drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / drivers / opp / of.c
blob55c8cfef97d48922eeeaa181c0c269a1c50a9432
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic OPP OF helpers
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/cpu.h>
14 #include <linux/errno.h>
15 #include <linux/device.h>
16 #include <linux/of.h>
17 #include <linux/pm_domain.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <linux/energy_model.h>
22 #include "opp.h"
24 /* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25 static LIST_HEAD(lazy_opp_tables);
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
31 static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 int index)
34 /* "operating-points-v2" can be an array for power domain providers */
35 return of_parse_phandle(np, "operating-points-v2", index);
38 /* Returns opp descriptor node for a device, caller must do of_node_put() */
39 struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
41 return _opp_of_get_opp_desc_node(dev->of_node, 0);
43 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
45 struct opp_table *_managed_opp(struct device *dev, int index)
47 struct opp_table *opp_table, *managed_table = NULL;
48 struct device_node *np;
50 np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 if (!np)
52 return NULL;
54 list_for_each_entry(opp_table, &opp_tables, node) {
55 if (opp_table->np == np) {
57 * Multiple devices can point to the same OPP table and
58 * so will have same node-pointer, np.
60 * But the OPPs will be considered as shared only if the
61 * OPP table contains a "opp-shared" property.
63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 _get_opp_table_kref(opp_table);
65 managed_table = opp_table;
68 break;
72 of_node_put(np);
74 return managed_table;
77 /* The caller must call dev_pm_opp_put() after the OPP is used */
78 static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 struct device_node *opp_np)
81 struct dev_pm_opp *opp;
83 mutex_lock(&opp_table->lock);
85 list_for_each_entry(opp, &opp_table->opp_list, node) {
86 if (opp->np == opp_np) {
87 dev_pm_opp_get(opp);
88 mutex_unlock(&opp_table->lock);
89 return opp;
93 mutex_unlock(&opp_table->lock);
95 return NULL;
98 static struct device_node *of_parse_required_opp(struct device_node *np,
99 int index)
101 return of_parse_phandle(np, "required-opps", index);
104 /* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105 static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
107 struct opp_table *opp_table;
108 struct device_node *opp_table_np;
110 opp_table_np = of_get_parent(opp_np);
111 if (!opp_table_np)
112 goto err;
114 /* It is safe to put the node now as all we need now is its address */
115 of_node_put(opp_table_np);
117 mutex_lock(&opp_table_lock);
118 list_for_each_entry(opp_table, &opp_tables, node) {
119 if (opp_table_np == opp_table->np) {
120 _get_opp_table_kref(opp_table);
121 mutex_unlock(&opp_table_lock);
122 return opp_table;
125 mutex_unlock(&opp_table_lock);
127 err:
128 return ERR_PTR(-ENODEV);
131 /* Free resources previously acquired by _opp_table_alloc_required_tables() */
132 static void _opp_table_free_required_tables(struct opp_table *opp_table)
134 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 int i;
137 if (!required_opp_tables)
138 return;
140 for (i = 0; i < opp_table->required_opp_count; i++) {
141 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 continue;
144 dev_pm_opp_put_opp_table(required_opp_tables[i]);
147 kfree(required_opp_tables);
149 opp_table->required_opp_count = 0;
150 opp_table->required_opp_tables = NULL;
152 mutex_lock(&opp_table_lock);
153 list_del(&opp_table->lazy);
154 mutex_unlock(&opp_table_lock);
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
161 static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 struct device *dev,
163 struct device_node *opp_np)
165 struct opp_table **required_opp_tables;
166 struct device_node *required_np, *np;
167 bool lazy = false;
168 int count, i, size;
170 /* Traversing the first OPP node is all we need */
171 np = of_get_next_available_child(opp_np, NULL);
172 if (!np) {
173 dev_warn(dev, "Empty OPP table\n");
175 return;
178 count = of_count_phandle_with_args(np, "required-opps", NULL);
179 if (count <= 0)
180 goto put_np;
182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 if (!required_opp_tables)
185 goto put_np;
187 opp_table->required_opp_tables = required_opp_tables;
188 opp_table->required_devs = (void *)(required_opp_tables + count);
189 opp_table->required_opp_count = count;
191 for (i = 0; i < count; i++) {
192 required_np = of_parse_required_opp(np, i);
193 if (!required_np)
194 goto free_required_tables;
196 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 of_node_put(required_np);
199 if (IS_ERR(required_opp_tables[i]))
200 lazy = true;
203 /* Let's do the linking later on */
204 if (lazy) {
206 * The OPP table is not held while allocating the table, take it
207 * now to avoid corruption to the lazy_opp_tables list.
209 mutex_lock(&opp_table_lock);
210 list_add(&opp_table->lazy, &lazy_opp_tables);
211 mutex_unlock(&opp_table_lock);
214 goto put_np;
216 free_required_tables:
217 _opp_table_free_required_tables(opp_table);
218 put_np:
219 of_node_put(np);
222 void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 int index)
225 struct device_node *np, *opp_np;
226 u32 val;
229 * Only required for backward compatibility with v1 bindings, but isn't
230 * harmful for other cases. And so we do it unconditionally.
232 np = of_node_get(dev->of_node);
233 if (!np)
234 return;
236 if (!of_property_read_u32(np, "clock-latency", &val))
237 opp_table->clock_latency_ns_max = val;
238 of_property_read_u32(np, "voltage-tolerance",
239 &opp_table->voltage_tolerance_v1);
241 if (of_property_present(np, "#power-domain-cells"))
242 opp_table->is_genpd = true;
244 /* Get OPP table node */
245 opp_np = _opp_of_get_opp_desc_node(np, index);
246 of_node_put(np);
248 if (!opp_np)
249 return;
251 if (of_property_read_bool(opp_np, "opp-shared"))
252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 else
254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
256 opp_table->np = opp_np;
258 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
261 void _of_clear_opp_table(struct opp_table *opp_table)
263 _opp_table_free_required_tables(opp_table);
264 of_node_put(opp_table->np);
268 * Release all resources previously acquired with a call to
269 * _of_opp_alloc_required_opps().
271 static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 struct dev_pm_opp *opp)
274 struct dev_pm_opp **required_opps = opp->required_opps;
275 int i;
277 if (!required_opps)
278 return;
280 for (i = 0; i < opp_table->required_opp_count; i++) {
281 if (!required_opps[i])
282 continue;
284 /* Put the reference back */
285 dev_pm_opp_put(required_opps[i]);
288 opp->required_opps = NULL;
289 kfree(required_opps);
292 void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
294 _of_opp_free_required_opps(opp_table, opp);
295 of_node_put(opp->np);
298 static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
299 struct opp_table *required_table, int index)
301 struct device_node *np;
303 np = of_parse_required_opp(opp->np, index);
304 if (unlikely(!np))
305 return -ENODEV;
307 opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 of_node_put(np);
310 if (!opp->required_opps[index]) {
311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 __func__, opp->np, index);
313 return -ENODEV;
317 * There are two genpd (as required-opp) cases that we need to handle,
318 * devices with a single genpd and ones with multiple genpds.
320 * The single genpd case requires special handling as we need to use the
321 * same `dev` structure (instead of a virtual one provided by genpd
322 * core) for setting the performance state.
324 * It doesn't make sense for a device's DT entry to have both
325 * "opp-level" and single "required-opps" entry pointing to a genpd's
326 * OPP, as that would make the OPP core call
327 * dev_pm_domain_set_performance_state() for two different values for
328 * the same device structure. Lets treat single genpd configuration as a
329 * case where the OPP's level is directly available without required-opp
330 * link in the DT.
332 * Just update the `level` with the right value, which
333 * dev_pm_opp_set_opp() will take care of in the normal path itself.
335 * There is another case though, where a genpd's OPP table has
336 * required-opps set to a parent genpd. The OPP core expects the user to
337 * set the respective required `struct device` pointer via
338 * dev_pm_opp_set_config().
340 if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
341 !opp_table->required_devs[0]) {
342 /* Genpd core takes care of propagation to parent genpd */
343 if (!opp_table->is_genpd) {
344 if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
345 opp->level = opp->required_opps[0]->level;
349 return 0;
352 /* Populate all required OPPs which are part of "required-opps" list */
353 static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
354 struct dev_pm_opp *opp)
356 struct opp_table *required_table;
357 int i, ret, count = opp_table->required_opp_count;
359 if (!count)
360 return 0;
362 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
363 if (!opp->required_opps)
364 return -ENOMEM;
366 for (i = 0; i < count; i++) {
367 required_table = opp_table->required_opp_tables[i];
369 /* Required table not added yet, we will link later */
370 if (IS_ERR_OR_NULL(required_table))
371 continue;
373 ret = _link_required_opps(opp, opp_table, required_table, i);
374 if (ret)
375 goto free_required_opps;
378 return 0;
380 free_required_opps:
381 _of_opp_free_required_opps(opp_table, opp);
383 return ret;
386 /* Link required OPPs for an individual OPP */
387 static int lazy_link_required_opps(struct opp_table *opp_table,
388 struct opp_table *new_table, int index)
390 struct dev_pm_opp *opp;
391 int ret;
393 list_for_each_entry(opp, &opp_table->opp_list, node) {
394 ret = _link_required_opps(opp, opp_table, new_table, index);
395 if (ret)
396 return ret;
399 return 0;
402 /* Link required OPPs for all OPPs of the newly added OPP table */
403 static void lazy_link_required_opp_table(struct opp_table *new_table)
405 struct opp_table *opp_table, *temp, **required_opp_tables;
406 struct device_node *required_np, *opp_np, *required_table_np;
407 struct dev_pm_opp *opp;
408 int i, ret;
410 mutex_lock(&opp_table_lock);
412 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
413 bool lazy = false;
415 /* opp_np can't be invalid here */
416 opp_np = of_get_next_available_child(opp_table->np, NULL);
418 for (i = 0; i < opp_table->required_opp_count; i++) {
419 required_opp_tables = opp_table->required_opp_tables;
421 /* Required opp-table is already parsed */
422 if (!IS_ERR(required_opp_tables[i]))
423 continue;
425 /* required_np can't be invalid here */
426 required_np = of_parse_required_opp(opp_np, i);
427 required_table_np = of_get_parent(required_np);
429 of_node_put(required_table_np);
430 of_node_put(required_np);
433 * Newly added table isn't the required opp-table for
434 * opp_table.
436 if (required_table_np != new_table->np) {
437 lazy = true;
438 continue;
441 required_opp_tables[i] = new_table;
442 _get_opp_table_kref(new_table);
444 /* Link OPPs now */
445 ret = lazy_link_required_opps(opp_table, new_table, i);
446 if (ret) {
447 /* The OPPs will be marked unusable */
448 lazy = false;
449 break;
453 of_node_put(opp_np);
455 /* All required opp-tables found, remove from lazy list */
456 if (!lazy) {
457 list_del_init(&opp_table->lazy);
459 list_for_each_entry(opp, &opp_table->opp_list, node)
460 _required_opps_available(opp, opp_table->required_opp_count);
464 mutex_unlock(&opp_table_lock);
467 static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
469 struct device_node *np, *opp_np;
470 struct property *prop;
472 if (!opp_table) {
473 np = of_node_get(dev->of_node);
474 if (!np)
475 return -ENODEV;
477 opp_np = _opp_of_get_opp_desc_node(np, 0);
478 of_node_put(np);
479 } else {
480 opp_np = of_node_get(opp_table->np);
483 /* Lets not fail in case we are parsing opp-v1 bindings */
484 if (!opp_np)
485 return 0;
487 /* Checking only first OPP is sufficient */
488 np = of_get_next_available_child(opp_np, NULL);
489 of_node_put(opp_np);
490 if (!np) {
491 dev_err(dev, "OPP table empty\n");
492 return -EINVAL;
495 prop = of_find_property(np, "opp-peak-kBps", NULL);
496 of_node_put(np);
498 if (!prop || !prop->length)
499 return 0;
501 return 1;
504 int dev_pm_opp_of_find_icc_paths(struct device *dev,
505 struct opp_table *opp_table)
507 struct device_node *np;
508 int ret, i, count, num_paths;
509 struct icc_path **paths;
511 ret = _bandwidth_supported(dev, opp_table);
512 if (ret == -EINVAL)
513 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
514 else if (ret <= 0)
515 return ret;
517 ret = 0;
519 np = of_node_get(dev->of_node);
520 if (!np)
521 return 0;
523 count = of_count_phandle_with_args(np, "interconnects",
524 "#interconnect-cells");
525 of_node_put(np);
526 if (count < 0)
527 return 0;
529 /* two phandles when #interconnect-cells = <1> */
530 if (count % 2) {
531 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
532 return -EINVAL;
535 num_paths = count / 2;
536 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
537 if (!paths)
538 return -ENOMEM;
540 for (i = 0; i < num_paths; i++) {
541 paths[i] = of_icc_get_by_index(dev, i);
542 if (IS_ERR(paths[i])) {
543 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
544 goto err;
548 if (opp_table) {
549 opp_table->paths = paths;
550 opp_table->path_count = num_paths;
551 return 0;
554 err:
555 while (i--)
556 icc_put(paths[i]);
558 kfree(paths);
560 return ret;
562 EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
564 static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
565 struct device_node *np)
567 unsigned int levels = opp_table->supported_hw_count;
568 int count, versions, ret, i, j;
569 u32 val;
571 if (!opp_table->supported_hw) {
573 * In the case that no supported_hw has been set by the
574 * platform but there is an opp-supported-hw value set for
575 * an OPP then the OPP should not be enabled as there is
576 * no way to see if the hardware supports it.
578 if (of_property_present(np, "opp-supported-hw"))
579 return false;
580 else
581 return true;
584 count = of_property_count_u32_elems(np, "opp-supported-hw");
585 if (count <= 0 || count % levels) {
586 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
587 __func__, count);
588 return false;
591 versions = count / levels;
593 /* All levels in at least one of the versions should match */
594 for (i = 0; i < versions; i++) {
595 bool supported = true;
597 for (j = 0; j < levels; j++) {
598 ret = of_property_read_u32_index(np, "opp-supported-hw",
599 i * levels + j, &val);
600 if (ret) {
601 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
602 __func__, i * levels + j, ret);
603 return false;
606 /* Check if the level is supported */
607 if (!(val & opp_table->supported_hw[j])) {
608 supported = false;
609 break;
613 if (supported)
614 return true;
617 return false;
620 static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
621 struct opp_table *opp_table,
622 const char *prop_type, bool *triplet)
624 struct property *prop = NULL;
625 char name[NAME_MAX];
626 int count, ret;
627 u32 *out;
629 /* Search for "opp-<prop_type>-<name>" */
630 if (opp_table->prop_name) {
631 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
632 opp_table->prop_name);
633 prop = of_find_property(opp->np, name, NULL);
636 if (!prop) {
637 /* Search for "opp-<prop_type>" */
638 snprintf(name, sizeof(name), "opp-%s", prop_type);
639 prop = of_find_property(opp->np, name, NULL);
640 if (!prop)
641 return NULL;
644 count = of_property_count_u32_elems(opp->np, name);
645 if (count < 0) {
646 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
647 count);
648 return ERR_PTR(count);
652 * Initialize regulator_count, if regulator information isn't provided
653 * by the platform. Now that one of the properties is available, fix the
654 * regulator_count to 1.
656 if (unlikely(opp_table->regulator_count == -1))
657 opp_table->regulator_count = 1;
659 if (count != opp_table->regulator_count &&
660 (!triplet || count != opp_table->regulator_count * 3)) {
661 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
662 __func__, prop_type, count, opp_table->regulator_count);
663 return ERR_PTR(-EINVAL);
666 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
667 if (!out)
668 return ERR_PTR(-EINVAL);
670 ret = of_property_read_u32_array(opp->np, name, out, count);
671 if (ret) {
672 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
673 kfree(out);
674 return ERR_PTR(-EINVAL);
677 if (triplet)
678 *triplet = count != opp_table->regulator_count;
680 return out;
683 static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
684 struct opp_table *opp_table, bool *triplet)
686 u32 *microvolt;
688 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
689 if (IS_ERR(microvolt))
690 return microvolt;
692 if (!microvolt) {
694 * Missing property isn't a problem, but an invalid
695 * entry is. This property isn't optional if regulator
696 * information is provided. Check only for the first OPP, as
697 * regulator_count may get initialized after that to a valid
698 * value.
700 if (list_empty(&opp_table->opp_list) &&
701 opp_table->regulator_count > 0) {
702 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
703 __func__);
704 return ERR_PTR(-EINVAL);
708 return microvolt;
711 static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
712 struct opp_table *opp_table)
714 u32 *microvolt, *microamp, *microwatt;
715 int ret = 0, i, j;
716 bool triplet;
718 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
719 if (IS_ERR(microvolt))
720 return PTR_ERR(microvolt);
722 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
723 if (IS_ERR(microamp)) {
724 ret = PTR_ERR(microamp);
725 goto free_microvolt;
728 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
729 if (IS_ERR(microwatt)) {
730 ret = PTR_ERR(microwatt);
731 goto free_microamp;
735 * Initialize regulator_count if it is uninitialized and no properties
736 * are found.
738 if (unlikely(opp_table->regulator_count == -1)) {
739 opp_table->regulator_count = 0;
740 return 0;
743 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
744 if (microvolt) {
745 opp->supplies[i].u_volt = microvolt[j++];
747 if (triplet) {
748 opp->supplies[i].u_volt_min = microvolt[j++];
749 opp->supplies[i].u_volt_max = microvolt[j++];
750 } else {
751 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
752 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
756 if (microamp)
757 opp->supplies[i].u_amp = microamp[i];
759 if (microwatt)
760 opp->supplies[i].u_watt = microwatt[i];
763 kfree(microwatt);
764 free_microamp:
765 kfree(microamp);
766 free_microvolt:
767 kfree(microvolt);
769 return ret;
773 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
774 * entries
775 * @dev: device pointer used to lookup OPP table.
777 * Free OPPs created using static entries present in DT.
779 void dev_pm_opp_of_remove_table(struct device *dev)
781 dev_pm_opp_remove_table(dev);
783 EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
785 static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
786 struct device_node *np)
788 struct property *prop;
789 int i, count, ret;
790 u64 *rates;
792 prop = of_find_property(np, "opp-hz", NULL);
793 if (!prop)
794 return -ENODEV;
796 count = prop->length / sizeof(u64);
797 if (opp_table->clk_count != count) {
798 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
799 __func__, count, opp_table->clk_count);
800 return -EINVAL;
803 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
804 if (!rates)
805 return -ENOMEM;
807 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
808 if (ret) {
809 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
810 } else {
812 * Rate is defined as an unsigned long in clk API, and so
813 * casting explicitly to its type. Must be fixed once rate is 64
814 * bit guaranteed in clk API.
816 for (i = 0; i < count; i++) {
817 new_opp->rates[i] = (unsigned long)rates[i];
819 /* This will happen for frequencies > 4.29 GHz */
820 WARN_ON(new_opp->rates[i] != rates[i]);
824 kfree(rates);
826 return ret;
829 static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
830 struct device_node *np, bool peak)
832 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
833 struct property *prop;
834 int i, count, ret;
835 u32 *bw;
837 prop = of_find_property(np, name, NULL);
838 if (!prop)
839 return -ENODEV;
841 count = prop->length / sizeof(u32);
842 if (opp_table->path_count != count) {
843 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
844 __func__, name, count, opp_table->path_count);
845 return -EINVAL;
848 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
849 if (!bw)
850 return -ENOMEM;
852 ret = of_property_read_u32_array(np, name, bw, count);
853 if (ret) {
854 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
855 goto out;
858 for (i = 0; i < count; i++) {
859 if (peak)
860 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
861 else
862 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
865 out:
866 kfree(bw);
867 return ret;
870 static int _read_opp_key(struct dev_pm_opp *new_opp,
871 struct opp_table *opp_table, struct device_node *np)
873 bool found = false;
874 int ret;
876 ret = _read_rate(new_opp, opp_table, np);
877 if (!ret)
878 found = true;
879 else if (ret != -ENODEV)
880 return ret;
883 * Bandwidth consists of peak and average (optional) values:
884 * opp-peak-kBps = <path1_value path2_value>;
885 * opp-avg-kBps = <path1_value path2_value>;
887 ret = _read_bw(new_opp, opp_table, np, true);
888 if (!ret) {
889 found = true;
890 ret = _read_bw(new_opp, opp_table, np, false);
893 /* The properties were found but we failed to parse them */
894 if (ret && ret != -ENODEV)
895 return ret;
897 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
898 found = true;
900 if (found)
901 return 0;
903 return ret;
907 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
908 * @opp_table: OPP table
909 * @dev: device for which we do this operation
910 * @np: device node
912 * This function adds an opp definition to the opp table and returns status. The
913 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
914 * removed by dev_pm_opp_remove.
916 * Return:
917 * Valid OPP pointer:
918 * On success
919 * NULL:
920 * Duplicate OPPs (both freq and volt are same) and opp->available
921 * OR if the OPP is not supported by hardware.
922 * ERR_PTR(-EEXIST):
923 * Freq are same and volt are different OR
924 * Duplicate OPPs (both freq and volt are same) and !opp->available
925 * ERR_PTR(-ENOMEM):
926 * Memory allocation failure
927 * ERR_PTR(-EINVAL):
928 * Failed parsing the OPP node
930 static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
931 struct device *dev, struct device_node *np)
933 struct dev_pm_opp *new_opp;
934 u32 val;
935 int ret;
937 new_opp = _opp_allocate(opp_table);
938 if (!new_opp)
939 return ERR_PTR(-ENOMEM);
941 ret = _read_opp_key(new_opp, opp_table, np);
942 if (ret < 0) {
943 dev_err(dev, "%s: opp key field not found\n", __func__);
944 goto free_opp;
947 /* Check if the OPP supports hardware's hierarchy of versions or not */
948 if (!_opp_is_supported(dev, opp_table, np)) {
949 dev_dbg(dev, "OPP not supported by hardware: %s\n",
950 of_node_full_name(np));
951 goto free_opp;
954 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
956 new_opp->np = of_node_get(np);
957 new_opp->dynamic = false;
958 new_opp->available = true;
960 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
961 if (ret)
962 goto free_opp;
964 if (!of_property_read_u32(np, "clock-latency-ns", &val))
965 new_opp->clock_latency_ns = val;
967 ret = opp_parse_supplies(new_opp, dev, opp_table);
968 if (ret)
969 goto free_required_opps;
971 ret = _opp_add(dev, new_opp, opp_table);
972 if (ret) {
973 /* Don't return error for duplicate OPPs */
974 if (ret == -EBUSY)
975 ret = 0;
976 goto free_required_opps;
979 /* OPP to select on device suspend */
980 if (of_property_read_bool(np, "opp-suspend")) {
981 if (opp_table->suspend_opp) {
982 /* Pick the OPP with higher rate/bw/level as suspend OPP */
983 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
984 opp_table->suspend_opp->suspend = false;
985 new_opp->suspend = true;
986 opp_table->suspend_opp = new_opp;
988 } else {
989 new_opp->suspend = true;
990 opp_table->suspend_opp = new_opp;
994 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
995 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
997 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
998 __func__, new_opp->turbo, new_opp->rates[0],
999 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001 new_opp->level);
1004 * Notify the changes in the availability of the operable
1005 * frequency/voltage list.
1007 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008 return new_opp;
1010 free_required_opps:
1011 _of_opp_free_required_opps(opp_table, new_opp);
1012 free_opp:
1013 _opp_free(new_opp);
1015 return ret ? ERR_PTR(ret) : NULL;
1018 /* Initializes OPP tables based on new bindings */
1019 static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1021 struct device_node *np;
1022 int ret, count = 0;
1023 struct dev_pm_opp *opp;
1025 /* OPP table is already initialized for the device */
1026 mutex_lock(&opp_table->lock);
1027 if (opp_table->parsed_static_opps) {
1028 opp_table->parsed_static_opps++;
1029 mutex_unlock(&opp_table->lock);
1030 return 0;
1033 opp_table->parsed_static_opps = 1;
1034 mutex_unlock(&opp_table->lock);
1036 /* We have opp-table node now, iterate over it and add OPPs */
1037 for_each_available_child_of_node(opp_table->np, np) {
1038 opp = _opp_add_static_v2(opp_table, dev, np);
1039 if (IS_ERR(opp)) {
1040 ret = PTR_ERR(opp);
1041 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042 ret);
1043 of_node_put(np);
1044 goto remove_static_opp;
1045 } else if (opp) {
1046 count++;
1050 /* There should be one or more OPPs defined */
1051 if (!count) {
1052 dev_err(dev, "%s: no supported OPPs", __func__);
1053 ret = -ENOENT;
1054 goto remove_static_opp;
1057 lazy_link_required_opp_table(opp_table);
1059 return 0;
1061 remove_static_opp:
1062 _opp_remove_all_static(opp_table);
1064 return ret;
1067 /* Initializes OPP tables based on old-deprecated bindings */
1068 static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1070 const struct property *prop;
1071 const __be32 *val;
1072 int nr, ret = 0;
1074 mutex_lock(&opp_table->lock);
1075 if (opp_table->parsed_static_opps) {
1076 opp_table->parsed_static_opps++;
1077 mutex_unlock(&opp_table->lock);
1078 return 0;
1081 opp_table->parsed_static_opps = 1;
1082 mutex_unlock(&opp_table->lock);
1084 prop = of_find_property(dev->of_node, "operating-points", NULL);
1085 if (!prop) {
1086 ret = -ENODEV;
1087 goto remove_static_opp;
1089 if (!prop->value) {
1090 ret = -ENODATA;
1091 goto remove_static_opp;
1095 * Each OPP is a set of tuples consisting of frequency and
1096 * voltage like <freq-kHz vol-uV>.
1098 nr = prop->length / sizeof(u32);
1099 if (nr % 2) {
1100 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101 ret = -EINVAL;
1102 goto remove_static_opp;
1105 val = prop->value;
1106 while (nr) {
1107 unsigned long freq = be32_to_cpup(val++) * 1000;
1108 unsigned long volt = be32_to_cpup(val++);
1109 struct dev_pm_opp_data data = {
1110 .freq = freq,
1111 .u_volt = volt,
1114 ret = _opp_add_v1(opp_table, dev, &data, false);
1115 if (ret) {
1116 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117 __func__, data.freq, ret);
1118 goto remove_static_opp;
1120 nr -= 2;
1123 return 0;
1125 remove_static_opp:
1126 _opp_remove_all_static(opp_table);
1128 return ret;
1131 static int _of_add_table_indexed(struct device *dev, int index)
1133 struct opp_table *opp_table;
1134 int ret, count;
1136 if (index) {
1138 * If only one phandle is present, then the same OPP table
1139 * applies for all index requests.
1141 count = of_count_phandle_with_args(dev->of_node,
1142 "operating-points-v2", NULL);
1143 if (count == 1)
1144 index = 0;
1147 opp_table = _add_opp_table_indexed(dev, index, true);
1148 if (IS_ERR(opp_table))
1149 return PTR_ERR(opp_table);
1152 * OPPs have two version of bindings now. Also try the old (v1)
1153 * bindings for backward compatibility with older dtbs.
1155 if (opp_table->np)
1156 ret = _of_add_opp_table_v2(dev, opp_table);
1157 else
1158 ret = _of_add_opp_table_v1(dev, opp_table);
1160 if (ret)
1161 dev_pm_opp_put_opp_table(opp_table);
1163 return ret;
1166 static void devm_pm_opp_of_table_release(void *data)
1168 dev_pm_opp_of_remove_table(data);
1171 static int _devm_of_add_table_indexed(struct device *dev, int index)
1173 int ret;
1175 ret = _of_add_table_indexed(dev, index);
1176 if (ret)
1177 return ret;
1179 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1183 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184 * @dev: device pointer used to lookup OPP table.
1186 * Register the initial OPP table with the OPP library for given device.
1188 * The opp_table structure will be freed after the device is destroyed.
1190 * Return:
1191 * 0 On success OR
1192 * Duplicate OPPs (both freq and volt are same) and opp->available
1193 * -EEXIST Freq are same and volt are different OR
1194 * Duplicate OPPs (both freq and volt are same) and !opp->available
1195 * -ENOMEM Memory allocation failure
1196 * -ENODEV when 'operating-points' property is not found or is invalid data
1197 * in device node.
1198 * -ENODATA when empty 'operating-points' property is found
1199 * -EINVAL when invalid entries are found in opp-v2 table
1201 int devm_pm_opp_of_add_table(struct device *dev)
1203 return _devm_of_add_table_indexed(dev, 0);
1205 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1208 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209 * @dev: device pointer used to lookup OPP table.
1211 * Register the initial OPP table with the OPP library for given device.
1213 * Return:
1214 * 0 On success OR
1215 * Duplicate OPPs (both freq and volt are same) and opp->available
1216 * -EEXIST Freq are same and volt are different OR
1217 * Duplicate OPPs (both freq and volt are same) and !opp->available
1218 * -ENOMEM Memory allocation failure
1219 * -ENODEV when 'operating-points' property is not found or is invalid data
1220 * in device node.
1221 * -ENODATA when empty 'operating-points' property is found
1222 * -EINVAL when invalid entries are found in opp-v2 table
1224 int dev_pm_opp_of_add_table(struct device *dev)
1226 return _of_add_table_indexed(dev, 0);
1228 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1231 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232 * @dev: device pointer used to lookup OPP table.
1233 * @index: Index number.
1235 * Register the initial OPP table with the OPP library for given device only
1236 * using the "operating-points-v2" property.
1238 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1240 int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1242 return _of_add_table_indexed(dev, index);
1244 EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1247 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248 * @dev: device pointer used to lookup OPP table.
1249 * @index: Index number.
1251 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1253 int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1255 return _devm_of_add_table_indexed(dev, index);
1257 EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1259 /* CPU device specific helpers */
1262 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263 * @cpumask: cpumask for which OPP table needs to be removed
1265 * This removes the OPP tables for CPUs present in the @cpumask.
1266 * This should be used only to remove static entries created from DT.
1268 void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1270 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1272 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1275 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276 * @cpumask: cpumask for which OPP table needs to be added.
1278 * This adds the OPP tables for CPUs present in the @cpumask.
1280 int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1282 struct device *cpu_dev;
1283 int cpu, ret;
1285 if (WARN_ON(cpumask_empty(cpumask)))
1286 return -ENODEV;
1288 for_each_cpu(cpu, cpumask) {
1289 cpu_dev = get_cpu_device(cpu);
1290 if (!cpu_dev) {
1291 pr_err("%s: failed to get cpu%d device\n", __func__,
1292 cpu);
1293 ret = -ENODEV;
1294 goto remove_table;
1297 ret = dev_pm_opp_of_add_table(cpu_dev);
1298 if (ret) {
1300 * OPP may get registered dynamically, don't print error
1301 * message here.
1303 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304 __func__, cpu, ret);
1306 goto remove_table;
1310 return 0;
1312 remove_table:
1313 /* Free all other OPPs */
1314 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1316 return ret;
1318 EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1321 * Works only for OPP v2 bindings.
1323 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1326 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327 * @cpu_dev using operating-points-v2
1328 * bindings.
1330 * @cpu_dev: CPU device for which we do this operation
1331 * @cpumask: cpumask to update with information of sharing CPUs
1333 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1335 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1337 int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338 struct cpumask *cpumask)
1340 struct device_node *np, *tmp_np, *cpu_np;
1341 int cpu, ret = 0;
1343 /* Get OPP descriptor node */
1344 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345 if (!np) {
1346 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347 return -ENOENT;
1350 cpumask_set_cpu(cpu_dev->id, cpumask);
1352 /* OPPs are shared ? */
1353 if (!of_property_read_bool(np, "opp-shared"))
1354 goto put_cpu_node;
1356 for_each_possible_cpu(cpu) {
1357 if (cpu == cpu_dev->id)
1358 continue;
1360 cpu_np = of_cpu_device_node_get(cpu);
1361 if (!cpu_np) {
1362 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363 __func__, cpu);
1364 ret = -ENOENT;
1365 goto put_cpu_node;
1368 /* Get OPP descriptor node */
1369 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370 of_node_put(cpu_np);
1371 if (!tmp_np) {
1372 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373 ret = -ENOENT;
1374 goto put_cpu_node;
1377 /* CPUs are sharing opp node */
1378 if (np == tmp_np)
1379 cpumask_set_cpu(cpu, cpumask);
1381 of_node_put(tmp_np);
1384 put_cpu_node:
1385 of_node_put(np);
1386 return ret;
1388 EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1391 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392 * @np: Node that contains the "required-opps" property.
1393 * @index: Index of the phandle to parse.
1395 * Returns the performance state of the OPP pointed out by the "required-opps"
1396 * property at @index in @np.
1398 * Return: Zero or positive performance state on success, otherwise negative
1399 * value on errors.
1401 int of_get_required_opp_performance_state(struct device_node *np, int index)
1403 struct dev_pm_opp *opp;
1404 struct device_node *required_np;
1405 struct opp_table *opp_table;
1406 int pstate = -EINVAL;
1408 required_np = of_parse_required_opp(np, index);
1409 if (!required_np)
1410 return -ENODEV;
1412 opp_table = _find_table_of_opp_np(required_np);
1413 if (IS_ERR(opp_table)) {
1414 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415 __func__, np, PTR_ERR(opp_table));
1416 goto put_required_np;
1419 /* The OPP tables must belong to a genpd */
1420 if (unlikely(!opp_table->is_genpd)) {
1421 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422 goto put_required_np;
1425 opp = _find_opp_of_np(opp_table, required_np);
1426 if (opp) {
1427 if (opp->level == OPP_LEVEL_UNSET) {
1428 pr_err("%s: OPP levels aren't available for %pOF\n",
1429 __func__, np);
1430 } else {
1431 pstate = opp->level;
1433 dev_pm_opp_put(opp);
1437 dev_pm_opp_put_opp_table(opp_table);
1439 put_required_np:
1440 of_node_put(required_np);
1442 return pstate;
1444 EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1447 * dev_pm_opp_of_has_required_opp - Find out if a required-opps exists.
1448 * @dev: The device to investigate.
1450 * Returns true if the device's node has a "operating-points-v2" property and if
1451 * the corresponding node for the opp-table describes opp nodes that uses the
1452 * "required-opps" property.
1454 * Return: True if a required-opps is present, else false.
1456 bool dev_pm_opp_of_has_required_opp(struct device *dev)
1458 struct device_node *opp_np, *np;
1459 int count;
1461 opp_np = _opp_of_get_opp_desc_node(dev->of_node, 0);
1462 if (!opp_np)
1463 return false;
1465 np = of_get_next_available_child(opp_np, NULL);
1466 of_node_put(opp_np);
1467 if (!np) {
1468 dev_warn(dev, "Empty OPP table\n");
1469 return false;
1472 count = of_count_phandle_with_args(np, "required-opps", NULL);
1473 of_node_put(np);
1475 return count > 0;
1479 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1480 * @opp: opp for which DT node has to be returned for
1482 * Return: DT node corresponding to the opp, else 0 on success.
1484 * The caller needs to put the node with of_node_put() after using it.
1486 struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1488 if (IS_ERR_OR_NULL(opp)) {
1489 pr_err("%s: Invalid parameters\n", __func__);
1490 return NULL;
1493 return of_node_get(opp->np);
1495 EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1498 * Callback function provided to the Energy Model framework upon registration.
1499 * It provides the power used by @dev at @kHz if it is the frequency of an
1500 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502 * frequency and @uW to the associated power.
1504 * Returns 0 on success or a proper -EINVAL value in case of error.
1506 static int __maybe_unused
1507 _get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1509 struct dev_pm_opp *opp;
1510 unsigned long opp_freq, opp_power;
1512 /* Find the right frequency and related OPP */
1513 opp_freq = *kHz * 1000;
1514 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1515 if (IS_ERR(opp))
1516 return -EINVAL;
1518 opp_power = dev_pm_opp_get_power(opp);
1519 dev_pm_opp_put(opp);
1520 if (!opp_power)
1521 return -EINVAL;
1523 *kHz = opp_freq / 1000;
1524 *uW = opp_power;
1526 return 0;
1530 * dev_pm_opp_calc_power() - Calculate power value for device with EM
1531 * @dev : Device for which an Energy Model has to be registered
1532 * @uW : New power value that is calculated
1533 * @kHz : Frequency for which the new power is calculated
1535 * This computes the power estimated by @dev at @kHz if it is the frequency
1536 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1537 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1538 * frequency and @uW to the associated power. The power is estimated as
1539 * P = C * V^2 * f with C being the device's capacitance and V and f
1540 * respectively the voltage and frequency of the OPP.
1541 * It is also used as a callback function provided to the Energy Model
1542 * framework upon registration.
1544 * Returns -EINVAL if the power calculation failed because of missing
1545 * parameters, 0 otherwise.
1547 int dev_pm_opp_calc_power(struct device *dev, unsigned long *uW,
1548 unsigned long *kHz)
1550 struct dev_pm_opp *opp;
1551 struct device_node *np;
1552 unsigned long mV, Hz;
1553 u32 cap;
1554 u64 tmp;
1555 int ret;
1557 np = of_node_get(dev->of_node);
1558 if (!np)
1559 return -EINVAL;
1561 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1562 of_node_put(np);
1563 if (ret)
1564 return -EINVAL;
1566 Hz = *kHz * 1000;
1567 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1568 if (IS_ERR(opp))
1569 return -EINVAL;
1571 mV = dev_pm_opp_get_voltage(opp) / 1000;
1572 dev_pm_opp_put(opp);
1573 if (!mV)
1574 return -EINVAL;
1576 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1577 /* Provide power in micro-Watts */
1578 do_div(tmp, 1000000);
1580 *uW = (unsigned long)tmp;
1581 *kHz = Hz / 1000;
1583 return 0;
1585 EXPORT_SYMBOL_GPL(dev_pm_opp_calc_power);
1587 static bool _of_has_opp_microwatt_property(struct device *dev)
1589 unsigned long power, freq = 0;
1590 struct dev_pm_opp *opp;
1592 /* Check if at least one OPP has needed property */
1593 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1594 if (IS_ERR(opp))
1595 return false;
1597 power = dev_pm_opp_get_power(opp);
1598 dev_pm_opp_put(opp);
1599 if (!power)
1600 return false;
1602 return true;
1606 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1607 * @dev : Device for which an Energy Model has to be registered
1608 * @cpus : CPUs for which an Energy Model has to be registered. For
1609 * other type of devices it should be set to NULL.
1611 * This checks whether the "dynamic-power-coefficient" devicetree property has
1612 * been specified, and tries to register an Energy Model with it if it has.
1613 * Having this property means the voltages are known for OPPs and the EM
1614 * might be calculated.
1616 int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1618 struct em_data_callback em_cb;
1619 struct device_node *np;
1620 int ret, nr_opp;
1621 u32 cap;
1623 if (IS_ERR_OR_NULL(dev)) {
1624 ret = -EINVAL;
1625 goto failed;
1628 nr_opp = dev_pm_opp_get_opp_count(dev);
1629 if (nr_opp <= 0) {
1630 ret = -EINVAL;
1631 goto failed;
1634 /* First, try to find more precised Energy Model in DT */
1635 if (_of_has_opp_microwatt_property(dev)) {
1636 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1637 goto register_em;
1640 np = of_node_get(dev->of_node);
1641 if (!np) {
1642 ret = -EINVAL;
1643 goto failed;
1647 * Register an EM only if the 'dynamic-power-coefficient' property is
1648 * set in devicetree. It is assumed the voltage values are known if that
1649 * property is set since it is useless otherwise. If voltages are not
1650 * known, just let the EM registration fail with an error to alert the
1651 * user about the inconsistent configuration.
1653 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1654 of_node_put(np);
1655 if (ret || !cap) {
1656 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1657 ret = -EINVAL;
1658 goto failed;
1661 EM_SET_ACTIVE_POWER_CB(em_cb, dev_pm_opp_calc_power);
1663 register_em:
1664 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1665 if (ret)
1666 goto failed;
1668 return 0;
1670 failed:
1671 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1672 return ret;
1674 EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);