drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / drivers / vfio / pci / vfio_pci_config.c
blob97422aafaa7b5df6803da52fb2acee4c5e3ada57
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO PCI config space virtualization
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
29 #include "vfio_pci_priv.h"
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99 [PCI_EXT_CAP_ID_DVSEC] = 0xFF,
103 * Read/Write Permission Bits - one bit for each bit in capability
104 * Any field can be read if it exists, but what is read depends on
105 * whether the field is 'virtualized', or just pass through to the
106 * hardware. Any virtualized field is also virtualized for writes.
107 * Writes are only permitted if they have a 1 bit here.
109 struct perm_bits {
110 u8 *virt; /* read/write virtual data, not hw */
111 u8 *write; /* writeable bits */
112 int (*readfn)(struct vfio_pci_core_device *vdev, int pos, int count,
113 struct perm_bits *perm, int offset, __le32 *val);
114 int (*writefn)(struct vfio_pci_core_device *vdev, int pos, int count,
115 struct perm_bits *perm, int offset, __le32 val);
118 #define NO_VIRT 0
119 #define ALL_VIRT 0xFFFFFFFFU
120 #define NO_WRITE 0
121 #define ALL_WRITE 0xFFFFFFFFU
123 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
124 __le32 *val, int count)
126 int ret = -EINVAL;
127 u32 tmp_val = 0;
129 switch (count) {
130 case 1:
132 u8 tmp;
133 ret = pci_user_read_config_byte(pdev, offset, &tmp);
134 tmp_val = tmp;
135 break;
137 case 2:
139 u16 tmp;
140 ret = pci_user_read_config_word(pdev, offset, &tmp);
141 tmp_val = tmp;
142 break;
144 case 4:
145 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
146 break;
149 *val = cpu_to_le32(tmp_val);
151 return ret;
154 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
155 __le32 val, int count)
157 int ret = -EINVAL;
158 u32 tmp_val = le32_to_cpu(val);
160 switch (count) {
161 case 1:
162 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
163 break;
164 case 2:
165 ret = pci_user_write_config_word(pdev, offset, tmp_val);
166 break;
167 case 4:
168 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
169 break;
172 return ret;
175 static int vfio_default_config_read(struct vfio_pci_core_device *vdev, int pos,
176 int count, struct perm_bits *perm,
177 int offset, __le32 *val)
179 __le32 virt = 0;
181 memcpy(val, vdev->vconfig + pos, count);
183 memcpy(&virt, perm->virt + offset, count);
185 /* Any non-virtualized bits? */
186 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
187 struct pci_dev *pdev = vdev->pdev;
188 __le32 phys_val = 0;
189 int ret;
191 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
192 if (ret)
193 return ret;
195 *val = (phys_val & ~virt) | (*val & virt);
198 return count;
201 static int vfio_default_config_write(struct vfio_pci_core_device *vdev, int pos,
202 int count, struct perm_bits *perm,
203 int offset, __le32 val)
205 __le32 virt = 0, write = 0;
207 memcpy(&write, perm->write + offset, count);
209 if (!write)
210 return count; /* drop, no writable bits */
212 memcpy(&virt, perm->virt + offset, count);
214 /* Virtualized and writable bits go to vconfig */
215 if (write & virt) {
216 __le32 virt_val = 0;
218 memcpy(&virt_val, vdev->vconfig + pos, count);
220 virt_val &= ~(write & virt);
221 virt_val |= (val & (write & virt));
223 memcpy(vdev->vconfig + pos, &virt_val, count);
226 /* Non-virtualized and writable bits go to hardware */
227 if (write & ~virt) {
228 struct pci_dev *pdev = vdev->pdev;
229 __le32 phys_val = 0;
230 int ret;
232 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
233 if (ret)
234 return ret;
236 phys_val &= ~(write & ~virt);
237 phys_val |= (val & (write & ~virt));
239 ret = vfio_user_config_write(pdev, pos, phys_val, count);
240 if (ret)
241 return ret;
244 return count;
247 /* Allow direct read from hardware, except for capability next pointer */
248 static int vfio_direct_config_read(struct vfio_pci_core_device *vdev, int pos,
249 int count, struct perm_bits *perm,
250 int offset, __le32 *val)
252 int ret;
254 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
255 if (ret)
256 return ret;
258 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
259 if (offset < 4)
260 memcpy(val, vdev->vconfig + pos, count);
261 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
262 if (offset == PCI_CAP_LIST_ID && count > 1)
263 memcpy(val, vdev->vconfig + pos,
264 min(PCI_CAP_FLAGS, count));
265 else if (offset == PCI_CAP_LIST_NEXT)
266 memcpy(val, vdev->vconfig + pos, 1);
269 return count;
272 /* Raw access skips any kind of virtualization */
273 static int vfio_raw_config_write(struct vfio_pci_core_device *vdev, int pos,
274 int count, struct perm_bits *perm,
275 int offset, __le32 val)
277 int ret;
279 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
280 if (ret)
281 return ret;
283 return count;
286 static int vfio_raw_config_read(struct vfio_pci_core_device *vdev, int pos,
287 int count, struct perm_bits *perm,
288 int offset, __le32 *val)
290 int ret;
292 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
293 if (ret)
294 return ret;
296 return count;
299 /* Virt access uses only virtualization */
300 static int vfio_virt_config_write(struct vfio_pci_core_device *vdev, int pos,
301 int count, struct perm_bits *perm,
302 int offset, __le32 val)
304 memcpy(vdev->vconfig + pos, &val, count);
305 return count;
308 static int vfio_virt_config_read(struct vfio_pci_core_device *vdev, int pos,
309 int count, struct perm_bits *perm,
310 int offset, __le32 *val)
312 memcpy(val, vdev->vconfig + pos, count);
313 return count;
316 /* Default capability regions to read-only, no-virtualization */
317 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
318 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
320 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
321 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
324 * Default unassigned regions to raw read-write access. Some devices
325 * require this to function as they hide registers between the gaps in
326 * config space (be2net). Like MMIO and I/O port registers, we have
327 * to trust the hardware isolation.
329 static struct perm_bits unassigned_perms = {
330 .readfn = vfio_raw_config_read,
331 .writefn = vfio_raw_config_write
334 static struct perm_bits virt_perms = {
335 .readfn = vfio_virt_config_read,
336 .writefn = vfio_virt_config_write
339 static void free_perm_bits(struct perm_bits *perm)
341 kfree(perm->virt);
342 kfree(perm->write);
343 perm->virt = NULL;
344 perm->write = NULL;
347 static int alloc_perm_bits(struct perm_bits *perm, int size)
350 * Round up all permission bits to the next dword, this lets us
351 * ignore whether a read/write exceeds the defined capability
352 * structure. We can do this because:
353 * - Standard config space is already dword aligned
354 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
355 * - Express capabilities defined as dword aligned
357 size = round_up(size, 4);
360 * Zero state is
361 * - All Readable, None Writeable, None Virtualized
363 perm->virt = kzalloc(size, GFP_KERNEL);
364 perm->write = kzalloc(size, GFP_KERNEL);
365 if (!perm->virt || !perm->write) {
366 free_perm_bits(perm);
367 return -ENOMEM;
370 perm->readfn = vfio_default_config_read;
371 perm->writefn = vfio_default_config_write;
373 return 0;
377 * Helper functions for filling in permission tables
379 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
381 p->virt[off] = virt;
382 p->write[off] = write;
385 /* Handle endian-ness - pci and tables are little-endian */
386 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
388 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
389 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
392 /* Handle endian-ness - pci and tables are little-endian */
393 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
395 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
396 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
399 /* Caller should hold memory_lock semaphore */
400 bool __vfio_pci_memory_enabled(struct vfio_pci_core_device *vdev)
402 struct pci_dev *pdev = vdev->pdev;
403 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
406 * Memory region cannot be accessed if device power state is D3.
408 * SR-IOV VF memory enable is handled by the MSE bit in the
409 * PF SR-IOV capability, there's therefore no need to trigger
410 * faults based on the virtual value.
412 return pdev->current_state < PCI_D3hot &&
413 (pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY));
417 * Restore the *real* BARs after we detect a FLR or backdoor reset.
418 * (backdoor = some device specific technique that we didn't catch)
420 static void vfio_bar_restore(struct vfio_pci_core_device *vdev)
422 struct pci_dev *pdev = vdev->pdev;
423 u32 *rbar = vdev->rbar;
424 u16 cmd;
425 int i;
427 if (pdev->is_virtfn)
428 return;
430 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
432 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
433 pci_user_write_config_dword(pdev, i, *rbar);
435 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
437 if (vdev->nointx) {
438 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
439 cmd |= PCI_COMMAND_INTX_DISABLE;
440 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
444 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
446 unsigned long flags = pci_resource_flags(pdev, bar);
447 u32 val;
449 if (flags & IORESOURCE_IO)
450 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
452 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
454 if (flags & IORESOURCE_PREFETCH)
455 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
457 if (flags & IORESOURCE_MEM_64)
458 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
460 return cpu_to_le32(val);
464 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
465 * to reflect the hardware capabilities. This implements BAR sizing.
467 static void vfio_bar_fixup(struct vfio_pci_core_device *vdev)
469 struct pci_dev *pdev = vdev->pdev;
470 int i;
471 __le32 *vbar;
472 u64 mask;
474 if (!vdev->bardirty)
475 return;
477 vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
479 for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
480 int bar = i + PCI_STD_RESOURCES;
482 if (!pci_resource_start(pdev, bar)) {
483 *vbar = 0; /* Unmapped by host = unimplemented to user */
484 continue;
487 mask = ~(pci_resource_len(pdev, bar) - 1);
489 *vbar &= cpu_to_le32((u32)mask);
490 *vbar |= vfio_generate_bar_flags(pdev, bar);
492 if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
493 vbar++;
494 *vbar &= cpu_to_le32((u32)(mask >> 32));
495 i++;
499 vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
502 * NB. REGION_INFO will have reported zero size if we weren't able
503 * to read the ROM, but we still return the actual BAR size here if
504 * it exists (or the shadow ROM space).
506 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
507 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
508 mask |= PCI_ROM_ADDRESS_ENABLE;
509 *vbar &= cpu_to_le32((u32)mask);
510 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
511 IORESOURCE_ROM_SHADOW) {
512 mask = ~(0x20000 - 1);
513 mask |= PCI_ROM_ADDRESS_ENABLE;
514 *vbar &= cpu_to_le32((u32)mask);
515 } else
516 *vbar = 0;
518 vdev->bardirty = false;
521 static int vfio_basic_config_read(struct vfio_pci_core_device *vdev, int pos,
522 int count, struct perm_bits *perm,
523 int offset, __le32 *val)
525 if (is_bar(offset)) /* pos == offset for basic config */
526 vfio_bar_fixup(vdev);
528 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
530 /* Mask in virtual memory enable */
531 if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
532 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
533 u32 tmp_val = le32_to_cpu(*val);
535 tmp_val |= cmd & PCI_COMMAND_MEMORY;
536 *val = cpu_to_le32(tmp_val);
539 return count;
542 /* Test whether BARs match the value we think they should contain */
543 static bool vfio_need_bar_restore(struct vfio_pci_core_device *vdev)
545 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
546 u32 bar;
548 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
549 if (vdev->rbar[i]) {
550 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
551 if (ret || vdev->rbar[i] != bar)
552 return true;
556 return false;
559 static int vfio_basic_config_write(struct vfio_pci_core_device *vdev, int pos,
560 int count, struct perm_bits *perm,
561 int offset, __le32 val)
563 struct pci_dev *pdev = vdev->pdev;
564 __le16 *virt_cmd;
565 u16 new_cmd = 0;
566 int ret;
568 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
570 if (offset == PCI_COMMAND) {
571 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
572 u16 phys_cmd;
574 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
575 if (ret)
576 return ret;
578 new_cmd = le32_to_cpu(val);
580 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
581 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
582 new_io = !!(new_cmd & PCI_COMMAND_IO);
584 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
585 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
586 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
588 if (!new_mem)
589 vfio_pci_zap_and_down_write_memory_lock(vdev);
590 else
591 down_write(&vdev->memory_lock);
594 * If the user is writing mem/io enable (new_mem/io) and we
595 * think it's already enabled (virt_mem/io), but the hardware
596 * shows it disabled (phys_mem/io, then the device has
597 * undergone some kind of backdoor reset and needs to be
598 * restored before we allow it to enable the bars.
599 * SR-IOV devices will trigger this - for mem enable let's
600 * catch this now and for io enable it will be caught later
602 if ((new_mem && virt_mem && !phys_mem &&
603 !pdev->no_command_memory) ||
604 (new_io && virt_io && !phys_io) ||
605 vfio_need_bar_restore(vdev))
606 vfio_bar_restore(vdev);
609 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
610 if (count < 0) {
611 if (offset == PCI_COMMAND)
612 up_write(&vdev->memory_lock);
613 return count;
617 * Save current memory/io enable bits in vconfig to allow for
618 * the test above next time.
620 if (offset == PCI_COMMAND) {
621 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
623 *virt_cmd &= cpu_to_le16(~mask);
624 *virt_cmd |= cpu_to_le16(new_cmd & mask);
626 up_write(&vdev->memory_lock);
629 /* Emulate INTx disable */
630 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
631 bool virt_intx_disable;
633 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
634 PCI_COMMAND_INTX_DISABLE);
636 if (virt_intx_disable && !vdev->virq_disabled) {
637 vdev->virq_disabled = true;
638 vfio_pci_intx_mask(vdev);
639 } else if (!virt_intx_disable && vdev->virq_disabled) {
640 vdev->virq_disabled = false;
641 vfio_pci_intx_unmask(vdev);
645 if (is_bar(offset))
646 vdev->bardirty = true;
648 return count;
651 /* Permissions for the Basic PCI Header */
652 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
654 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
655 return -ENOMEM;
657 perm->readfn = vfio_basic_config_read;
658 perm->writefn = vfio_basic_config_write;
660 /* Virtualized for SR-IOV functions, which just have FFFF */
661 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
662 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
665 * Virtualize INTx disable, we use it internally for interrupt
666 * control and can emulate it for non-PCI 2.3 devices.
668 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
670 /* Virtualize capability list, we might want to skip/disable */
671 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
673 /* No harm to write */
674 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
675 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
676 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
678 /* Virtualize all bars, can't touch the real ones */
679 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
680 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
681 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
682 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
683 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
684 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
685 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
687 /* Allow us to adjust capability chain */
688 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
690 /* Sometimes used by sw, just virtualize */
691 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
693 /* Virtualize interrupt pin to allow hiding INTx */
694 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
696 return 0;
700 * It takes all the required locks to protect the access of power related
701 * variables and then invokes vfio_pci_set_power_state().
703 static void vfio_lock_and_set_power_state(struct vfio_pci_core_device *vdev,
704 pci_power_t state)
706 if (state >= PCI_D3hot)
707 vfio_pci_zap_and_down_write_memory_lock(vdev);
708 else
709 down_write(&vdev->memory_lock);
711 vfio_pci_set_power_state(vdev, state);
712 up_write(&vdev->memory_lock);
715 static int vfio_pm_config_write(struct vfio_pci_core_device *vdev, int pos,
716 int count, struct perm_bits *perm,
717 int offset, __le32 val)
719 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
720 if (count < 0)
721 return count;
723 if (offset == PCI_PM_CTRL) {
724 pci_power_t state;
726 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
727 case 0:
728 state = PCI_D0;
729 break;
730 case 1:
731 state = PCI_D1;
732 break;
733 case 2:
734 state = PCI_D2;
735 break;
736 case 3:
737 state = PCI_D3hot;
738 break;
741 vfio_lock_and_set_power_state(vdev, state);
744 return count;
747 /* Permissions for the Power Management capability */
748 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
750 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
751 return -ENOMEM;
753 perm->writefn = vfio_pm_config_write;
756 * We always virtualize the next field so we can remove
757 * capabilities from the chain if we want to.
759 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
762 * The guests can't process PME events. If any PME event will be
763 * generated, then it will be mostly handled in the host and the
764 * host will clear the PME_STATUS. So virtualize PME_Support bits.
765 * The vconfig bits will be cleared during device capability
766 * initialization.
768 p_setw(perm, PCI_PM_PMC, PCI_PM_CAP_PME_MASK, NO_WRITE);
771 * Power management is defined *per function*, so we can let
772 * the user change power state, but we trap and initiate the
773 * change ourselves, so the state bits are read-only.
775 * The guest can't process PME from D3cold so virtualize PME_Status
776 * and PME_En bits. The vconfig bits will be cleared during device
777 * capability initialization.
779 p_setd(perm, PCI_PM_CTRL,
780 PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS,
781 ~(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS |
782 PCI_PM_CTRL_STATE_MASK));
784 return 0;
787 static int vfio_vpd_config_write(struct vfio_pci_core_device *vdev, int pos,
788 int count, struct perm_bits *perm,
789 int offset, __le32 val)
791 struct pci_dev *pdev = vdev->pdev;
792 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
793 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
794 u16 addr;
795 u32 data;
798 * Write through to emulation. If the write includes the upper byte
799 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
800 * have work to do.
802 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
803 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
804 offset + count <= PCI_VPD_ADDR + 1)
805 return count;
807 addr = le16_to_cpu(*paddr);
809 if (addr & PCI_VPD_ADDR_F) {
810 data = le32_to_cpu(*pdata);
811 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
812 return count;
813 } else {
814 data = 0;
815 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
816 return count;
817 *pdata = cpu_to_le32(data);
821 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
822 * signal completion. If an error occurs above, we assume that not
823 * toggling this bit will induce a driver timeout.
825 addr ^= PCI_VPD_ADDR_F;
826 *paddr = cpu_to_le16(addr);
828 return count;
831 /* Permissions for Vital Product Data capability */
832 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
834 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
835 return -ENOMEM;
837 perm->writefn = vfio_vpd_config_write;
840 * We always virtualize the next field so we can remove
841 * capabilities from the chain if we want to.
843 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
846 * Both the address and data registers are virtualized to
847 * enable access through the pci_vpd_read/write functions
849 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
850 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
852 return 0;
855 /* Permissions for PCI-X capability */
856 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
858 /* Alloc 24, but only 8 are used in v0 */
859 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
860 return -ENOMEM;
862 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
864 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
865 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
866 return 0;
869 static int vfio_exp_config_write(struct vfio_pci_core_device *vdev, int pos,
870 int count, struct perm_bits *perm,
871 int offset, __le32 val)
873 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
874 offset + PCI_EXP_DEVCTL);
875 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
877 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
878 if (count < 0)
879 return count;
882 * The FLR bit is virtualized, if set and the device supports PCIe
883 * FLR, issue a reset_function. Regardless, clear the bit, the spec
884 * requires it to be always read as zero. NB, reset_function might
885 * not use a PCIe FLR, we don't have that level of granularity.
887 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
888 u32 cap;
889 int ret;
891 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
893 ret = pci_user_read_config_dword(vdev->pdev,
894 pos - offset + PCI_EXP_DEVCAP,
895 &cap);
897 if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
898 vfio_pci_zap_and_down_write_memory_lock(vdev);
899 pci_try_reset_function(vdev->pdev);
900 up_write(&vdev->memory_lock);
905 * MPS is virtualized to the user, writes do not change the physical
906 * register since determining a proper MPS value requires a system wide
907 * device view. The MRRS is largely independent of MPS, but since the
908 * user does not have that system-wide view, they might set a safe, but
909 * inefficiently low value. Here we allow writes through to hardware,
910 * but we set the floor to the physical device MPS setting, so that
911 * we can at least use full TLPs, as defined by the MPS value.
913 * NB, if any devices actually depend on an artificially low MRRS
914 * setting, this will need to be revisited, perhaps with a quirk
915 * though pcie_set_readrq().
917 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
918 readrq = 128 <<
919 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
920 readrq = max(readrq, pcie_get_mps(vdev->pdev));
922 pcie_set_readrq(vdev->pdev, readrq);
925 return count;
928 /* Permissions for PCI Express capability */
929 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
931 /* Alloc largest of possible sizes */
932 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
933 return -ENOMEM;
935 perm->writefn = vfio_exp_config_write;
937 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
940 * Allow writes to device control fields, except devctl_phantom,
941 * which could confuse IOMMU, MPS, which can break communication
942 * with other physical devices, and the ARI bit in devctl2, which
943 * is set at probe time. FLR and MRRS get virtualized via our
944 * writefn.
946 p_setw(perm, PCI_EXP_DEVCTL,
947 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
948 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
949 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
950 return 0;
953 static int vfio_af_config_write(struct vfio_pci_core_device *vdev, int pos,
954 int count, struct perm_bits *perm,
955 int offset, __le32 val)
957 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
959 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
960 if (count < 0)
961 return count;
964 * The FLR bit is virtualized, if set and the device supports AF
965 * FLR, issue a reset_function. Regardless, clear the bit, the spec
966 * requires it to be always read as zero. NB, reset_function might
967 * not use an AF FLR, we don't have that level of granularity.
969 if (*ctrl & PCI_AF_CTRL_FLR) {
970 u8 cap;
971 int ret;
973 *ctrl &= ~PCI_AF_CTRL_FLR;
975 ret = pci_user_read_config_byte(vdev->pdev,
976 pos - offset + PCI_AF_CAP,
977 &cap);
979 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
980 vfio_pci_zap_and_down_write_memory_lock(vdev);
981 pci_try_reset_function(vdev->pdev);
982 up_write(&vdev->memory_lock);
986 return count;
989 /* Permissions for Advanced Function capability */
990 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
992 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
993 return -ENOMEM;
995 perm->writefn = vfio_af_config_write;
997 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
998 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
999 return 0;
1002 /* Permissions for Advanced Error Reporting extended capability */
1003 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
1005 u32 mask;
1007 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
1008 return -ENOMEM;
1011 * Virtualize the first dword of all express capabilities
1012 * because it includes the next pointer. This lets us later
1013 * remove capabilities from the chain if we need to.
1015 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1017 /* Writable bits mask */
1018 mask = PCI_ERR_UNC_UND | /* Undefined */
1019 PCI_ERR_UNC_DLP | /* Data Link Protocol */
1020 PCI_ERR_UNC_SURPDN | /* Surprise Down */
1021 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
1022 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
1023 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
1024 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
1025 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
1026 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
1027 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
1028 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
1029 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
1030 PCI_ERR_UNC_ACSV | /* ACS Violation */
1031 PCI_ERR_UNC_INTN | /* internal error */
1032 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
1033 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
1034 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
1035 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
1036 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1037 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1039 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
1040 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
1041 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
1042 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
1043 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
1044 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
1045 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
1046 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
1047 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1048 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1050 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
1051 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
1052 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1053 return 0;
1056 /* Permissions for Power Budgeting extended capability */
1057 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1059 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1060 return -ENOMEM;
1062 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1064 /* Writing the data selector is OK, the info is still read-only */
1065 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1066 return 0;
1070 * Initialize the shared permission tables
1072 void vfio_pci_uninit_perm_bits(void)
1074 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1076 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1077 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1078 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1079 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1080 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1082 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1083 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1086 int __init vfio_pci_init_perm_bits(void)
1088 int ret;
1090 /* Basic config space */
1091 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1093 /* Capabilities */
1094 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1095 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1096 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1097 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1098 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1099 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1101 /* Extended capabilities */
1102 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1103 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1104 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1105 ecap_perms[PCI_EXT_CAP_ID_DVSEC].writefn = vfio_raw_config_write;
1107 if (ret)
1108 vfio_pci_uninit_perm_bits();
1110 return ret;
1113 static int vfio_find_cap_start(struct vfio_pci_core_device *vdev, int pos)
1115 u8 cap;
1116 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1117 PCI_STD_HEADER_SIZEOF;
1118 cap = vdev->pci_config_map[pos];
1120 if (cap == PCI_CAP_ID_BASIC)
1121 return 0;
1123 /* XXX Can we have to abutting capabilities of the same type? */
1124 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1125 pos--;
1127 return pos;
1130 static int vfio_msi_config_read(struct vfio_pci_core_device *vdev, int pos,
1131 int count, struct perm_bits *perm,
1132 int offset, __le32 *val)
1134 /* Update max available queue size from msi_qmax */
1135 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1136 __le16 *flags;
1137 int start;
1139 start = vfio_find_cap_start(vdev, pos);
1141 flags = (__le16 *)&vdev->vconfig[start];
1143 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1144 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1147 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1150 static int vfio_msi_config_write(struct vfio_pci_core_device *vdev, int pos,
1151 int count, struct perm_bits *perm,
1152 int offset, __le32 val)
1154 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1155 if (count < 0)
1156 return count;
1158 /* Fixup and write configured queue size and enable to hardware */
1159 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1160 __le16 *pflags;
1161 u16 flags;
1162 int start, ret;
1164 start = vfio_find_cap_start(vdev, pos);
1166 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1168 flags = le16_to_cpu(*pflags);
1170 /* MSI is enabled via ioctl */
1171 if (vdev->irq_type != VFIO_PCI_MSI_IRQ_INDEX)
1172 flags &= ~PCI_MSI_FLAGS_ENABLE;
1174 /* Check queue size */
1175 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1176 flags &= ~PCI_MSI_FLAGS_QSIZE;
1177 flags |= vdev->msi_qmax << 4;
1180 /* Write back to virt and to hardware */
1181 *pflags = cpu_to_le16(flags);
1182 ret = pci_user_write_config_word(vdev->pdev,
1183 start + PCI_MSI_FLAGS,
1184 flags);
1185 if (ret)
1186 return ret;
1189 return count;
1193 * MSI determination is per-device, so this routine gets used beyond
1194 * initialization time. Don't add __init
1196 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1198 if (alloc_perm_bits(perm, len))
1199 return -ENOMEM;
1201 perm->readfn = vfio_msi_config_read;
1202 perm->writefn = vfio_msi_config_write;
1204 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1207 * The upper byte of the control register is reserved,
1208 * just setup the lower byte.
1210 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1211 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1212 if (flags & PCI_MSI_FLAGS_64BIT) {
1213 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1214 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1215 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1216 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1217 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1219 } else {
1220 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1221 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1222 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1223 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1226 return 0;
1229 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1230 static int vfio_msi_cap_len(struct vfio_pci_core_device *vdev, u8 pos)
1232 struct pci_dev *pdev = vdev->pdev;
1233 int len, ret;
1234 u16 flags;
1236 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1237 if (ret)
1238 return pcibios_err_to_errno(ret);
1240 len = 10; /* Minimum size */
1241 if (flags & PCI_MSI_FLAGS_64BIT)
1242 len += 4;
1243 if (flags & PCI_MSI_FLAGS_MASKBIT)
1244 len += 10;
1246 if (vdev->msi_perm)
1247 return len;
1249 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL_ACCOUNT);
1250 if (!vdev->msi_perm)
1251 return -ENOMEM;
1253 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1254 if (ret) {
1255 kfree(vdev->msi_perm);
1256 return ret;
1259 return len;
1262 /* Determine extended capability length for VC (2 & 9) and MFVC */
1263 static int vfio_vc_cap_len(struct vfio_pci_core_device *vdev, u16 pos)
1265 struct pci_dev *pdev = vdev->pdev;
1266 u32 tmp;
1267 int ret, evcc, phases, vc_arb;
1268 int len = PCI_CAP_VC_BASE_SIZEOF;
1270 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1271 if (ret)
1272 return pcibios_err_to_errno(ret);
1274 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1275 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1276 if (ret)
1277 return pcibios_err_to_errno(ret);
1279 if (tmp & PCI_VC_CAP2_128_PHASE)
1280 phases = 128;
1281 else if (tmp & PCI_VC_CAP2_64_PHASE)
1282 phases = 64;
1283 else if (tmp & PCI_VC_CAP2_32_PHASE)
1284 phases = 32;
1285 else
1286 phases = 0;
1288 vc_arb = phases * 4;
1291 * Port arbitration tables are root & switch only;
1292 * function arbitration tables are function 0 only.
1293 * In either case, we'll never let user write them so
1294 * we don't care how big they are
1296 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1297 if (vc_arb) {
1298 len = round_up(len, 16);
1299 len += vc_arb / 8;
1301 return len;
1304 static int vfio_cap_len(struct vfio_pci_core_device *vdev, u8 cap, u8 pos)
1306 struct pci_dev *pdev = vdev->pdev;
1307 u32 dword;
1308 u16 word;
1309 u8 byte;
1310 int ret;
1312 switch (cap) {
1313 case PCI_CAP_ID_MSI:
1314 return vfio_msi_cap_len(vdev, pos);
1315 case PCI_CAP_ID_PCIX:
1316 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1317 if (ret)
1318 return pcibios_err_to_errno(ret);
1320 if (PCI_X_CMD_VERSION(word)) {
1321 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1322 /* Test for extended capabilities */
1323 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1324 &dword);
1325 vdev->extended_caps = (dword != 0);
1327 return PCI_CAP_PCIX_SIZEOF_V2;
1328 } else
1329 return PCI_CAP_PCIX_SIZEOF_V0;
1330 case PCI_CAP_ID_VNDR:
1331 /* length follows next field */
1332 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1333 if (ret)
1334 return pcibios_err_to_errno(ret);
1336 return byte;
1337 case PCI_CAP_ID_EXP:
1338 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1339 /* Test for extended capabilities */
1340 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1341 vdev->extended_caps = (dword != 0);
1344 /* length based on version and type */
1345 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1346 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1347 return 0xc; /* "All Devices" only, no link */
1348 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1349 } else {
1350 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1351 return 0x2c; /* No link */
1352 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1354 case PCI_CAP_ID_HT:
1355 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1356 if (ret)
1357 return pcibios_err_to_errno(ret);
1359 return (byte & HT_3BIT_CAP_MASK) ?
1360 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1361 case PCI_CAP_ID_SATA:
1362 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1363 if (ret)
1364 return pcibios_err_to_errno(ret);
1366 byte &= PCI_SATA_REGS_MASK;
1367 if (byte == PCI_SATA_REGS_INLINE)
1368 return PCI_SATA_SIZEOF_LONG;
1369 else
1370 return PCI_SATA_SIZEOF_SHORT;
1371 default:
1372 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1373 __func__, cap, pos);
1376 return 0;
1379 static int vfio_ext_cap_len(struct vfio_pci_core_device *vdev, u16 ecap, u16 epos)
1381 struct pci_dev *pdev = vdev->pdev;
1382 u8 byte;
1383 u32 dword;
1384 int ret;
1386 switch (ecap) {
1387 case PCI_EXT_CAP_ID_VNDR:
1388 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1389 if (ret)
1390 return pcibios_err_to_errno(ret);
1392 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1393 case PCI_EXT_CAP_ID_VC:
1394 case PCI_EXT_CAP_ID_VC9:
1395 case PCI_EXT_CAP_ID_MFVC:
1396 return vfio_vc_cap_len(vdev, epos);
1397 case PCI_EXT_CAP_ID_ACS:
1398 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1399 if (ret)
1400 return pcibios_err_to_errno(ret);
1402 if (byte & PCI_ACS_EC) {
1403 int bits;
1405 ret = pci_read_config_byte(pdev,
1406 epos + PCI_ACS_EGRESS_BITS,
1407 &byte);
1408 if (ret)
1409 return pcibios_err_to_errno(ret);
1411 bits = byte ? round_up(byte, 32) : 256;
1412 return 8 + (bits / 8);
1414 return 8;
1416 case PCI_EXT_CAP_ID_REBAR:
1417 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1418 if (ret)
1419 return pcibios_err_to_errno(ret);
1421 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1422 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1424 return 4 + (byte * 8);
1425 case PCI_EXT_CAP_ID_DPA:
1426 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1427 if (ret)
1428 return pcibios_err_to_errno(ret);
1430 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1431 return PCI_DPA_BASE_SIZEOF + byte + 1;
1432 case PCI_EXT_CAP_ID_TPH:
1433 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1434 if (ret)
1435 return pcibios_err_to_errno(ret);
1437 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1438 int sts;
1440 sts = dword & PCI_TPH_CAP_ST_MASK;
1441 sts >>= PCI_TPH_CAP_ST_SHIFT;
1442 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1444 return PCI_TPH_BASE_SIZEOF;
1445 case PCI_EXT_CAP_ID_DVSEC:
1446 ret = pci_read_config_dword(pdev, epos + PCI_DVSEC_HEADER1, &dword);
1447 if (ret)
1448 return pcibios_err_to_errno(ret);
1449 return PCI_DVSEC_HEADER1_LEN(dword);
1450 default:
1451 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1452 __func__, ecap, epos);
1455 return 0;
1458 static void vfio_update_pm_vconfig_bytes(struct vfio_pci_core_device *vdev,
1459 int offset)
1461 __le16 *pmc = (__le16 *)&vdev->vconfig[offset + PCI_PM_PMC];
1462 __le16 *ctrl = (__le16 *)&vdev->vconfig[offset + PCI_PM_CTRL];
1464 /* Clear vconfig PME_Support, PME_Status, and PME_En bits */
1465 *pmc &= ~cpu_to_le16(PCI_PM_CAP_PME_MASK);
1466 *ctrl &= ~cpu_to_le16(PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS);
1469 static int vfio_fill_vconfig_bytes(struct vfio_pci_core_device *vdev,
1470 int offset, int size)
1472 struct pci_dev *pdev = vdev->pdev;
1473 int ret = 0;
1476 * We try to read physical config space in the largest chunks
1477 * we can, assuming that all of the fields support dword access.
1478 * pci_save_state() makes this same assumption and seems to do ok.
1480 while (size) {
1481 int filled;
1483 if (size >= 4 && !(offset % 4)) {
1484 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1485 u32 dword;
1487 ret = pci_read_config_dword(pdev, offset, &dword);
1488 if (ret)
1489 return ret;
1490 *dwordp = cpu_to_le32(dword);
1491 filled = 4;
1492 } else if (size >= 2 && !(offset % 2)) {
1493 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1494 u16 word;
1496 ret = pci_read_config_word(pdev, offset, &word);
1497 if (ret)
1498 return ret;
1499 *wordp = cpu_to_le16(word);
1500 filled = 2;
1501 } else {
1502 u8 *byte = &vdev->vconfig[offset];
1503 ret = pci_read_config_byte(pdev, offset, byte);
1504 if (ret)
1505 return ret;
1506 filled = 1;
1509 offset += filled;
1510 size -= filled;
1513 return ret;
1516 static int vfio_cap_init(struct vfio_pci_core_device *vdev)
1518 struct pci_dev *pdev = vdev->pdev;
1519 u8 *map = vdev->pci_config_map;
1520 u16 status;
1521 u8 pos, *prev, cap;
1522 int loops, ret, caps = 0;
1524 /* Any capabilities? */
1525 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1526 if (ret)
1527 return ret;
1529 if (!(status & PCI_STATUS_CAP_LIST))
1530 return 0; /* Done */
1532 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1533 if (ret)
1534 return ret;
1536 /* Mark the previous position in case we want to skip a capability */
1537 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1539 /* We can bound our loop, capabilities are dword aligned */
1540 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1541 while (pos && loops--) {
1542 u8 next;
1543 int i, len = 0;
1545 ret = pci_read_config_byte(pdev, pos, &cap);
1546 if (ret)
1547 return ret;
1549 ret = pci_read_config_byte(pdev,
1550 pos + PCI_CAP_LIST_NEXT, &next);
1551 if (ret)
1552 return ret;
1555 * ID 0 is a NULL capability, conflicting with our fake
1556 * PCI_CAP_ID_BASIC. As it has no content, consider it
1557 * hidden for now.
1559 if (cap && cap <= PCI_CAP_ID_MAX) {
1560 len = pci_cap_length[cap];
1561 if (len == 0xFF) { /* Variable length */
1562 len = vfio_cap_len(vdev, cap, pos);
1563 if (len < 0)
1564 return len;
1568 if (!len) {
1569 pci_dbg(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1570 cap, pos);
1571 *prev = next;
1572 pos = next;
1573 continue;
1576 /* Sanity check, do we overlap other capabilities? */
1577 for (i = 0; i < len; i++) {
1578 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1579 continue;
1581 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1582 __func__, pos + i, map[pos + i], cap);
1585 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1587 memset(map + pos, cap, len);
1588 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1589 if (ret)
1590 return ret;
1592 if (cap == PCI_CAP_ID_PM)
1593 vfio_update_pm_vconfig_bytes(vdev, pos);
1595 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1596 pos = next;
1597 caps++;
1600 /* If we didn't fill any capabilities, clear the status flag */
1601 if (!caps) {
1602 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1603 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1606 return 0;
1609 static int vfio_ecap_init(struct vfio_pci_core_device *vdev)
1611 struct pci_dev *pdev = vdev->pdev;
1612 u8 *map = vdev->pci_config_map;
1613 u16 epos;
1614 __le32 *prev = NULL;
1615 int loops, ret, ecaps = 0;
1617 if (!vdev->extended_caps)
1618 return 0;
1620 epos = PCI_CFG_SPACE_SIZE;
1622 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1624 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1625 u32 header;
1626 u16 ecap;
1627 int i, len = 0;
1628 bool hidden = false;
1630 ret = pci_read_config_dword(pdev, epos, &header);
1631 if (ret)
1632 return ret;
1634 ecap = PCI_EXT_CAP_ID(header);
1636 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1637 len = pci_ext_cap_length[ecap];
1638 if (len == 0xFF) {
1639 len = vfio_ext_cap_len(vdev, ecap, epos);
1640 if (len < 0)
1641 return len;
1645 if (!len) {
1646 pci_dbg(pdev, "%s: hiding ecap %#x@%#x\n",
1647 __func__, ecap, epos);
1649 /* If not the first in the chain, we can skip over it */
1650 if (prev) {
1651 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1652 *prev &= cpu_to_le32(~(0xffcU << 20));
1653 *prev |= cpu_to_le32(val << 20);
1654 continue;
1658 * Otherwise, fill in a placeholder, the direct
1659 * readfn will virtualize this automatically
1661 len = PCI_CAP_SIZEOF;
1662 hidden = true;
1665 for (i = 0; i < len; i++) {
1666 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1667 continue;
1669 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1670 __func__, epos + i, map[epos + i], ecap);
1674 * Even though ecap is 2 bytes, we're currently a long way
1675 * from exceeding 1 byte capabilities. If we ever make it
1676 * up to 0xFE we'll need to up this to a two-byte, byte map.
1678 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1680 memset(map + epos, ecap, len);
1681 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1682 if (ret)
1683 return ret;
1686 * If we're just using this capability to anchor the list,
1687 * hide the real ID. Only count real ecaps. XXX PCI spec
1688 * indicates to use cap id = 0, version = 0, next = 0 if
1689 * ecaps are absent, hope users check all the way to next.
1691 if (hidden)
1692 *(__le32 *)&vdev->vconfig[epos] &=
1693 cpu_to_le32((0xffcU << 20));
1694 else
1695 ecaps++;
1697 prev = (__le32 *)&vdev->vconfig[epos];
1698 epos = PCI_EXT_CAP_NEXT(header);
1701 if (!ecaps)
1702 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1704 return 0;
1708 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1709 * to collect a list of dependencies for the VF INTx pin quirk below.
1711 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1712 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1717 * For each device we allocate a pci_config_map that indicates the
1718 * capability occupying each dword and thus the struct perm_bits we
1719 * use for read and write. We also allocate a virtualized config
1720 * space which tracks reads and writes to bits that we emulate for
1721 * the user. Initial values filled from device.
1723 * Using shared struct perm_bits between all vfio-pci devices saves
1724 * us from allocating cfg_size buffers for virt and write for every
1725 * device. We could remove vconfig and allocate individual buffers
1726 * for each area requiring emulated bits, but the array of pointers
1727 * would be comparable in size (at least for standard config space).
1729 int vfio_config_init(struct vfio_pci_core_device *vdev)
1731 struct pci_dev *pdev = vdev->pdev;
1732 u8 *map, *vconfig;
1733 int ret;
1736 * Config space, caps and ecaps are all dword aligned, so we could
1737 * use one byte per dword to record the type. However, there are
1738 * no requirements on the length of a capability, so the gap between
1739 * capabilities needs byte granularity.
1741 map = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1742 if (!map)
1743 return -ENOMEM;
1745 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL_ACCOUNT);
1746 if (!vconfig) {
1747 kfree(map);
1748 return -ENOMEM;
1751 vdev->pci_config_map = map;
1752 vdev->vconfig = vconfig;
1754 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1755 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1756 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1758 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1759 if (ret)
1760 goto out;
1762 vdev->bardirty = true;
1765 * XXX can we just pci_load_saved_state/pci_restore_state?
1766 * may need to rebuild vconfig after that
1769 /* For restore after reset */
1770 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1771 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1772 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1773 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1774 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1775 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1776 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1778 if (pdev->is_virtfn) {
1779 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1780 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1783 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1784 * does not apply to VFs and VFs must implement this register
1785 * as read-only with value zero. Userspace is not readily able
1786 * to identify whether a device is a VF and thus that the pin
1787 * definition on the device is bogus should it violate this
1788 * requirement. We already virtualize the pin register for
1789 * other purposes, so we simply need to replace the bogus value
1790 * and consider VFs when we determine INTx IRQ count.
1792 if (vconfig[PCI_INTERRUPT_PIN] &&
1793 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1794 pci_warn(pdev,
1795 "Hardware bug: VF reports bogus INTx pin %d\n",
1796 vconfig[PCI_INTERRUPT_PIN]);
1798 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1800 if (pdev->no_command_memory) {
1802 * VFs and devices that set pdev->no_command_memory do not
1803 * implement the memory enable bit of the COMMAND register
1804 * therefore we'll not have it set in our initial copy of
1805 * config space after pci_enable_device(). For consistency
1806 * with PFs, set the virtual enable bit here.
1808 *(__le16 *)&vconfig[PCI_COMMAND] |=
1809 cpu_to_le16(PCI_COMMAND_MEMORY);
1812 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1813 vconfig[PCI_INTERRUPT_PIN] = 0;
1815 ret = vfio_cap_init(vdev);
1816 if (ret)
1817 goto out;
1819 ret = vfio_ecap_init(vdev);
1820 if (ret)
1821 goto out;
1823 return 0;
1825 out:
1826 kfree(map);
1827 vdev->pci_config_map = NULL;
1828 kfree(vconfig);
1829 vdev->vconfig = NULL;
1830 return pcibios_err_to_errno(ret);
1833 void vfio_config_free(struct vfio_pci_core_device *vdev)
1835 kfree(vdev->vconfig);
1836 vdev->vconfig = NULL;
1837 kfree(vdev->pci_config_map);
1838 vdev->pci_config_map = NULL;
1839 if (vdev->msi_perm) {
1840 free_perm_bits(vdev->msi_perm);
1841 kfree(vdev->msi_perm);
1842 vdev->msi_perm = NULL;
1847 * Find the remaining number of bytes in a dword that match the given
1848 * position. Stop at either the end of the capability or the dword boundary.
1850 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_core_device *vdev,
1851 loff_t pos)
1853 u8 cap = vdev->pci_config_map[pos];
1854 size_t i;
1856 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1857 /* nop */;
1859 return i;
1862 static ssize_t vfio_config_do_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1863 size_t count, loff_t *ppos, bool iswrite)
1865 struct pci_dev *pdev = vdev->pdev;
1866 struct perm_bits *perm;
1867 __le32 val = 0;
1868 int cap_start = 0, offset;
1869 u8 cap_id;
1870 ssize_t ret;
1872 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1873 *ppos + count > pdev->cfg_size)
1874 return -EFAULT;
1877 * Chop accesses into aligned chunks containing no more than a
1878 * single capability. Caller increments to the next chunk.
1880 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1881 if (count >= 4 && !(*ppos % 4))
1882 count = 4;
1883 else if (count >= 2 && !(*ppos % 2))
1884 count = 2;
1885 else
1886 count = 1;
1888 ret = count;
1890 cap_id = vdev->pci_config_map[*ppos];
1892 if (cap_id == PCI_CAP_ID_INVALID) {
1893 perm = &unassigned_perms;
1894 cap_start = *ppos;
1895 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1896 perm = &virt_perms;
1897 cap_start = *ppos;
1898 } else {
1899 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1900 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1902 perm = &ecap_perms[cap_id];
1903 cap_start = vfio_find_cap_start(vdev, *ppos);
1904 } else {
1905 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1907 perm = &cap_perms[cap_id];
1909 if (cap_id == PCI_CAP_ID_MSI)
1910 perm = vdev->msi_perm;
1912 if (cap_id > PCI_CAP_ID_BASIC)
1913 cap_start = vfio_find_cap_start(vdev, *ppos);
1917 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1918 WARN_ON(cap_start > *ppos);
1920 offset = *ppos - cap_start;
1922 if (iswrite) {
1923 if (!perm->writefn)
1924 return ret;
1926 if (copy_from_user(&val, buf, count))
1927 return -EFAULT;
1929 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1930 } else {
1931 if (perm->readfn) {
1932 ret = perm->readfn(vdev, *ppos, count,
1933 perm, offset, &val);
1934 if (ret < 0)
1935 return ret;
1938 if (copy_to_user(buf, &val, count))
1939 return -EFAULT;
1942 return ret;
1945 ssize_t vfio_pci_config_rw(struct vfio_pci_core_device *vdev, char __user *buf,
1946 size_t count, loff_t *ppos, bool iswrite)
1948 size_t done = 0;
1949 int ret = 0;
1950 loff_t pos = *ppos;
1952 pos &= VFIO_PCI_OFFSET_MASK;
1954 while (count) {
1955 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1956 if (ret < 0)
1957 return ret;
1959 count -= ret;
1960 done += ret;
1961 buf += ret;
1962 pos += ret;
1965 *ppos += done;
1967 return done;
1971 * vfio_pci_core_range_intersect_range() - Determine overlap between a buffer
1972 * and register offset ranges.
1973 * @buf_start: start offset of the buffer
1974 * @buf_cnt: number of buffer bytes
1975 * @reg_start: start register offset
1976 * @reg_cnt: number of register bytes
1977 * @buf_offset: start offset of overlap in the buffer
1978 * @intersect_count: number of overlapping bytes
1979 * @register_offset: start offset of overlap in register
1981 * Returns: true if there is overlap, false if not.
1982 * The overlap start and size is returned through function args.
1984 bool vfio_pci_core_range_intersect_range(loff_t buf_start, size_t buf_cnt,
1985 loff_t reg_start, size_t reg_cnt,
1986 loff_t *buf_offset,
1987 size_t *intersect_count,
1988 size_t *register_offset)
1990 if (buf_start <= reg_start &&
1991 buf_start + buf_cnt > reg_start) {
1992 *buf_offset = reg_start - buf_start;
1993 *intersect_count = min_t(size_t, reg_cnt,
1994 buf_start + buf_cnt - reg_start);
1995 *register_offset = 0;
1996 return true;
1999 if (buf_start > reg_start &&
2000 buf_start < reg_start + reg_cnt) {
2001 *buf_offset = 0;
2002 *intersect_count = min_t(size_t, buf_cnt,
2003 reg_start + reg_cnt - buf_start);
2004 *register_offset = buf_start - reg_start;
2005 return true;
2008 return false;
2010 EXPORT_SYMBOL_GPL(vfio_pci_core_range_intersect_range);