1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright (C) 2007 Oracle. All rights reserved.
9 #include "linux/cleanup.h"
10 #include <linux/pagemap.h>
11 #include <linux/spinlock.h>
12 #include <linux/rbtree.h>
13 #include <linux/mutex.h>
14 #include <linux/wait.h>
15 #include <linux/list.h>
16 #include <linux/atomic.h>
17 #include <linux/xarray.h>
18 #include <linux/refcount.h>
19 #include <uapi/linux/btrfs_tree.h>
22 #include "accessors.h"
23 #include "extent-io-tree.h"
26 struct btrfs_block_rsv
;
27 struct btrfs_trans_handle
;
28 struct btrfs_block_group
;
30 /* Read ahead values for struct btrfs_path.reada */
36 * Similar to READA_FORWARD but unlike it:
38 * 1) It will trigger readahead even for leaves that are not close to
40 * 2) It also triggers readahead for nodes;
41 * 3) During a search, even when a node or leaf is already in memory, it
42 * will still trigger readahead for other nodes and leaves that follow
45 * This is meant to be used only when we know we are iterating over the
46 * entire tree or a very large part of it.
52 * btrfs_paths remember the path taken from the root down to the leaf.
53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
54 * to any other levels that are present.
56 * The slots array records the index of the item or block pointer
57 * used while walking the tree.
60 struct extent_buffer
*nodes
[BTRFS_MAX_LEVEL
];
61 int slots
[BTRFS_MAX_LEVEL
];
62 /* if there is real range locking, this locks field will change */
63 u8 locks
[BTRFS_MAX_LEVEL
];
65 /* keep some upper locks as we walk down */
69 * set by btrfs_split_item, tells search_slot to keep all locks
70 * and to force calls to keep space in the nodes
72 unsigned int search_for_split
:1;
73 unsigned int keep_locks
:1;
74 unsigned int skip_locking
:1;
75 unsigned int search_commit_root
:1;
76 unsigned int need_commit_sem
:1;
77 unsigned int skip_release_on_error
:1;
79 * Indicate that new item (btrfs_search_slot) is extending already
80 * existing item and ins_len contains only the data size and not item
81 * header (ie. sizeof(struct btrfs_item) is not included).
83 unsigned int search_for_extension
:1;
84 /* Stop search if any locks need to be taken (for read) */
85 unsigned int nowait
:1;
88 #define BTRFS_PATH_AUTO_FREE(path_name) \
89 struct btrfs_path *path_name __free(btrfs_free_path) = NULL
92 * The state of btrfs root
96 * btrfs_record_root_in_trans is a multi-step process, and it can race
97 * with the balancing code. But the race is very small, and only the
98 * first time the root is added to each transaction. So IN_TRANS_SETUP
99 * is used to tell us when more checks are required
101 BTRFS_ROOT_IN_TRANS_SETUP
,
104 * Set if tree blocks of this root can be shared by other roots.
105 * Only subvolume trees and their reloc trees have this bit set.
106 * Conflicts with TRACK_DIRTY bit.
108 * This affects two things:
110 * - How balance works
111 * For shareable roots, we need to use reloc tree and do path
112 * replacement for balance, and need various pre/post hooks for
113 * snapshot creation to handle them.
115 * While for non-shareable trees, we just simply do a tree search
118 * - How dirty roots are tracked
119 * For shareable roots, btrfs_record_root_in_trans() is needed to
120 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
121 * don't need to set this manually.
123 BTRFS_ROOT_SHAREABLE
,
124 BTRFS_ROOT_TRACK_DIRTY
,
126 BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
127 BTRFS_ROOT_DEFRAG_RUNNING
,
128 BTRFS_ROOT_FORCE_COW
,
129 BTRFS_ROOT_MULTI_LOG_TASKS
,
134 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
136 * Set for the subvolume tree owning the reloc tree.
138 BTRFS_ROOT_DEAD_RELOC_TREE
,
139 /* Mark dead root stored on device whose cleanup needs to be resumed */
140 BTRFS_ROOT_DEAD_TREE
,
141 /* The root has a log tree. Used for subvolume roots and the tree root. */
142 BTRFS_ROOT_HAS_LOG_TREE
,
143 /* Qgroup flushing is in progress */
144 BTRFS_ROOT_QGROUP_FLUSHING
,
145 /* We started the orphan cleanup for this root. */
146 BTRFS_ROOT_ORPHAN_CLEANUP
,
147 /* This root has a drop operation that was started previously. */
148 BTRFS_ROOT_UNFINISHED_DROP
,
149 /* This reloc root needs to have its buffers lockdep class reset. */
150 BTRFS_ROOT_RESET_LOCKDEP_CLASS
,
154 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
155 * code. For detail check comment in fs/btrfs/qgroup.c.
157 struct btrfs_qgroup_swapped_blocks
{
159 /* RM_EMPTY_ROOT() of above blocks[] */
161 struct rb_root blocks
[BTRFS_MAX_LEVEL
];
165 * in ram representation of the tree. extent_root is used for all allocations
166 * and for the extent tree extent_root root.
169 struct rb_node rb_node
;
171 struct extent_buffer
*node
;
173 struct extent_buffer
*commit_root
;
174 struct btrfs_root
*log_root
;
175 struct btrfs_root
*reloc_root
;
178 struct btrfs_root_item root_item
;
179 struct btrfs_key root_key
;
180 struct btrfs_fs_info
*fs_info
;
181 struct extent_io_tree dirty_log_pages
;
183 struct mutex objectid_mutex
;
185 spinlock_t accounting_lock
;
186 struct btrfs_block_rsv
*block_rsv
;
188 struct mutex log_mutex
;
189 wait_queue_head_t log_writer_wait
;
190 wait_queue_head_t log_commit_wait
[2];
191 struct list_head log_ctxs
[2];
192 /* Used only for log trees of subvolumes, not for the log root tree */
193 atomic_t log_writers
;
194 atomic_t log_commit
[2];
195 /* Used only for log trees of subvolumes, not for the log root tree */
198 * Protected by the 'log_mutex' lock but can be read without holding
199 * that lock to avoid unnecessary lock contention, in which case it
200 * should be read using btrfs_get_root_log_transid() except if it's a
201 * log tree in which case it can be directly accessed. Updates to this
202 * field should always use btrfs_set_root_log_transid(), except for log
203 * trees where the field can be updated directly.
206 /* No matter the commit succeeds or not*/
207 int log_transid_committed
;
209 * Just be updated when the commit succeeds. Use
210 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
211 * to access this field.
220 struct btrfs_key defrag_progress
;
221 struct btrfs_key defrag_max
;
223 /* The dirty list is only used by non-shareable roots */
224 struct list_head dirty_list
;
226 struct list_head root_list
;
229 * Xarray that keeps track of in-memory inodes, protected by the lock
232 struct xarray inodes
;
235 * Xarray that keeps track of delayed nodes of every inode, protected
238 struct xarray delayed_nodes
;
240 * right now this just gets used so that a root has its own devid
241 * for stat. It may be used for more later
245 spinlock_t root_item_lock
;
248 struct mutex delalloc_mutex
;
249 spinlock_t delalloc_lock
;
251 * all of the inodes that have delalloc bytes. It is possible for
252 * this list to be empty even when there is still dirty data=ordered
253 * extents waiting to finish IO.
255 struct list_head delalloc_inodes
;
256 struct list_head delalloc_root
;
257 u64 nr_delalloc_inodes
;
259 struct mutex ordered_extent_mutex
;
261 * this is used by the balancing code to wait for all the pending
264 spinlock_t ordered_extent_lock
;
267 * all of the data=ordered extents pending writeback
268 * these can span multiple transactions and basically include
269 * every dirty data page that isn't from nodatacow
271 struct list_head ordered_extents
;
272 struct list_head ordered_root
;
273 u64 nr_ordered_extents
;
276 * Not empty if this subvolume root has gone through tree block swap
279 * Will be used by reloc_control::dirty_subvol_roots.
281 struct list_head reloc_dirty_list
;
284 * Number of currently running SEND ioctls to prevent
285 * manipulation with the read-only status via SUBVOL_SETFLAGS
287 int send_in_progress
;
289 * Number of currently running deduplication operations that have a
290 * destination inode belonging to this root. Protected by the lock
293 int dedupe_in_progress
;
294 /* For exclusion of snapshot creation and nocow writes */
295 struct btrfs_drew_lock snapshot_lock
;
297 atomic_t snapshot_force_cow
;
299 /* For qgroup metadata reserved space */
300 spinlock_t qgroup_meta_rsv_lock
;
301 u64 qgroup_meta_rsv_pertrans
;
302 u64 qgroup_meta_rsv_prealloc
;
303 wait_queue_head_t qgroup_flush_wait
;
305 /* Number of active swapfiles */
306 atomic_t nr_swapfiles
;
308 /* Record pairs of swapped blocks for qgroup */
309 struct btrfs_qgroup_swapped_blocks swapped_blocks
;
311 /* Used only by log trees, when logging csum items */
312 struct extent_io_tree log_csum_range
;
314 /* Used in simple quotas, track root during relocation. */
315 u64 relocation_src_root
;
317 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
321 #ifdef CONFIG_BTRFS_DEBUG
322 struct list_head leak_list
;
326 static inline bool btrfs_root_readonly(const struct btrfs_root
*root
)
328 /* Byte-swap the constant at compile time, root_item::flags is LE */
329 return (root
->root_item
.flags
& cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY
)) != 0;
332 static inline bool btrfs_root_dead(const struct btrfs_root
*root
)
334 /* Byte-swap the constant at compile time, root_item::flags is LE */
335 return (root
->root_item
.flags
& cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD
)) != 0;
338 static inline u64
btrfs_root_id(const struct btrfs_root
*root
)
340 return root
->root_key
.objectid
;
343 static inline int btrfs_get_root_log_transid(const struct btrfs_root
*root
)
345 return READ_ONCE(root
->log_transid
);
348 static inline void btrfs_set_root_log_transid(struct btrfs_root
*root
, int log_transid
)
350 WRITE_ONCE(root
->log_transid
, log_transid
);
353 static inline int btrfs_get_root_last_log_commit(const struct btrfs_root
*root
)
355 return READ_ONCE(root
->last_log_commit
);
358 static inline void btrfs_set_root_last_log_commit(struct btrfs_root
*root
, int commit_id
)
360 WRITE_ONCE(root
->last_log_commit
, commit_id
);
363 static inline u64
btrfs_get_root_last_trans(const struct btrfs_root
*root
)
365 return READ_ONCE(root
->last_trans
);
368 static inline void btrfs_set_root_last_trans(struct btrfs_root
*root
, u64 transid
)
370 WRITE_ONCE(root
->last_trans
, transid
);
374 * Structure that conveys information about an extent that is going to replace
375 * all the extents in a file range.
377 struct btrfs_replace_extent_info
{
383 /* Pointer to a file extent item of type regular or prealloc. */
386 * Set to true when attempting to replace a file range with a new extent
387 * described by this structure, set to false when attempting to clone an
388 * existing extent into a file range.
391 /* Indicate if we should update the inode's mtime and ctime. */
393 /* Meaningful only if is_new_extent is true. */
396 * Meaningful only if is_new_extent is true.
397 * Used to track how many extent items we have already inserted in a
398 * subvolume tree that refer to the extent described by this structure,
399 * so that we know when to create a new delayed ref or update an existing
405 /* Arguments for btrfs_drop_extents() */
406 struct btrfs_drop_extents_args
{
407 /* Input parameters */
410 * If NULL, btrfs_drop_extents() will allocate and free its own path.
411 * If 'replace_extent' is true, this must not be NULL. Also the path
412 * is always released except if 'replace_extent' is true and
413 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
414 * the path is kept locked.
416 struct btrfs_path
*path
;
417 /* Start offset of the range to drop extents from */
419 /* End (exclusive, last byte + 1) of the range to drop extents from */
421 /* If true drop all the extent maps in the range */
424 * If true it means we want to insert a new extent after dropping all
425 * the extents in the range. If this is true, the 'extent_item_size'
426 * parameter must be set as well and the 'extent_inserted' field will
427 * be set to true by btrfs_drop_extents() if it could insert the new
429 * Note: when this is set to true the path must not be NULL.
433 * Used if 'replace_extent' is true. Size of the file extent item to
434 * insert after dropping all existing extents in the range
436 u32 extent_item_size
;
438 /* Output parameters */
441 * Set to the minimum between the input parameter 'end' and the end
442 * (exclusive, last byte + 1) of the last dropped extent. This is always
443 * set even if btrfs_drop_extents() returns an error.
447 * The number of allocated bytes found in the range. This can be smaller
448 * than the range's length when there are holes in the range.
452 * Only set if 'replace_extent' is true. Set to true if we were able
453 * to insert a replacement extent after dropping all extents in the
454 * range, otherwise set to false by btrfs_drop_extents().
455 * Also, if btrfs_drop_extents() has set this to true it means it
456 * returned with the path locked, otherwise if it has set this to
457 * false it has returned with the path released.
459 bool extent_inserted
;
462 struct btrfs_file_private
{
465 struct extent_state
*llseek_cached_state
;
466 /* Task that allocated this structure. */
467 struct task_struct
*owner_task
;
470 static inline u32
BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info
*info
)
472 return info
->nodesize
- sizeof(struct btrfs_header
);
475 static inline u32
BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info
*info
)
477 return BTRFS_LEAF_DATA_SIZE(info
) - sizeof(struct btrfs_item
);
480 static inline u32
BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info
*info
)
482 return BTRFS_LEAF_DATA_SIZE(info
) / sizeof(struct btrfs_key_ptr
);
485 static inline u32
BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info
*info
)
487 return BTRFS_MAX_ITEM_SIZE(info
) - sizeof(struct btrfs_dir_item
);
490 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
491 ((bytes) >> (fs_info)->sectorsize_bits)
493 static inline gfp_t
btrfs_alloc_write_mask(struct address_space
*mapping
)
495 return mapping_gfp_constraint(mapping
, ~__GFP_FS
);
498 void btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
, u64 start
, u64 end
);
499 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
500 u64 num_bytes
, u64
*actual_bytes
);
501 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
);
504 int __init
btrfs_ctree_init(void);
505 void __cold
btrfs_ctree_exit(void);
507 int btrfs_bin_search(struct extent_buffer
*eb
, int first_slot
,
508 const struct btrfs_key
*key
, int *slot
);
510 int __pure
btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
);
512 #ifdef __LITTLE_ENDIAN
515 * Compare two keys, on little-endian the disk order is same as CPU order and
516 * we can avoid the conversion.
518 static inline int btrfs_comp_keys(const struct btrfs_disk_key
*disk_key
,
519 const struct btrfs_key
*k2
)
521 const struct btrfs_key
*k1
= (const struct btrfs_key
*)disk_key
;
523 return btrfs_comp_cpu_keys(k1
, k2
);
528 /* Compare two keys in a memcmp fashion. */
529 static inline int btrfs_comp_keys(const struct btrfs_disk_key
*disk
,
530 const struct btrfs_key
*k2
)
534 btrfs_disk_key_to_cpu(&k1
, disk
);
536 return btrfs_comp_cpu_keys(&k1
, k2
);
541 int btrfs_previous_item(struct btrfs_root
*root
,
542 struct btrfs_path
*path
, u64 min_objectid
,
544 int btrfs_previous_extent_item(struct btrfs_root
*root
,
545 struct btrfs_path
*path
, u64 min_objectid
);
546 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
547 const struct btrfs_path
*path
,
548 const struct btrfs_key
*new_key
);
549 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
);
550 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
551 struct btrfs_key
*key
, int lowest_level
,
553 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
554 struct btrfs_path
*path
,
556 struct extent_buffer
*btrfs_read_node_slot(struct extent_buffer
*parent
,
559 int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
560 struct btrfs_root
*root
, struct extent_buffer
*buf
,
561 struct extent_buffer
*parent
, int parent_slot
,
562 struct extent_buffer
**cow_ret
,
563 enum btrfs_lock_nesting nest
);
564 int btrfs_force_cow_block(struct btrfs_trans_handle
*trans
,
565 struct btrfs_root
*root
,
566 struct extent_buffer
*buf
,
567 struct extent_buffer
*parent
, int parent_slot
,
568 struct extent_buffer
**cow_ret
,
569 u64 search_start
, u64 empty_size
,
570 enum btrfs_lock_nesting nest
);
571 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
572 struct btrfs_root
*root
,
573 struct extent_buffer
*buf
,
574 struct extent_buffer
**cow_ret
, u64 new_root_objectid
);
575 bool btrfs_block_can_be_shared(struct btrfs_trans_handle
*trans
,
576 struct btrfs_root
*root
,
577 struct extent_buffer
*buf
);
578 int btrfs_del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
579 struct btrfs_path
*path
, int level
, int slot
);
580 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
581 const struct btrfs_path
*path
, u32 data_size
);
582 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
583 const struct btrfs_path
*path
, u32 new_size
, int from_end
);
584 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
585 struct btrfs_root
*root
,
586 struct btrfs_path
*path
,
587 const struct btrfs_key
*new_key
,
588 unsigned long split_offset
);
589 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
590 struct btrfs_root
*root
,
591 struct btrfs_path
*path
,
592 const struct btrfs_key
*new_key
);
593 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
594 u64 inum
, u64 ioff
, u8 key_type
, struct btrfs_key
*found_key
);
595 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
596 const struct btrfs_key
*key
, struct btrfs_path
*p
,
597 int ins_len
, int cow
);
598 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
599 struct btrfs_path
*p
, u64 time_seq
);
600 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
601 const struct btrfs_key
*key
,
602 struct btrfs_path
*p
, int find_higher
,
604 void btrfs_release_path(struct btrfs_path
*p
);
605 struct btrfs_path
*btrfs_alloc_path(void);
606 void btrfs_free_path(struct btrfs_path
*p
);
607 DEFINE_FREE(btrfs_free_path
, struct btrfs_path
*, btrfs_free_path(_T
))
609 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
610 struct btrfs_path
*path
, int slot
, int nr
);
611 static inline int btrfs_del_item(struct btrfs_trans_handle
*trans
,
612 struct btrfs_root
*root
,
613 struct btrfs_path
*path
)
615 return btrfs_del_items(trans
, root
, path
, path
->slots
[0], 1);
619 * Describes a batch of items to insert in a btree. This is used by
620 * btrfs_insert_empty_items().
622 struct btrfs_item_batch
{
624 * Pointer to an array containing the keys of the items to insert (in
627 const struct btrfs_key
*keys
;
628 /* Pointer to an array containing the data size for each item to insert. */
629 const u32
*data_sizes
;
631 * The sum of data sizes for all items. The caller can compute this while
632 * setting up the data_sizes array, so it ends up being more efficient
633 * than having btrfs_insert_empty_items() or setup_item_for_insert()
634 * doing it, as it would avoid an extra loop over a potentially large
635 * array, and in the case of setup_item_for_insert(), we would be doing
636 * it while holding a write lock on a leaf and often on upper level nodes
637 * too, unnecessarily increasing the size of a critical section.
640 /* Size of the keys and data_sizes arrays (number of items in the batch). */
644 void btrfs_setup_item_for_insert(struct btrfs_trans_handle
*trans
,
645 struct btrfs_root
*root
,
646 struct btrfs_path
*path
,
647 const struct btrfs_key
*key
,
649 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
650 const struct btrfs_key
*key
, void *data
, u32 data_size
);
651 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
652 struct btrfs_root
*root
,
653 struct btrfs_path
*path
,
654 const struct btrfs_item_batch
*batch
);
656 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle
*trans
,
657 struct btrfs_root
*root
,
658 struct btrfs_path
*path
,
659 const struct btrfs_key
*key
,
662 struct btrfs_item_batch batch
;
665 batch
.data_sizes
= &data_size
;
666 batch
.total_data_size
= data_size
;
669 return btrfs_insert_empty_items(trans
, root
, path
, &batch
);
672 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
675 int btrfs_search_backwards(struct btrfs_root
*root
, struct btrfs_key
*key
,
676 struct btrfs_path
*path
);
678 int btrfs_get_next_valid_item(struct btrfs_root
*root
, struct btrfs_key
*key
,
679 struct btrfs_path
*path
);
682 * Search in @root for a given @key, and store the slot found in @found_key.
684 * @root: The root node of the tree.
685 * @key: The key we are looking for.
686 * @found_key: Will hold the found item.
687 * @path: Holds the current slot/leaf.
688 * @iter_ret: Contains the value returned from btrfs_search_slot or
689 * btrfs_get_next_valid_item, whichever was executed last.
691 * The @iter_ret is an output variable that will contain the return value of
692 * btrfs_search_slot, if it encountered an error, or the value returned from
693 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
694 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
696 * It's recommended to use a separate variable for iter_ret and then use it to
697 * set the function return value so there's no confusion of the 0/1/errno
698 * values stemming from btrfs_search_slot.
700 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
701 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
703 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
707 int btrfs_next_old_item(struct btrfs_root
*root
, struct btrfs_path
*path
, u64 time_seq
);
710 * Search the tree again to find a leaf with greater keys.
712 * Returns 0 if it found something or 1 if there are no greater leaves.
713 * Returns < 0 on error.
715 static inline int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
717 return btrfs_next_old_leaf(root
, path
, 0);
720 static inline int btrfs_next_item(struct btrfs_root
*root
, struct btrfs_path
*p
)
722 return btrfs_next_old_item(root
, p
, 0);
724 int btrfs_leaf_free_space(const struct extent_buffer
*leaf
);
726 static inline int is_fstree(u64 rootid
)
728 if (rootid
== BTRFS_FS_TREE_OBJECTID
||
729 ((s64
)rootid
>= (s64
)BTRFS_FIRST_FREE_OBJECTID
&&
730 !btrfs_qgroup_level(rootid
)))
735 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root
*root
)
737 return root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
;
740 u16
btrfs_csum_type_size(u16 type
);
741 int btrfs_super_csum_size(const struct btrfs_super_block
*s
);
742 const char *btrfs_super_csum_name(u16 csum_type
);
743 const char *btrfs_super_csum_driver(u16 csum_type
);
744 size_t __attribute_const__
btrfs_get_num_csums(void);
747 * We use page status Private2 to indicate there is an ordered extent with
750 * Rename the Private2 accessors to Ordered, to improve readability.
752 #define PageOrdered(page) PagePrivate2(page)
753 #define SetPageOrdered(page) SetPagePrivate2(page)
754 #define ClearPageOrdered(page) ClearPagePrivate2(page)
755 #define folio_test_ordered(folio) folio_test_private_2(folio)
756 #define folio_set_ordered(folio) folio_set_private_2(folio)
757 #define folio_clear_ordered(folio) folio_clear_private_2(folio)