mmap support was needed.
1317 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1318 * fd. But like for CPU access there's a need to bracket the actual access,
1319 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1320 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1323 * Some systems might need some sort of cache coherency management e.g. when
1324 * CPU and GPU domains are being accessed through dma-buf at the same time.
1325 * To circumvent this problem there are begin/end coherency markers, that
1326 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1327 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1328 * sequence would be used like following:
1331 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1332 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1333 * want (with the new data being consumed by say the GPU or the scanout
1335 * - munmap once you don't need the buffer any more
1337 * For correctness and optimal performance, it is always required to use
1338 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1339 * mapped address. Userspace cannot rely on coherent access, even when there
1340 * are systems where it just works without calling these ioctls.
1342 * - And as a CPU fallback in userspace processing pipelines.
1344 * Similar to the motivation for kernel cpu access it is again important that
1345 * the userspace code of a given importing subsystem can use the same
1346 * interfaces with a imported dma-buf buffer object as with a native buffer
1347 * object. This is especially important for drm where the userspace part of
1348 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1349 * use a different way to mmap a buffer rather invasive.
1351 * The assumption in the current dma-buf interfaces is that redirecting the
1352 * initial mmap is all that's needed. A survey of some of the existing
1353 * subsystems shows that no driver seems to do any nefarious thing like
1354 * syncing up with outstanding asynchronous processing on the device or
1355 * allocating special resources at fault time. So hopefully this is good
1356 * enough, since adding interfaces to intercept pagefaults and allow pte
1357 * shootdowns would increase the complexity quite a bit.
1361 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1364 * If the importing subsystem simply provides a special-purpose mmap call to
1365 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1366 * equally achieve that for a dma-buf object.
1369 static int __dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1370 enum dma_data_direction direction
)
1372 bool write
= (direction
== DMA_BIDIRECTIONAL
||
1373 direction
== DMA_TO_DEVICE
);
1374 struct dma_resv
*resv
= dmabuf
->resv
;
1377 /* Wait on any implicit rendering fences */
1378 ret
= dma_resv_wait_timeout(resv
, dma_resv_usage_rw(write
),
1379 true, MAX_SCHEDULE_TIMEOUT
);
1387 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1388 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1389 * preparations. Coherency is only guaranteed in the specified range for the
1390 * specified access direction.
1391 * @dmabuf: [in] buffer to prepare cpu access for.
1392 * @direction: [in] direction of access.
1394 * After the cpu access is complete the caller should call
1395 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1396 * it guaranteed to be coherent with other DMA access.
1398 * This function will also wait for any DMA transactions tracked through
1399 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1400 * synchronization this function will only ensure cache coherency, callers must
1401 * ensure synchronization with such DMA transactions on their own.
1403 * Can return negative error values, returns 0 on success.
1405 int dma_buf_begin_cpu_access(struct dma_buf
*dmabuf
,
1406 enum dma_data_direction direction
)
1410 if (WARN_ON(!dmabuf
))
1413 might_lock(&dmabuf
->resv
->lock
.base
);
1415 if (dmabuf
->ops
->begin_cpu_access
)
1416 ret
= dmabuf
->ops
->begin_cpu_access(dmabuf
, direction
);
1418 /* Ensure that all fences are waited upon - but we first allow
1419 * the native handler the chance to do so more efficiently if it
1420 * chooses. A double invocation here will be reasonably cheap no-op.
1423 ret
= __dma_buf_begin_cpu_access(dmabuf
, direction
);
1427 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access
, DMA_BUF
);
1430 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1431 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1432 * actions. Coherency is only guaranteed in the specified range for the
1433 * specified access direction.
1434 * @dmabuf: [in] buffer to complete cpu access for.
1435 * @direction: [in] direction of access.
1437 * This terminates CPU access started with dma_buf_begin_cpu_access().
1439 * Can return negative error values, returns 0 on success.
1441 int dma_buf_end_cpu_access(struct dma_buf
*dmabuf
,
1442 enum dma_data_direction direction
)
1448 might_lock(&dmabuf
->resv
->lock
.base
);
1450 if (dmabuf
->ops
->end_cpu_access
)
1451 ret
= dmabuf
->ops
->end_cpu_access(dmabuf
, direction
);
1455 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access
, DMA_BUF
);
1459 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1460 * @dmabuf: [in] buffer that should back the vma
1461 * @vma: [in] vma for the mmap
1462 * @pgoff: [in] offset in pages where this mmap should start within the
1465 * This function adjusts the passed in vma so that it points at the file of the
1466 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1467 * checking on the size of the vma. Then it calls the exporters mmap function to
1468 * set up the mapping.
1470 * Can return negative error values, returns 0 on success.
1472 int dma_buf_mmap(struct dma_buf
*dmabuf
, struct vm_area_struct
*vma
,
1473 unsigned long pgoff
)
1475 if (WARN_ON(!dmabuf
|| !vma
))
1478 /* check if buffer supports mmap */
1479 if (!dmabuf
->ops
->mmap
)
1482 /* check for offset overflow */
1483 if (pgoff
+ vma_pages(vma
) < pgoff
)
1486 /* check for overflowing the buffer's size */
1487 if (pgoff
+ vma_pages(vma
) >
1488 dmabuf
->size
>> PAGE_SHIFT
)
1491 /* readjust the vma */
1492 vma_set_file(vma
, dmabuf
->file
);
1493 vma
->vm_pgoff
= pgoff
;
1495 return dmabuf
->ops
->mmap(dmabuf
, vma
);
1497 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap
, DMA_BUF
);
1500 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1501 * address space. Same restrictions as for vmap and friends apply.
1502 * @dmabuf: [in] buffer to vmap
1503 * @map: [out] returns the vmap pointer
1505 * This call may fail due to lack of virtual mapping address space.
1506 * These calls are optional in drivers. The intended use for them
1507 * is for mapping objects linear in kernel space for high use objects.
1509 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1510 * dma_buf_end_cpu_access() around any cpu access performed through this
1513 * Returns 0 on success, or a negative errno code otherwise.
1515 int dma_buf_vmap(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1517 struct iosys_map ptr
;
1520 iosys_map_clear(map
);
1522 if (WARN_ON(!dmabuf
))
1525 dma_resv_assert_held(dmabuf
->resv
);
1527 if (!dmabuf
->ops
->vmap
)
1530 if (dmabuf
->vmapping_counter
) {
1531 dmabuf
->vmapping_counter
++;
1532 BUG_ON(iosys_map_is_null(&dmabuf
->vmap_ptr
));
1533 *map
= dmabuf
->vmap_ptr
;
1537 BUG_ON(iosys_map_is_set(&dmabuf
->vmap_ptr
));
1539 ret
= dmabuf
->ops
->vmap(dmabuf
, &ptr
);
1540 if (WARN_ON_ONCE(ret
))
1543 dmabuf
->vmap_ptr
= ptr
;
1544 dmabuf
->vmapping_counter
= 1;
1546 *map
= dmabuf
->vmap_ptr
;
1550 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap
, DMA_BUF
);
1553 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1554 * address space. Same restrictions as for vmap and friends apply.
1555 * @dmabuf: [in] buffer to vmap
1556 * @map: [out] returns the vmap pointer
1558 * Unlocked version of dma_buf_vmap()
1560 * Returns 0 on success, or a negative errno code otherwise.
1562 int dma_buf_vmap_unlocked(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1566 iosys_map_clear(map
);
1568 if (WARN_ON(!dmabuf
))
1571 dma_resv_lock(dmabuf
->resv
, NULL
);
1572 ret
= dma_buf_vmap(dmabuf
, map
);
1573 dma_resv_unlock(dmabuf
->resv
);
1577 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked
, DMA_BUF
);
1580 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1581 * @dmabuf: [in] buffer to vunmap
1582 * @map: [in] vmap pointer to vunmap
1584 void dma_buf_vunmap(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1586 if (WARN_ON(!dmabuf
))
1589 dma_resv_assert_held(dmabuf
->resv
);
1591 BUG_ON(iosys_map_is_null(&dmabuf
->vmap_ptr
));
1592 BUG_ON(dmabuf
->vmapping_counter
== 0);
1593 BUG_ON(!iosys_map_is_equal(&dmabuf
->vmap_ptr
, map
));
1595 if (--dmabuf
->vmapping_counter
== 0) {
1596 if (dmabuf
->ops
->vunmap
)
1597 dmabuf
->ops
->vunmap(dmabuf
, map
);
1598 iosys_map_clear(&dmabuf
->vmap_ptr
);
1601 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap
, DMA_BUF
);
1604 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1605 * @dmabuf: [in] buffer to vunmap
1606 * @map: [in] vmap pointer to vunmap
1608 void dma_buf_vunmap_unlocked(struct dma_buf
*dmabuf
, struct iosys_map
*map
)
1610 if (WARN_ON(!dmabuf
))
1613 dma_resv_lock(dmabuf
->resv
, NULL
);
1614 dma_buf_vunmap(dmabuf
, map
);
1615 dma_resv_unlock(dmabuf
->resv
);
1617 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked
, DMA_BUF
);
1619 #ifdef CONFIG_DEBUG_FS
1620 static int dma_buf_debug_show(struct seq_file
*s
, void *unused
)
1622 struct dma_buf
*buf_obj
;
1623 struct dma_buf_attachment
*attach_obj
;
1624 int count
= 0, attach_count
;
1628 ret
= mutex_lock_interruptible(&debugfs_list_mutex
);
1633 seq_puts(s
, "\nDma-buf Objects:\n");
1634 seq_printf(s
, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1635 "size", "flags", "mode", "count", "ino");
1637 list_for_each_entry(buf_obj
, &debugfs_list
, list_node
) {
1639 ret
= dma_resv_lock_interruptible(buf_obj
->resv
, NULL
);
1644 spin_lock(&buf_obj
->name_lock
);
1645 seq_printf(s
, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1647 buf_obj
->file
->f_flags
, buf_obj
->file
->f_mode
,
1648 file_count(buf_obj
->file
),
1650 file_inode(buf_obj
->file
)->i_ino
,
1651 buf_obj
->name
?: "<none>");
1652 spin_unlock(&buf_obj
->name_lock
);
1654 dma_resv_describe(buf_obj
->resv
, s
);
1656 seq_puts(s
, "\tAttached Devices:\n");
1659 list_for_each_entry(attach_obj
, &buf_obj
->attachments
, node
) {
1660 seq_printf(s
, "\t%s\n", dev_name(attach_obj
->dev
));
1663 dma_resv_unlock(buf_obj
->resv
);
1665 seq_printf(s
, "Total %d devices attached\n\n",
1669 size
+= buf_obj
->size
;
1672 seq_printf(s
, "\nTotal %d objects, %zu bytes\n", count
, size
);
1674 mutex_unlock(&debugfs_list_mutex
);
1678 mutex_unlock(&debugfs_list_mutex
);
1682 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug
);
1684 static struct dentry
*dma_buf_debugfs_dir
;
1686 static int dma_buf_init_debugfs(void)
1691 d
= debugfs_create_dir("dma_buf", NULL
);
1695 dma_buf_debugfs_dir
= d
;
1697 d
= debugfs_create_file("bufinfo", S_IRUGO
, dma_buf_debugfs_dir
,
1698 NULL
, &dma_buf_debug_fops
);
1700 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1701 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1702 dma_buf_debugfs_dir
= NULL
;
1709 static void dma_buf_uninit_debugfs(void)
1711 debugfs_remove_recursive(dma_buf_debugfs_dir
);
1714 static inline int dma_buf_init_debugfs(void)
1718 static inline void dma_buf_uninit_debugfs(void)
1723 static int __init
dma_buf_init(void)
1727 ret
= dma_buf_init_sysfs_statistics();
1731 dma_buf_mnt
= kern_mount(&dma_buf_fs_type
);
1732 if (IS_ERR(dma_buf_mnt
))
1733 return PTR_ERR(dma_buf_mnt
);
1735 dma_buf_init_debugfs();
1738 subsys_initcall(dma_buf_init
);
1740 static void __exit
dma_buf_deinit(void)
1742 dma_buf_uninit_debugfs();
1743 kern_unmount(dma_buf_mnt
);
1744 dma_buf_uninit_sysfs_statistics();
1746 __exitcall(dma_buf_deinit
);