1 // SPDX-License-Identifier: GPL-2.0-only
3 * Perf support for the Statistical Profiling Extension, introduced as
6 * Copyright (C) 2016 ARM Limited
8 * Author: Will Deacon <will.deacon@arm.com>
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
40 #include <asm/sysreg.h>
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perf_allow_kernel(),
45 * in the context of the event owner, once, during the event_init().
47 #define SPE_PMU_HW_FLAGS_CX 0x00001
49 static_assert((PERF_EVENT_FLAG_ARCH
& SPE_PMU_HW_FLAGS_CX
) == SPE_PMU_HW_FLAGS_CX
);
51 static void set_spe_event_has_cx(struct perf_event
*event
)
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR
) && !perf_allow_kernel(&event
->attr
))
54 event
->hw
.flags
|= SPE_PMU_HW_FLAGS_CX
;
57 static bool get_spe_event_has_cx(struct perf_event
*event
)
59 return !!(event
->hw
.flags
& SPE_PMU_HW_FLAGS_CX
);
62 #define ARM_SPE_BUF_PAD_BYTE 0
64 struct arm_spe_pmu_buf
{
72 struct platform_device
*pdev
;
73 cpumask_t supported_cpus
;
74 struct hlist_node hotplug_node
;
81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85 #define SPE_PMU_FEAT_LDS (1UL << 4)
86 #define SPE_PMU_FEAT_ERND (1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
88 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
93 struct perf_output_handle __percpu
*handle
;
96 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
98 /* Convert a free-running index from perf into an SPE buffer offset */
99 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
101 /* Keep track of our dynamic hotplug state */
102 static enum cpuhp_state arm_spe_pmu_online
;
104 enum arm_spe_pmu_buf_fault_action
{
105 SPE_PMU_BUF_FAULT_ACT_SPURIOUS
,
106 SPE_PMU_BUF_FAULT_ACT_FATAL
,
107 SPE_PMU_BUF_FAULT_ACT_OK
,
110 /* This sysfs gunk was really good fun to write. */
111 enum arm_spe_pmu_capabilities
{
112 SPE_PMU_CAP_ARCH_INST
= 0,
114 SPE_PMU_CAP_FEAT_MAX
,
115 SPE_PMU_CAP_CNT_SZ
= SPE_PMU_CAP_FEAT_MAX
,
116 SPE_PMU_CAP_MIN_IVAL
,
119 static int arm_spe_pmu_feat_caps
[SPE_PMU_CAP_FEAT_MAX
] = {
120 [SPE_PMU_CAP_ARCH_INST
] = SPE_PMU_FEAT_ARCH_INST
,
121 [SPE_PMU_CAP_ERND
] = SPE_PMU_FEAT_ERND
,
124 static u32
arm_spe_pmu_cap_get(struct arm_spe_pmu
*spe_pmu
, int cap
)
126 if (cap
< SPE_PMU_CAP_FEAT_MAX
)
127 return !!(spe_pmu
->features
& arm_spe_pmu_feat_caps
[cap
]);
130 case SPE_PMU_CAP_CNT_SZ
:
131 return spe_pmu
->counter_sz
;
132 case SPE_PMU_CAP_MIN_IVAL
:
133 return spe_pmu
->min_period
;
135 WARN(1, "unknown cap %d\n", cap
);
141 static ssize_t
arm_spe_pmu_cap_show(struct device
*dev
,
142 struct device_attribute
*attr
,
145 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
146 struct dev_ext_attribute
*ea
=
147 container_of(attr
, struct dev_ext_attribute
, attr
);
148 int cap
= (long)ea
->var
;
150 return sysfs_emit(buf
, "%u\n", arm_spe_pmu_cap_get(spe_pmu
, cap
));
153 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
154 &((struct dev_ext_attribute[]) { \
155 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
158 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
159 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
161 static struct attribute
*arm_spe_pmu_cap_attr
[] = {
162 SPE_CAP_EXT_ATTR_ENTRY(arch_inst
, SPE_PMU_CAP_ARCH_INST
),
163 SPE_CAP_EXT_ATTR_ENTRY(ernd
, SPE_PMU_CAP_ERND
),
164 SPE_CAP_EXT_ATTR_ENTRY(count_size
, SPE_PMU_CAP_CNT_SZ
),
165 SPE_CAP_EXT_ATTR_ENTRY(min_interval
, SPE_PMU_CAP_MIN_IVAL
),
169 static const struct attribute_group arm_spe_pmu_cap_group
= {
171 .attrs
= arm_spe_pmu_cap_attr
,
175 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
176 #define ATTR_CFG_FLD_ts_enable_LO 0
177 #define ATTR_CFG_FLD_ts_enable_HI 0
178 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
179 #define ATTR_CFG_FLD_pa_enable_LO 1
180 #define ATTR_CFG_FLD_pa_enable_HI 1
181 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
182 #define ATTR_CFG_FLD_pct_enable_LO 2
183 #define ATTR_CFG_FLD_pct_enable_HI 2
184 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
185 #define ATTR_CFG_FLD_jitter_LO 16
186 #define ATTR_CFG_FLD_jitter_HI 16
187 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
188 #define ATTR_CFG_FLD_branch_filter_LO 32
189 #define ATTR_CFG_FLD_branch_filter_HI 32
190 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
191 #define ATTR_CFG_FLD_load_filter_LO 33
192 #define ATTR_CFG_FLD_load_filter_HI 33
193 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
194 #define ATTR_CFG_FLD_store_filter_LO 34
195 #define ATTR_CFG_FLD_store_filter_HI 34
197 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
198 #define ATTR_CFG_FLD_event_filter_LO 0
199 #define ATTR_CFG_FLD_event_filter_HI 63
201 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
202 #define ATTR_CFG_FLD_min_latency_LO 0
203 #define ATTR_CFG_FLD_min_latency_HI 11
205 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
206 #define ATTR_CFG_FLD_inv_event_filter_LO 0
207 #define ATTR_CFG_FLD_inv_event_filter_HI 63
209 GEN_PMU_FORMAT_ATTR(ts_enable
);
210 GEN_PMU_FORMAT_ATTR(pa_enable
);
211 GEN_PMU_FORMAT_ATTR(pct_enable
);
212 GEN_PMU_FORMAT_ATTR(jitter
);
213 GEN_PMU_FORMAT_ATTR(branch_filter
);
214 GEN_PMU_FORMAT_ATTR(load_filter
);
215 GEN_PMU_FORMAT_ATTR(store_filter
);
216 GEN_PMU_FORMAT_ATTR(event_filter
);
217 GEN_PMU_FORMAT_ATTR(inv_event_filter
);
218 GEN_PMU_FORMAT_ATTR(min_latency
);
220 static struct attribute
*arm_spe_pmu_formats_attr
[] = {
221 &format_attr_ts_enable
.attr
,
222 &format_attr_pa_enable
.attr
,
223 &format_attr_pct_enable
.attr
,
224 &format_attr_jitter
.attr
,
225 &format_attr_branch_filter
.attr
,
226 &format_attr_load_filter
.attr
,
227 &format_attr_store_filter
.attr
,
228 &format_attr_event_filter
.attr
,
229 &format_attr_inv_event_filter
.attr
,
230 &format_attr_min_latency
.attr
,
234 static umode_t
arm_spe_pmu_format_attr_is_visible(struct kobject
*kobj
,
235 struct attribute
*attr
,
238 struct device
*dev
= kobj_to_dev(kobj
);
239 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
241 if (attr
== &format_attr_inv_event_filter
.attr
&& !(spe_pmu
->features
& SPE_PMU_FEAT_INV_FILT_EVT
))
247 static const struct attribute_group arm_spe_pmu_format_group
= {
249 .is_visible
= arm_spe_pmu_format_attr_is_visible
,
250 .attrs
= arm_spe_pmu_formats_attr
,
253 static ssize_t
cpumask_show(struct device
*dev
,
254 struct device_attribute
*attr
, char *buf
)
256 struct arm_spe_pmu
*spe_pmu
= dev_get_drvdata(dev
);
258 return cpumap_print_to_pagebuf(true, buf
, &spe_pmu
->supported_cpus
);
260 static DEVICE_ATTR_RO(cpumask
);
262 static struct attribute
*arm_spe_pmu_attrs
[] = {
263 &dev_attr_cpumask
.attr
,
267 static const struct attribute_group arm_spe_pmu_group
= {
268 .attrs
= arm_spe_pmu_attrs
,
271 static const struct attribute_group
*arm_spe_pmu_attr_groups
[] = {
273 &arm_spe_pmu_cap_group
,
274 &arm_spe_pmu_format_group
,
278 /* Convert between user ABI and register values */
279 static u64
arm_spe_event_to_pmscr(struct perf_event
*event
)
281 struct perf_event_attr
*attr
= &event
->attr
;
284 reg
|= FIELD_PREP(PMSCR_EL1_TS
, ATTR_CFG_GET_FLD(attr
, ts_enable
));
285 reg
|= FIELD_PREP(PMSCR_EL1_PA
, ATTR_CFG_GET_FLD(attr
, pa_enable
));
286 reg
|= FIELD_PREP(PMSCR_EL1_PCT
, ATTR_CFG_GET_FLD(attr
, pct_enable
));
288 if (!attr
->exclude_user
)
289 reg
|= PMSCR_EL1_E0SPE
;
291 if (!attr
->exclude_kernel
)
292 reg
|= PMSCR_EL1_E1SPE
;
294 if (get_spe_event_has_cx(event
))
300 static void arm_spe_event_sanitise_period(struct perf_event
*event
)
302 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
303 u64 period
= event
->hw
.sample_period
;
304 u64 max_period
= PMSIRR_EL1_INTERVAL_MASK
;
306 if (period
< spe_pmu
->min_period
)
307 period
= spe_pmu
->min_period
;
308 else if (period
> max_period
)
311 period
&= max_period
;
313 event
->hw
.sample_period
= period
;
316 static u64
arm_spe_event_to_pmsirr(struct perf_event
*event
)
318 struct perf_event_attr
*attr
= &event
->attr
;
321 arm_spe_event_sanitise_period(event
);
323 reg
|= FIELD_PREP(PMSIRR_EL1_RND
, ATTR_CFG_GET_FLD(attr
, jitter
));
324 reg
|= event
->hw
.sample_period
;
329 static u64
arm_spe_event_to_pmsfcr(struct perf_event
*event
)
331 struct perf_event_attr
*attr
= &event
->attr
;
334 reg
|= FIELD_PREP(PMSFCR_EL1_LD
, ATTR_CFG_GET_FLD(attr
, load_filter
));
335 reg
|= FIELD_PREP(PMSFCR_EL1_ST
, ATTR_CFG_GET_FLD(attr
, store_filter
));
336 reg
|= FIELD_PREP(PMSFCR_EL1_B
, ATTR_CFG_GET_FLD(attr
, branch_filter
));
339 reg
|= PMSFCR_EL1_FT
;
341 if (ATTR_CFG_GET_FLD(attr
, event_filter
))
342 reg
|= PMSFCR_EL1_FE
;
344 if (ATTR_CFG_GET_FLD(attr
, inv_event_filter
))
345 reg
|= PMSFCR_EL1_FnE
;
347 if (ATTR_CFG_GET_FLD(attr
, min_latency
))
348 reg
|= PMSFCR_EL1_FL
;
353 static u64
arm_spe_event_to_pmsevfr(struct perf_event
*event
)
355 struct perf_event_attr
*attr
= &event
->attr
;
356 return ATTR_CFG_GET_FLD(attr
, event_filter
);
359 static u64
arm_spe_event_to_pmsnevfr(struct perf_event
*event
)
361 struct perf_event_attr
*attr
= &event
->attr
;
362 return ATTR_CFG_GET_FLD(attr
, inv_event_filter
);
365 static u64
arm_spe_event_to_pmslatfr(struct perf_event
*event
)
367 struct perf_event_attr
*attr
= &event
->attr
;
368 return FIELD_PREP(PMSLATFR_EL1_MINLAT
, ATTR_CFG_GET_FLD(attr
, min_latency
));
371 static void arm_spe_pmu_pad_buf(struct perf_output_handle
*handle
, int len
)
373 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
374 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
376 memset(buf
->base
+ head
, ARM_SPE_BUF_PAD_BYTE
, len
);
378 perf_aux_output_skip(handle
, len
);
381 static u64
arm_spe_pmu_next_snapshot_off(struct perf_output_handle
*handle
)
383 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
384 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
385 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
386 u64 limit
= buf
->nr_pages
* PAGE_SIZE
;
389 * The trace format isn't parseable in reverse, so clamp
390 * the limit to half of the buffer size in snapshot mode
391 * so that the worst case is half a buffer of records, as
392 * opposed to a single record.
394 if (head
< limit
>> 1)
398 * If we're within max_record_sz of the limit, we must
399 * pad, move the head index and recompute the limit.
401 if (limit
- head
< spe_pmu
->max_record_sz
) {
402 arm_spe_pmu_pad_buf(handle
, limit
- head
);
403 handle
->head
= PERF_IDX2OFF(limit
, buf
);
404 limit
= ((buf
->nr_pages
* PAGE_SIZE
) >> 1) + handle
->head
;
410 static u64
__arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
412 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
413 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
414 const u64 bufsize
= buf
->nr_pages
* PAGE_SIZE
;
416 u64 head
, tail
, wakeup
;
419 * The head can be misaligned for two reasons:
421 * 1. The hardware left PMBPTR pointing to the first byte after
422 * a record when generating a buffer management event.
424 * 2. We used perf_aux_output_skip to consume handle->size bytes
425 * and CIRC_SPACE was used to compute the size, which always
426 * leaves one entry free.
428 * Deal with this by padding to the next alignment boundary and
429 * moving the head index. If we run out of buffer space, we'll
430 * reduce handle->size to zero and end up reporting truncation.
432 head
= PERF_IDX2OFF(handle
->head
, buf
);
433 if (!IS_ALIGNED(head
, spe_pmu
->align
)) {
434 unsigned long delta
= roundup(head
, spe_pmu
->align
) - head
;
436 delta
= min(delta
, handle
->size
);
437 arm_spe_pmu_pad_buf(handle
, delta
);
438 head
= PERF_IDX2OFF(handle
->head
, buf
);
441 /* If we've run out of free space, then nothing more to do */
445 /* Compute the tail and wakeup indices now that we've aligned head */
446 tail
= PERF_IDX2OFF(handle
->head
+ handle
->size
, buf
);
447 wakeup
= PERF_IDX2OFF(handle
->wakeup
, buf
);
450 * Avoid clobbering unconsumed data. We know we have space, so
451 * if we see head == tail we know that the buffer is empty. If
452 * head > tail, then there's nothing to clobber prior to
456 limit
= round_down(tail
, PAGE_SIZE
);
459 * Wakeup may be arbitrarily far into the future. If it's not in
460 * the current generation, either we'll wrap before hitting it,
461 * or it's in the past and has been handled already.
463 * If there's a wakeup before we wrap, arrange to be woken up by
464 * the page boundary following it. Keep the tail boundary if
467 if (handle
->wakeup
< (handle
->head
+ handle
->size
) && head
<= wakeup
)
468 limit
= min(limit
, round_up(wakeup
, PAGE_SIZE
));
473 arm_spe_pmu_pad_buf(handle
, handle
->size
);
475 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
);
476 perf_aux_output_end(handle
, 0);
480 static u64
arm_spe_pmu_next_off(struct perf_output_handle
*handle
)
482 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
483 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(handle
->event
->pmu
);
484 u64 limit
= __arm_spe_pmu_next_off(handle
);
485 u64 head
= PERF_IDX2OFF(handle
->head
, buf
);
488 * If the head has come too close to the end of the buffer,
489 * then pad to the end and recompute the limit.
491 if (limit
&& (limit
- head
< spe_pmu
->max_record_sz
)) {
492 arm_spe_pmu_pad_buf(handle
, limit
- head
);
493 limit
= __arm_spe_pmu_next_off(handle
);
499 static void arm_spe_perf_aux_output_begin(struct perf_output_handle
*handle
,
500 struct perf_event
*event
)
503 struct arm_spe_pmu_buf
*buf
;
505 /* Start a new aux session */
506 buf
= perf_aux_output_begin(handle
, event
);
508 event
->hw
.state
|= PERF_HES_STOPPED
;
510 * We still need to clear the limit pointer, since the
511 * profiler might only be disabled by virtue of a fault.
514 goto out_write_limit
;
517 limit
= buf
->snapshot
? arm_spe_pmu_next_snapshot_off(handle
)
518 : arm_spe_pmu_next_off(handle
);
520 limit
|= PMBLIMITR_EL1_E
;
522 limit
+= (u64
)buf
->base
;
523 base
= (u64
)buf
->base
+ PERF_IDX2OFF(handle
->head
, buf
);
524 write_sysreg_s(base
, SYS_PMBPTR_EL1
);
527 write_sysreg_s(limit
, SYS_PMBLIMITR_EL1
);
530 static void arm_spe_perf_aux_output_end(struct perf_output_handle
*handle
)
532 struct arm_spe_pmu_buf
*buf
= perf_get_aux(handle
);
535 offset
= read_sysreg_s(SYS_PMBPTR_EL1
) - (u64
)buf
->base
;
536 size
= offset
- PERF_IDX2OFF(handle
->head
, buf
);
539 handle
->head
= offset
;
541 perf_aux_output_end(handle
, size
);
544 static void arm_spe_pmu_disable_and_drain_local(void)
546 /* Disable profiling at EL0 and EL1 */
547 write_sysreg_s(0, SYS_PMSCR_EL1
);
550 /* Drain any buffered data */
554 /* Disable the profiling buffer */
555 write_sysreg_s(0, SYS_PMBLIMITR_EL1
);
560 static enum arm_spe_pmu_buf_fault_action
561 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle
*handle
)
565 enum arm_spe_pmu_buf_fault_action ret
;
568 * Ensure new profiling data is visible to the CPU and any external
569 * aborts have been resolved.
574 /* Ensure hardware updates to PMBPTR_EL1 are visible */
577 /* Service required? */
578 pmbsr
= read_sysreg_s(SYS_PMBSR_EL1
);
579 if (!FIELD_GET(PMBSR_EL1_S
, pmbsr
))
580 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS
;
583 * If we've lost data, disable profiling and also set the PARTIAL
584 * flag to indicate that the last record is corrupted.
586 if (FIELD_GET(PMBSR_EL1_DL
, pmbsr
))
587 perf_aux_output_flag(handle
, PERF_AUX_FLAG_TRUNCATED
|
588 PERF_AUX_FLAG_PARTIAL
);
590 /* Report collisions to userspace so that it can up the period */
591 if (FIELD_GET(PMBSR_EL1_COLL
, pmbsr
))
592 perf_aux_output_flag(handle
, PERF_AUX_FLAG_COLLISION
);
594 /* We only expect buffer management events */
595 switch (FIELD_GET(PMBSR_EL1_EC
, pmbsr
)) {
596 case PMBSR_EL1_EC_BUF
:
599 case PMBSR_EL1_EC_FAULT_S1
:
600 case PMBSR_EL1_EC_FAULT_S2
:
601 err_str
= "Unexpected buffer fault";
604 err_str
= "Unknown error code";
608 /* Buffer management event */
609 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK
, pmbsr
)) {
610 case PMBSR_EL1_BUF_BSC_FULL
:
611 ret
= SPE_PMU_BUF_FAULT_ACT_OK
;
614 err_str
= "Unknown buffer status code";
618 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
619 err_str
, smp_processor_id(), pmbsr
,
620 read_sysreg_s(SYS_PMBPTR_EL1
),
621 read_sysreg_s(SYS_PMBLIMITR_EL1
));
622 ret
= SPE_PMU_BUF_FAULT_ACT_FATAL
;
625 arm_spe_perf_aux_output_end(handle
);
629 static irqreturn_t
arm_spe_pmu_irq_handler(int irq
, void *dev
)
631 struct perf_output_handle
*handle
= dev
;
632 struct perf_event
*event
= handle
->event
;
633 enum arm_spe_pmu_buf_fault_action act
;
635 if (!perf_get_aux(handle
))
638 act
= arm_spe_pmu_buf_get_fault_act(handle
);
639 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
643 * Ensure perf callbacks have completed, which may disable the
644 * profiling buffer in response to a TRUNCATION flag.
649 case SPE_PMU_BUF_FAULT_ACT_FATAL
:
651 * If a fatal exception occurred then leaving the profiling
652 * buffer enabled is a recipe waiting to happen. Since
653 * fatal faults don't always imply truncation, make sure
654 * that the profiling buffer is disabled explicitly before
655 * clearing the syndrome register.
657 arm_spe_pmu_disable_and_drain_local();
659 case SPE_PMU_BUF_FAULT_ACT_OK
:
661 * We handled the fault (the buffer was full), so resume
662 * profiling as long as we didn't detect truncation.
663 * PMBPTR might be misaligned, but we'll burn that bridge
666 if (!(handle
->aux_flags
& PERF_AUX_FLAG_TRUNCATED
)) {
667 arm_spe_perf_aux_output_begin(handle
, event
);
671 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS
:
672 /* We've seen you before, but GCC has the memory of a sieve. */
676 /* The buffer pointers are now sane, so resume profiling. */
677 write_sysreg_s(0, SYS_PMBSR_EL1
);
681 static u64
arm_spe_pmsevfr_res0(u16 pmsver
)
684 case ID_AA64DFR0_EL1_PMSVer_IMP
:
685 return PMSEVFR_EL1_RES0_IMP
;
686 case ID_AA64DFR0_EL1_PMSVer_V1P1
:
687 return PMSEVFR_EL1_RES0_V1P1
;
688 case ID_AA64DFR0_EL1_PMSVer_V1P2
:
689 /* Return the highest version we support in default */
691 return PMSEVFR_EL1_RES0_V1P2
;
696 static int arm_spe_pmu_event_init(struct perf_event
*event
)
699 struct perf_event_attr
*attr
= &event
->attr
;
700 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
702 /* This is, of course, deeply driver-specific */
703 if (attr
->type
!= event
->pmu
->type
)
706 if (event
->cpu
>= 0 &&
707 !cpumask_test_cpu(event
->cpu
, &spe_pmu
->supported_cpus
))
710 if (arm_spe_event_to_pmsevfr(event
) & arm_spe_pmsevfr_res0(spe_pmu
->pmsver
))
713 if (arm_spe_event_to_pmsnevfr(event
) & arm_spe_pmsevfr_res0(spe_pmu
->pmsver
))
716 if (attr
->exclude_idle
)
720 * Feedback-directed frequency throttling doesn't work when we
721 * have a buffer of samples. We'd need to manually count the
722 * samples in the buffer when it fills up and adjust the event
723 * count to reflect that. Instead, just force the user to specify
729 reg
= arm_spe_event_to_pmsfcr(event
);
730 if ((FIELD_GET(PMSFCR_EL1_FE
, reg
)) &&
731 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_EVT
))
734 if ((FIELD_GET(PMSFCR_EL1_FnE
, reg
)) &&
735 !(spe_pmu
->features
& SPE_PMU_FEAT_INV_FILT_EVT
))
738 if ((FIELD_GET(PMSFCR_EL1_FT
, reg
)) &&
739 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_TYP
))
742 if ((FIELD_GET(PMSFCR_EL1_FL
, reg
)) &&
743 !(spe_pmu
->features
& SPE_PMU_FEAT_FILT_LAT
))
746 set_spe_event_has_cx(event
);
747 reg
= arm_spe_event_to_pmscr(event
);
748 if (reg
& (PMSCR_EL1_PA
| PMSCR_EL1_PCT
))
749 return perf_allow_kernel(&event
->attr
);
754 static void arm_spe_pmu_start(struct perf_event
*event
, int flags
)
757 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
758 struct hw_perf_event
*hwc
= &event
->hw
;
759 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
762 arm_spe_perf_aux_output_begin(handle
, event
);
766 reg
= arm_spe_event_to_pmsfcr(event
);
767 write_sysreg_s(reg
, SYS_PMSFCR_EL1
);
769 reg
= arm_spe_event_to_pmsevfr(event
);
770 write_sysreg_s(reg
, SYS_PMSEVFR_EL1
);
772 if (spe_pmu
->features
& SPE_PMU_FEAT_INV_FILT_EVT
) {
773 reg
= arm_spe_event_to_pmsnevfr(event
);
774 write_sysreg_s(reg
, SYS_PMSNEVFR_EL1
);
777 reg
= arm_spe_event_to_pmslatfr(event
);
778 write_sysreg_s(reg
, SYS_PMSLATFR_EL1
);
780 if (flags
& PERF_EF_RELOAD
) {
781 reg
= arm_spe_event_to_pmsirr(event
);
782 write_sysreg_s(reg
, SYS_PMSIRR_EL1
);
784 reg
= local64_read(&hwc
->period_left
);
785 write_sysreg_s(reg
, SYS_PMSICR_EL1
);
788 reg
= arm_spe_event_to_pmscr(event
);
790 write_sysreg_s(reg
, SYS_PMSCR_EL1
);
793 static void arm_spe_pmu_stop(struct perf_event
*event
, int flags
)
795 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
796 struct hw_perf_event
*hwc
= &event
->hw
;
797 struct perf_output_handle
*handle
= this_cpu_ptr(spe_pmu
->handle
);
799 /* If we're already stopped, then nothing to do */
800 if (hwc
->state
& PERF_HES_STOPPED
)
803 /* Stop all trace generation */
804 arm_spe_pmu_disable_and_drain_local();
806 if (flags
& PERF_EF_UPDATE
) {
808 * If there's a fault pending then ensure we contain it
809 * to this buffer, since we might be on the context-switch
812 if (perf_get_aux(handle
)) {
813 enum arm_spe_pmu_buf_fault_action act
;
815 act
= arm_spe_pmu_buf_get_fault_act(handle
);
816 if (act
== SPE_PMU_BUF_FAULT_ACT_SPURIOUS
)
817 arm_spe_perf_aux_output_end(handle
);
819 write_sysreg_s(0, SYS_PMBSR_EL1
);
823 * This may also contain ECOUNT, but nobody else should
824 * be looking at period_left, since we forbid frequency
827 local64_set(&hwc
->period_left
, read_sysreg_s(SYS_PMSICR_EL1
));
828 hwc
->state
|= PERF_HES_UPTODATE
;
831 hwc
->state
|= PERF_HES_STOPPED
;
834 static int arm_spe_pmu_add(struct perf_event
*event
, int flags
)
837 struct arm_spe_pmu
*spe_pmu
= to_spe_pmu(event
->pmu
);
838 struct hw_perf_event
*hwc
= &event
->hw
;
839 int cpu
= event
->cpu
== -1 ? smp_processor_id() : event
->cpu
;
841 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
844 hwc
->state
= PERF_HES_UPTODATE
| PERF_HES_STOPPED
;
846 if (flags
& PERF_EF_START
) {
847 arm_spe_pmu_start(event
, PERF_EF_RELOAD
);
848 if (hwc
->state
& PERF_HES_STOPPED
)
855 static void arm_spe_pmu_del(struct perf_event
*event
, int flags
)
857 arm_spe_pmu_stop(event
, PERF_EF_UPDATE
);
860 static void arm_spe_pmu_read(struct perf_event
*event
)
864 static void *arm_spe_pmu_setup_aux(struct perf_event
*event
, void **pages
,
865 int nr_pages
, bool snapshot
)
867 int i
, cpu
= event
->cpu
;
868 struct page
**pglist
;
869 struct arm_spe_pmu_buf
*buf
;
871 /* We need at least two pages for this to work. */
876 * We require an even number of pages for snapshot mode, so that
877 * we can effectively treat the buffer as consisting of two equal
878 * parts and give userspace a fighting chance of getting some
879 * useful data out of it.
881 if (snapshot
&& (nr_pages
& 1))
885 cpu
= raw_smp_processor_id();
887 buf
= kzalloc_node(sizeof(*buf
), GFP_KERNEL
, cpu_to_node(cpu
));
891 pglist
= kcalloc(nr_pages
, sizeof(*pglist
), GFP_KERNEL
);
895 for (i
= 0; i
< nr_pages
; ++i
)
896 pglist
[i
] = virt_to_page(pages
[i
]);
898 buf
->base
= vmap(pglist
, nr_pages
, VM_MAP
, PAGE_KERNEL
);
900 goto out_free_pglist
;
902 buf
->nr_pages
= nr_pages
;
903 buf
->snapshot
= snapshot
;
915 static void arm_spe_pmu_free_aux(void *aux
)
917 struct arm_spe_pmu_buf
*buf
= aux
;
923 /* Initialisation and teardown functions */
924 static int arm_spe_pmu_perf_init(struct arm_spe_pmu
*spe_pmu
)
926 static atomic_t pmu_idx
= ATOMIC_INIT(-1);
930 struct device
*dev
= &spe_pmu
->pdev
->dev
;
932 spe_pmu
->pmu
= (struct pmu
) {
933 .module
= THIS_MODULE
,
934 .parent
= &spe_pmu
->pdev
->dev
,
935 .capabilities
= PERF_PMU_CAP_EXCLUSIVE
| PERF_PMU_CAP_ITRACE
,
936 .attr_groups
= arm_spe_pmu_attr_groups
,
938 * We hitch a ride on the software context here, so that
939 * we can support per-task profiling (which is not possible
940 * with the invalid context as it doesn't get sched callbacks).
941 * This requires that userspace either uses a dummy event for
942 * perf_event_open, since the aux buffer is not setup until
943 * a subsequent mmap, or creates the profiling event in a
944 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
945 * once the buffer has been created.
947 .task_ctx_nr
= perf_sw_context
,
948 .event_init
= arm_spe_pmu_event_init
,
949 .add
= arm_spe_pmu_add
,
950 .del
= arm_spe_pmu_del
,
951 .start
= arm_spe_pmu_start
,
952 .stop
= arm_spe_pmu_stop
,
953 .read
= arm_spe_pmu_read
,
954 .setup_aux
= arm_spe_pmu_setup_aux
,
955 .free_aux
= arm_spe_pmu_free_aux
,
958 idx
= atomic_inc_return(&pmu_idx
);
959 name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s_%d", PMUNAME
, idx
);
961 dev_err(dev
, "failed to allocate name for pmu %d\n", idx
);
965 return perf_pmu_register(&spe_pmu
->pmu
, name
, -1);
968 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu
*spe_pmu
)
970 perf_pmu_unregister(&spe_pmu
->pmu
);
973 static void __arm_spe_pmu_dev_probe(void *info
)
977 struct arm_spe_pmu
*spe_pmu
= info
;
978 struct device
*dev
= &spe_pmu
->pdev
->dev
;
980 fld
= cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1
),
981 ID_AA64DFR0_EL1_PMSVer_SHIFT
);
984 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
985 fld
, smp_processor_id());
988 spe_pmu
->pmsver
= (u16
)fld
;
990 /* Read PMBIDR first to determine whether or not we have access */
991 reg
= read_sysreg_s(SYS_PMBIDR_EL1
);
992 if (FIELD_GET(PMBIDR_EL1_P
, reg
)) {
994 "profiling buffer owned by higher exception level\n");
998 /* Minimum alignment. If it's out-of-range, then fail the probe */
999 fld
= FIELD_GET(PMBIDR_EL1_ALIGN
, reg
);
1000 spe_pmu
->align
= 1 << fld
;
1001 if (spe_pmu
->align
> SZ_2K
) {
1002 dev_err(dev
, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1003 fld
, smp_processor_id());
1007 /* It's now safe to read PMSIDR and figure out what we've got */
1008 reg
= read_sysreg_s(SYS_PMSIDR_EL1
);
1009 if (FIELD_GET(PMSIDR_EL1_FE
, reg
))
1010 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_EVT
;
1012 if (FIELD_GET(PMSIDR_EL1_FnE
, reg
))
1013 spe_pmu
->features
|= SPE_PMU_FEAT_INV_FILT_EVT
;
1015 if (FIELD_GET(PMSIDR_EL1_FT
, reg
))
1016 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_TYP
;
1018 if (FIELD_GET(PMSIDR_EL1_FL
, reg
))
1019 spe_pmu
->features
|= SPE_PMU_FEAT_FILT_LAT
;
1021 if (FIELD_GET(PMSIDR_EL1_ARCHINST
, reg
))
1022 spe_pmu
->features
|= SPE_PMU_FEAT_ARCH_INST
;
1024 if (FIELD_GET(PMSIDR_EL1_LDS
, reg
))
1025 spe_pmu
->features
|= SPE_PMU_FEAT_LDS
;
1027 if (FIELD_GET(PMSIDR_EL1_ERND
, reg
))
1028 spe_pmu
->features
|= SPE_PMU_FEAT_ERND
;
1030 /* This field has a spaced out encoding, so just use a look-up */
1031 fld
= FIELD_GET(PMSIDR_EL1_INTERVAL
, reg
);
1033 case PMSIDR_EL1_INTERVAL_256
:
1034 spe_pmu
->min_period
= 256;
1036 case PMSIDR_EL1_INTERVAL_512
:
1037 spe_pmu
->min_period
= 512;
1039 case PMSIDR_EL1_INTERVAL_768
:
1040 spe_pmu
->min_period
= 768;
1042 case PMSIDR_EL1_INTERVAL_1024
:
1043 spe_pmu
->min_period
= 1024;
1045 case PMSIDR_EL1_INTERVAL_1536
:
1046 spe_pmu
->min_period
= 1536;
1048 case PMSIDR_EL1_INTERVAL_2048
:
1049 spe_pmu
->min_period
= 2048;
1051 case PMSIDR_EL1_INTERVAL_3072
:
1052 spe_pmu
->min_period
= 3072;
1055 dev_warn(dev
, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1058 case PMSIDR_EL1_INTERVAL_4096
:
1059 spe_pmu
->min_period
= 4096;
1062 /* Maximum record size. If it's out-of-range, then fail the probe */
1063 fld
= FIELD_GET(PMSIDR_EL1_MAXSIZE
, reg
);
1064 spe_pmu
->max_record_sz
= 1 << fld
;
1065 if (spe_pmu
->max_record_sz
> SZ_2K
|| spe_pmu
->max_record_sz
< 16) {
1066 dev_err(dev
, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1067 fld
, smp_processor_id());
1071 fld
= FIELD_GET(PMSIDR_EL1_COUNTSIZE
, reg
);
1074 dev_warn(dev
, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1077 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT
:
1078 spe_pmu
->counter_sz
= 12;
1080 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT
:
1081 spe_pmu
->counter_sz
= 16;
1085 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1086 spe_pmu
->pmsver
- 1, cpumask_pr_args(&spe_pmu
->supported_cpus
),
1087 spe_pmu
->max_record_sz
, spe_pmu
->align
, spe_pmu
->features
);
1089 spe_pmu
->features
|= SPE_PMU_FEAT_DEV_PROBED
;
1092 static void __arm_spe_pmu_reset_local(void)
1095 * This is probably overkill, as we have no idea where we're
1096 * draining any buffered data to...
1098 arm_spe_pmu_disable_and_drain_local();
1100 /* Reset the buffer base pointer */
1101 write_sysreg_s(0, SYS_PMBPTR_EL1
);
1104 /* Clear any pending management interrupts */
1105 write_sysreg_s(0, SYS_PMBSR_EL1
);
1109 static void __arm_spe_pmu_setup_one(void *info
)
1111 struct arm_spe_pmu
*spe_pmu
= info
;
1113 __arm_spe_pmu_reset_local();
1114 enable_percpu_irq(spe_pmu
->irq
, IRQ_TYPE_NONE
);
1117 static void __arm_spe_pmu_stop_one(void *info
)
1119 struct arm_spe_pmu
*spe_pmu
= info
;
1121 disable_percpu_irq(spe_pmu
->irq
);
1122 __arm_spe_pmu_reset_local();
1125 static int arm_spe_pmu_cpu_startup(unsigned int cpu
, struct hlist_node
*node
)
1127 struct arm_spe_pmu
*spe_pmu
;
1129 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1130 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1133 __arm_spe_pmu_setup_one(spe_pmu
);
1137 static int arm_spe_pmu_cpu_teardown(unsigned int cpu
, struct hlist_node
*node
)
1139 struct arm_spe_pmu
*spe_pmu
;
1141 spe_pmu
= hlist_entry_safe(node
, struct arm_spe_pmu
, hotplug_node
);
1142 if (!cpumask_test_cpu(cpu
, &spe_pmu
->supported_cpus
))
1145 __arm_spe_pmu_stop_one(spe_pmu
);
1149 static int arm_spe_pmu_dev_init(struct arm_spe_pmu
*spe_pmu
)
1152 cpumask_t
*mask
= &spe_pmu
->supported_cpus
;
1154 /* Make sure we probe the hardware on a relevant CPU */
1155 ret
= smp_call_function_any(mask
, __arm_spe_pmu_dev_probe
, spe_pmu
, 1);
1156 if (ret
|| !(spe_pmu
->features
& SPE_PMU_FEAT_DEV_PROBED
))
1159 /* Request our PPIs (note that the IRQ is still disabled) */
1160 ret
= request_percpu_irq(spe_pmu
->irq
, arm_spe_pmu_irq_handler
, DRVNAME
,
1166 * Register our hotplug notifier now so we don't miss any events.
1167 * This will enable the IRQ for any supported CPUs that are already
1170 ret
= cpuhp_state_add_instance(arm_spe_pmu_online
,
1171 &spe_pmu
->hotplug_node
);
1173 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1178 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu
*spe_pmu
)
1180 cpuhp_state_remove_instance(arm_spe_pmu_online
, &spe_pmu
->hotplug_node
);
1181 free_percpu_irq(spe_pmu
->irq
, spe_pmu
->handle
);
1184 /* Driver and device probing */
1185 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu
*spe_pmu
)
1187 struct platform_device
*pdev
= spe_pmu
->pdev
;
1188 int irq
= platform_get_irq(pdev
, 0);
1193 if (!irq_is_percpu(irq
)) {
1194 dev_err(&pdev
->dev
, "expected PPI but got SPI (%d)\n", irq
);
1198 if (irq_get_percpu_devid_partition(irq
, &spe_pmu
->supported_cpus
)) {
1199 dev_err(&pdev
->dev
, "failed to get PPI partition (%d)\n", irq
);
1207 static const struct of_device_id arm_spe_pmu_of_match
[] = {
1208 { .compatible
= "arm,statistical-profiling-extension-v1", .data
= (void *)1 },
1211 MODULE_DEVICE_TABLE(of
, arm_spe_pmu_of_match
);
1213 static const struct platform_device_id arm_spe_match
[] = {
1214 { ARMV8_SPE_PDEV_NAME
, 0},
1217 MODULE_DEVICE_TABLE(platform
, arm_spe_match
);
1219 static int arm_spe_pmu_device_probe(struct platform_device
*pdev
)
1222 struct arm_spe_pmu
*spe_pmu
;
1223 struct device
*dev
= &pdev
->dev
;
1226 * If kernelspace is unmapped when running at EL0, then the SPE
1227 * buffer will fault and prematurely terminate the AUX session.
1229 if (arm64_kernel_unmapped_at_el0()) {
1230 dev_warn_once(dev
, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1234 spe_pmu
= devm_kzalloc(dev
, sizeof(*spe_pmu
), GFP_KERNEL
);
1238 spe_pmu
->handle
= alloc_percpu(typeof(*spe_pmu
->handle
));
1239 if (!spe_pmu
->handle
)
1242 spe_pmu
->pdev
= pdev
;
1243 platform_set_drvdata(pdev
, spe_pmu
);
1245 ret
= arm_spe_pmu_irq_probe(spe_pmu
);
1247 goto out_free_handle
;
1249 ret
= arm_spe_pmu_dev_init(spe_pmu
);
1251 goto out_free_handle
;
1253 ret
= arm_spe_pmu_perf_init(spe_pmu
);
1255 goto out_teardown_dev
;
1260 arm_spe_pmu_dev_teardown(spe_pmu
);
1262 free_percpu(spe_pmu
->handle
);
1266 static void arm_spe_pmu_device_remove(struct platform_device
*pdev
)
1268 struct arm_spe_pmu
*spe_pmu
= platform_get_drvdata(pdev
);
1270 arm_spe_pmu_perf_destroy(spe_pmu
);
1271 arm_spe_pmu_dev_teardown(spe_pmu
);
1272 free_percpu(spe_pmu
->handle
);
1275 static struct platform_driver arm_spe_pmu_driver
= {
1276 .id_table
= arm_spe_match
,
1279 .of_match_table
= of_match_ptr(arm_spe_pmu_of_match
),
1280 .suppress_bind_attrs
= true,
1282 .probe
= arm_spe_pmu_device_probe
,
1283 .remove_new
= arm_spe_pmu_device_remove
,
1286 static int __init
arm_spe_pmu_init(void)
1290 ret
= cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN
, DRVNAME
,
1291 arm_spe_pmu_cpu_startup
,
1292 arm_spe_pmu_cpu_teardown
);
1295 arm_spe_pmu_online
= ret
;
1297 ret
= platform_driver_register(&arm_spe_pmu_driver
);
1299 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1304 static void __exit
arm_spe_pmu_exit(void)
1306 platform_driver_unregister(&arm_spe_pmu_driver
);
1307 cpuhp_remove_multi_state(arm_spe_pmu_online
);
1310 module_init(arm_spe_pmu_init
);
1311 module_exit(arm_spe_pmu_exit
);
1313 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1314 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1315 MODULE_LICENSE("GPL v2");