drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / fs / btrfs / volumes.c
blob8f340ad1d938456df052c377b18f0dcbb85dbc49
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
189 const int index = btrfs_bg_flags_to_raid_index(flags);
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
194 return btrfs_raid_array[index].raid_name;
197 int btrfs_nr_parity_stripes(u64 type)
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
201 return btrfs_raid_array[index].nparity;
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
221 #define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
231 } while (0)
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
255 out_overflow:;
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
263 * Device locking
264 * ==============
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
275 * the mutex can be very coarse and can cover long-running operations
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
280 * global::fs_devs - add, remove, updates to the global list
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
286 * btrfs_device::name - renames (write side), read is RCU
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
292 * simple list traversal with read-only actions can be done with RCU protection
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
318 * Lock nesting
319 * ============
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
327 * Exclusive operations
328 * ====================
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
339 * The device operations (as above) can be in one of the following states:
341 * - Running state
342 * - Paused state
343 * - Completed state
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
366 return &fs_uuids;
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
381 struct btrfs_fs_devices *fs_devs;
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
387 mutex_init(&fs_devs->device_list_mutex);
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399 return fs_devs;
402 static void btrfs_free_device(struct btrfs_device *device)
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
413 struct btrfs_device *device;
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
422 kfree(fs_devices);
425 void __exit btrfs_cleanup_fs_uuids(void)
427 struct btrfs_fs_devices *fs_devices;
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
443 if (!metadata_fsid)
444 return true;
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
449 return true;
452 static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
455 struct btrfs_fs_devices *fs_devices;
457 ASSERT(fsid);
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
464 return NULL;
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
472 struct block_device *bdev;
473 int ret;
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
483 bdev = file_bdev(*bdev_file);
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
502 return 0;
504 error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
523 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
530 lockdep_assert_held(&uuid_mutex);
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
554 freed = true;
556 mutex_unlock(&fs_devices->device_list_mutex);
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
569 return ret;
572 static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
608 if (found_by_devt)
609 break;
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
637 /* Not reached. */
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
645 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
671 device->generation = btrfs_super_generation(disk_super);
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
707 device->devt = device->bdev->bd_dev;
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
716 btrfs_release_disk_super(disk_super);
718 return 0;
720 error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
724 return -EINVAL;
727 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
736 * Add new device to list of registered devices
738 * Returns:
739 * device pointer which was just added or updated when successful
740 * error pointer when failed
742 static noinline struct btrfs_device *device_list_add(const char *path,
743 struct btrfs_super_block *disk_super,
744 bool *new_device_added)
746 struct btrfs_device *device;
747 struct btrfs_fs_devices *fs_devices = NULL;
748 struct rcu_string *name;
749 u64 found_transid = btrfs_super_generation(disk_super);
750 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
751 dev_t path_devt;
752 int error;
753 bool same_fsid_diff_dev = false;
754 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
755 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
757 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
758 btrfs_err(NULL,
759 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
760 path);
761 return ERR_PTR(-EAGAIN);
764 error = lookup_bdev(path, &path_devt);
765 if (error) {
766 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
767 path, error);
768 return ERR_PTR(error);
771 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
773 if (!fs_devices) {
774 fs_devices = alloc_fs_devices(disk_super->fsid);
775 if (IS_ERR(fs_devices))
776 return ERR_CAST(fs_devices);
778 if (has_metadata_uuid)
779 memcpy(fs_devices->metadata_uuid,
780 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
782 if (same_fsid_diff_dev) {
783 generate_random_uuid(fs_devices->fsid);
784 fs_devices->temp_fsid = true;
785 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
786 path, MAJOR(path_devt), MINOR(path_devt),
787 fs_devices->fsid);
790 mutex_lock(&fs_devices->device_list_mutex);
791 list_add(&fs_devices->fs_list, &fs_uuids);
793 device = NULL;
794 } else {
795 struct btrfs_dev_lookup_args args = {
796 .devid = devid,
797 .uuid = disk_super->dev_item.uuid,
800 mutex_lock(&fs_devices->device_list_mutex);
801 device = btrfs_find_device(fs_devices, &args);
803 if (found_transid > fs_devices->latest_generation) {
804 memcpy(fs_devices->fsid, disk_super->fsid,
805 BTRFS_FSID_SIZE);
806 memcpy(fs_devices->metadata_uuid,
807 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
811 if (!device) {
812 unsigned int nofs_flag;
814 if (fs_devices->opened) {
815 btrfs_err(NULL,
816 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
817 path, MAJOR(path_devt), MINOR(path_devt),
818 fs_devices->fsid, current->comm,
819 task_pid_nr(current));
820 mutex_unlock(&fs_devices->device_list_mutex);
821 return ERR_PTR(-EBUSY);
824 nofs_flag = memalloc_nofs_save();
825 device = btrfs_alloc_device(NULL, &devid,
826 disk_super->dev_item.uuid, path);
827 memalloc_nofs_restore(nofs_flag);
828 if (IS_ERR(device)) {
829 mutex_unlock(&fs_devices->device_list_mutex);
830 /* we can safely leave the fs_devices entry around */
831 return device;
834 device->devt = path_devt;
836 list_add_rcu(&device->dev_list, &fs_devices->devices);
837 fs_devices->num_devices++;
839 device->fs_devices = fs_devices;
840 *new_device_added = true;
842 if (disk_super->label[0])
843 pr_info(
844 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
845 disk_super->label, devid, found_transid, path,
846 MAJOR(path_devt), MINOR(path_devt),
847 current->comm, task_pid_nr(current));
848 else
849 pr_info(
850 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
851 disk_super->fsid, devid, found_transid, path,
852 MAJOR(path_devt), MINOR(path_devt),
853 current->comm, task_pid_nr(current));
855 } else if (!device->name || strcmp(device->name->str, path)) {
857 * When FS is already mounted.
858 * 1. If you are here and if the device->name is NULL that
859 * means this device was missing at time of FS mount.
860 * 2. If you are here and if the device->name is different
861 * from 'path' that means either
862 * a. The same device disappeared and reappeared with
863 * different name. or
864 * b. The missing-disk-which-was-replaced, has
865 * reappeared now.
867 * We must allow 1 and 2a above. But 2b would be a spurious
868 * and unintentional.
870 * Further in case of 1 and 2a above, the disk at 'path'
871 * would have missed some transaction when it was away and
872 * in case of 2a the stale bdev has to be updated as well.
873 * 2b must not be allowed at all time.
877 * For now, we do allow update to btrfs_fs_device through the
878 * btrfs dev scan cli after FS has been mounted. We're still
879 * tracking a problem where systems fail mount by subvolume id
880 * when we reject replacement on a mounted FS.
882 if (!fs_devices->opened && found_transid < device->generation) {
884 * That is if the FS is _not_ mounted and if you
885 * are here, that means there is more than one
886 * disk with same uuid and devid.We keep the one
887 * with larger generation number or the last-in if
888 * generation are equal.
890 mutex_unlock(&fs_devices->device_list_mutex);
891 btrfs_err(NULL,
892 "device %s already registered with a higher generation, found %llu expect %llu",
893 path, found_transid, device->generation);
894 return ERR_PTR(-EEXIST);
898 * We are going to replace the device path for a given devid,
899 * make sure it's the same device if the device is mounted
901 * NOTE: the device->fs_info may not be reliable here so pass
902 * in a NULL to message helpers instead. This avoids a possible
903 * use-after-free when the fs_info and fs_info->sb are already
904 * torn down.
906 if (device->bdev) {
907 if (device->devt != path_devt) {
908 mutex_unlock(&fs_devices->device_list_mutex);
909 btrfs_warn_in_rcu(NULL,
910 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
911 path, devid, found_transid,
912 current->comm,
913 task_pid_nr(current));
914 return ERR_PTR(-EEXIST);
916 btrfs_info_in_rcu(NULL,
917 "devid %llu device path %s changed to %s scanned by %s (%d)",
918 devid, btrfs_dev_name(device),
919 path, current->comm,
920 task_pid_nr(current));
923 name = rcu_string_strdup(path, GFP_NOFS);
924 if (!name) {
925 mutex_unlock(&fs_devices->device_list_mutex);
926 return ERR_PTR(-ENOMEM);
928 rcu_string_free(device->name);
929 rcu_assign_pointer(device->name, name);
930 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
931 fs_devices->missing_devices--;
932 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
934 device->devt = path_devt;
938 * Unmount does not free the btrfs_device struct but would zero
939 * generation along with most of the other members. So just update
940 * it back. We need it to pick the disk with largest generation
941 * (as above).
943 if (!fs_devices->opened) {
944 device->generation = found_transid;
945 fs_devices->latest_generation = max_t(u64, found_transid,
946 fs_devices->latest_generation);
949 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
951 mutex_unlock(&fs_devices->device_list_mutex);
952 return device;
955 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
957 struct btrfs_fs_devices *fs_devices;
958 struct btrfs_device *device;
959 struct btrfs_device *orig_dev;
960 int ret = 0;
962 lockdep_assert_held(&uuid_mutex);
964 fs_devices = alloc_fs_devices(orig->fsid);
965 if (IS_ERR(fs_devices))
966 return fs_devices;
968 fs_devices->total_devices = orig->total_devices;
970 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
971 const char *dev_path = NULL;
974 * This is ok to do without RCU read locked because we hold the
975 * uuid mutex so nothing we touch in here is going to disappear.
977 if (orig_dev->name)
978 dev_path = orig_dev->name->str;
980 device = btrfs_alloc_device(NULL, &orig_dev->devid,
981 orig_dev->uuid, dev_path);
982 if (IS_ERR(device)) {
983 ret = PTR_ERR(device);
984 goto error;
987 if (orig_dev->zone_info) {
988 struct btrfs_zoned_device_info *zone_info;
990 zone_info = btrfs_clone_dev_zone_info(orig_dev);
991 if (!zone_info) {
992 btrfs_free_device(device);
993 ret = -ENOMEM;
994 goto error;
996 device->zone_info = zone_info;
999 list_add(&device->dev_list, &fs_devices->devices);
1000 device->fs_devices = fs_devices;
1001 fs_devices->num_devices++;
1003 return fs_devices;
1004 error:
1005 free_fs_devices(fs_devices);
1006 return ERR_PTR(ret);
1009 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1010 struct btrfs_device **latest_dev)
1012 struct btrfs_device *device, *next;
1014 /* This is the initialized path, it is safe to release the devices. */
1015 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1016 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1017 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1018 &device->dev_state) &&
1019 !test_bit(BTRFS_DEV_STATE_MISSING,
1020 &device->dev_state) &&
1021 (!*latest_dev ||
1022 device->generation > (*latest_dev)->generation)) {
1023 *latest_dev = device;
1025 continue;
1029 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1030 * in btrfs_init_dev_replace() so just continue.
1032 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1033 continue;
1035 if (device->bdev_file) {
1036 fput(device->bdev_file);
1037 device->bdev = NULL;
1038 device->bdev_file = NULL;
1039 fs_devices->open_devices--;
1041 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1042 list_del_init(&device->dev_alloc_list);
1043 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1044 fs_devices->rw_devices--;
1046 list_del_init(&device->dev_list);
1047 fs_devices->num_devices--;
1048 btrfs_free_device(device);
1054 * After we have read the system tree and know devids belonging to this
1055 * filesystem, remove the device which does not belong there.
1057 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1059 struct btrfs_device *latest_dev = NULL;
1060 struct btrfs_fs_devices *seed_dev;
1062 mutex_lock(&uuid_mutex);
1063 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1065 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1066 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1068 fs_devices->latest_dev = latest_dev;
1070 mutex_unlock(&uuid_mutex);
1073 static void btrfs_close_bdev(struct btrfs_device *device)
1075 if (!device->bdev)
1076 return;
1078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1079 sync_blockdev(device->bdev);
1080 invalidate_bdev(device->bdev);
1083 fput(device->bdev_file);
1086 static void btrfs_close_one_device(struct btrfs_device *device)
1088 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1090 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1091 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1092 list_del_init(&device->dev_alloc_list);
1093 fs_devices->rw_devices--;
1096 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1097 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1099 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1100 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1101 fs_devices->missing_devices--;
1104 btrfs_close_bdev(device);
1105 if (device->bdev) {
1106 fs_devices->open_devices--;
1107 device->bdev = NULL;
1109 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1110 btrfs_destroy_dev_zone_info(device);
1112 device->fs_info = NULL;
1113 atomic_set(&device->dev_stats_ccnt, 0);
1114 extent_io_tree_release(&device->alloc_state);
1117 * Reset the flush error record. We might have a transient flush error
1118 * in this mount, and if so we aborted the current transaction and set
1119 * the fs to an error state, guaranteeing no super blocks can be further
1120 * committed. However that error might be transient and if we unmount the
1121 * filesystem and mount it again, we should allow the mount to succeed
1122 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1123 * filesystem again we still get flush errors, then we will again abort
1124 * any transaction and set the error state, guaranteeing no commits of
1125 * unsafe super blocks.
1127 device->last_flush_error = 0;
1129 /* Verify the device is back in a pristine state */
1130 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1131 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1132 WARN_ON(!list_empty(&device->dev_alloc_list));
1133 WARN_ON(!list_empty(&device->post_commit_list));
1136 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1138 struct btrfs_device *device, *tmp;
1140 lockdep_assert_held(&uuid_mutex);
1142 if (--fs_devices->opened > 0)
1143 return;
1145 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1146 btrfs_close_one_device(device);
1148 WARN_ON(fs_devices->open_devices);
1149 WARN_ON(fs_devices->rw_devices);
1150 fs_devices->opened = 0;
1151 fs_devices->seeding = false;
1152 fs_devices->fs_info = NULL;
1155 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1157 LIST_HEAD(list);
1158 struct btrfs_fs_devices *tmp;
1160 mutex_lock(&uuid_mutex);
1161 close_fs_devices(fs_devices);
1162 if (!fs_devices->opened) {
1163 list_splice_init(&fs_devices->seed_list, &list);
1166 * If the struct btrfs_fs_devices is not assembled with any
1167 * other device, it can be re-initialized during the next mount
1168 * without the needing device-scan step. Therefore, it can be
1169 * fully freed.
1171 if (fs_devices->num_devices == 1) {
1172 list_del(&fs_devices->fs_list);
1173 free_fs_devices(fs_devices);
1178 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1179 close_fs_devices(fs_devices);
1180 list_del(&fs_devices->seed_list);
1181 free_fs_devices(fs_devices);
1183 mutex_unlock(&uuid_mutex);
1186 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1187 blk_mode_t flags, void *holder)
1189 struct btrfs_device *device;
1190 struct btrfs_device *latest_dev = NULL;
1191 struct btrfs_device *tmp_device;
1192 int ret = 0;
1194 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1195 dev_list) {
1196 int ret2;
1198 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1199 if (ret2 == 0 &&
1200 (!latest_dev || device->generation > latest_dev->generation)) {
1201 latest_dev = device;
1202 } else if (ret2 == -ENODATA) {
1203 fs_devices->num_devices--;
1204 list_del(&device->dev_list);
1205 btrfs_free_device(device);
1207 if (ret == 0 && ret2 != 0)
1208 ret = ret2;
1211 if (fs_devices->open_devices == 0) {
1212 if (ret)
1213 return ret;
1214 return -EINVAL;
1217 fs_devices->opened = 1;
1218 fs_devices->latest_dev = latest_dev;
1219 fs_devices->total_rw_bytes = 0;
1220 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1221 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1223 return 0;
1226 static int devid_cmp(void *priv, const struct list_head *a,
1227 const struct list_head *b)
1229 const struct btrfs_device *dev1, *dev2;
1231 dev1 = list_entry(a, struct btrfs_device, dev_list);
1232 dev2 = list_entry(b, struct btrfs_device, dev_list);
1234 if (dev1->devid < dev2->devid)
1235 return -1;
1236 else if (dev1->devid > dev2->devid)
1237 return 1;
1238 return 0;
1241 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1242 blk_mode_t flags, void *holder)
1244 int ret;
1246 lockdep_assert_held(&uuid_mutex);
1248 * The device_list_mutex cannot be taken here in case opening the
1249 * underlying device takes further locks like open_mutex.
1251 * We also don't need the lock here as this is called during mount and
1252 * exclusion is provided by uuid_mutex
1255 if (fs_devices->opened) {
1256 fs_devices->opened++;
1257 ret = 0;
1258 } else {
1259 list_sort(NULL, &fs_devices->devices, devid_cmp);
1260 ret = open_fs_devices(fs_devices, flags, holder);
1263 return ret;
1266 void btrfs_release_disk_super(struct btrfs_super_block *super)
1268 struct page *page = virt_to_page(super);
1270 put_page(page);
1273 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1274 u64 bytenr, u64 bytenr_orig)
1276 struct btrfs_super_block *disk_super;
1277 struct page *page;
1278 void *p;
1279 pgoff_t index;
1281 /* make sure our super fits in the device */
1282 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1283 return ERR_PTR(-EINVAL);
1285 /* make sure our super fits in the page */
1286 if (sizeof(*disk_super) > PAGE_SIZE)
1287 return ERR_PTR(-EINVAL);
1289 /* make sure our super doesn't straddle pages on disk */
1290 index = bytenr >> PAGE_SHIFT;
1291 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1292 return ERR_PTR(-EINVAL);
1294 /* pull in the page with our super */
1295 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1297 if (IS_ERR(page))
1298 return ERR_CAST(page);
1300 p = page_address(page);
1302 /* align our pointer to the offset of the super block */
1303 disk_super = p + offset_in_page(bytenr);
1305 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1306 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1307 btrfs_release_disk_super(p);
1308 return ERR_PTR(-EINVAL);
1311 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1312 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1314 return disk_super;
1317 int btrfs_forget_devices(dev_t devt)
1319 int ret;
1321 mutex_lock(&uuid_mutex);
1322 ret = btrfs_free_stale_devices(devt, NULL);
1323 mutex_unlock(&uuid_mutex);
1325 return ret;
1328 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1329 const char *path, dev_t devt,
1330 bool mount_arg_dev)
1332 struct btrfs_fs_devices *fs_devices;
1335 * Do not skip device registration for mounted devices with matching
1336 * maj:min but different paths. Booting without initrd relies on
1337 * /dev/root initially, later replaced with the actual root device.
1338 * A successful scan ensures grub2-probe selects the correct device.
1340 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1341 struct btrfs_device *device;
1343 mutex_lock(&fs_devices->device_list_mutex);
1345 if (!fs_devices->opened) {
1346 mutex_unlock(&fs_devices->device_list_mutex);
1347 continue;
1350 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1351 if (device->bdev && (device->bdev->bd_dev == devt) &&
1352 strcmp(device->name->str, path) != 0) {
1353 mutex_unlock(&fs_devices->device_list_mutex);
1355 /* Do not skip registration. */
1356 return false;
1359 mutex_unlock(&fs_devices->device_list_mutex);
1362 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1363 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1364 return true;
1366 return false;
1370 * Look for a btrfs signature on a device. This may be called out of the mount path
1371 * and we are not allowed to call set_blocksize during the scan. The superblock
1372 * is read via pagecache.
1374 * With @mount_arg_dev it's a scan during mount time that will always register
1375 * the device or return an error. Multi-device and seeding devices are registered
1376 * in both cases.
1378 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1379 bool mount_arg_dev)
1381 struct btrfs_super_block *disk_super;
1382 bool new_device_added = false;
1383 struct btrfs_device *device = NULL;
1384 struct file *bdev_file;
1385 u64 bytenr;
1386 dev_t devt;
1387 int ret;
1389 lockdep_assert_held(&uuid_mutex);
1392 * Avoid an exclusive open here, as the systemd-udev may initiate the
1393 * device scan which may race with the user's mount or mkfs command,
1394 * resulting in failure.
1395 * Since the device scan is solely for reading purposes, there is no
1396 * need for an exclusive open. Additionally, the devices are read again
1397 * during the mount process. It is ok to get some inconsistent
1398 * values temporarily, as the device paths of the fsid are the only
1399 * required information for assembling the volume.
1401 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1402 if (IS_ERR(bdev_file))
1403 return ERR_CAST(bdev_file);
1406 * We would like to check all the super blocks, but doing so would
1407 * allow a mount to succeed after a mkfs from a different filesystem.
1408 * Currently, recovery from a bad primary btrfs superblock is done
1409 * using the userspace command 'btrfs check --super'.
1411 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1412 if (ret) {
1413 device = ERR_PTR(ret);
1414 goto error_bdev_put;
1417 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1418 btrfs_sb_offset(0));
1419 if (IS_ERR(disk_super)) {
1420 device = ERR_CAST(disk_super);
1421 goto error_bdev_put;
1424 devt = file_bdev(bdev_file)->bd_dev;
1425 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1426 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1427 path, MAJOR(devt), MINOR(devt));
1429 btrfs_free_stale_devices(devt, NULL);
1431 device = NULL;
1432 goto free_disk_super;
1435 device = device_list_add(path, disk_super, &new_device_added);
1436 if (!IS_ERR(device) && new_device_added)
1437 btrfs_free_stale_devices(device->devt, device);
1439 free_disk_super:
1440 btrfs_release_disk_super(disk_super);
1442 error_bdev_put:
1443 fput(bdev_file);
1445 return device;
1449 * Try to find a chunk that intersects [start, start + len] range and when one
1450 * such is found, record the end of it in *start
1452 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1453 u64 len)
1455 u64 physical_start, physical_end;
1457 lockdep_assert_held(&device->fs_info->chunk_mutex);
1459 if (find_first_extent_bit(&device->alloc_state, *start,
1460 &physical_start, &physical_end,
1461 CHUNK_ALLOCATED, NULL)) {
1463 if (in_range(physical_start, *start, len) ||
1464 in_range(*start, physical_start,
1465 physical_end + 1 - physical_start)) {
1466 *start = physical_end + 1;
1467 return true;
1470 return false;
1473 static u64 dev_extent_search_start(struct btrfs_device *device)
1475 switch (device->fs_devices->chunk_alloc_policy) {
1476 case BTRFS_CHUNK_ALLOC_REGULAR:
1477 return BTRFS_DEVICE_RANGE_RESERVED;
1478 case BTRFS_CHUNK_ALLOC_ZONED:
1480 * We don't care about the starting region like regular
1481 * allocator, because we anyway use/reserve the first two zones
1482 * for superblock logging.
1484 return 0;
1485 default:
1486 BUG();
1490 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1491 u64 *hole_start, u64 *hole_size,
1492 u64 num_bytes)
1494 u64 zone_size = device->zone_info->zone_size;
1495 u64 pos;
1496 int ret;
1497 bool changed = false;
1499 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1501 while (*hole_size > 0) {
1502 pos = btrfs_find_allocatable_zones(device, *hole_start,
1503 *hole_start + *hole_size,
1504 num_bytes);
1505 if (pos != *hole_start) {
1506 *hole_size = *hole_start + *hole_size - pos;
1507 *hole_start = pos;
1508 changed = true;
1509 if (*hole_size < num_bytes)
1510 break;
1513 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1515 /* Range is ensured to be empty */
1516 if (!ret)
1517 return changed;
1519 /* Given hole range was invalid (outside of device) */
1520 if (ret == -ERANGE) {
1521 *hole_start += *hole_size;
1522 *hole_size = 0;
1523 return true;
1526 *hole_start += zone_size;
1527 *hole_size -= zone_size;
1528 changed = true;
1531 return changed;
1535 * Check if specified hole is suitable for allocation.
1537 * @device: the device which we have the hole
1538 * @hole_start: starting position of the hole
1539 * @hole_size: the size of the hole
1540 * @num_bytes: the size of the free space that we need
1542 * This function may modify @hole_start and @hole_size to reflect the suitable
1543 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1545 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1546 u64 *hole_size, u64 num_bytes)
1548 bool changed = false;
1549 u64 hole_end = *hole_start + *hole_size;
1551 for (;;) {
1553 * Check before we set max_hole_start, otherwise we could end up
1554 * sending back this offset anyway.
1556 if (contains_pending_extent(device, hole_start, *hole_size)) {
1557 if (hole_end >= *hole_start)
1558 *hole_size = hole_end - *hole_start;
1559 else
1560 *hole_size = 0;
1561 changed = true;
1564 switch (device->fs_devices->chunk_alloc_policy) {
1565 case BTRFS_CHUNK_ALLOC_REGULAR:
1566 /* No extra check */
1567 break;
1568 case BTRFS_CHUNK_ALLOC_ZONED:
1569 if (dev_extent_hole_check_zoned(device, hole_start,
1570 hole_size, num_bytes)) {
1571 changed = true;
1573 * The changed hole can contain pending extent.
1574 * Loop again to check that.
1576 continue;
1578 break;
1579 default:
1580 BUG();
1583 break;
1586 return changed;
1590 * Find free space in the specified device.
1592 * @device: the device which we search the free space in
1593 * @num_bytes: the size of the free space that we need
1594 * @search_start: the position from which to begin the search
1595 * @start: store the start of the free space.
1596 * @len: the size of the free space. that we find, or the size
1597 * of the max free space if we don't find suitable free space
1599 * This does a pretty simple search, the expectation is that it is called very
1600 * infrequently and that a given device has a small number of extents.
1602 * @start is used to store the start of the free space if we find. But if we
1603 * don't find suitable free space, it will be used to store the start position
1604 * of the max free space.
1606 * @len is used to store the size of the free space that we find.
1607 * But if we don't find suitable free space, it is used to store the size of
1608 * the max free space.
1610 * NOTE: This function will search *commit* root of device tree, and does extra
1611 * check to ensure dev extents are not double allocated.
1612 * This makes the function safe to allocate dev extents but may not report
1613 * correct usable device space, as device extent freed in current transaction
1614 * is not reported as available.
1616 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1617 u64 *start, u64 *len)
1619 struct btrfs_fs_info *fs_info = device->fs_info;
1620 struct btrfs_root *root = fs_info->dev_root;
1621 struct btrfs_key key;
1622 struct btrfs_dev_extent *dev_extent;
1623 struct btrfs_path *path;
1624 u64 search_start;
1625 u64 hole_size;
1626 u64 max_hole_start;
1627 u64 max_hole_size = 0;
1628 u64 extent_end;
1629 u64 search_end = device->total_bytes;
1630 int ret;
1631 int slot;
1632 struct extent_buffer *l;
1634 search_start = dev_extent_search_start(device);
1635 max_hole_start = search_start;
1637 WARN_ON(device->zone_info &&
1638 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1640 path = btrfs_alloc_path();
1641 if (!path) {
1642 ret = -ENOMEM;
1643 goto out;
1645 again:
1646 if (search_start >= search_end ||
1647 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1648 ret = -ENOSPC;
1649 goto out;
1652 path->reada = READA_FORWARD;
1653 path->search_commit_root = 1;
1654 path->skip_locking = 1;
1656 key.objectid = device->devid;
1657 key.offset = search_start;
1658 key.type = BTRFS_DEV_EXTENT_KEY;
1660 ret = btrfs_search_backwards(root, &key, path);
1661 if (ret < 0)
1662 goto out;
1664 while (search_start < search_end) {
1665 l = path->nodes[0];
1666 slot = path->slots[0];
1667 if (slot >= btrfs_header_nritems(l)) {
1668 ret = btrfs_next_leaf(root, path);
1669 if (ret == 0)
1670 continue;
1671 if (ret < 0)
1672 goto out;
1674 break;
1676 btrfs_item_key_to_cpu(l, &key, slot);
1678 if (key.objectid < device->devid)
1679 goto next;
1681 if (key.objectid > device->devid)
1682 break;
1684 if (key.type != BTRFS_DEV_EXTENT_KEY)
1685 goto next;
1687 if (key.offset > search_end)
1688 break;
1690 if (key.offset > search_start) {
1691 hole_size = key.offset - search_start;
1692 dev_extent_hole_check(device, &search_start, &hole_size,
1693 num_bytes);
1695 if (hole_size > max_hole_size) {
1696 max_hole_start = search_start;
1697 max_hole_size = hole_size;
1701 * If this free space is greater than which we need,
1702 * it must be the max free space that we have found
1703 * until now, so max_hole_start must point to the start
1704 * of this free space and the length of this free space
1705 * is stored in max_hole_size. Thus, we return
1706 * max_hole_start and max_hole_size and go back to the
1707 * caller.
1709 if (hole_size >= num_bytes) {
1710 ret = 0;
1711 goto out;
1715 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1716 extent_end = key.offset + btrfs_dev_extent_length(l,
1717 dev_extent);
1718 if (extent_end > search_start)
1719 search_start = extent_end;
1720 next:
1721 path->slots[0]++;
1722 cond_resched();
1726 * At this point, search_start should be the end of
1727 * allocated dev extents, and when shrinking the device,
1728 * search_end may be smaller than search_start.
1730 if (search_end > search_start) {
1731 hole_size = search_end - search_start;
1732 if (dev_extent_hole_check(device, &search_start, &hole_size,
1733 num_bytes)) {
1734 btrfs_release_path(path);
1735 goto again;
1738 if (hole_size > max_hole_size) {
1739 max_hole_start = search_start;
1740 max_hole_size = hole_size;
1744 /* See above. */
1745 if (max_hole_size < num_bytes)
1746 ret = -ENOSPC;
1747 else
1748 ret = 0;
1750 ASSERT(max_hole_start + max_hole_size <= search_end);
1751 out:
1752 btrfs_free_path(path);
1753 *start = max_hole_start;
1754 if (len)
1755 *len = max_hole_size;
1756 return ret;
1759 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1760 struct btrfs_device *device,
1761 u64 start, u64 *dev_extent_len)
1763 struct btrfs_fs_info *fs_info = device->fs_info;
1764 struct btrfs_root *root = fs_info->dev_root;
1765 int ret;
1766 struct btrfs_path *path;
1767 struct btrfs_key key;
1768 struct btrfs_key found_key;
1769 struct extent_buffer *leaf = NULL;
1770 struct btrfs_dev_extent *extent = NULL;
1772 path = btrfs_alloc_path();
1773 if (!path)
1774 return -ENOMEM;
1776 key.objectid = device->devid;
1777 key.offset = start;
1778 key.type = BTRFS_DEV_EXTENT_KEY;
1779 again:
1780 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1781 if (ret > 0) {
1782 ret = btrfs_previous_item(root, path, key.objectid,
1783 BTRFS_DEV_EXTENT_KEY);
1784 if (ret)
1785 goto out;
1786 leaf = path->nodes[0];
1787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1788 extent = btrfs_item_ptr(leaf, path->slots[0],
1789 struct btrfs_dev_extent);
1790 BUG_ON(found_key.offset > start || found_key.offset +
1791 btrfs_dev_extent_length(leaf, extent) < start);
1792 key = found_key;
1793 btrfs_release_path(path);
1794 goto again;
1795 } else if (ret == 0) {
1796 leaf = path->nodes[0];
1797 extent = btrfs_item_ptr(leaf, path->slots[0],
1798 struct btrfs_dev_extent);
1799 } else {
1800 goto out;
1803 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1805 ret = btrfs_del_item(trans, root, path);
1806 if (ret == 0)
1807 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1808 out:
1809 btrfs_free_path(path);
1810 return ret;
1813 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1815 struct rb_node *n;
1816 u64 ret = 0;
1818 read_lock(&fs_info->mapping_tree_lock);
1819 n = rb_last(&fs_info->mapping_tree.rb_root);
1820 if (n) {
1821 struct btrfs_chunk_map *map;
1823 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1824 ret = map->start + map->chunk_len;
1826 read_unlock(&fs_info->mapping_tree_lock);
1828 return ret;
1831 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1832 u64 *devid_ret)
1834 int ret;
1835 struct btrfs_key key;
1836 struct btrfs_key found_key;
1837 struct btrfs_path *path;
1839 path = btrfs_alloc_path();
1840 if (!path)
1841 return -ENOMEM;
1843 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1844 key.type = BTRFS_DEV_ITEM_KEY;
1845 key.offset = (u64)-1;
1847 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1848 if (ret < 0)
1849 goto error;
1851 if (ret == 0) {
1852 /* Corruption */
1853 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1854 ret = -EUCLEAN;
1855 goto error;
1858 ret = btrfs_previous_item(fs_info->chunk_root, path,
1859 BTRFS_DEV_ITEMS_OBJECTID,
1860 BTRFS_DEV_ITEM_KEY);
1861 if (ret) {
1862 *devid_ret = 1;
1863 } else {
1864 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1865 path->slots[0]);
1866 *devid_ret = found_key.offset + 1;
1868 ret = 0;
1869 error:
1870 btrfs_free_path(path);
1871 return ret;
1875 * the device information is stored in the chunk root
1876 * the btrfs_device struct should be fully filled in
1878 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1879 struct btrfs_device *device)
1881 int ret;
1882 struct btrfs_path *path;
1883 struct btrfs_dev_item *dev_item;
1884 struct extent_buffer *leaf;
1885 struct btrfs_key key;
1886 unsigned long ptr;
1888 path = btrfs_alloc_path();
1889 if (!path)
1890 return -ENOMEM;
1892 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1893 key.type = BTRFS_DEV_ITEM_KEY;
1894 key.offset = device->devid;
1896 btrfs_reserve_chunk_metadata(trans, true);
1897 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1898 &key, sizeof(*dev_item));
1899 btrfs_trans_release_chunk_metadata(trans);
1900 if (ret)
1901 goto out;
1903 leaf = path->nodes[0];
1904 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1906 btrfs_set_device_id(leaf, dev_item, device->devid);
1907 btrfs_set_device_generation(leaf, dev_item, 0);
1908 btrfs_set_device_type(leaf, dev_item, device->type);
1909 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 btrfs_set_device_total_bytes(leaf, dev_item,
1913 btrfs_device_get_disk_total_bytes(device));
1914 btrfs_set_device_bytes_used(leaf, dev_item,
1915 btrfs_device_get_bytes_used(device));
1916 btrfs_set_device_group(leaf, dev_item, 0);
1917 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919 btrfs_set_device_start_offset(leaf, dev_item, 0);
1921 ptr = btrfs_device_uuid(dev_item);
1922 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923 ptr = btrfs_device_fsid(dev_item);
1924 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925 ptr, BTRFS_FSID_SIZE);
1926 btrfs_mark_buffer_dirty(trans, leaf);
1928 ret = 0;
1929 out:
1930 btrfs_free_path(path);
1931 return ret;
1935 * Function to update ctime/mtime for a given device path.
1936 * Mainly used for ctime/mtime based probe like libblkid.
1938 * We don't care about errors here, this is just to be kind to userspace.
1940 static void update_dev_time(const char *device_path)
1942 struct path path;
1943 int ret;
1945 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1946 if (ret)
1947 return;
1949 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1950 path_put(&path);
1953 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1954 struct btrfs_device *device)
1956 struct btrfs_root *root = device->fs_info->chunk_root;
1957 int ret;
1958 struct btrfs_path *path;
1959 struct btrfs_key key;
1961 path = btrfs_alloc_path();
1962 if (!path)
1963 return -ENOMEM;
1965 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1966 key.type = BTRFS_DEV_ITEM_KEY;
1967 key.offset = device->devid;
1969 btrfs_reserve_chunk_metadata(trans, false);
1970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 btrfs_trans_release_chunk_metadata(trans);
1972 if (ret) {
1973 if (ret > 0)
1974 ret = -ENOENT;
1975 goto out;
1978 ret = btrfs_del_item(trans, root, path);
1979 out:
1980 btrfs_free_path(path);
1981 return ret;
1985 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1986 * filesystem. It's up to the caller to adjust that number regarding eg. device
1987 * replace.
1989 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1990 u64 num_devices)
1992 u64 all_avail;
1993 unsigned seq;
1994 int i;
1996 do {
1997 seq = read_seqbegin(&fs_info->profiles_lock);
1999 all_avail = fs_info->avail_data_alloc_bits |
2000 fs_info->avail_system_alloc_bits |
2001 fs_info->avail_metadata_alloc_bits;
2002 } while (read_seqretry(&fs_info->profiles_lock, seq));
2004 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2005 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2006 continue;
2008 if (num_devices < btrfs_raid_array[i].devs_min)
2009 return btrfs_raid_array[i].mindev_error;
2012 return 0;
2015 static struct btrfs_device * btrfs_find_next_active_device(
2016 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2018 struct btrfs_device *next_device;
2020 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2021 if (next_device != device &&
2022 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2023 && next_device->bdev)
2024 return next_device;
2027 return NULL;
2031 * Helper function to check if the given device is part of s_bdev / latest_dev
2032 * and replace it with the provided or the next active device, in the context
2033 * where this function called, there should be always be another device (or
2034 * this_dev) which is active.
2036 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2037 struct btrfs_device *next_device)
2039 struct btrfs_fs_info *fs_info = device->fs_info;
2041 if (!next_device)
2042 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2043 device);
2044 ASSERT(next_device);
2046 if (fs_info->sb->s_bdev &&
2047 (fs_info->sb->s_bdev == device->bdev))
2048 fs_info->sb->s_bdev = next_device->bdev;
2050 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2051 fs_info->fs_devices->latest_dev = next_device;
2055 * Return btrfs_fs_devices::num_devices excluding the device that's being
2056 * currently replaced.
2058 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2060 u64 num_devices = fs_info->fs_devices->num_devices;
2062 down_read(&fs_info->dev_replace.rwsem);
2063 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2064 ASSERT(num_devices > 1);
2065 num_devices--;
2067 up_read(&fs_info->dev_replace.rwsem);
2069 return num_devices;
2072 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2073 struct block_device *bdev, int copy_num)
2075 struct btrfs_super_block *disk_super;
2076 const size_t len = sizeof(disk_super->magic);
2077 const u64 bytenr = btrfs_sb_offset(copy_num);
2078 int ret;
2080 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2081 if (IS_ERR(disk_super))
2082 return;
2084 memset(&disk_super->magic, 0, len);
2085 folio_mark_dirty(virt_to_folio(disk_super));
2086 btrfs_release_disk_super(disk_super);
2088 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2089 if (ret)
2090 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2091 copy_num, ret);
2094 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2096 int copy_num;
2097 struct block_device *bdev = device->bdev;
2099 if (!bdev)
2100 return;
2102 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2103 if (bdev_is_zoned(bdev))
2104 btrfs_reset_sb_log_zones(bdev, copy_num);
2105 else
2106 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2109 /* Notify udev that device has changed */
2110 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2112 /* Update ctime/mtime for device path for libblkid */
2113 update_dev_time(device->name->str);
2116 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2117 struct btrfs_dev_lookup_args *args,
2118 struct file **bdev_file)
2120 struct btrfs_trans_handle *trans;
2121 struct btrfs_device *device;
2122 struct btrfs_fs_devices *cur_devices;
2123 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2124 u64 num_devices;
2125 int ret = 0;
2127 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2128 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2129 return -EINVAL;
2133 * The device list in fs_devices is accessed without locks (neither
2134 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2135 * filesystem and another device rm cannot run.
2137 num_devices = btrfs_num_devices(fs_info);
2139 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2140 if (ret)
2141 return ret;
2143 device = btrfs_find_device(fs_info->fs_devices, args);
2144 if (!device) {
2145 if (args->missing)
2146 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2147 else
2148 ret = -ENOENT;
2149 return ret;
2152 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2153 btrfs_warn_in_rcu(fs_info,
2154 "cannot remove device %s (devid %llu) due to active swapfile",
2155 btrfs_dev_name(device), device->devid);
2156 return -ETXTBSY;
2159 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2160 return BTRFS_ERROR_DEV_TGT_REPLACE;
2162 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2163 fs_info->fs_devices->rw_devices == 1)
2164 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2166 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167 mutex_lock(&fs_info->chunk_mutex);
2168 list_del_init(&device->dev_alloc_list);
2169 device->fs_devices->rw_devices--;
2170 mutex_unlock(&fs_info->chunk_mutex);
2173 ret = btrfs_shrink_device(device, 0);
2174 if (ret)
2175 goto error_undo;
2177 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2178 if (IS_ERR(trans)) {
2179 ret = PTR_ERR(trans);
2180 goto error_undo;
2183 ret = btrfs_rm_dev_item(trans, device);
2184 if (ret) {
2185 /* Any error in dev item removal is critical */
2186 btrfs_crit(fs_info,
2187 "failed to remove device item for devid %llu: %d",
2188 device->devid, ret);
2189 btrfs_abort_transaction(trans, ret);
2190 btrfs_end_transaction(trans);
2191 return ret;
2194 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2195 btrfs_scrub_cancel_dev(device);
2198 * the device list mutex makes sure that we don't change
2199 * the device list while someone else is writing out all
2200 * the device supers. Whoever is writing all supers, should
2201 * lock the device list mutex before getting the number of
2202 * devices in the super block (super_copy). Conversely,
2203 * whoever updates the number of devices in the super block
2204 * (super_copy) should hold the device list mutex.
2208 * In normal cases the cur_devices == fs_devices. But in case
2209 * of deleting a seed device, the cur_devices should point to
2210 * its own fs_devices listed under the fs_devices->seed_list.
2212 cur_devices = device->fs_devices;
2213 mutex_lock(&fs_devices->device_list_mutex);
2214 list_del_rcu(&device->dev_list);
2216 cur_devices->num_devices--;
2217 cur_devices->total_devices--;
2218 /* Update total_devices of the parent fs_devices if it's seed */
2219 if (cur_devices != fs_devices)
2220 fs_devices->total_devices--;
2222 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2223 cur_devices->missing_devices--;
2225 btrfs_assign_next_active_device(device, NULL);
2227 if (device->bdev_file) {
2228 cur_devices->open_devices--;
2229 /* remove sysfs entry */
2230 btrfs_sysfs_remove_device(device);
2233 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2234 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2235 mutex_unlock(&fs_devices->device_list_mutex);
2238 * At this point, the device is zero sized and detached from the
2239 * devices list. All that's left is to zero out the old supers and
2240 * free the device.
2242 * We cannot call btrfs_close_bdev() here because we're holding the sb
2243 * write lock, and fput() on the block device will pull in the
2244 * ->open_mutex on the block device and it's dependencies. Instead
2245 * just flush the device and let the caller do the final bdev_release.
2247 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2248 btrfs_scratch_superblocks(fs_info, device);
2249 if (device->bdev) {
2250 sync_blockdev(device->bdev);
2251 invalidate_bdev(device->bdev);
2255 *bdev_file = device->bdev_file;
2256 synchronize_rcu();
2257 btrfs_free_device(device);
2260 * This can happen if cur_devices is the private seed devices list. We
2261 * cannot call close_fs_devices() here because it expects the uuid_mutex
2262 * to be held, but in fact we don't need that for the private
2263 * seed_devices, we can simply decrement cur_devices->opened and then
2264 * remove it from our list and free the fs_devices.
2266 if (cur_devices->num_devices == 0) {
2267 list_del_init(&cur_devices->seed_list);
2268 ASSERT(cur_devices->opened == 1);
2269 cur_devices->opened--;
2270 free_fs_devices(cur_devices);
2273 ret = btrfs_commit_transaction(trans);
2275 return ret;
2277 error_undo:
2278 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2279 mutex_lock(&fs_info->chunk_mutex);
2280 list_add(&device->dev_alloc_list,
2281 &fs_devices->alloc_list);
2282 device->fs_devices->rw_devices++;
2283 mutex_unlock(&fs_info->chunk_mutex);
2285 return ret;
2288 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2290 struct btrfs_fs_devices *fs_devices;
2292 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2295 * in case of fs with no seed, srcdev->fs_devices will point
2296 * to fs_devices of fs_info. However when the dev being replaced is
2297 * a seed dev it will point to the seed's local fs_devices. In short
2298 * srcdev will have its correct fs_devices in both the cases.
2300 fs_devices = srcdev->fs_devices;
2302 list_del_rcu(&srcdev->dev_list);
2303 list_del(&srcdev->dev_alloc_list);
2304 fs_devices->num_devices--;
2305 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2306 fs_devices->missing_devices--;
2308 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2309 fs_devices->rw_devices--;
2311 if (srcdev->bdev)
2312 fs_devices->open_devices--;
2315 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2317 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2319 mutex_lock(&uuid_mutex);
2321 btrfs_close_bdev(srcdev);
2322 synchronize_rcu();
2323 btrfs_free_device(srcdev);
2325 /* if this is no devs we rather delete the fs_devices */
2326 if (!fs_devices->num_devices) {
2328 * On a mounted FS, num_devices can't be zero unless it's a
2329 * seed. In case of a seed device being replaced, the replace
2330 * target added to the sprout FS, so there will be no more
2331 * device left under the seed FS.
2333 ASSERT(fs_devices->seeding);
2335 list_del_init(&fs_devices->seed_list);
2336 close_fs_devices(fs_devices);
2337 free_fs_devices(fs_devices);
2339 mutex_unlock(&uuid_mutex);
2342 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2344 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2346 mutex_lock(&fs_devices->device_list_mutex);
2348 btrfs_sysfs_remove_device(tgtdev);
2350 if (tgtdev->bdev)
2351 fs_devices->open_devices--;
2353 fs_devices->num_devices--;
2355 btrfs_assign_next_active_device(tgtdev, NULL);
2357 list_del_rcu(&tgtdev->dev_list);
2359 mutex_unlock(&fs_devices->device_list_mutex);
2361 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2363 btrfs_close_bdev(tgtdev);
2364 synchronize_rcu();
2365 btrfs_free_device(tgtdev);
2369 * Populate args from device at path.
2371 * @fs_info: the filesystem
2372 * @args: the args to populate
2373 * @path: the path to the device
2375 * This will read the super block of the device at @path and populate @args with
2376 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2377 * lookup a device to operate on, but need to do it before we take any locks.
2378 * This properly handles the special case of "missing" that a user may pass in,
2379 * and does some basic sanity checks. The caller must make sure that @path is
2380 * properly NUL terminated before calling in, and must call
2381 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2382 * uuid buffers.
2384 * Return: 0 for success, -errno for failure
2386 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2387 struct btrfs_dev_lookup_args *args,
2388 const char *path)
2390 struct btrfs_super_block *disk_super;
2391 struct file *bdev_file;
2392 int ret;
2394 if (!path || !path[0])
2395 return -EINVAL;
2396 if (!strcmp(path, "missing")) {
2397 args->missing = true;
2398 return 0;
2401 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2402 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2403 if (!args->uuid || !args->fsid) {
2404 btrfs_put_dev_args_from_path(args);
2405 return -ENOMEM;
2408 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2409 &bdev_file, &disk_super);
2410 if (ret) {
2411 btrfs_put_dev_args_from_path(args);
2412 return ret;
2415 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2416 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2417 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2418 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2419 else
2420 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2421 btrfs_release_disk_super(disk_super);
2422 fput(bdev_file);
2423 return 0;
2427 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2428 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2429 * that don't need to be freed.
2431 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2433 kfree(args->uuid);
2434 kfree(args->fsid);
2435 args->uuid = NULL;
2436 args->fsid = NULL;
2439 struct btrfs_device *btrfs_find_device_by_devspec(
2440 struct btrfs_fs_info *fs_info, u64 devid,
2441 const char *device_path)
2443 BTRFS_DEV_LOOKUP_ARGS(args);
2444 struct btrfs_device *device;
2445 int ret;
2447 if (devid) {
2448 args.devid = devid;
2449 device = btrfs_find_device(fs_info->fs_devices, &args);
2450 if (!device)
2451 return ERR_PTR(-ENOENT);
2452 return device;
2455 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2456 if (ret)
2457 return ERR_PTR(ret);
2458 device = btrfs_find_device(fs_info->fs_devices, &args);
2459 btrfs_put_dev_args_from_path(&args);
2460 if (!device)
2461 return ERR_PTR(-ENOENT);
2462 return device;
2465 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2467 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2468 struct btrfs_fs_devices *old_devices;
2469 struct btrfs_fs_devices *seed_devices;
2471 lockdep_assert_held(&uuid_mutex);
2472 if (!fs_devices->seeding)
2473 return ERR_PTR(-EINVAL);
2476 * Private copy of the seed devices, anchored at
2477 * fs_info->fs_devices->seed_list
2479 seed_devices = alloc_fs_devices(NULL);
2480 if (IS_ERR(seed_devices))
2481 return seed_devices;
2484 * It's necessary to retain a copy of the original seed fs_devices in
2485 * fs_uuids so that filesystems which have been seeded can successfully
2486 * reference the seed device from open_seed_devices. This also supports
2487 * multiple fs seed.
2489 old_devices = clone_fs_devices(fs_devices);
2490 if (IS_ERR(old_devices)) {
2491 kfree(seed_devices);
2492 return old_devices;
2495 list_add(&old_devices->fs_list, &fs_uuids);
2497 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2498 seed_devices->opened = 1;
2499 INIT_LIST_HEAD(&seed_devices->devices);
2500 INIT_LIST_HEAD(&seed_devices->alloc_list);
2501 mutex_init(&seed_devices->device_list_mutex);
2503 return seed_devices;
2507 * Splice seed devices into the sprout fs_devices.
2508 * Generate a new fsid for the sprouted read-write filesystem.
2510 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2511 struct btrfs_fs_devices *seed_devices)
2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2514 struct btrfs_super_block *disk_super = fs_info->super_copy;
2515 struct btrfs_device *device;
2516 u64 super_flags;
2519 * We are updating the fsid, the thread leading to device_list_add()
2520 * could race, so uuid_mutex is needed.
2522 lockdep_assert_held(&uuid_mutex);
2525 * The threads listed below may traverse dev_list but can do that without
2526 * device_list_mutex:
2527 * - All device ops and balance - as we are in btrfs_exclop_start.
2528 * - Various dev_list readers - are using RCU.
2529 * - btrfs_ioctl_fitrim() - is using RCU.
2531 * For-read threads as below are using device_list_mutex:
2532 * - Readonly scrub btrfs_scrub_dev()
2533 * - Readonly scrub btrfs_scrub_progress()
2534 * - btrfs_get_dev_stats()
2536 lockdep_assert_held(&fs_devices->device_list_mutex);
2538 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2539 synchronize_rcu);
2540 list_for_each_entry(device, &seed_devices->devices, dev_list)
2541 device->fs_devices = seed_devices;
2543 fs_devices->seeding = false;
2544 fs_devices->num_devices = 0;
2545 fs_devices->open_devices = 0;
2546 fs_devices->missing_devices = 0;
2547 fs_devices->rotating = false;
2548 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2550 generate_random_uuid(fs_devices->fsid);
2551 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2552 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2554 super_flags = btrfs_super_flags(disk_super) &
2555 ~BTRFS_SUPER_FLAG_SEEDING;
2556 btrfs_set_super_flags(disk_super, super_flags);
2560 * Store the expected generation for seed devices in device items.
2562 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2564 BTRFS_DEV_LOOKUP_ARGS(args);
2565 struct btrfs_fs_info *fs_info = trans->fs_info;
2566 struct btrfs_root *root = fs_info->chunk_root;
2567 struct btrfs_path *path;
2568 struct extent_buffer *leaf;
2569 struct btrfs_dev_item *dev_item;
2570 struct btrfs_device *device;
2571 struct btrfs_key key;
2572 u8 fs_uuid[BTRFS_FSID_SIZE];
2573 u8 dev_uuid[BTRFS_UUID_SIZE];
2574 int ret;
2576 path = btrfs_alloc_path();
2577 if (!path)
2578 return -ENOMEM;
2580 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2581 key.offset = 0;
2582 key.type = BTRFS_DEV_ITEM_KEY;
2584 while (1) {
2585 btrfs_reserve_chunk_metadata(trans, false);
2586 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2587 btrfs_trans_release_chunk_metadata(trans);
2588 if (ret < 0)
2589 goto error;
2591 leaf = path->nodes[0];
2592 next_slot:
2593 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2594 ret = btrfs_next_leaf(root, path);
2595 if (ret > 0)
2596 break;
2597 if (ret < 0)
2598 goto error;
2599 leaf = path->nodes[0];
2600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2601 btrfs_release_path(path);
2602 continue;
2605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2606 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2607 key.type != BTRFS_DEV_ITEM_KEY)
2608 break;
2610 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2611 struct btrfs_dev_item);
2612 args.devid = btrfs_device_id(leaf, dev_item);
2613 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2614 BTRFS_UUID_SIZE);
2615 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2616 BTRFS_FSID_SIZE);
2617 args.uuid = dev_uuid;
2618 args.fsid = fs_uuid;
2619 device = btrfs_find_device(fs_info->fs_devices, &args);
2620 BUG_ON(!device); /* Logic error */
2622 if (device->fs_devices->seeding) {
2623 btrfs_set_device_generation(leaf, dev_item,
2624 device->generation);
2625 btrfs_mark_buffer_dirty(trans, leaf);
2628 path->slots[0]++;
2629 goto next_slot;
2631 ret = 0;
2632 error:
2633 btrfs_free_path(path);
2634 return ret;
2637 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2639 struct btrfs_root *root = fs_info->dev_root;
2640 struct btrfs_trans_handle *trans;
2641 struct btrfs_device *device;
2642 struct file *bdev_file;
2643 struct super_block *sb = fs_info->sb;
2644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2645 struct btrfs_fs_devices *seed_devices = NULL;
2646 u64 orig_super_total_bytes;
2647 u64 orig_super_num_devices;
2648 int ret = 0;
2649 bool seeding_dev = false;
2650 bool locked = false;
2652 if (sb_rdonly(sb) && !fs_devices->seeding)
2653 return -EROFS;
2655 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2656 fs_info->bdev_holder, NULL);
2657 if (IS_ERR(bdev_file))
2658 return PTR_ERR(bdev_file);
2660 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2661 ret = -EINVAL;
2662 goto error;
2665 if (fs_devices->seeding) {
2666 seeding_dev = true;
2667 down_write(&sb->s_umount);
2668 mutex_lock(&uuid_mutex);
2669 locked = true;
2672 sync_blockdev(file_bdev(bdev_file));
2674 rcu_read_lock();
2675 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2676 if (device->bdev == file_bdev(bdev_file)) {
2677 ret = -EEXIST;
2678 rcu_read_unlock();
2679 goto error;
2682 rcu_read_unlock();
2684 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2685 if (IS_ERR(device)) {
2686 /* we can safely leave the fs_devices entry around */
2687 ret = PTR_ERR(device);
2688 goto error;
2691 device->fs_info = fs_info;
2692 device->bdev_file = bdev_file;
2693 device->bdev = file_bdev(bdev_file);
2694 ret = lookup_bdev(device_path, &device->devt);
2695 if (ret)
2696 goto error_free_device;
2698 ret = btrfs_get_dev_zone_info(device, false);
2699 if (ret)
2700 goto error_free_device;
2702 trans = btrfs_start_transaction(root, 0);
2703 if (IS_ERR(trans)) {
2704 ret = PTR_ERR(trans);
2705 goto error_free_zone;
2708 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2709 device->generation = trans->transid;
2710 device->io_width = fs_info->sectorsize;
2711 device->io_align = fs_info->sectorsize;
2712 device->sector_size = fs_info->sectorsize;
2713 device->total_bytes =
2714 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2715 device->disk_total_bytes = device->total_bytes;
2716 device->commit_total_bytes = device->total_bytes;
2717 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2718 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2719 device->dev_stats_valid = 1;
2720 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2722 if (seeding_dev) {
2723 btrfs_clear_sb_rdonly(sb);
2725 /* GFP_KERNEL allocation must not be under device_list_mutex */
2726 seed_devices = btrfs_init_sprout(fs_info);
2727 if (IS_ERR(seed_devices)) {
2728 ret = PTR_ERR(seed_devices);
2729 btrfs_abort_transaction(trans, ret);
2730 goto error_trans;
2734 mutex_lock(&fs_devices->device_list_mutex);
2735 if (seeding_dev) {
2736 btrfs_setup_sprout(fs_info, seed_devices);
2737 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2738 device);
2741 device->fs_devices = fs_devices;
2743 mutex_lock(&fs_info->chunk_mutex);
2744 list_add_rcu(&device->dev_list, &fs_devices->devices);
2745 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2746 fs_devices->num_devices++;
2747 fs_devices->open_devices++;
2748 fs_devices->rw_devices++;
2749 fs_devices->total_devices++;
2750 fs_devices->total_rw_bytes += device->total_bytes;
2752 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2754 if (!bdev_nonrot(device->bdev))
2755 fs_devices->rotating = true;
2757 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2758 btrfs_set_super_total_bytes(fs_info->super_copy,
2759 round_down(orig_super_total_bytes + device->total_bytes,
2760 fs_info->sectorsize));
2762 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2763 btrfs_set_super_num_devices(fs_info->super_copy,
2764 orig_super_num_devices + 1);
2767 * we've got more storage, clear any full flags on the space
2768 * infos
2770 btrfs_clear_space_info_full(fs_info);
2772 mutex_unlock(&fs_info->chunk_mutex);
2774 /* Add sysfs device entry */
2775 btrfs_sysfs_add_device(device);
2777 mutex_unlock(&fs_devices->device_list_mutex);
2779 if (seeding_dev) {
2780 mutex_lock(&fs_info->chunk_mutex);
2781 ret = init_first_rw_device(trans);
2782 mutex_unlock(&fs_info->chunk_mutex);
2783 if (ret) {
2784 btrfs_abort_transaction(trans, ret);
2785 goto error_sysfs;
2789 ret = btrfs_add_dev_item(trans, device);
2790 if (ret) {
2791 btrfs_abort_transaction(trans, ret);
2792 goto error_sysfs;
2795 if (seeding_dev) {
2796 ret = btrfs_finish_sprout(trans);
2797 if (ret) {
2798 btrfs_abort_transaction(trans, ret);
2799 goto error_sysfs;
2803 * fs_devices now represents the newly sprouted filesystem and
2804 * its fsid has been changed by btrfs_sprout_splice().
2806 btrfs_sysfs_update_sprout_fsid(fs_devices);
2809 ret = btrfs_commit_transaction(trans);
2811 if (seeding_dev) {
2812 mutex_unlock(&uuid_mutex);
2813 up_write(&sb->s_umount);
2814 locked = false;
2816 if (ret) /* transaction commit */
2817 return ret;
2819 ret = btrfs_relocate_sys_chunks(fs_info);
2820 if (ret < 0)
2821 btrfs_handle_fs_error(fs_info, ret,
2822 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2823 trans = btrfs_attach_transaction(root);
2824 if (IS_ERR(trans)) {
2825 if (PTR_ERR(trans) == -ENOENT)
2826 return 0;
2827 ret = PTR_ERR(trans);
2828 trans = NULL;
2829 goto error_sysfs;
2831 ret = btrfs_commit_transaction(trans);
2835 * Now that we have written a new super block to this device, check all
2836 * other fs_devices list if device_path alienates any other scanned
2837 * device.
2838 * We can ignore the return value as it typically returns -EINVAL and
2839 * only succeeds if the device was an alien.
2841 btrfs_forget_devices(device->devt);
2843 /* Update ctime/mtime for blkid or udev */
2844 update_dev_time(device_path);
2846 return ret;
2848 error_sysfs:
2849 btrfs_sysfs_remove_device(device);
2850 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2851 mutex_lock(&fs_info->chunk_mutex);
2852 list_del_rcu(&device->dev_list);
2853 list_del(&device->dev_alloc_list);
2854 fs_info->fs_devices->num_devices--;
2855 fs_info->fs_devices->open_devices--;
2856 fs_info->fs_devices->rw_devices--;
2857 fs_info->fs_devices->total_devices--;
2858 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2859 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2860 btrfs_set_super_total_bytes(fs_info->super_copy,
2861 orig_super_total_bytes);
2862 btrfs_set_super_num_devices(fs_info->super_copy,
2863 orig_super_num_devices);
2864 mutex_unlock(&fs_info->chunk_mutex);
2865 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2866 error_trans:
2867 if (seeding_dev)
2868 btrfs_set_sb_rdonly(sb);
2869 if (trans)
2870 btrfs_end_transaction(trans);
2871 error_free_zone:
2872 btrfs_destroy_dev_zone_info(device);
2873 error_free_device:
2874 btrfs_free_device(device);
2875 error:
2876 fput(bdev_file);
2877 if (locked) {
2878 mutex_unlock(&uuid_mutex);
2879 up_write(&sb->s_umount);
2881 return ret;
2884 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2885 struct btrfs_device *device)
2887 int ret;
2888 struct btrfs_path *path;
2889 struct btrfs_root *root = device->fs_info->chunk_root;
2890 struct btrfs_dev_item *dev_item;
2891 struct extent_buffer *leaf;
2892 struct btrfs_key key;
2894 path = btrfs_alloc_path();
2895 if (!path)
2896 return -ENOMEM;
2898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2899 key.type = BTRFS_DEV_ITEM_KEY;
2900 key.offset = device->devid;
2902 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2903 if (ret < 0)
2904 goto out;
2906 if (ret > 0) {
2907 ret = -ENOENT;
2908 goto out;
2911 leaf = path->nodes[0];
2912 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2914 btrfs_set_device_id(leaf, dev_item, device->devid);
2915 btrfs_set_device_type(leaf, dev_item, device->type);
2916 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2917 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2918 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2919 btrfs_set_device_total_bytes(leaf, dev_item,
2920 btrfs_device_get_disk_total_bytes(device));
2921 btrfs_set_device_bytes_used(leaf, dev_item,
2922 btrfs_device_get_bytes_used(device));
2923 btrfs_mark_buffer_dirty(trans, leaf);
2925 out:
2926 btrfs_free_path(path);
2927 return ret;
2930 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2931 struct btrfs_device *device, u64 new_size)
2933 struct btrfs_fs_info *fs_info = device->fs_info;
2934 struct btrfs_super_block *super_copy = fs_info->super_copy;
2935 u64 old_total;
2936 u64 diff;
2937 int ret;
2939 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2940 return -EACCES;
2942 new_size = round_down(new_size, fs_info->sectorsize);
2944 mutex_lock(&fs_info->chunk_mutex);
2945 old_total = btrfs_super_total_bytes(super_copy);
2946 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2948 if (new_size <= device->total_bytes ||
2949 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2950 mutex_unlock(&fs_info->chunk_mutex);
2951 return -EINVAL;
2954 btrfs_set_super_total_bytes(super_copy,
2955 round_down(old_total + diff, fs_info->sectorsize));
2956 device->fs_devices->total_rw_bytes += diff;
2957 atomic64_add(diff, &fs_info->free_chunk_space);
2959 btrfs_device_set_total_bytes(device, new_size);
2960 btrfs_device_set_disk_total_bytes(device, new_size);
2961 btrfs_clear_space_info_full(device->fs_info);
2962 if (list_empty(&device->post_commit_list))
2963 list_add_tail(&device->post_commit_list,
2964 &trans->transaction->dev_update_list);
2965 mutex_unlock(&fs_info->chunk_mutex);
2967 btrfs_reserve_chunk_metadata(trans, false);
2968 ret = btrfs_update_device(trans, device);
2969 btrfs_trans_release_chunk_metadata(trans);
2971 return ret;
2974 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2976 struct btrfs_fs_info *fs_info = trans->fs_info;
2977 struct btrfs_root *root = fs_info->chunk_root;
2978 int ret;
2979 struct btrfs_path *path;
2980 struct btrfs_key key;
2982 path = btrfs_alloc_path();
2983 if (!path)
2984 return -ENOMEM;
2986 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2987 key.offset = chunk_offset;
2988 key.type = BTRFS_CHUNK_ITEM_KEY;
2990 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2991 if (ret < 0)
2992 goto out;
2993 else if (ret > 0) { /* Logic error or corruption */
2994 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
2995 chunk_offset);
2996 btrfs_abort_transaction(trans, -ENOENT);
2997 ret = -EUCLEAN;
2998 goto out;
3001 ret = btrfs_del_item(trans, root, path);
3002 if (ret < 0) {
3003 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3004 btrfs_abort_transaction(trans, ret);
3005 goto out;
3007 out:
3008 btrfs_free_path(path);
3009 return ret;
3012 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3014 struct btrfs_super_block *super_copy = fs_info->super_copy;
3015 struct btrfs_disk_key *disk_key;
3016 struct btrfs_chunk *chunk;
3017 u8 *ptr;
3018 int ret = 0;
3019 u32 num_stripes;
3020 u32 array_size;
3021 u32 len = 0;
3022 u32 cur;
3023 struct btrfs_key key;
3025 lockdep_assert_held(&fs_info->chunk_mutex);
3026 array_size = btrfs_super_sys_array_size(super_copy);
3028 ptr = super_copy->sys_chunk_array;
3029 cur = 0;
3031 while (cur < array_size) {
3032 disk_key = (struct btrfs_disk_key *)ptr;
3033 btrfs_disk_key_to_cpu(&key, disk_key);
3035 len = sizeof(*disk_key);
3037 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3038 chunk = (struct btrfs_chunk *)(ptr + len);
3039 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3040 len += btrfs_chunk_item_size(num_stripes);
3041 } else {
3042 ret = -EIO;
3043 break;
3045 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3046 key.offset == chunk_offset) {
3047 memmove(ptr, ptr + len, array_size - (cur + len));
3048 array_size -= len;
3049 btrfs_set_super_sys_array_size(super_copy, array_size);
3050 } else {
3051 ptr += len;
3052 cur += len;
3055 return ret;
3058 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3059 u64 logical, u64 length)
3061 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3062 struct rb_node *prev = NULL;
3063 struct rb_node *orig_prev;
3064 struct btrfs_chunk_map *map;
3065 struct btrfs_chunk_map *prev_map = NULL;
3067 while (node) {
3068 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3069 prev = node;
3070 prev_map = map;
3072 if (logical < map->start) {
3073 node = node->rb_left;
3074 } else if (logical >= map->start + map->chunk_len) {
3075 node = node->rb_right;
3076 } else {
3077 refcount_inc(&map->refs);
3078 return map;
3082 if (!prev)
3083 return NULL;
3085 orig_prev = prev;
3086 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3087 prev = rb_next(prev);
3088 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 if (!prev) {
3092 prev = orig_prev;
3093 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3094 while (prev && logical < prev_map->start) {
3095 prev = rb_prev(prev);
3096 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3100 if (prev) {
3101 u64 end = logical + length;
3104 * Caller can pass a U64_MAX length when it wants to get any
3105 * chunk starting at an offset of 'logical' or higher, so deal
3106 * with underflow by resetting the end offset to U64_MAX.
3108 if (end < logical)
3109 end = U64_MAX;
3111 if (end > prev_map->start &&
3112 logical < prev_map->start + prev_map->chunk_len) {
3113 refcount_inc(&prev_map->refs);
3114 return prev_map;
3118 return NULL;
3121 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3122 u64 logical, u64 length)
3124 struct btrfs_chunk_map *map;
3126 read_lock(&fs_info->mapping_tree_lock);
3127 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3128 read_unlock(&fs_info->mapping_tree_lock);
3130 return map;
3134 * Find the mapping containing the given logical extent.
3136 * @logical: Logical block offset in bytes.
3137 * @length: Length of extent in bytes.
3139 * Return: Chunk mapping or ERR_PTR.
3141 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3142 u64 logical, u64 length)
3144 struct btrfs_chunk_map *map;
3146 map = btrfs_find_chunk_map(fs_info, logical, length);
3148 if (unlikely(!map)) {
3149 btrfs_crit(fs_info,
3150 "unable to find chunk map for logical %llu length %llu",
3151 logical, length);
3152 return ERR_PTR(-EINVAL);
3155 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3156 btrfs_crit(fs_info,
3157 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3158 logical, logical + length, map->start,
3159 map->start + map->chunk_len);
3160 btrfs_free_chunk_map(map);
3161 return ERR_PTR(-EINVAL);
3164 /* Callers are responsible for dropping the reference. */
3165 return map;
3168 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3169 struct btrfs_chunk_map *map, u64 chunk_offset)
3171 int i;
3174 * Removing chunk items and updating the device items in the chunks btree
3175 * requires holding the chunk_mutex.
3176 * See the comment at btrfs_chunk_alloc() for the details.
3178 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3180 for (i = 0; i < map->num_stripes; i++) {
3181 int ret;
3183 ret = btrfs_update_device(trans, map->stripes[i].dev);
3184 if (ret)
3185 return ret;
3188 return btrfs_free_chunk(trans, chunk_offset);
3191 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3193 struct btrfs_fs_info *fs_info = trans->fs_info;
3194 struct btrfs_chunk_map *map;
3195 u64 dev_extent_len = 0;
3196 int i, ret = 0;
3197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3199 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3200 if (IS_ERR(map)) {
3202 * This is a logic error, but we don't want to just rely on the
3203 * user having built with ASSERT enabled, so if ASSERT doesn't
3204 * do anything we still error out.
3206 ASSERT(0);
3207 return PTR_ERR(map);
3211 * First delete the device extent items from the devices btree.
3212 * We take the device_list_mutex to avoid racing with the finishing phase
3213 * of a device replace operation. See the comment below before acquiring
3214 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3215 * because that can result in a deadlock when deleting the device extent
3216 * items from the devices btree - COWing an extent buffer from the btree
3217 * may result in allocating a new metadata chunk, which would attempt to
3218 * lock again fs_info->chunk_mutex.
3220 mutex_lock(&fs_devices->device_list_mutex);
3221 for (i = 0; i < map->num_stripes; i++) {
3222 struct btrfs_device *device = map->stripes[i].dev;
3223 ret = btrfs_free_dev_extent(trans, device,
3224 map->stripes[i].physical,
3225 &dev_extent_len);
3226 if (ret) {
3227 mutex_unlock(&fs_devices->device_list_mutex);
3228 btrfs_abort_transaction(trans, ret);
3229 goto out;
3232 if (device->bytes_used > 0) {
3233 mutex_lock(&fs_info->chunk_mutex);
3234 btrfs_device_set_bytes_used(device,
3235 device->bytes_used - dev_extent_len);
3236 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3237 btrfs_clear_space_info_full(fs_info);
3238 mutex_unlock(&fs_info->chunk_mutex);
3241 mutex_unlock(&fs_devices->device_list_mutex);
3244 * We acquire fs_info->chunk_mutex for 2 reasons:
3246 * 1) Just like with the first phase of the chunk allocation, we must
3247 * reserve system space, do all chunk btree updates and deletions, and
3248 * update the system chunk array in the superblock while holding this
3249 * mutex. This is for similar reasons as explained on the comment at
3250 * the top of btrfs_chunk_alloc();
3252 * 2) Prevent races with the final phase of a device replace operation
3253 * that replaces the device object associated with the map's stripes,
3254 * because the device object's id can change at any time during that
3255 * final phase of the device replace operation
3256 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3257 * replaced device and then see it with an ID of
3258 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3259 * the device item, which does not exists on the chunk btree.
3260 * The finishing phase of device replace acquires both the
3261 * device_list_mutex and the chunk_mutex, in that order, so we are
3262 * safe by just acquiring the chunk_mutex.
3264 trans->removing_chunk = true;
3265 mutex_lock(&fs_info->chunk_mutex);
3267 check_system_chunk(trans, map->type);
3269 ret = remove_chunk_item(trans, map, chunk_offset);
3271 * Normally we should not get -ENOSPC since we reserved space before
3272 * through the call to check_system_chunk().
3274 * Despite our system space_info having enough free space, we may not
3275 * be able to allocate extents from its block groups, because all have
3276 * an incompatible profile, which will force us to allocate a new system
3277 * block group with the right profile, or right after we called
3278 * check_system_space() above, a scrub turned the only system block group
3279 * with enough free space into RO mode.
3280 * This is explained with more detail at do_chunk_alloc().
3282 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3284 if (ret == -ENOSPC) {
3285 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3286 struct btrfs_block_group *sys_bg;
3288 sys_bg = btrfs_create_chunk(trans, sys_flags);
3289 if (IS_ERR(sys_bg)) {
3290 ret = PTR_ERR(sys_bg);
3291 btrfs_abort_transaction(trans, ret);
3292 goto out;
3295 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3296 if (ret) {
3297 btrfs_abort_transaction(trans, ret);
3298 goto out;
3301 ret = remove_chunk_item(trans, map, chunk_offset);
3302 if (ret) {
3303 btrfs_abort_transaction(trans, ret);
3304 goto out;
3306 } else if (ret) {
3307 btrfs_abort_transaction(trans, ret);
3308 goto out;
3311 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3313 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3314 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3315 if (ret) {
3316 btrfs_abort_transaction(trans, ret);
3317 goto out;
3321 mutex_unlock(&fs_info->chunk_mutex);
3322 trans->removing_chunk = false;
3325 * We are done with chunk btree updates and deletions, so release the
3326 * system space we previously reserved (with check_system_chunk()).
3328 btrfs_trans_release_chunk_metadata(trans);
3330 ret = btrfs_remove_block_group(trans, map);
3331 if (ret) {
3332 btrfs_abort_transaction(trans, ret);
3333 goto out;
3336 out:
3337 if (trans->removing_chunk) {
3338 mutex_unlock(&fs_info->chunk_mutex);
3339 trans->removing_chunk = false;
3341 /* once for us */
3342 btrfs_free_chunk_map(map);
3343 return ret;
3346 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3348 struct btrfs_root *root = fs_info->chunk_root;
3349 struct btrfs_trans_handle *trans;
3350 struct btrfs_block_group *block_group;
3351 u64 length;
3352 int ret;
3354 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3355 btrfs_err(fs_info,
3356 "relocate: not supported on extent tree v2 yet");
3357 return -EINVAL;
3361 * Prevent races with automatic removal of unused block groups.
3362 * After we relocate and before we remove the chunk with offset
3363 * chunk_offset, automatic removal of the block group can kick in,
3364 * resulting in a failure when calling btrfs_remove_chunk() below.
3366 * Make sure to acquire this mutex before doing a tree search (dev
3367 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3368 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3369 * we release the path used to search the chunk/dev tree and before
3370 * the current task acquires this mutex and calls us.
3372 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3374 /* step one, relocate all the extents inside this chunk */
3375 btrfs_scrub_pause(fs_info);
3376 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3377 btrfs_scrub_continue(fs_info);
3378 if (ret) {
3380 * If we had a transaction abort, stop all running scrubs.
3381 * See transaction.c:cleanup_transaction() why we do it here.
3383 if (BTRFS_FS_ERROR(fs_info))
3384 btrfs_scrub_cancel(fs_info);
3385 return ret;
3388 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3389 if (!block_group)
3390 return -ENOENT;
3391 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3392 length = block_group->length;
3393 btrfs_put_block_group(block_group);
3396 * On a zoned file system, discard the whole block group, this will
3397 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3398 * resetting the zone fails, don't treat it as a fatal problem from the
3399 * filesystem's point of view.
3401 if (btrfs_is_zoned(fs_info)) {
3402 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3403 if (ret)
3404 btrfs_info(fs_info,
3405 "failed to reset zone %llu after relocation",
3406 chunk_offset);
3409 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3410 chunk_offset);
3411 if (IS_ERR(trans)) {
3412 ret = PTR_ERR(trans);
3413 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3414 return ret;
3418 * step two, delete the device extents and the
3419 * chunk tree entries
3421 ret = btrfs_remove_chunk(trans, chunk_offset);
3422 btrfs_end_transaction(trans);
3423 return ret;
3426 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3428 struct btrfs_root *chunk_root = fs_info->chunk_root;
3429 struct btrfs_path *path;
3430 struct extent_buffer *leaf;
3431 struct btrfs_chunk *chunk;
3432 struct btrfs_key key;
3433 struct btrfs_key found_key;
3434 u64 chunk_type;
3435 bool retried = false;
3436 int failed = 0;
3437 int ret;
3439 path = btrfs_alloc_path();
3440 if (!path)
3441 return -ENOMEM;
3443 again:
3444 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3445 key.offset = (u64)-1;
3446 key.type = BTRFS_CHUNK_ITEM_KEY;
3448 while (1) {
3449 mutex_lock(&fs_info->reclaim_bgs_lock);
3450 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3451 if (ret < 0) {
3452 mutex_unlock(&fs_info->reclaim_bgs_lock);
3453 goto error;
3455 if (ret == 0) {
3457 * On the first search we would find chunk tree with
3458 * offset -1, which is not possible. On subsequent
3459 * loops this would find an existing item on an invalid
3460 * offset (one less than the previous one, wrong
3461 * alignment and size).
3463 ret = -EUCLEAN;
3464 mutex_unlock(&fs_info->reclaim_bgs_lock);
3465 goto error;
3468 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3469 key.type);
3470 if (ret)
3471 mutex_unlock(&fs_info->reclaim_bgs_lock);
3472 if (ret < 0)
3473 goto error;
3474 if (ret > 0)
3475 break;
3477 leaf = path->nodes[0];
3478 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3480 chunk = btrfs_item_ptr(leaf, path->slots[0],
3481 struct btrfs_chunk);
3482 chunk_type = btrfs_chunk_type(leaf, chunk);
3483 btrfs_release_path(path);
3485 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3486 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3487 if (ret == -ENOSPC)
3488 failed++;
3489 else
3490 BUG_ON(ret);
3492 mutex_unlock(&fs_info->reclaim_bgs_lock);
3494 if (found_key.offset == 0)
3495 break;
3496 key.offset = found_key.offset - 1;
3498 ret = 0;
3499 if (failed && !retried) {
3500 failed = 0;
3501 retried = true;
3502 goto again;
3503 } else if (WARN_ON(failed && retried)) {
3504 ret = -ENOSPC;
3506 error:
3507 btrfs_free_path(path);
3508 return ret;
3512 * return 1 : allocate a data chunk successfully,
3513 * return <0: errors during allocating a data chunk,
3514 * return 0 : no need to allocate a data chunk.
3516 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3517 u64 chunk_offset)
3519 struct btrfs_block_group *cache;
3520 u64 bytes_used;
3521 u64 chunk_type;
3523 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3524 ASSERT(cache);
3525 chunk_type = cache->flags;
3526 btrfs_put_block_group(cache);
3528 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3529 return 0;
3531 spin_lock(&fs_info->data_sinfo->lock);
3532 bytes_used = fs_info->data_sinfo->bytes_used;
3533 spin_unlock(&fs_info->data_sinfo->lock);
3535 if (!bytes_used) {
3536 struct btrfs_trans_handle *trans;
3537 int ret;
3539 trans = btrfs_join_transaction(fs_info->tree_root);
3540 if (IS_ERR(trans))
3541 return PTR_ERR(trans);
3543 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3544 btrfs_end_transaction(trans);
3545 if (ret < 0)
3546 return ret;
3547 return 1;
3550 return 0;
3553 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3554 const struct btrfs_disk_balance_args *disk)
3556 memset(cpu, 0, sizeof(*cpu));
3558 cpu->profiles = le64_to_cpu(disk->profiles);
3559 cpu->usage = le64_to_cpu(disk->usage);
3560 cpu->devid = le64_to_cpu(disk->devid);
3561 cpu->pstart = le64_to_cpu(disk->pstart);
3562 cpu->pend = le64_to_cpu(disk->pend);
3563 cpu->vstart = le64_to_cpu(disk->vstart);
3564 cpu->vend = le64_to_cpu(disk->vend);
3565 cpu->target = le64_to_cpu(disk->target);
3566 cpu->flags = le64_to_cpu(disk->flags);
3567 cpu->limit = le64_to_cpu(disk->limit);
3568 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3569 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3572 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3573 const struct btrfs_balance_args *cpu)
3575 memset(disk, 0, sizeof(*disk));
3577 disk->profiles = cpu_to_le64(cpu->profiles);
3578 disk->usage = cpu_to_le64(cpu->usage);
3579 disk->devid = cpu_to_le64(cpu->devid);
3580 disk->pstart = cpu_to_le64(cpu->pstart);
3581 disk->pend = cpu_to_le64(cpu->pend);
3582 disk->vstart = cpu_to_le64(cpu->vstart);
3583 disk->vend = cpu_to_le64(cpu->vend);
3584 disk->target = cpu_to_le64(cpu->target);
3585 disk->flags = cpu_to_le64(cpu->flags);
3586 disk->limit = cpu_to_le64(cpu->limit);
3587 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3588 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3591 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3592 struct btrfs_balance_control *bctl)
3594 struct btrfs_root *root = fs_info->tree_root;
3595 struct btrfs_trans_handle *trans;
3596 struct btrfs_balance_item *item;
3597 struct btrfs_disk_balance_args disk_bargs;
3598 struct btrfs_path *path;
3599 struct extent_buffer *leaf;
3600 struct btrfs_key key;
3601 int ret, err;
3603 path = btrfs_alloc_path();
3604 if (!path)
3605 return -ENOMEM;
3607 trans = btrfs_start_transaction(root, 0);
3608 if (IS_ERR(trans)) {
3609 btrfs_free_path(path);
3610 return PTR_ERR(trans);
3613 key.objectid = BTRFS_BALANCE_OBJECTID;
3614 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3615 key.offset = 0;
3617 ret = btrfs_insert_empty_item(trans, root, path, &key,
3618 sizeof(*item));
3619 if (ret)
3620 goto out;
3622 leaf = path->nodes[0];
3623 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3625 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3627 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3628 btrfs_set_balance_data(leaf, item, &disk_bargs);
3629 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3630 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3631 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3632 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3634 btrfs_set_balance_flags(leaf, item, bctl->flags);
3636 btrfs_mark_buffer_dirty(trans, leaf);
3637 out:
3638 btrfs_free_path(path);
3639 err = btrfs_commit_transaction(trans);
3640 if (err && !ret)
3641 ret = err;
3642 return ret;
3645 static int del_balance_item(struct btrfs_fs_info *fs_info)
3647 struct btrfs_root *root = fs_info->tree_root;
3648 struct btrfs_trans_handle *trans;
3649 struct btrfs_path *path;
3650 struct btrfs_key key;
3651 int ret, err;
3653 path = btrfs_alloc_path();
3654 if (!path)
3655 return -ENOMEM;
3657 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3658 if (IS_ERR(trans)) {
3659 btrfs_free_path(path);
3660 return PTR_ERR(trans);
3663 key.objectid = BTRFS_BALANCE_OBJECTID;
3664 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3665 key.offset = 0;
3667 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3668 if (ret < 0)
3669 goto out;
3670 if (ret > 0) {
3671 ret = -ENOENT;
3672 goto out;
3675 ret = btrfs_del_item(trans, root, path);
3676 out:
3677 btrfs_free_path(path);
3678 err = btrfs_commit_transaction(trans);
3679 if (err && !ret)
3680 ret = err;
3681 return ret;
3685 * This is a heuristic used to reduce the number of chunks balanced on
3686 * resume after balance was interrupted.
3688 static void update_balance_args(struct btrfs_balance_control *bctl)
3691 * Turn on soft mode for chunk types that were being converted.
3693 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3694 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3695 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3696 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3697 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3698 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3701 * Turn on usage filter if is not already used. The idea is
3702 * that chunks that we have already balanced should be
3703 * reasonably full. Don't do it for chunks that are being
3704 * converted - that will keep us from relocating unconverted
3705 * (albeit full) chunks.
3707 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 bctl->data.usage = 90;
3713 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 bctl->sys.usage = 90;
3719 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3720 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3721 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3722 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3723 bctl->meta.usage = 90;
3728 * Clear the balance status in fs_info and delete the balance item from disk.
3730 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3732 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3733 int ret;
3735 ASSERT(fs_info->balance_ctl);
3737 spin_lock(&fs_info->balance_lock);
3738 fs_info->balance_ctl = NULL;
3739 spin_unlock(&fs_info->balance_lock);
3741 kfree(bctl);
3742 ret = del_balance_item(fs_info);
3743 if (ret)
3744 btrfs_handle_fs_error(fs_info, ret, NULL);
3748 * Balance filters. Return 1 if chunk should be filtered out
3749 * (should not be balanced).
3751 static int chunk_profiles_filter(u64 chunk_type,
3752 struct btrfs_balance_args *bargs)
3754 chunk_type = chunk_to_extended(chunk_type) &
3755 BTRFS_EXTENDED_PROFILE_MASK;
3757 if (bargs->profiles & chunk_type)
3758 return 0;
3760 return 1;
3763 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3764 struct btrfs_balance_args *bargs)
3766 struct btrfs_block_group *cache;
3767 u64 chunk_used;
3768 u64 user_thresh_min;
3769 u64 user_thresh_max;
3770 int ret = 1;
3772 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3773 chunk_used = cache->used;
3775 if (bargs->usage_min == 0)
3776 user_thresh_min = 0;
3777 else
3778 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3780 if (bargs->usage_max == 0)
3781 user_thresh_max = 1;
3782 else if (bargs->usage_max > 100)
3783 user_thresh_max = cache->length;
3784 else
3785 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3787 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3788 ret = 0;
3790 btrfs_put_block_group(cache);
3791 return ret;
3794 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3795 u64 chunk_offset, struct btrfs_balance_args *bargs)
3797 struct btrfs_block_group *cache;
3798 u64 chunk_used, user_thresh;
3799 int ret = 1;
3801 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3802 chunk_used = cache->used;
3804 if (bargs->usage_min == 0)
3805 user_thresh = 1;
3806 else if (bargs->usage > 100)
3807 user_thresh = cache->length;
3808 else
3809 user_thresh = mult_perc(cache->length, bargs->usage);
3811 if (chunk_used < user_thresh)
3812 ret = 0;
3814 btrfs_put_block_group(cache);
3815 return ret;
3818 static int chunk_devid_filter(struct extent_buffer *leaf,
3819 struct btrfs_chunk *chunk,
3820 struct btrfs_balance_args *bargs)
3822 struct btrfs_stripe *stripe;
3823 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3824 int i;
3826 for (i = 0; i < num_stripes; i++) {
3827 stripe = btrfs_stripe_nr(chunk, i);
3828 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3829 return 0;
3832 return 1;
3835 static u64 calc_data_stripes(u64 type, int num_stripes)
3837 const int index = btrfs_bg_flags_to_raid_index(type);
3838 const int ncopies = btrfs_raid_array[index].ncopies;
3839 const int nparity = btrfs_raid_array[index].nparity;
3841 return (num_stripes - nparity) / ncopies;
3844 /* [pstart, pend) */
3845 static int chunk_drange_filter(struct extent_buffer *leaf,
3846 struct btrfs_chunk *chunk,
3847 struct btrfs_balance_args *bargs)
3849 struct btrfs_stripe *stripe;
3850 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3851 u64 stripe_offset;
3852 u64 stripe_length;
3853 u64 type;
3854 int factor;
3855 int i;
3857 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3858 return 0;
3860 type = btrfs_chunk_type(leaf, chunk);
3861 factor = calc_data_stripes(type, num_stripes);
3863 for (i = 0; i < num_stripes; i++) {
3864 stripe = btrfs_stripe_nr(chunk, i);
3865 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3866 continue;
3868 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3869 stripe_length = btrfs_chunk_length(leaf, chunk);
3870 stripe_length = div_u64(stripe_length, factor);
3872 if (stripe_offset < bargs->pend &&
3873 stripe_offset + stripe_length > bargs->pstart)
3874 return 0;
3877 return 1;
3880 /* [vstart, vend) */
3881 static int chunk_vrange_filter(struct extent_buffer *leaf,
3882 struct btrfs_chunk *chunk,
3883 u64 chunk_offset,
3884 struct btrfs_balance_args *bargs)
3886 if (chunk_offset < bargs->vend &&
3887 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3888 /* at least part of the chunk is inside this vrange */
3889 return 0;
3891 return 1;
3894 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3895 struct btrfs_chunk *chunk,
3896 struct btrfs_balance_args *bargs)
3898 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3900 if (bargs->stripes_min <= num_stripes
3901 && num_stripes <= bargs->stripes_max)
3902 return 0;
3904 return 1;
3907 static int chunk_soft_convert_filter(u64 chunk_type,
3908 struct btrfs_balance_args *bargs)
3910 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3911 return 0;
3913 chunk_type = chunk_to_extended(chunk_type) &
3914 BTRFS_EXTENDED_PROFILE_MASK;
3916 if (bargs->target == chunk_type)
3917 return 1;
3919 return 0;
3922 static int should_balance_chunk(struct extent_buffer *leaf,
3923 struct btrfs_chunk *chunk, u64 chunk_offset)
3925 struct btrfs_fs_info *fs_info = leaf->fs_info;
3926 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3927 struct btrfs_balance_args *bargs = NULL;
3928 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3930 /* type filter */
3931 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3932 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3933 return 0;
3936 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3937 bargs = &bctl->data;
3938 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3939 bargs = &bctl->sys;
3940 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3941 bargs = &bctl->meta;
3943 /* profiles filter */
3944 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3945 chunk_profiles_filter(chunk_type, bargs)) {
3946 return 0;
3949 /* usage filter */
3950 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3951 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3952 return 0;
3953 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3954 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3955 return 0;
3958 /* devid filter */
3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3960 chunk_devid_filter(leaf, chunk, bargs)) {
3961 return 0;
3964 /* drange filter, makes sense only with devid filter */
3965 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3966 chunk_drange_filter(leaf, chunk, bargs)) {
3967 return 0;
3970 /* vrange filter */
3971 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3972 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3973 return 0;
3976 /* stripes filter */
3977 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3978 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3979 return 0;
3982 /* soft profile changing mode */
3983 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3984 chunk_soft_convert_filter(chunk_type, bargs)) {
3985 return 0;
3989 * limited by count, must be the last filter
3991 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3992 if (bargs->limit == 0)
3993 return 0;
3994 else
3995 bargs->limit--;
3996 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3998 * Same logic as the 'limit' filter; the minimum cannot be
3999 * determined here because we do not have the global information
4000 * about the count of all chunks that satisfy the filters.
4002 if (bargs->limit_max == 0)
4003 return 0;
4004 else
4005 bargs->limit_max--;
4008 return 1;
4011 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4013 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4014 struct btrfs_root *chunk_root = fs_info->chunk_root;
4015 u64 chunk_type;
4016 struct btrfs_chunk *chunk;
4017 struct btrfs_path *path = NULL;
4018 struct btrfs_key key;
4019 struct btrfs_key found_key;
4020 struct extent_buffer *leaf;
4021 int slot;
4022 int ret;
4023 int enospc_errors = 0;
4024 bool counting = true;
4025 /* The single value limit and min/max limits use the same bytes in the */
4026 u64 limit_data = bctl->data.limit;
4027 u64 limit_meta = bctl->meta.limit;
4028 u64 limit_sys = bctl->sys.limit;
4029 u32 count_data = 0;
4030 u32 count_meta = 0;
4031 u32 count_sys = 0;
4032 int chunk_reserved = 0;
4034 path = btrfs_alloc_path();
4035 if (!path) {
4036 ret = -ENOMEM;
4037 goto error;
4040 /* zero out stat counters */
4041 spin_lock(&fs_info->balance_lock);
4042 memset(&bctl->stat, 0, sizeof(bctl->stat));
4043 spin_unlock(&fs_info->balance_lock);
4044 again:
4045 if (!counting) {
4047 * The single value limit and min/max limits use the same bytes
4048 * in the
4050 bctl->data.limit = limit_data;
4051 bctl->meta.limit = limit_meta;
4052 bctl->sys.limit = limit_sys;
4054 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4055 key.offset = (u64)-1;
4056 key.type = BTRFS_CHUNK_ITEM_KEY;
4058 while (1) {
4059 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4060 atomic_read(&fs_info->balance_cancel_req)) {
4061 ret = -ECANCELED;
4062 goto error;
4065 mutex_lock(&fs_info->reclaim_bgs_lock);
4066 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4067 if (ret < 0) {
4068 mutex_unlock(&fs_info->reclaim_bgs_lock);
4069 goto error;
4073 * this shouldn't happen, it means the last relocate
4074 * failed
4076 if (ret == 0)
4077 BUG(); /* FIXME break ? */
4079 ret = btrfs_previous_item(chunk_root, path, 0,
4080 BTRFS_CHUNK_ITEM_KEY);
4081 if (ret) {
4082 mutex_unlock(&fs_info->reclaim_bgs_lock);
4083 ret = 0;
4084 break;
4087 leaf = path->nodes[0];
4088 slot = path->slots[0];
4089 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4091 if (found_key.objectid != key.objectid) {
4092 mutex_unlock(&fs_info->reclaim_bgs_lock);
4093 break;
4096 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4097 chunk_type = btrfs_chunk_type(leaf, chunk);
4099 if (!counting) {
4100 spin_lock(&fs_info->balance_lock);
4101 bctl->stat.considered++;
4102 spin_unlock(&fs_info->balance_lock);
4105 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4107 btrfs_release_path(path);
4108 if (!ret) {
4109 mutex_unlock(&fs_info->reclaim_bgs_lock);
4110 goto loop;
4113 if (counting) {
4114 mutex_unlock(&fs_info->reclaim_bgs_lock);
4115 spin_lock(&fs_info->balance_lock);
4116 bctl->stat.expected++;
4117 spin_unlock(&fs_info->balance_lock);
4119 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4120 count_data++;
4121 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4122 count_sys++;
4123 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4124 count_meta++;
4126 goto loop;
4130 * Apply limit_min filter, no need to check if the LIMITS
4131 * filter is used, limit_min is 0 by default
4133 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4134 count_data < bctl->data.limit_min)
4135 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4136 count_meta < bctl->meta.limit_min)
4137 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4138 count_sys < bctl->sys.limit_min)) {
4139 mutex_unlock(&fs_info->reclaim_bgs_lock);
4140 goto loop;
4143 if (!chunk_reserved) {
4145 * We may be relocating the only data chunk we have,
4146 * which could potentially end up with losing data's
4147 * raid profile, so lets allocate an empty one in
4148 * advance.
4150 ret = btrfs_may_alloc_data_chunk(fs_info,
4151 found_key.offset);
4152 if (ret < 0) {
4153 mutex_unlock(&fs_info->reclaim_bgs_lock);
4154 goto error;
4155 } else if (ret == 1) {
4156 chunk_reserved = 1;
4160 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4161 mutex_unlock(&fs_info->reclaim_bgs_lock);
4162 if (ret == -ENOSPC) {
4163 enospc_errors++;
4164 } else if (ret == -ETXTBSY) {
4165 btrfs_info(fs_info,
4166 "skipping relocation of block group %llu due to active swapfile",
4167 found_key.offset);
4168 ret = 0;
4169 } else if (ret) {
4170 goto error;
4171 } else {
4172 spin_lock(&fs_info->balance_lock);
4173 bctl->stat.completed++;
4174 spin_unlock(&fs_info->balance_lock);
4176 loop:
4177 if (found_key.offset == 0)
4178 break;
4179 key.offset = found_key.offset - 1;
4182 if (counting) {
4183 btrfs_release_path(path);
4184 counting = false;
4185 goto again;
4187 error:
4188 btrfs_free_path(path);
4189 if (enospc_errors) {
4190 btrfs_info(fs_info, "%d enospc errors during balance",
4191 enospc_errors);
4192 if (!ret)
4193 ret = -ENOSPC;
4196 return ret;
4200 * See if a given profile is valid and reduced.
4202 * @flags: profile to validate
4203 * @extended: if true @flags is treated as an extended profile
4205 static int alloc_profile_is_valid(u64 flags, int extended)
4207 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4208 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4210 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4212 /* 1) check that all other bits are zeroed */
4213 if (flags & ~mask)
4214 return 0;
4216 /* 2) see if profile is reduced */
4217 if (flags == 0)
4218 return !extended; /* "0" is valid for usual profiles */
4220 return has_single_bit_set(flags);
4224 * Validate target profile against allowed profiles and return true if it's OK.
4225 * Otherwise print the error message and return false.
4227 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4228 const struct btrfs_balance_args *bargs,
4229 u64 allowed, const char *type)
4231 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4232 return true;
4234 /* Profile is valid and does not have bits outside of the allowed set */
4235 if (alloc_profile_is_valid(bargs->target, 1) &&
4236 (bargs->target & ~allowed) == 0)
4237 return true;
4239 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4240 type, btrfs_bg_type_to_raid_name(bargs->target));
4241 return false;
4245 * Fill @buf with textual description of balance filter flags @bargs, up to
4246 * @size_buf including the terminating null. The output may be trimmed if it
4247 * does not fit into the provided buffer.
4249 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4250 u32 size_buf)
4252 int ret;
4253 u32 size_bp = size_buf;
4254 char *bp = buf;
4255 u64 flags = bargs->flags;
4256 char tmp_buf[128] = {'\0'};
4258 if (!flags)
4259 return;
4261 #define CHECK_APPEND_NOARG(a) \
4262 do { \
4263 ret = snprintf(bp, size_bp, (a)); \
4264 if (ret < 0 || ret >= size_bp) \
4265 goto out_overflow; \
4266 size_bp -= ret; \
4267 bp += ret; \
4268 } while (0)
4270 #define CHECK_APPEND_1ARG(a, v1) \
4271 do { \
4272 ret = snprintf(bp, size_bp, (a), (v1)); \
4273 if (ret < 0 || ret >= size_bp) \
4274 goto out_overflow; \
4275 size_bp -= ret; \
4276 bp += ret; \
4277 } while (0)
4279 #define CHECK_APPEND_2ARG(a, v1, v2) \
4280 do { \
4281 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4282 if (ret < 0 || ret >= size_bp) \
4283 goto out_overflow; \
4284 size_bp -= ret; \
4285 bp += ret; \
4286 } while (0)
4288 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4289 CHECK_APPEND_1ARG("convert=%s,",
4290 btrfs_bg_type_to_raid_name(bargs->target));
4292 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4293 CHECK_APPEND_NOARG("soft,");
4295 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4296 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4297 sizeof(tmp_buf));
4298 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4301 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4302 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4304 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4305 CHECK_APPEND_2ARG("usage=%u..%u,",
4306 bargs->usage_min, bargs->usage_max);
4308 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4309 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4311 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4312 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4313 bargs->pstart, bargs->pend);
4315 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4316 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4317 bargs->vstart, bargs->vend);
4319 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4320 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4322 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4323 CHECK_APPEND_2ARG("limit=%u..%u,",
4324 bargs->limit_min, bargs->limit_max);
4326 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4327 CHECK_APPEND_2ARG("stripes=%u..%u,",
4328 bargs->stripes_min, bargs->stripes_max);
4330 #undef CHECK_APPEND_2ARG
4331 #undef CHECK_APPEND_1ARG
4332 #undef CHECK_APPEND_NOARG
4334 out_overflow:
4336 if (size_bp < size_buf)
4337 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4338 else
4339 buf[0] = '\0';
4342 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4344 u32 size_buf = 1024;
4345 char tmp_buf[192] = {'\0'};
4346 char *buf;
4347 char *bp;
4348 u32 size_bp = size_buf;
4349 int ret;
4350 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4352 buf = kzalloc(size_buf, GFP_KERNEL);
4353 if (!buf)
4354 return;
4356 bp = buf;
4358 #define CHECK_APPEND_1ARG(a, v1) \
4359 do { \
4360 ret = snprintf(bp, size_bp, (a), (v1)); \
4361 if (ret < 0 || ret >= size_bp) \
4362 goto out_overflow; \
4363 size_bp -= ret; \
4364 bp += ret; \
4365 } while (0)
4367 if (bctl->flags & BTRFS_BALANCE_FORCE)
4368 CHECK_APPEND_1ARG("%s", "-f ");
4370 if (bctl->flags & BTRFS_BALANCE_DATA) {
4371 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4372 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4375 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4376 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4377 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4380 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4381 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4382 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4385 #undef CHECK_APPEND_1ARG
4387 out_overflow:
4389 if (size_bp < size_buf)
4390 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4391 btrfs_info(fs_info, "balance: %s %s",
4392 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4393 "resume" : "start", buf);
4395 kfree(buf);
4399 * Should be called with balance mutexe held
4401 int btrfs_balance(struct btrfs_fs_info *fs_info,
4402 struct btrfs_balance_control *bctl,
4403 struct btrfs_ioctl_balance_args *bargs)
4405 u64 meta_target, data_target;
4406 u64 allowed;
4407 int mixed = 0;
4408 int ret;
4409 u64 num_devices;
4410 unsigned seq;
4411 bool reducing_redundancy;
4412 bool paused = false;
4413 int i;
4415 if (btrfs_fs_closing(fs_info) ||
4416 atomic_read(&fs_info->balance_pause_req) ||
4417 btrfs_should_cancel_balance(fs_info)) {
4418 ret = -EINVAL;
4419 goto out;
4422 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4423 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4424 mixed = 1;
4427 * In case of mixed groups both data and meta should be picked,
4428 * and identical options should be given for both of them.
4430 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4431 if (mixed && (bctl->flags & allowed)) {
4432 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4433 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4434 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4435 btrfs_err(fs_info,
4436 "balance: mixed groups data and metadata options must be the same");
4437 ret = -EINVAL;
4438 goto out;
4443 * rw_devices will not change at the moment, device add/delete/replace
4444 * are exclusive
4446 num_devices = fs_info->fs_devices->rw_devices;
4449 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4450 * special bit for it, to make it easier to distinguish. Thus we need
4451 * to set it manually, or balance would refuse the profile.
4453 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4454 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4455 if (num_devices >= btrfs_raid_array[i].devs_min)
4456 allowed |= btrfs_raid_array[i].bg_flag;
4458 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4459 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4460 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4461 ret = -EINVAL;
4462 goto out;
4466 * Allow to reduce metadata or system integrity only if force set for
4467 * profiles with redundancy (copies, parity)
4469 allowed = 0;
4470 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4471 if (btrfs_raid_array[i].ncopies >= 2 ||
4472 btrfs_raid_array[i].tolerated_failures >= 1)
4473 allowed |= btrfs_raid_array[i].bg_flag;
4475 do {
4476 seq = read_seqbegin(&fs_info->profiles_lock);
4478 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4479 (fs_info->avail_system_alloc_bits & allowed) &&
4480 !(bctl->sys.target & allowed)) ||
4481 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4482 (fs_info->avail_metadata_alloc_bits & allowed) &&
4483 !(bctl->meta.target & allowed)))
4484 reducing_redundancy = true;
4485 else
4486 reducing_redundancy = false;
4488 /* if we're not converting, the target field is uninitialized */
4489 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4490 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4491 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4492 bctl->data.target : fs_info->avail_data_alloc_bits;
4493 } while (read_seqretry(&fs_info->profiles_lock, seq));
4495 if (reducing_redundancy) {
4496 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4497 btrfs_info(fs_info,
4498 "balance: force reducing metadata redundancy");
4499 } else {
4500 btrfs_err(fs_info,
4501 "balance: reduces metadata redundancy, use --force if you want this");
4502 ret = -EINVAL;
4503 goto out;
4507 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4508 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4509 btrfs_warn(fs_info,
4510 "balance: metadata profile %s has lower redundancy than data profile %s",
4511 btrfs_bg_type_to_raid_name(meta_target),
4512 btrfs_bg_type_to_raid_name(data_target));
4515 ret = insert_balance_item(fs_info, bctl);
4516 if (ret && ret != -EEXIST)
4517 goto out;
4519 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4520 BUG_ON(ret == -EEXIST);
4521 BUG_ON(fs_info->balance_ctl);
4522 spin_lock(&fs_info->balance_lock);
4523 fs_info->balance_ctl = bctl;
4524 spin_unlock(&fs_info->balance_lock);
4525 } else {
4526 BUG_ON(ret != -EEXIST);
4527 spin_lock(&fs_info->balance_lock);
4528 update_balance_args(bctl);
4529 spin_unlock(&fs_info->balance_lock);
4532 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4533 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4534 describe_balance_start_or_resume(fs_info);
4535 mutex_unlock(&fs_info->balance_mutex);
4537 ret = __btrfs_balance(fs_info);
4539 mutex_lock(&fs_info->balance_mutex);
4540 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4541 btrfs_info(fs_info, "balance: paused");
4542 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4543 paused = true;
4546 * Balance can be canceled by:
4548 * - Regular cancel request
4549 * Then ret == -ECANCELED and balance_cancel_req > 0
4551 * - Fatal signal to "btrfs" process
4552 * Either the signal caught by wait_reserve_ticket() and callers
4553 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4554 * got -ECANCELED.
4555 * Either way, in this case balance_cancel_req = 0, and
4556 * ret == -EINTR or ret == -ECANCELED.
4558 * So here we only check the return value to catch canceled balance.
4560 else if (ret == -ECANCELED || ret == -EINTR)
4561 btrfs_info(fs_info, "balance: canceled");
4562 else
4563 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4565 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4567 if (bargs) {
4568 memset(bargs, 0, sizeof(*bargs));
4569 btrfs_update_ioctl_balance_args(fs_info, bargs);
4572 /* We didn't pause, we can clean everything up. */
4573 if (!paused) {
4574 reset_balance_state(fs_info);
4575 btrfs_exclop_finish(fs_info);
4578 wake_up(&fs_info->balance_wait_q);
4580 return ret;
4581 out:
4582 if (bctl->flags & BTRFS_BALANCE_RESUME)
4583 reset_balance_state(fs_info);
4584 else
4585 kfree(bctl);
4586 btrfs_exclop_finish(fs_info);
4588 return ret;
4591 static int balance_kthread(void *data)
4593 struct btrfs_fs_info *fs_info = data;
4594 int ret = 0;
4596 sb_start_write(fs_info->sb);
4597 mutex_lock(&fs_info->balance_mutex);
4598 if (fs_info->balance_ctl)
4599 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4600 mutex_unlock(&fs_info->balance_mutex);
4601 sb_end_write(fs_info->sb);
4603 return ret;
4606 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4608 struct task_struct *tsk;
4610 mutex_lock(&fs_info->balance_mutex);
4611 if (!fs_info->balance_ctl) {
4612 mutex_unlock(&fs_info->balance_mutex);
4613 return 0;
4615 mutex_unlock(&fs_info->balance_mutex);
4617 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4618 btrfs_info(fs_info, "balance: resume skipped");
4619 return 0;
4622 spin_lock(&fs_info->super_lock);
4623 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4624 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4625 spin_unlock(&fs_info->super_lock);
4627 * A ro->rw remount sequence should continue with the paused balance
4628 * regardless of who pauses it, system or the user as of now, so set
4629 * the resume flag.
4631 spin_lock(&fs_info->balance_lock);
4632 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4633 spin_unlock(&fs_info->balance_lock);
4635 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4636 return PTR_ERR_OR_ZERO(tsk);
4639 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4641 struct btrfs_balance_control *bctl;
4642 struct btrfs_balance_item *item;
4643 struct btrfs_disk_balance_args disk_bargs;
4644 struct btrfs_path *path;
4645 struct extent_buffer *leaf;
4646 struct btrfs_key key;
4647 int ret;
4649 path = btrfs_alloc_path();
4650 if (!path)
4651 return -ENOMEM;
4653 key.objectid = BTRFS_BALANCE_OBJECTID;
4654 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4655 key.offset = 0;
4657 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4658 if (ret < 0)
4659 goto out;
4660 if (ret > 0) { /* ret = -ENOENT; */
4661 ret = 0;
4662 goto out;
4665 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4666 if (!bctl) {
4667 ret = -ENOMEM;
4668 goto out;
4671 leaf = path->nodes[0];
4672 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4674 bctl->flags = btrfs_balance_flags(leaf, item);
4675 bctl->flags |= BTRFS_BALANCE_RESUME;
4677 btrfs_balance_data(leaf, item, &disk_bargs);
4678 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4679 btrfs_balance_meta(leaf, item, &disk_bargs);
4680 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4681 btrfs_balance_sys(leaf, item, &disk_bargs);
4682 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4685 * This should never happen, as the paused balance state is recovered
4686 * during mount without any chance of other exclusive ops to collide.
4688 * This gives the exclusive op status to balance and keeps in paused
4689 * state until user intervention (cancel or umount). If the ownership
4690 * cannot be assigned, show a message but do not fail. The balance
4691 * is in a paused state and must have fs_info::balance_ctl properly
4692 * set up.
4694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4695 btrfs_warn(fs_info,
4696 "balance: cannot set exclusive op status, resume manually");
4698 btrfs_release_path(path);
4700 mutex_lock(&fs_info->balance_mutex);
4701 BUG_ON(fs_info->balance_ctl);
4702 spin_lock(&fs_info->balance_lock);
4703 fs_info->balance_ctl = bctl;
4704 spin_unlock(&fs_info->balance_lock);
4705 mutex_unlock(&fs_info->balance_mutex);
4706 out:
4707 btrfs_free_path(path);
4708 return ret;
4711 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4713 int ret = 0;
4715 mutex_lock(&fs_info->balance_mutex);
4716 if (!fs_info->balance_ctl) {
4717 mutex_unlock(&fs_info->balance_mutex);
4718 return -ENOTCONN;
4721 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4722 atomic_inc(&fs_info->balance_pause_req);
4723 mutex_unlock(&fs_info->balance_mutex);
4725 wait_event(fs_info->balance_wait_q,
4726 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4728 mutex_lock(&fs_info->balance_mutex);
4729 /* we are good with balance_ctl ripped off from under us */
4730 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4731 atomic_dec(&fs_info->balance_pause_req);
4732 } else {
4733 ret = -ENOTCONN;
4736 mutex_unlock(&fs_info->balance_mutex);
4737 return ret;
4740 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4742 mutex_lock(&fs_info->balance_mutex);
4743 if (!fs_info->balance_ctl) {
4744 mutex_unlock(&fs_info->balance_mutex);
4745 return -ENOTCONN;
4749 * A paused balance with the item stored on disk can be resumed at
4750 * mount time if the mount is read-write. Otherwise it's still paused
4751 * and we must not allow cancelling as it deletes the item.
4753 if (sb_rdonly(fs_info->sb)) {
4754 mutex_unlock(&fs_info->balance_mutex);
4755 return -EROFS;
4758 atomic_inc(&fs_info->balance_cancel_req);
4760 * if we are running just wait and return, balance item is
4761 * deleted in btrfs_balance in this case
4763 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4764 mutex_unlock(&fs_info->balance_mutex);
4765 wait_event(fs_info->balance_wait_q,
4766 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4767 mutex_lock(&fs_info->balance_mutex);
4768 } else {
4769 mutex_unlock(&fs_info->balance_mutex);
4771 * Lock released to allow other waiters to continue, we'll
4772 * reexamine the status again.
4774 mutex_lock(&fs_info->balance_mutex);
4776 if (fs_info->balance_ctl) {
4777 reset_balance_state(fs_info);
4778 btrfs_exclop_finish(fs_info);
4779 btrfs_info(fs_info, "balance: canceled");
4783 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4784 atomic_dec(&fs_info->balance_cancel_req);
4785 mutex_unlock(&fs_info->balance_mutex);
4786 return 0;
4790 * shrinking a device means finding all of the device extents past
4791 * the new size, and then following the back refs to the chunks.
4792 * The chunk relocation code actually frees the device extent
4794 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4796 struct btrfs_fs_info *fs_info = device->fs_info;
4797 struct btrfs_root *root = fs_info->dev_root;
4798 struct btrfs_trans_handle *trans;
4799 struct btrfs_dev_extent *dev_extent = NULL;
4800 struct btrfs_path *path;
4801 u64 length;
4802 u64 chunk_offset;
4803 int ret;
4804 int slot;
4805 int failed = 0;
4806 bool retried = false;
4807 struct extent_buffer *l;
4808 struct btrfs_key key;
4809 struct btrfs_super_block *super_copy = fs_info->super_copy;
4810 u64 old_total = btrfs_super_total_bytes(super_copy);
4811 u64 old_size = btrfs_device_get_total_bytes(device);
4812 u64 diff;
4813 u64 start;
4814 u64 free_diff = 0;
4816 new_size = round_down(new_size, fs_info->sectorsize);
4817 start = new_size;
4818 diff = round_down(old_size - new_size, fs_info->sectorsize);
4820 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4821 return -EINVAL;
4823 path = btrfs_alloc_path();
4824 if (!path)
4825 return -ENOMEM;
4827 path->reada = READA_BACK;
4829 trans = btrfs_start_transaction(root, 0);
4830 if (IS_ERR(trans)) {
4831 btrfs_free_path(path);
4832 return PTR_ERR(trans);
4835 mutex_lock(&fs_info->chunk_mutex);
4837 btrfs_device_set_total_bytes(device, new_size);
4838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4839 device->fs_devices->total_rw_bytes -= diff;
4842 * The new free_chunk_space is new_size - used, so we have to
4843 * subtract the delta of the old free_chunk_space which included
4844 * old_size - used. If used > new_size then just subtract this
4845 * entire device's free space.
4847 if (device->bytes_used < new_size)
4848 free_diff = (old_size - device->bytes_used) -
4849 (new_size - device->bytes_used);
4850 else
4851 free_diff = old_size - device->bytes_used;
4852 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4856 * Once the device's size has been set to the new size, ensure all
4857 * in-memory chunks are synced to disk so that the loop below sees them
4858 * and relocates them accordingly.
4860 if (contains_pending_extent(device, &start, diff)) {
4861 mutex_unlock(&fs_info->chunk_mutex);
4862 ret = btrfs_commit_transaction(trans);
4863 if (ret)
4864 goto done;
4865 } else {
4866 mutex_unlock(&fs_info->chunk_mutex);
4867 btrfs_end_transaction(trans);
4870 again:
4871 key.objectid = device->devid;
4872 key.offset = (u64)-1;
4873 key.type = BTRFS_DEV_EXTENT_KEY;
4875 do {
4876 mutex_lock(&fs_info->reclaim_bgs_lock);
4877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4878 if (ret < 0) {
4879 mutex_unlock(&fs_info->reclaim_bgs_lock);
4880 goto done;
4883 ret = btrfs_previous_item(root, path, 0, key.type);
4884 if (ret) {
4885 mutex_unlock(&fs_info->reclaim_bgs_lock);
4886 if (ret < 0)
4887 goto done;
4888 ret = 0;
4889 btrfs_release_path(path);
4890 break;
4893 l = path->nodes[0];
4894 slot = path->slots[0];
4895 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4897 if (key.objectid != device->devid) {
4898 mutex_unlock(&fs_info->reclaim_bgs_lock);
4899 btrfs_release_path(path);
4900 break;
4903 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4904 length = btrfs_dev_extent_length(l, dev_extent);
4906 if (key.offset + length <= new_size) {
4907 mutex_unlock(&fs_info->reclaim_bgs_lock);
4908 btrfs_release_path(path);
4909 break;
4912 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4913 btrfs_release_path(path);
4916 * We may be relocating the only data chunk we have,
4917 * which could potentially end up with losing data's
4918 * raid profile, so lets allocate an empty one in
4919 * advance.
4921 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4922 if (ret < 0) {
4923 mutex_unlock(&fs_info->reclaim_bgs_lock);
4924 goto done;
4927 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4928 mutex_unlock(&fs_info->reclaim_bgs_lock);
4929 if (ret == -ENOSPC) {
4930 failed++;
4931 } else if (ret) {
4932 if (ret == -ETXTBSY) {
4933 btrfs_warn(fs_info,
4934 "could not shrink block group %llu due to active swapfile",
4935 chunk_offset);
4937 goto done;
4939 } while (key.offset-- > 0);
4941 if (failed && !retried) {
4942 failed = 0;
4943 retried = true;
4944 goto again;
4945 } else if (failed && retried) {
4946 ret = -ENOSPC;
4947 goto done;
4950 /* Shrinking succeeded, else we would be at "done". */
4951 trans = btrfs_start_transaction(root, 0);
4952 if (IS_ERR(trans)) {
4953 ret = PTR_ERR(trans);
4954 goto done;
4957 mutex_lock(&fs_info->chunk_mutex);
4958 /* Clear all state bits beyond the shrunk device size */
4959 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4960 CHUNK_STATE_MASK);
4962 btrfs_device_set_disk_total_bytes(device, new_size);
4963 if (list_empty(&device->post_commit_list))
4964 list_add_tail(&device->post_commit_list,
4965 &trans->transaction->dev_update_list);
4967 WARN_ON(diff > old_total);
4968 btrfs_set_super_total_bytes(super_copy,
4969 round_down(old_total - diff, fs_info->sectorsize));
4970 mutex_unlock(&fs_info->chunk_mutex);
4972 btrfs_reserve_chunk_metadata(trans, false);
4973 /* Now btrfs_update_device() will change the on-disk size. */
4974 ret = btrfs_update_device(trans, device);
4975 btrfs_trans_release_chunk_metadata(trans);
4976 if (ret < 0) {
4977 btrfs_abort_transaction(trans, ret);
4978 btrfs_end_transaction(trans);
4979 } else {
4980 ret = btrfs_commit_transaction(trans);
4982 done:
4983 btrfs_free_path(path);
4984 if (ret) {
4985 mutex_lock(&fs_info->chunk_mutex);
4986 btrfs_device_set_total_bytes(device, old_size);
4987 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4988 device->fs_devices->total_rw_bytes += diff;
4989 atomic64_add(free_diff, &fs_info->free_chunk_space);
4991 mutex_unlock(&fs_info->chunk_mutex);
4993 return ret;
4996 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4997 struct btrfs_key *key,
4998 struct btrfs_chunk *chunk, int item_size)
5000 struct btrfs_super_block *super_copy = fs_info->super_copy;
5001 struct btrfs_disk_key disk_key;
5002 u32 array_size;
5003 u8 *ptr;
5005 lockdep_assert_held(&fs_info->chunk_mutex);
5007 array_size = btrfs_super_sys_array_size(super_copy);
5008 if (array_size + item_size + sizeof(disk_key)
5009 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5010 return -EFBIG;
5012 ptr = super_copy->sys_chunk_array + array_size;
5013 btrfs_cpu_key_to_disk(&disk_key, key);
5014 memcpy(ptr, &disk_key, sizeof(disk_key));
5015 ptr += sizeof(disk_key);
5016 memcpy(ptr, chunk, item_size);
5017 item_size += sizeof(disk_key);
5018 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5020 return 0;
5024 * sort the devices in descending order by max_avail, total_avail
5026 static int btrfs_cmp_device_info(const void *a, const void *b)
5028 const struct btrfs_device_info *di_a = a;
5029 const struct btrfs_device_info *di_b = b;
5031 if (di_a->max_avail > di_b->max_avail)
5032 return -1;
5033 if (di_a->max_avail < di_b->max_avail)
5034 return 1;
5035 if (di_a->total_avail > di_b->total_avail)
5036 return -1;
5037 if (di_a->total_avail < di_b->total_avail)
5038 return 1;
5039 return 0;
5042 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5044 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5045 return;
5047 btrfs_set_fs_incompat(info, RAID56);
5050 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5052 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5053 return;
5055 btrfs_set_fs_incompat(info, RAID1C34);
5059 * Structure used internally for btrfs_create_chunk() function.
5060 * Wraps needed parameters.
5062 struct alloc_chunk_ctl {
5063 u64 start;
5064 u64 type;
5065 /* Total number of stripes to allocate */
5066 int num_stripes;
5067 /* sub_stripes info for map */
5068 int sub_stripes;
5069 /* Stripes per device */
5070 int dev_stripes;
5071 /* Maximum number of devices to use */
5072 int devs_max;
5073 /* Minimum number of devices to use */
5074 int devs_min;
5075 /* ndevs has to be a multiple of this */
5076 int devs_increment;
5077 /* Number of copies */
5078 int ncopies;
5079 /* Number of stripes worth of bytes to store parity information */
5080 int nparity;
5081 u64 max_stripe_size;
5082 u64 max_chunk_size;
5083 u64 dev_extent_min;
5084 u64 stripe_size;
5085 u64 chunk_size;
5086 int ndevs;
5089 static void init_alloc_chunk_ctl_policy_regular(
5090 struct btrfs_fs_devices *fs_devices,
5091 struct alloc_chunk_ctl *ctl)
5093 struct btrfs_space_info *space_info;
5095 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5096 ASSERT(space_info);
5098 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5099 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5101 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5102 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5104 /* We don't want a chunk larger than 10% of writable space */
5105 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5106 ctl->max_chunk_size);
5107 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5110 static void init_alloc_chunk_ctl_policy_zoned(
5111 struct btrfs_fs_devices *fs_devices,
5112 struct alloc_chunk_ctl *ctl)
5114 u64 zone_size = fs_devices->fs_info->zone_size;
5115 u64 limit;
5116 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5117 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5118 u64 min_chunk_size = min_data_stripes * zone_size;
5119 u64 type = ctl->type;
5121 ctl->max_stripe_size = zone_size;
5122 if (type & BTRFS_BLOCK_GROUP_DATA) {
5123 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5124 zone_size);
5125 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5126 ctl->max_chunk_size = ctl->max_stripe_size;
5127 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5128 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5129 ctl->devs_max = min_t(int, ctl->devs_max,
5130 BTRFS_MAX_DEVS_SYS_CHUNK);
5131 } else {
5132 BUG();
5135 /* We don't want a chunk larger than 10% of writable space */
5136 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5137 zone_size),
5138 min_chunk_size);
5139 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5140 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5143 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5144 struct alloc_chunk_ctl *ctl)
5146 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5148 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5149 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5150 ctl->devs_max = btrfs_raid_array[index].devs_max;
5151 if (!ctl->devs_max)
5152 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5153 ctl->devs_min = btrfs_raid_array[index].devs_min;
5154 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5155 ctl->ncopies = btrfs_raid_array[index].ncopies;
5156 ctl->nparity = btrfs_raid_array[index].nparity;
5157 ctl->ndevs = 0;
5159 switch (fs_devices->chunk_alloc_policy) {
5160 case BTRFS_CHUNK_ALLOC_REGULAR:
5161 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5162 break;
5163 case BTRFS_CHUNK_ALLOC_ZONED:
5164 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5165 break;
5166 default:
5167 BUG();
5171 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5172 struct alloc_chunk_ctl *ctl,
5173 struct btrfs_device_info *devices_info)
5175 struct btrfs_fs_info *info = fs_devices->fs_info;
5176 struct btrfs_device *device;
5177 u64 total_avail;
5178 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5179 int ret;
5180 int ndevs = 0;
5181 u64 max_avail;
5182 u64 dev_offset;
5185 * in the first pass through the devices list, we gather information
5186 * about the available holes on each device.
5188 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5189 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5190 WARN(1, KERN_ERR
5191 "BTRFS: read-only device in alloc_list\n");
5192 continue;
5195 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5196 &device->dev_state) ||
5197 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5198 continue;
5200 if (device->total_bytes > device->bytes_used)
5201 total_avail = device->total_bytes - device->bytes_used;
5202 else
5203 total_avail = 0;
5205 /* If there is no space on this device, skip it. */
5206 if (total_avail < ctl->dev_extent_min)
5207 continue;
5209 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5210 &max_avail);
5211 if (ret && ret != -ENOSPC)
5212 return ret;
5214 if (ret == 0)
5215 max_avail = dev_extent_want;
5217 if (max_avail < ctl->dev_extent_min) {
5218 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5219 btrfs_debug(info,
5220 "%s: devid %llu has no free space, have=%llu want=%llu",
5221 __func__, device->devid, max_avail,
5222 ctl->dev_extent_min);
5223 continue;
5226 if (ndevs == fs_devices->rw_devices) {
5227 WARN(1, "%s: found more than %llu devices\n",
5228 __func__, fs_devices->rw_devices);
5229 break;
5231 devices_info[ndevs].dev_offset = dev_offset;
5232 devices_info[ndevs].max_avail = max_avail;
5233 devices_info[ndevs].total_avail = total_avail;
5234 devices_info[ndevs].dev = device;
5235 ++ndevs;
5237 ctl->ndevs = ndevs;
5240 * now sort the devices by hole size / available space
5242 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5243 btrfs_cmp_device_info, NULL);
5245 return 0;
5248 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5249 struct btrfs_device_info *devices_info)
5251 /* Number of stripes that count for block group size */
5252 int data_stripes;
5255 * The primary goal is to maximize the number of stripes, so use as
5256 * many devices as possible, even if the stripes are not maximum sized.
5258 * The DUP profile stores more than one stripe per device, the
5259 * max_avail is the total size so we have to adjust.
5261 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5262 ctl->dev_stripes);
5263 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5265 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5266 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5269 * Use the number of data stripes to figure out how big this chunk is
5270 * really going to be in terms of logical address space, and compare
5271 * that answer with the max chunk size. If it's higher, we try to
5272 * reduce stripe_size.
5274 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5276 * Reduce stripe_size, round it up to a 16MB boundary again and
5277 * then use it, unless it ends up being even bigger than the
5278 * previous value we had already.
5280 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5281 data_stripes), SZ_16M),
5282 ctl->stripe_size);
5285 /* Stripe size should not go beyond 1G. */
5286 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5288 /* Align to BTRFS_STRIPE_LEN */
5289 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5290 ctl->chunk_size = ctl->stripe_size * data_stripes;
5292 return 0;
5295 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5296 struct btrfs_device_info *devices_info)
5298 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5299 /* Number of stripes that count for block group size */
5300 int data_stripes;
5303 * It should hold because:
5304 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5306 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5308 ctl->stripe_size = zone_size;
5309 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5310 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5312 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5313 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5314 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5315 ctl->stripe_size) + ctl->nparity,
5316 ctl->dev_stripes);
5317 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5318 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5319 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5322 ctl->chunk_size = ctl->stripe_size * data_stripes;
5324 return 0;
5327 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5328 struct alloc_chunk_ctl *ctl,
5329 struct btrfs_device_info *devices_info)
5331 struct btrfs_fs_info *info = fs_devices->fs_info;
5334 * Round down to number of usable stripes, devs_increment can be any
5335 * number so we can't use round_down() that requires power of 2, while
5336 * rounddown is safe.
5338 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5340 if (ctl->ndevs < ctl->devs_min) {
5341 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5342 btrfs_debug(info,
5343 "%s: not enough devices with free space: have=%d minimum required=%d",
5344 __func__, ctl->ndevs, ctl->devs_min);
5346 return -ENOSPC;
5349 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5351 switch (fs_devices->chunk_alloc_policy) {
5352 case BTRFS_CHUNK_ALLOC_REGULAR:
5353 return decide_stripe_size_regular(ctl, devices_info);
5354 case BTRFS_CHUNK_ALLOC_ZONED:
5355 return decide_stripe_size_zoned(ctl, devices_info);
5356 default:
5357 BUG();
5361 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5363 for (int i = 0; i < map->num_stripes; i++) {
5364 struct btrfs_io_stripe *stripe = &map->stripes[i];
5365 struct btrfs_device *device = stripe->dev;
5367 set_extent_bit(&device->alloc_state, stripe->physical,
5368 stripe->physical + map->stripe_size - 1,
5369 bits | EXTENT_NOWAIT, NULL);
5373 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5375 for (int i = 0; i < map->num_stripes; i++) {
5376 struct btrfs_io_stripe *stripe = &map->stripes[i];
5377 struct btrfs_device *device = stripe->dev;
5379 __clear_extent_bit(&device->alloc_state, stripe->physical,
5380 stripe->physical + map->stripe_size - 1,
5381 bits | EXTENT_NOWAIT,
5382 NULL, NULL);
5386 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5388 write_lock(&fs_info->mapping_tree_lock);
5389 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5390 RB_CLEAR_NODE(&map->rb_node);
5391 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5392 write_unlock(&fs_info->mapping_tree_lock);
5394 /* Once for the tree reference. */
5395 btrfs_free_chunk_map(map);
5398 EXPORT_FOR_TESTS
5399 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5401 struct rb_node **p;
5402 struct rb_node *parent = NULL;
5403 bool leftmost = true;
5405 write_lock(&fs_info->mapping_tree_lock);
5406 p = &fs_info->mapping_tree.rb_root.rb_node;
5407 while (*p) {
5408 struct btrfs_chunk_map *entry;
5410 parent = *p;
5411 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5413 if (map->start < entry->start) {
5414 p = &(*p)->rb_left;
5415 } else if (map->start > entry->start) {
5416 p = &(*p)->rb_right;
5417 leftmost = false;
5418 } else {
5419 write_unlock(&fs_info->mapping_tree_lock);
5420 return -EEXIST;
5423 rb_link_node(&map->rb_node, parent, p);
5424 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5425 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5426 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5427 write_unlock(&fs_info->mapping_tree_lock);
5429 return 0;
5432 EXPORT_FOR_TESTS
5433 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5435 struct btrfs_chunk_map *map;
5437 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5438 if (!map)
5439 return NULL;
5441 refcount_set(&map->refs, 1);
5442 RB_CLEAR_NODE(&map->rb_node);
5444 return map;
5447 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5448 struct alloc_chunk_ctl *ctl,
5449 struct btrfs_device_info *devices_info)
5451 struct btrfs_fs_info *info = trans->fs_info;
5452 struct btrfs_chunk_map *map;
5453 struct btrfs_block_group *block_group;
5454 u64 start = ctl->start;
5455 u64 type = ctl->type;
5456 int ret;
5458 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5459 if (!map)
5460 return ERR_PTR(-ENOMEM);
5462 map->start = start;
5463 map->chunk_len = ctl->chunk_size;
5464 map->stripe_size = ctl->stripe_size;
5465 map->type = type;
5466 map->io_align = BTRFS_STRIPE_LEN;
5467 map->io_width = BTRFS_STRIPE_LEN;
5468 map->sub_stripes = ctl->sub_stripes;
5469 map->num_stripes = ctl->num_stripes;
5471 for (int i = 0; i < ctl->ndevs; i++) {
5472 for (int j = 0; j < ctl->dev_stripes; j++) {
5473 int s = i * ctl->dev_stripes + j;
5474 map->stripes[s].dev = devices_info[i].dev;
5475 map->stripes[s].physical = devices_info[i].dev_offset +
5476 j * ctl->stripe_size;
5480 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5482 ret = btrfs_add_chunk_map(info, map);
5483 if (ret) {
5484 btrfs_free_chunk_map(map);
5485 return ERR_PTR(ret);
5488 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5489 if (IS_ERR(block_group)) {
5490 btrfs_remove_chunk_map(info, map);
5491 return block_group;
5494 for (int i = 0; i < map->num_stripes; i++) {
5495 struct btrfs_device *dev = map->stripes[i].dev;
5497 btrfs_device_set_bytes_used(dev,
5498 dev->bytes_used + ctl->stripe_size);
5499 if (list_empty(&dev->post_commit_list))
5500 list_add_tail(&dev->post_commit_list,
5501 &trans->transaction->dev_update_list);
5504 atomic64_sub(ctl->stripe_size * map->num_stripes,
5505 &info->free_chunk_space);
5507 check_raid56_incompat_flag(info, type);
5508 check_raid1c34_incompat_flag(info, type);
5510 return block_group;
5513 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5514 u64 type)
5516 struct btrfs_fs_info *info = trans->fs_info;
5517 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5518 struct btrfs_device_info *devices_info = NULL;
5519 struct alloc_chunk_ctl ctl;
5520 struct btrfs_block_group *block_group;
5521 int ret;
5523 lockdep_assert_held(&info->chunk_mutex);
5525 if (!alloc_profile_is_valid(type, 0)) {
5526 ASSERT(0);
5527 return ERR_PTR(-EINVAL);
5530 if (list_empty(&fs_devices->alloc_list)) {
5531 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5532 btrfs_debug(info, "%s: no writable device", __func__);
5533 return ERR_PTR(-ENOSPC);
5536 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5537 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5538 ASSERT(0);
5539 return ERR_PTR(-EINVAL);
5542 ctl.start = find_next_chunk(info);
5543 ctl.type = type;
5544 init_alloc_chunk_ctl(fs_devices, &ctl);
5546 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5547 GFP_NOFS);
5548 if (!devices_info)
5549 return ERR_PTR(-ENOMEM);
5551 ret = gather_device_info(fs_devices, &ctl, devices_info);
5552 if (ret < 0) {
5553 block_group = ERR_PTR(ret);
5554 goto out;
5557 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5558 if (ret < 0) {
5559 block_group = ERR_PTR(ret);
5560 goto out;
5563 block_group = create_chunk(trans, &ctl, devices_info);
5565 out:
5566 kfree(devices_info);
5567 return block_group;
5571 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5572 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5573 * chunks.
5575 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5576 * phases.
5578 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5579 struct btrfs_block_group *bg)
5581 struct btrfs_fs_info *fs_info = trans->fs_info;
5582 struct btrfs_root *chunk_root = fs_info->chunk_root;
5583 struct btrfs_key key;
5584 struct btrfs_chunk *chunk;
5585 struct btrfs_stripe *stripe;
5586 struct btrfs_chunk_map *map;
5587 size_t item_size;
5588 int i;
5589 int ret;
5592 * We take the chunk_mutex for 2 reasons:
5594 * 1) Updates and insertions in the chunk btree must be done while holding
5595 * the chunk_mutex, as well as updating the system chunk array in the
5596 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5597 * details;
5599 * 2) To prevent races with the final phase of a device replace operation
5600 * that replaces the device object associated with the map's stripes,
5601 * because the device object's id can change at any time during that
5602 * final phase of the device replace operation
5603 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5604 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5605 * which would cause a failure when updating the device item, which does
5606 * not exists, or persisting a stripe of the chunk item with such ID.
5607 * Here we can't use the device_list_mutex because our caller already
5608 * has locked the chunk_mutex, and the final phase of device replace
5609 * acquires both mutexes - first the device_list_mutex and then the
5610 * chunk_mutex. Using any of those two mutexes protects us from a
5611 * concurrent device replace.
5613 lockdep_assert_held(&fs_info->chunk_mutex);
5615 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5616 if (IS_ERR(map)) {
5617 ret = PTR_ERR(map);
5618 btrfs_abort_transaction(trans, ret);
5619 return ret;
5622 item_size = btrfs_chunk_item_size(map->num_stripes);
5624 chunk = kzalloc(item_size, GFP_NOFS);
5625 if (!chunk) {
5626 ret = -ENOMEM;
5627 btrfs_abort_transaction(trans, ret);
5628 goto out;
5631 for (i = 0; i < map->num_stripes; i++) {
5632 struct btrfs_device *device = map->stripes[i].dev;
5634 ret = btrfs_update_device(trans, device);
5635 if (ret)
5636 goto out;
5639 stripe = &chunk->stripe;
5640 for (i = 0; i < map->num_stripes; i++) {
5641 struct btrfs_device *device = map->stripes[i].dev;
5642 const u64 dev_offset = map->stripes[i].physical;
5644 btrfs_set_stack_stripe_devid(stripe, device->devid);
5645 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5646 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5647 stripe++;
5650 btrfs_set_stack_chunk_length(chunk, bg->length);
5651 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5652 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5653 btrfs_set_stack_chunk_type(chunk, map->type);
5654 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5655 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5656 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5657 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5658 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5660 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5661 key.type = BTRFS_CHUNK_ITEM_KEY;
5662 key.offset = bg->start;
5664 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5665 if (ret)
5666 goto out;
5668 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5670 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5671 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5672 if (ret)
5673 goto out;
5676 out:
5677 kfree(chunk);
5678 btrfs_free_chunk_map(map);
5679 return ret;
5682 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5684 struct btrfs_fs_info *fs_info = trans->fs_info;
5685 u64 alloc_profile;
5686 struct btrfs_block_group *meta_bg;
5687 struct btrfs_block_group *sys_bg;
5690 * When adding a new device for sprouting, the seed device is read-only
5691 * so we must first allocate a metadata and a system chunk. But before
5692 * adding the block group items to the extent, device and chunk btrees,
5693 * we must first:
5695 * 1) Create both chunks without doing any changes to the btrees, as
5696 * otherwise we would get -ENOSPC since the block groups from the
5697 * seed device are read-only;
5699 * 2) Add the device item for the new sprout device - finishing the setup
5700 * of a new block group requires updating the device item in the chunk
5701 * btree, so it must exist when we attempt to do it. The previous step
5702 * ensures this does not fail with -ENOSPC.
5704 * After that we can add the block group items to their btrees:
5705 * update existing device item in the chunk btree, add a new block group
5706 * item to the extent btree, add a new chunk item to the chunk btree and
5707 * finally add the new device extent items to the devices btree.
5710 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5711 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5712 if (IS_ERR(meta_bg))
5713 return PTR_ERR(meta_bg);
5715 alloc_profile = btrfs_system_alloc_profile(fs_info);
5716 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5717 if (IS_ERR(sys_bg))
5718 return PTR_ERR(sys_bg);
5720 return 0;
5723 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5725 const int index = btrfs_bg_flags_to_raid_index(map->type);
5727 return btrfs_raid_array[index].tolerated_failures;
5730 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5732 struct btrfs_chunk_map *map;
5733 int miss_ndevs = 0;
5734 int i;
5735 bool ret = true;
5737 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5738 if (IS_ERR(map))
5739 return false;
5741 for (i = 0; i < map->num_stripes; i++) {
5742 if (test_bit(BTRFS_DEV_STATE_MISSING,
5743 &map->stripes[i].dev->dev_state)) {
5744 miss_ndevs++;
5745 continue;
5747 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5748 &map->stripes[i].dev->dev_state)) {
5749 ret = false;
5750 goto end;
5755 * If the number of missing devices is larger than max errors, we can
5756 * not write the data into that chunk successfully.
5758 if (miss_ndevs > btrfs_chunk_max_errors(map))
5759 ret = false;
5760 end:
5761 btrfs_free_chunk_map(map);
5762 return ret;
5765 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5767 write_lock(&fs_info->mapping_tree_lock);
5768 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5769 struct btrfs_chunk_map *map;
5770 struct rb_node *node;
5772 node = rb_first_cached(&fs_info->mapping_tree);
5773 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5774 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5775 RB_CLEAR_NODE(&map->rb_node);
5776 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5777 /* Once for the tree ref. */
5778 btrfs_free_chunk_map(map);
5779 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5781 write_unlock(&fs_info->mapping_tree_lock);
5784 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5786 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5788 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5789 return 2;
5792 * There could be two corrupted data stripes, we need to loop retry in
5793 * order to rebuild the correct data.
5795 * Fail a stripe at a time on every retry except the stripe under
5796 * reconstruction.
5798 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5799 return map->num_stripes;
5801 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5802 return btrfs_raid_array[index].ncopies;
5805 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5807 struct btrfs_chunk_map *map;
5808 int ret;
5810 map = btrfs_get_chunk_map(fs_info, logical, len);
5811 if (IS_ERR(map))
5813 * We could return errors for these cases, but that could get
5814 * ugly and we'd probably do the same thing which is just not do
5815 * anything else and exit, so return 1 so the callers don't try
5816 * to use other copies.
5818 return 1;
5820 ret = btrfs_chunk_map_num_copies(map);
5821 btrfs_free_chunk_map(map);
5822 return ret;
5825 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5826 u64 logical)
5828 struct btrfs_chunk_map *map;
5829 unsigned long len = fs_info->sectorsize;
5831 if (!btrfs_fs_incompat(fs_info, RAID56))
5832 return len;
5834 map = btrfs_get_chunk_map(fs_info, logical, len);
5836 if (!WARN_ON(IS_ERR(map))) {
5837 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5838 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5839 btrfs_free_chunk_map(map);
5841 return len;
5844 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5846 struct btrfs_chunk_map *map;
5847 int ret = 0;
5849 if (!btrfs_fs_incompat(fs_info, RAID56))
5850 return 0;
5852 map = btrfs_get_chunk_map(fs_info, logical, len);
5854 if (!WARN_ON(IS_ERR(map))) {
5855 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5856 ret = 1;
5857 btrfs_free_chunk_map(map);
5859 return ret;
5862 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5863 struct btrfs_chunk_map *map, int first,
5864 int dev_replace_is_ongoing)
5866 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5867 int i;
5868 int num_stripes;
5869 int preferred_mirror;
5870 int tolerance;
5871 struct btrfs_device *srcdev;
5873 ASSERT((map->type &
5874 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5876 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5877 num_stripes = map->sub_stripes;
5878 else
5879 num_stripes = map->num_stripes;
5881 switch (policy) {
5882 default:
5883 /* Shouldn't happen, just warn and use pid instead of failing */
5884 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5885 policy);
5886 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5887 fallthrough;
5888 case BTRFS_READ_POLICY_PID:
5889 preferred_mirror = first + (current->pid % num_stripes);
5890 break;
5893 if (dev_replace_is_ongoing &&
5894 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5895 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5896 srcdev = fs_info->dev_replace.srcdev;
5897 else
5898 srcdev = NULL;
5901 * try to avoid the drive that is the source drive for a
5902 * dev-replace procedure, only choose it if no other non-missing
5903 * mirror is available
5905 for (tolerance = 0; tolerance < 2; tolerance++) {
5906 if (map->stripes[preferred_mirror].dev->bdev &&
5907 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5908 return preferred_mirror;
5909 for (i = first; i < first + num_stripes; i++) {
5910 if (map->stripes[i].dev->bdev &&
5911 (tolerance || map->stripes[i].dev != srcdev))
5912 return i;
5916 /* we couldn't find one that doesn't fail. Just return something
5917 * and the io error handling code will clean up eventually
5919 return preferred_mirror;
5922 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5923 u64 logical,
5924 u16 total_stripes)
5926 struct btrfs_io_context *bioc;
5928 bioc = kzalloc(
5929 /* The size of btrfs_io_context */
5930 sizeof(struct btrfs_io_context) +
5931 /* Plus the variable array for the stripes */
5932 sizeof(struct btrfs_io_stripe) * (total_stripes),
5933 GFP_NOFS);
5935 if (!bioc)
5936 return NULL;
5938 refcount_set(&bioc->refs, 1);
5940 bioc->fs_info = fs_info;
5941 bioc->replace_stripe_src = -1;
5942 bioc->full_stripe_logical = (u64)-1;
5943 bioc->logical = logical;
5945 return bioc;
5948 void btrfs_get_bioc(struct btrfs_io_context *bioc)
5950 WARN_ON(!refcount_read(&bioc->refs));
5951 refcount_inc(&bioc->refs);
5954 void btrfs_put_bioc(struct btrfs_io_context *bioc)
5956 if (!bioc)
5957 return;
5958 if (refcount_dec_and_test(&bioc->refs))
5959 kfree(bioc);
5963 * Please note that, discard won't be sent to target device of device
5964 * replace.
5966 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5967 u64 logical, u64 *length_ret,
5968 u32 *num_stripes)
5970 struct btrfs_chunk_map *map;
5971 struct btrfs_discard_stripe *stripes;
5972 u64 length = *length_ret;
5973 u64 offset;
5974 u32 stripe_nr;
5975 u32 stripe_nr_end;
5976 u32 stripe_cnt;
5977 u64 stripe_end_offset;
5978 u64 stripe_offset;
5979 u32 stripe_index;
5980 u32 factor = 0;
5981 u32 sub_stripes = 0;
5982 u32 stripes_per_dev = 0;
5983 u32 remaining_stripes = 0;
5984 u32 last_stripe = 0;
5985 int ret;
5986 int i;
5988 map = btrfs_get_chunk_map(fs_info, logical, length);
5989 if (IS_ERR(map))
5990 return ERR_CAST(map);
5992 /* we don't discard raid56 yet */
5993 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5994 ret = -EOPNOTSUPP;
5995 goto out_free_map;
5998 offset = logical - map->start;
5999 length = min_t(u64, map->start + map->chunk_len - logical, length);
6000 *length_ret = length;
6003 * stripe_nr counts the total number of stripes we have to stride
6004 * to get to this block
6006 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6008 /* stripe_offset is the offset of this block in its stripe */
6009 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6011 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6012 BTRFS_STRIPE_LEN_SHIFT;
6013 stripe_cnt = stripe_nr_end - stripe_nr;
6014 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6015 (offset + length);
6017 * after this, stripe_nr is the number of stripes on this
6018 * device we have to walk to find the data, and stripe_index is
6019 * the number of our device in the stripe array
6021 *num_stripes = 1;
6022 stripe_index = 0;
6023 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6024 BTRFS_BLOCK_GROUP_RAID10)) {
6025 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6026 sub_stripes = 1;
6027 else
6028 sub_stripes = map->sub_stripes;
6030 factor = map->num_stripes / sub_stripes;
6031 *num_stripes = min_t(u64, map->num_stripes,
6032 sub_stripes * stripe_cnt);
6033 stripe_index = stripe_nr % factor;
6034 stripe_nr /= factor;
6035 stripe_index *= sub_stripes;
6037 remaining_stripes = stripe_cnt % factor;
6038 stripes_per_dev = stripe_cnt / factor;
6039 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6040 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6041 BTRFS_BLOCK_GROUP_DUP)) {
6042 *num_stripes = map->num_stripes;
6043 } else {
6044 stripe_index = stripe_nr % map->num_stripes;
6045 stripe_nr /= map->num_stripes;
6048 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6049 if (!stripes) {
6050 ret = -ENOMEM;
6051 goto out_free_map;
6054 for (i = 0; i < *num_stripes; i++) {
6055 stripes[i].physical =
6056 map->stripes[stripe_index].physical +
6057 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6058 stripes[i].dev = map->stripes[stripe_index].dev;
6060 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6061 BTRFS_BLOCK_GROUP_RAID10)) {
6062 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6064 if (i / sub_stripes < remaining_stripes)
6065 stripes[i].length += BTRFS_STRIPE_LEN;
6068 * Special for the first stripe and
6069 * the last stripe:
6071 * |-------|...|-------|
6072 * |----------|
6073 * off end_off
6075 if (i < sub_stripes)
6076 stripes[i].length -= stripe_offset;
6078 if (stripe_index >= last_stripe &&
6079 stripe_index <= (last_stripe +
6080 sub_stripes - 1))
6081 stripes[i].length -= stripe_end_offset;
6083 if (i == sub_stripes - 1)
6084 stripe_offset = 0;
6085 } else {
6086 stripes[i].length = length;
6089 stripe_index++;
6090 if (stripe_index == map->num_stripes) {
6091 stripe_index = 0;
6092 stripe_nr++;
6096 btrfs_free_chunk_map(map);
6097 return stripes;
6098 out_free_map:
6099 btrfs_free_chunk_map(map);
6100 return ERR_PTR(ret);
6103 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6105 struct btrfs_block_group *cache;
6106 bool ret;
6108 /* Non zoned filesystem does not use "to_copy" flag */
6109 if (!btrfs_is_zoned(fs_info))
6110 return false;
6112 cache = btrfs_lookup_block_group(fs_info, logical);
6114 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6116 btrfs_put_block_group(cache);
6117 return ret;
6120 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6121 struct btrfs_dev_replace *dev_replace,
6122 u64 logical,
6123 struct btrfs_io_geometry *io_geom)
6125 u64 srcdev_devid = dev_replace->srcdev->devid;
6127 * At this stage, num_stripes is still the real number of stripes,
6128 * excluding the duplicated stripes.
6130 int num_stripes = io_geom->num_stripes;
6131 int max_errors = io_geom->max_errors;
6132 int nr_extra_stripes = 0;
6133 int i;
6136 * A block group which has "to_copy" set will eventually be copied by
6137 * the dev-replace process. We can avoid cloning IO here.
6139 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6140 return;
6143 * Duplicate the write operations while the dev-replace procedure is
6144 * running. Since the copying of the old disk to the new disk takes
6145 * place at run time while the filesystem is mounted writable, the
6146 * regular write operations to the old disk have to be duplicated to go
6147 * to the new disk as well.
6149 * Note that device->missing is handled by the caller, and that the
6150 * write to the old disk is already set up in the stripes array.
6152 for (i = 0; i < num_stripes; i++) {
6153 struct btrfs_io_stripe *old = &bioc->stripes[i];
6154 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6156 if (old->dev->devid != srcdev_devid)
6157 continue;
6159 new->physical = old->physical;
6160 new->dev = dev_replace->tgtdev;
6161 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6162 bioc->replace_stripe_src = i;
6163 nr_extra_stripes++;
6166 /* We can only have at most 2 extra nr_stripes (for DUP). */
6167 ASSERT(nr_extra_stripes <= 2);
6169 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6170 * replace.
6171 * If we have 2 extra stripes, only choose the one with smaller physical.
6173 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6174 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6175 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6177 /* Only DUP can have two extra stripes. */
6178 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6181 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6182 * The extra stripe would still be there, but won't be accessed.
6184 if (first->physical > second->physical) {
6185 swap(second->physical, first->physical);
6186 swap(second->dev, first->dev);
6187 nr_extra_stripes--;
6191 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6192 io_geom->max_errors = max_errors + nr_extra_stripes;
6193 bioc->replace_nr_stripes = nr_extra_stripes;
6196 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6197 struct btrfs_io_geometry *io_geom)
6200 * Stripe_nr is the stripe where this block falls. stripe_offset is
6201 * the offset of this block in its stripe.
6203 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6204 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6205 ASSERT(io_geom->stripe_offset < U32_MAX);
6207 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6208 unsigned long full_stripe_len =
6209 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6212 * For full stripe start, we use previously calculated
6213 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6214 * STRIPE_LEN.
6216 * By this we can avoid u64 division completely. And we have
6217 * to go rounddown(), not round_down(), as nr_data_stripes is
6218 * not ensured to be power of 2.
6220 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6221 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6223 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6224 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6226 * For writes to RAID56, allow to write a full stripe set, but
6227 * no straddling of stripe sets.
6229 if (io_geom->op == BTRFS_MAP_WRITE)
6230 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6234 * For other RAID types and for RAID56 reads, allow a single stripe (on
6235 * a single disk).
6237 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6238 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6239 return U64_MAX;
6242 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6243 u64 *length, struct btrfs_io_stripe *dst,
6244 struct btrfs_chunk_map *map,
6245 struct btrfs_io_geometry *io_geom)
6247 dst->dev = map->stripes[io_geom->stripe_index].dev;
6249 if (io_geom->op == BTRFS_MAP_READ &&
6250 btrfs_need_stripe_tree_update(fs_info, map->type))
6251 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6252 map->type,
6253 io_geom->stripe_index, dst);
6255 dst->physical = map->stripes[io_geom->stripe_index].physical +
6256 io_geom->stripe_offset +
6257 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6258 return 0;
6261 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6262 const struct btrfs_io_stripe *smap,
6263 const struct btrfs_chunk_map *map,
6264 int num_alloc_stripes,
6265 enum btrfs_map_op op, int mirror_num)
6267 if (!smap)
6268 return false;
6270 if (num_alloc_stripes != 1)
6271 return false;
6273 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6274 return false;
6276 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6277 return false;
6279 return true;
6282 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6283 struct btrfs_io_geometry *io_geom)
6285 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6286 io_geom->stripe_nr /= map->num_stripes;
6287 if (io_geom->op == BTRFS_MAP_READ)
6288 io_geom->mirror_num = 1;
6291 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6292 struct btrfs_chunk_map *map,
6293 struct btrfs_io_geometry *io_geom,
6294 bool dev_replace_is_ongoing)
6296 if (io_geom->op != BTRFS_MAP_READ) {
6297 io_geom->num_stripes = map->num_stripes;
6298 return;
6301 if (io_geom->mirror_num) {
6302 io_geom->stripe_index = io_geom->mirror_num - 1;
6303 return;
6306 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6307 dev_replace_is_ongoing);
6308 io_geom->mirror_num = io_geom->stripe_index + 1;
6311 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6312 struct btrfs_io_geometry *io_geom)
6314 if (io_geom->op != BTRFS_MAP_READ) {
6315 io_geom->num_stripes = map->num_stripes;
6316 return;
6319 if (io_geom->mirror_num) {
6320 io_geom->stripe_index = io_geom->mirror_num - 1;
6321 return;
6324 io_geom->mirror_num = 1;
6327 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6328 struct btrfs_chunk_map *map,
6329 struct btrfs_io_geometry *io_geom,
6330 bool dev_replace_is_ongoing)
6332 u32 factor = map->num_stripes / map->sub_stripes;
6333 int old_stripe_index;
6335 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6336 io_geom->stripe_nr /= factor;
6338 if (io_geom->op != BTRFS_MAP_READ) {
6339 io_geom->num_stripes = map->sub_stripes;
6340 return;
6343 if (io_geom->mirror_num) {
6344 io_geom->stripe_index += io_geom->mirror_num - 1;
6345 return;
6348 old_stripe_index = io_geom->stripe_index;
6349 io_geom->stripe_index = find_live_mirror(fs_info, map,
6350 io_geom->stripe_index,
6351 dev_replace_is_ongoing);
6352 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6355 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6356 struct btrfs_io_geometry *io_geom,
6357 u64 logical, u64 *length)
6359 int data_stripes = nr_data_stripes(map);
6362 * Needs full stripe mapping.
6364 * Push stripe_nr back to the start of the full stripe For those cases
6365 * needing a full stripe, @stripe_nr is the full stripe number.
6367 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6368 * that can be expensive. Here we just divide @stripe_nr with
6369 * @data_stripes.
6371 io_geom->stripe_nr /= data_stripes;
6373 /* RAID[56] write or recovery. Return all stripes */
6374 io_geom->num_stripes = map->num_stripes;
6375 io_geom->max_errors = btrfs_chunk_max_errors(map);
6377 /* Return the length to the full stripe end. */
6378 *length = min(logical + *length,
6379 io_geom->raid56_full_stripe_start + map->start +
6380 btrfs_stripe_nr_to_offset(data_stripes)) -
6381 logical;
6382 io_geom->stripe_index = 0;
6383 io_geom->stripe_offset = 0;
6386 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6387 struct btrfs_io_geometry *io_geom)
6389 int data_stripes = nr_data_stripes(map);
6391 ASSERT(io_geom->mirror_num <= 1);
6392 /* Just grab the data stripe directly. */
6393 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6394 io_geom->stripe_nr /= data_stripes;
6396 /* We distribute the parity blocks across stripes. */
6397 io_geom->stripe_index =
6398 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6400 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6401 io_geom->mirror_num = 1;
6404 static void map_blocks_single(const struct btrfs_chunk_map *map,
6405 struct btrfs_io_geometry *io_geom)
6407 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6408 io_geom->stripe_nr /= map->num_stripes;
6409 io_geom->mirror_num = io_geom->stripe_index + 1;
6413 * Map one logical range to one or more physical ranges.
6415 * @length: (Mandatory) mapped length of this run.
6416 * One logical range can be split into different segments
6417 * due to factors like zones and RAID0/5/6/10 stripe
6418 * boundaries.
6420 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6421 * which has one or more physical ranges (btrfs_io_stripe)
6422 * recorded inside.
6423 * Caller should call btrfs_put_bioc() to free it after use.
6425 * @smap: (Optional) single physical range optimization.
6426 * If the map request can be fulfilled by one single
6427 * physical range, and this is parameter is not NULL,
6428 * then @bioc_ret would be NULL, and @smap would be
6429 * updated.
6431 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6432 * value is 0.
6434 * Mirror number 0 means to choose any live mirrors.
6436 * For non-RAID56 profiles, non-zero mirror_num means
6437 * the Nth mirror. (e.g. mirror_num 1 means the first
6438 * copy).
6440 * For RAID56 profile, mirror 1 means rebuild from P and
6441 * the remaining data stripes.
6443 * For RAID6 profile, mirror > 2 means mark another
6444 * data/P stripe error and rebuild from the remaining
6445 * stripes..
6447 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6448 u64 logical, u64 *length,
6449 struct btrfs_io_context **bioc_ret,
6450 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6452 struct btrfs_chunk_map *map;
6453 struct btrfs_io_geometry io_geom = { 0 };
6454 u64 map_offset;
6455 int ret = 0;
6456 int num_copies;
6457 struct btrfs_io_context *bioc = NULL;
6458 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6459 int dev_replace_is_ongoing = 0;
6460 u16 num_alloc_stripes;
6461 u64 max_len;
6463 ASSERT(bioc_ret);
6465 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6466 io_geom.num_stripes = 1;
6467 io_geom.stripe_index = 0;
6468 io_geom.op = op;
6470 map = btrfs_get_chunk_map(fs_info, logical, *length);
6471 if (IS_ERR(map))
6472 return PTR_ERR(map);
6474 num_copies = btrfs_chunk_map_num_copies(map);
6475 if (io_geom.mirror_num > num_copies)
6476 return -EINVAL;
6478 map_offset = logical - map->start;
6479 io_geom.raid56_full_stripe_start = (u64)-1;
6480 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6481 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6483 down_read(&dev_replace->rwsem);
6484 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6486 * Hold the semaphore for read during the whole operation, write is
6487 * requested at commit time but must wait.
6489 if (!dev_replace_is_ongoing)
6490 up_read(&dev_replace->rwsem);
6492 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6493 case BTRFS_BLOCK_GROUP_RAID0:
6494 map_blocks_raid0(map, &io_geom);
6495 break;
6496 case BTRFS_BLOCK_GROUP_RAID1:
6497 case BTRFS_BLOCK_GROUP_RAID1C3:
6498 case BTRFS_BLOCK_GROUP_RAID1C4:
6499 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6500 break;
6501 case BTRFS_BLOCK_GROUP_DUP:
6502 map_blocks_dup(map, &io_geom);
6503 break;
6504 case BTRFS_BLOCK_GROUP_RAID10:
6505 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6506 break;
6507 case BTRFS_BLOCK_GROUP_RAID5:
6508 case BTRFS_BLOCK_GROUP_RAID6:
6509 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6510 map_blocks_raid56_write(map, &io_geom, logical, length);
6511 else
6512 map_blocks_raid56_read(map, &io_geom);
6513 break;
6514 default:
6516 * After this, stripe_nr is the number of stripes on this
6517 * device we have to walk to find the data, and stripe_index is
6518 * the number of our device in the stripe array
6520 map_blocks_single(map, &io_geom);
6521 break;
6523 if (io_geom.stripe_index >= map->num_stripes) {
6524 btrfs_crit(fs_info,
6525 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6526 io_geom.stripe_index, map->num_stripes);
6527 ret = -EINVAL;
6528 goto out;
6531 num_alloc_stripes = io_geom.num_stripes;
6532 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6533 op != BTRFS_MAP_READ)
6535 * For replace case, we need to add extra stripes for extra
6536 * duplicated stripes.
6538 * For both WRITE and GET_READ_MIRRORS, we may have at most
6539 * 2 more stripes (DUP types, otherwise 1).
6541 num_alloc_stripes += 2;
6544 * If this I/O maps to a single device, try to return the device and
6545 * physical block information on the stack instead of allocating an
6546 * I/O context structure.
6548 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6549 io_geom.mirror_num)) {
6550 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6551 if (mirror_num_ret)
6552 *mirror_num_ret = io_geom.mirror_num;
6553 *bioc_ret = NULL;
6554 goto out;
6557 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6558 if (!bioc) {
6559 ret = -ENOMEM;
6560 goto out;
6562 bioc->map_type = map->type;
6565 * For RAID56 full map, we need to make sure the stripes[] follows the
6566 * rule that data stripes are all ordered, then followed with P and Q
6567 * (if we have).
6569 * It's still mostly the same as other profiles, just with extra rotation.
6571 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6572 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6574 * For RAID56 @stripe_nr is already the number of full stripes
6575 * before us, which is also the rotation value (needs to modulo
6576 * with num_stripes).
6578 * In this case, we just add @stripe_nr with @i, then do the
6579 * modulo, to reduce one modulo call.
6581 bioc->full_stripe_logical = map->start +
6582 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6583 nr_data_stripes(map));
6584 for (int i = 0; i < io_geom.num_stripes; i++) {
6585 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6586 u32 stripe_index;
6588 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6589 dst->dev = map->stripes[stripe_index].dev;
6590 dst->physical =
6591 map->stripes[stripe_index].physical +
6592 io_geom.stripe_offset +
6593 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6595 } else {
6597 * For all other non-RAID56 profiles, just copy the target
6598 * stripe into the bioc.
6600 for (int i = 0; i < io_geom.num_stripes; i++) {
6601 ret = set_io_stripe(fs_info, logical, length,
6602 &bioc->stripes[i], map, &io_geom);
6603 if (ret < 0)
6604 break;
6605 io_geom.stripe_index++;
6609 if (ret) {
6610 *bioc_ret = NULL;
6611 btrfs_put_bioc(bioc);
6612 goto out;
6615 if (op != BTRFS_MAP_READ)
6616 io_geom.max_errors = btrfs_chunk_max_errors(map);
6618 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6619 op != BTRFS_MAP_READ) {
6620 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6623 *bioc_ret = bioc;
6624 bioc->num_stripes = io_geom.num_stripes;
6625 bioc->max_errors = io_geom.max_errors;
6626 bioc->mirror_num = io_geom.mirror_num;
6628 out:
6629 if (dev_replace_is_ongoing) {
6630 lockdep_assert_held(&dev_replace->rwsem);
6631 /* Unlock and let waiting writers proceed */
6632 up_read(&dev_replace->rwsem);
6634 btrfs_free_chunk_map(map);
6635 return ret;
6638 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6639 const struct btrfs_fs_devices *fs_devices)
6641 if (args->fsid == NULL)
6642 return true;
6643 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6644 return true;
6645 return false;
6648 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6649 const struct btrfs_device *device)
6651 if (args->missing) {
6652 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6653 !device->bdev)
6654 return true;
6655 return false;
6658 if (device->devid != args->devid)
6659 return false;
6660 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6661 return false;
6662 return true;
6666 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6667 * return NULL.
6669 * If devid and uuid are both specified, the match must be exact, otherwise
6670 * only devid is used.
6672 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6673 const struct btrfs_dev_lookup_args *args)
6675 struct btrfs_device *device;
6676 struct btrfs_fs_devices *seed_devs;
6678 if (dev_args_match_fs_devices(args, fs_devices)) {
6679 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6680 if (dev_args_match_device(args, device))
6681 return device;
6685 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6686 if (!dev_args_match_fs_devices(args, seed_devs))
6687 continue;
6688 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6689 if (dev_args_match_device(args, device))
6690 return device;
6694 return NULL;
6697 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6698 u64 devid, u8 *dev_uuid)
6700 struct btrfs_device *device;
6701 unsigned int nofs_flag;
6704 * We call this under the chunk_mutex, so we want to use NOFS for this
6705 * allocation, however we don't want to change btrfs_alloc_device() to
6706 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6707 * places.
6710 nofs_flag = memalloc_nofs_save();
6711 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6712 memalloc_nofs_restore(nofs_flag);
6713 if (IS_ERR(device))
6714 return device;
6716 list_add(&device->dev_list, &fs_devices->devices);
6717 device->fs_devices = fs_devices;
6718 fs_devices->num_devices++;
6720 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6721 fs_devices->missing_devices++;
6723 return device;
6727 * Allocate new device struct, set up devid and UUID.
6729 * @fs_info: used only for generating a new devid, can be NULL if
6730 * devid is provided (i.e. @devid != NULL).
6731 * @devid: a pointer to devid for this device. If NULL a new devid
6732 * is generated.
6733 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6734 * is generated.
6735 * @path: a pointer to device path if available, NULL otherwise.
6737 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6738 * on error. Returned struct is not linked onto any lists and must be
6739 * destroyed with btrfs_free_device.
6741 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6742 const u64 *devid, const u8 *uuid,
6743 const char *path)
6745 struct btrfs_device *dev;
6746 u64 tmp;
6748 if (WARN_ON(!devid && !fs_info))
6749 return ERR_PTR(-EINVAL);
6751 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6752 if (!dev)
6753 return ERR_PTR(-ENOMEM);
6755 INIT_LIST_HEAD(&dev->dev_list);
6756 INIT_LIST_HEAD(&dev->dev_alloc_list);
6757 INIT_LIST_HEAD(&dev->post_commit_list);
6759 atomic_set(&dev->dev_stats_ccnt, 0);
6760 btrfs_device_data_ordered_init(dev);
6761 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6763 if (devid)
6764 tmp = *devid;
6765 else {
6766 int ret;
6768 ret = find_next_devid(fs_info, &tmp);
6769 if (ret) {
6770 btrfs_free_device(dev);
6771 return ERR_PTR(ret);
6774 dev->devid = tmp;
6776 if (uuid)
6777 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6778 else
6779 generate_random_uuid(dev->uuid);
6781 if (path) {
6782 struct rcu_string *name;
6784 name = rcu_string_strdup(path, GFP_KERNEL);
6785 if (!name) {
6786 btrfs_free_device(dev);
6787 return ERR_PTR(-ENOMEM);
6789 rcu_assign_pointer(dev->name, name);
6792 return dev;
6795 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6796 u64 devid, u8 *uuid, bool error)
6798 if (error)
6799 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6800 devid, uuid);
6801 else
6802 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6803 devid, uuid);
6806 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6808 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6810 return div_u64(map->chunk_len, data_stripes);
6813 #if BITS_PER_LONG == 32
6815 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6816 * can't be accessed on 32bit systems.
6818 * This function do mount time check to reject the fs if it already has
6819 * metadata chunk beyond that limit.
6821 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6822 u64 logical, u64 length, u64 type)
6824 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6825 return 0;
6827 if (logical + length < MAX_LFS_FILESIZE)
6828 return 0;
6830 btrfs_err_32bit_limit(fs_info);
6831 return -EOVERFLOW;
6835 * This is to give early warning for any metadata chunk reaching
6836 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6837 * Although we can still access the metadata, it's not going to be possible
6838 * once the limit is reached.
6840 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6841 u64 logical, u64 length, u64 type)
6843 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6844 return;
6846 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6847 return;
6849 btrfs_warn_32bit_limit(fs_info);
6851 #endif
6853 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6854 u64 devid, u8 *uuid)
6856 struct btrfs_device *dev;
6858 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6859 btrfs_report_missing_device(fs_info, devid, uuid, true);
6860 return ERR_PTR(-ENOENT);
6863 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6864 if (IS_ERR(dev)) {
6865 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6866 devid, PTR_ERR(dev));
6867 return dev;
6869 btrfs_report_missing_device(fs_info, devid, uuid, false);
6871 return dev;
6874 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6875 struct btrfs_chunk *chunk)
6877 BTRFS_DEV_LOOKUP_ARGS(args);
6878 struct btrfs_fs_info *fs_info = leaf->fs_info;
6879 struct btrfs_chunk_map *map;
6880 u64 logical;
6881 u64 length;
6882 u64 devid;
6883 u64 type;
6884 u8 uuid[BTRFS_UUID_SIZE];
6885 int index;
6886 int num_stripes;
6887 int ret;
6888 int i;
6890 logical = key->offset;
6891 length = btrfs_chunk_length(leaf, chunk);
6892 type = btrfs_chunk_type(leaf, chunk);
6893 index = btrfs_bg_flags_to_raid_index(type);
6894 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6896 #if BITS_PER_LONG == 32
6897 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6898 if (ret < 0)
6899 return ret;
6900 warn_32bit_meta_chunk(fs_info, logical, length, type);
6901 #endif
6904 * Only need to verify chunk item if we're reading from sys chunk array,
6905 * as chunk item in tree block is already verified by tree-checker.
6907 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6908 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6909 if (ret)
6910 return ret;
6913 map = btrfs_find_chunk_map(fs_info, logical, 1);
6915 /* already mapped? */
6916 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
6917 btrfs_free_chunk_map(map);
6918 return 0;
6919 } else if (map) {
6920 btrfs_free_chunk_map(map);
6923 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
6924 if (!map)
6925 return -ENOMEM;
6927 map->start = logical;
6928 map->chunk_len = length;
6929 map->num_stripes = num_stripes;
6930 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6931 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6932 map->type = type;
6934 * We can't use the sub_stripes value, as for profiles other than
6935 * RAID10, they may have 0 as sub_stripes for filesystems created by
6936 * older mkfs (<v5.4).
6937 * In that case, it can cause divide-by-zero errors later.
6938 * Since currently sub_stripes is fixed for each profile, let's
6939 * use the trusted value instead.
6941 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6942 map->verified_stripes = 0;
6943 map->stripe_size = btrfs_calc_stripe_length(map);
6944 for (i = 0; i < num_stripes; i++) {
6945 map->stripes[i].physical =
6946 btrfs_stripe_offset_nr(leaf, chunk, i);
6947 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6948 args.devid = devid;
6949 read_extent_buffer(leaf, uuid, (unsigned long)
6950 btrfs_stripe_dev_uuid_nr(chunk, i),
6951 BTRFS_UUID_SIZE);
6952 args.uuid = uuid;
6953 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
6954 if (!map->stripes[i].dev) {
6955 map->stripes[i].dev = handle_missing_device(fs_info,
6956 devid, uuid);
6957 if (IS_ERR(map->stripes[i].dev)) {
6958 ret = PTR_ERR(map->stripes[i].dev);
6959 btrfs_free_chunk_map(map);
6960 return ret;
6964 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6965 &(map->stripes[i].dev->dev_state));
6968 ret = btrfs_add_chunk_map(fs_info, map);
6969 if (ret < 0) {
6970 btrfs_err(fs_info,
6971 "failed to add chunk map, start=%llu len=%llu: %d",
6972 map->start, map->chunk_len, ret);
6975 return ret;
6978 static void fill_device_from_item(struct extent_buffer *leaf,
6979 struct btrfs_dev_item *dev_item,
6980 struct btrfs_device *device)
6982 unsigned long ptr;
6984 device->devid = btrfs_device_id(leaf, dev_item);
6985 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6986 device->total_bytes = device->disk_total_bytes;
6987 device->commit_total_bytes = device->disk_total_bytes;
6988 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6989 device->commit_bytes_used = device->bytes_used;
6990 device->type = btrfs_device_type(leaf, dev_item);
6991 device->io_align = btrfs_device_io_align(leaf, dev_item);
6992 device->io_width = btrfs_device_io_width(leaf, dev_item);
6993 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6994 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6995 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6997 ptr = btrfs_device_uuid(dev_item);
6998 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7001 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7002 u8 *fsid)
7004 struct btrfs_fs_devices *fs_devices;
7005 int ret;
7007 lockdep_assert_held(&uuid_mutex);
7008 ASSERT(fsid);
7010 /* This will match only for multi-device seed fs */
7011 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7012 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7013 return fs_devices;
7016 fs_devices = find_fsid(fsid, NULL);
7017 if (!fs_devices) {
7018 if (!btrfs_test_opt(fs_info, DEGRADED))
7019 return ERR_PTR(-ENOENT);
7021 fs_devices = alloc_fs_devices(fsid);
7022 if (IS_ERR(fs_devices))
7023 return fs_devices;
7025 fs_devices->seeding = true;
7026 fs_devices->opened = 1;
7027 return fs_devices;
7031 * Upon first call for a seed fs fsid, just create a private copy of the
7032 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7034 fs_devices = clone_fs_devices(fs_devices);
7035 if (IS_ERR(fs_devices))
7036 return fs_devices;
7038 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7039 if (ret) {
7040 free_fs_devices(fs_devices);
7041 return ERR_PTR(ret);
7044 if (!fs_devices->seeding) {
7045 close_fs_devices(fs_devices);
7046 free_fs_devices(fs_devices);
7047 return ERR_PTR(-EINVAL);
7050 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7052 return fs_devices;
7055 static int read_one_dev(struct extent_buffer *leaf,
7056 struct btrfs_dev_item *dev_item)
7058 BTRFS_DEV_LOOKUP_ARGS(args);
7059 struct btrfs_fs_info *fs_info = leaf->fs_info;
7060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7061 struct btrfs_device *device;
7062 u64 devid;
7063 int ret;
7064 u8 fs_uuid[BTRFS_FSID_SIZE];
7065 u8 dev_uuid[BTRFS_UUID_SIZE];
7067 devid = btrfs_device_id(leaf, dev_item);
7068 args.devid = devid;
7069 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7070 BTRFS_UUID_SIZE);
7071 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7072 BTRFS_FSID_SIZE);
7073 args.uuid = dev_uuid;
7074 args.fsid = fs_uuid;
7076 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7077 fs_devices = open_seed_devices(fs_info, fs_uuid);
7078 if (IS_ERR(fs_devices))
7079 return PTR_ERR(fs_devices);
7082 device = btrfs_find_device(fs_info->fs_devices, &args);
7083 if (!device) {
7084 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7085 btrfs_report_missing_device(fs_info, devid,
7086 dev_uuid, true);
7087 return -ENOENT;
7090 device = add_missing_dev(fs_devices, devid, dev_uuid);
7091 if (IS_ERR(device)) {
7092 btrfs_err(fs_info,
7093 "failed to add missing dev %llu: %ld",
7094 devid, PTR_ERR(device));
7095 return PTR_ERR(device);
7097 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7098 } else {
7099 if (!device->bdev) {
7100 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7101 btrfs_report_missing_device(fs_info,
7102 devid, dev_uuid, true);
7103 return -ENOENT;
7105 btrfs_report_missing_device(fs_info, devid,
7106 dev_uuid, false);
7109 if (!device->bdev &&
7110 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7112 * this happens when a device that was properly setup
7113 * in the device info lists suddenly goes bad.
7114 * device->bdev is NULL, and so we have to set
7115 * device->missing to one here
7117 device->fs_devices->missing_devices++;
7118 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7121 /* Move the device to its own fs_devices */
7122 if (device->fs_devices != fs_devices) {
7123 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7124 &device->dev_state));
7126 list_move(&device->dev_list, &fs_devices->devices);
7127 device->fs_devices->num_devices--;
7128 fs_devices->num_devices++;
7130 device->fs_devices->missing_devices--;
7131 fs_devices->missing_devices++;
7133 device->fs_devices = fs_devices;
7137 if (device->fs_devices != fs_info->fs_devices) {
7138 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7139 if (device->generation !=
7140 btrfs_device_generation(leaf, dev_item))
7141 return -EINVAL;
7144 fill_device_from_item(leaf, dev_item, device);
7145 if (device->bdev) {
7146 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7148 if (device->total_bytes > max_total_bytes) {
7149 btrfs_err(fs_info,
7150 "device total_bytes should be at most %llu but found %llu",
7151 max_total_bytes, device->total_bytes);
7152 return -EINVAL;
7155 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7156 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7157 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7158 device->fs_devices->total_rw_bytes += device->total_bytes;
7159 atomic64_add(device->total_bytes - device->bytes_used,
7160 &fs_info->free_chunk_space);
7162 ret = 0;
7163 return ret;
7166 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7168 struct btrfs_super_block *super_copy = fs_info->super_copy;
7169 struct extent_buffer *sb;
7170 struct btrfs_disk_key *disk_key;
7171 struct btrfs_chunk *chunk;
7172 u8 *array_ptr;
7173 unsigned long sb_array_offset;
7174 int ret = 0;
7175 u32 num_stripes;
7176 u32 array_size;
7177 u32 len = 0;
7178 u32 cur_offset;
7179 u64 type;
7180 struct btrfs_key key;
7182 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7185 * We allocated a dummy extent, just to use extent buffer accessors.
7186 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7187 * that's fine, we will not go beyond system chunk array anyway.
7189 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7190 if (!sb)
7191 return -ENOMEM;
7192 set_extent_buffer_uptodate(sb);
7194 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7195 array_size = btrfs_super_sys_array_size(super_copy);
7197 array_ptr = super_copy->sys_chunk_array;
7198 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7199 cur_offset = 0;
7201 while (cur_offset < array_size) {
7202 disk_key = (struct btrfs_disk_key *)array_ptr;
7203 len = sizeof(*disk_key);
7204 if (cur_offset + len > array_size)
7205 goto out_short_read;
7207 btrfs_disk_key_to_cpu(&key, disk_key);
7209 array_ptr += len;
7210 sb_array_offset += len;
7211 cur_offset += len;
7213 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7214 btrfs_err(fs_info,
7215 "unexpected item type %u in sys_array at offset %u",
7216 (u32)key.type, cur_offset);
7217 ret = -EIO;
7218 break;
7221 chunk = (struct btrfs_chunk *)sb_array_offset;
7223 * At least one btrfs_chunk with one stripe must be present,
7224 * exact stripe count check comes afterwards
7226 len = btrfs_chunk_item_size(1);
7227 if (cur_offset + len > array_size)
7228 goto out_short_read;
7230 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7231 if (!num_stripes) {
7232 btrfs_err(fs_info,
7233 "invalid number of stripes %u in sys_array at offset %u",
7234 num_stripes, cur_offset);
7235 ret = -EIO;
7236 break;
7239 type = btrfs_chunk_type(sb, chunk);
7240 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7241 btrfs_err(fs_info,
7242 "invalid chunk type %llu in sys_array at offset %u",
7243 type, cur_offset);
7244 ret = -EIO;
7245 break;
7248 len = btrfs_chunk_item_size(num_stripes);
7249 if (cur_offset + len > array_size)
7250 goto out_short_read;
7252 ret = read_one_chunk(&key, sb, chunk);
7253 if (ret)
7254 break;
7256 array_ptr += len;
7257 sb_array_offset += len;
7258 cur_offset += len;
7260 clear_extent_buffer_uptodate(sb);
7261 free_extent_buffer_stale(sb);
7262 return ret;
7264 out_short_read:
7265 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7266 len, cur_offset);
7267 clear_extent_buffer_uptodate(sb);
7268 free_extent_buffer_stale(sb);
7269 return -EIO;
7273 * Check if all chunks in the fs are OK for read-write degraded mount
7275 * If the @failing_dev is specified, it's accounted as missing.
7277 * Return true if all chunks meet the minimal RW mount requirements.
7278 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7280 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7281 struct btrfs_device *failing_dev)
7283 struct btrfs_chunk_map *map;
7284 u64 next_start;
7285 bool ret = true;
7287 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7288 /* No chunk at all? Return false anyway */
7289 if (!map) {
7290 ret = false;
7291 goto out;
7293 while (map) {
7294 int missing = 0;
7295 int max_tolerated;
7296 int i;
7298 max_tolerated =
7299 btrfs_get_num_tolerated_disk_barrier_failures(
7300 map->type);
7301 for (i = 0; i < map->num_stripes; i++) {
7302 struct btrfs_device *dev = map->stripes[i].dev;
7304 if (!dev || !dev->bdev ||
7305 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7306 dev->last_flush_error)
7307 missing++;
7308 else if (failing_dev && failing_dev == dev)
7309 missing++;
7311 if (missing > max_tolerated) {
7312 if (!failing_dev)
7313 btrfs_warn(fs_info,
7314 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7315 map->start, missing, max_tolerated);
7316 btrfs_free_chunk_map(map);
7317 ret = false;
7318 goto out;
7320 next_start = map->start + map->chunk_len;
7321 btrfs_free_chunk_map(map);
7323 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7325 out:
7326 return ret;
7329 static void readahead_tree_node_children(struct extent_buffer *node)
7331 int i;
7332 const int nr_items = btrfs_header_nritems(node);
7334 for (i = 0; i < nr_items; i++)
7335 btrfs_readahead_node_child(node, i);
7338 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7340 struct btrfs_root *root = fs_info->chunk_root;
7341 struct btrfs_path *path;
7342 struct extent_buffer *leaf;
7343 struct btrfs_key key;
7344 struct btrfs_key found_key;
7345 int ret;
7346 int slot;
7347 int iter_ret = 0;
7348 u64 total_dev = 0;
7349 u64 last_ra_node = 0;
7351 path = btrfs_alloc_path();
7352 if (!path)
7353 return -ENOMEM;
7356 * uuid_mutex is needed only if we are mounting a sprout FS
7357 * otherwise we don't need it.
7359 mutex_lock(&uuid_mutex);
7362 * It is possible for mount and umount to race in such a way that
7363 * we execute this code path, but open_fs_devices failed to clear
7364 * total_rw_bytes. We certainly want it cleared before reading the
7365 * device items, so clear it here.
7367 fs_info->fs_devices->total_rw_bytes = 0;
7370 * Lockdep complains about possible circular locking dependency between
7371 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7372 * used for freeze procection of a fs (struct super_block.s_writers),
7373 * which we take when starting a transaction, and extent buffers of the
7374 * chunk tree if we call read_one_dev() while holding a lock on an
7375 * extent buffer of the chunk tree. Since we are mounting the filesystem
7376 * and at this point there can't be any concurrent task modifying the
7377 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7379 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7380 path->skip_locking = 1;
7383 * Read all device items, and then all the chunk items. All
7384 * device items are found before any chunk item (their object id
7385 * is smaller than the lowest possible object id for a chunk
7386 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7388 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7389 key.offset = 0;
7390 key.type = 0;
7391 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7392 struct extent_buffer *node = path->nodes[1];
7394 leaf = path->nodes[0];
7395 slot = path->slots[0];
7397 if (node) {
7398 if (last_ra_node != node->start) {
7399 readahead_tree_node_children(node);
7400 last_ra_node = node->start;
7403 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7404 struct btrfs_dev_item *dev_item;
7405 dev_item = btrfs_item_ptr(leaf, slot,
7406 struct btrfs_dev_item);
7407 ret = read_one_dev(leaf, dev_item);
7408 if (ret)
7409 goto error;
7410 total_dev++;
7411 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7412 struct btrfs_chunk *chunk;
7415 * We are only called at mount time, so no need to take
7416 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7417 * we always lock first fs_info->chunk_mutex before
7418 * acquiring any locks on the chunk tree. This is a
7419 * requirement for chunk allocation, see the comment on
7420 * top of btrfs_chunk_alloc() for details.
7422 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7423 ret = read_one_chunk(&found_key, leaf, chunk);
7424 if (ret)
7425 goto error;
7428 /* Catch error found during iteration */
7429 if (iter_ret < 0) {
7430 ret = iter_ret;
7431 goto error;
7435 * After loading chunk tree, we've got all device information,
7436 * do another round of validation checks.
7438 if (total_dev != fs_info->fs_devices->total_devices) {
7439 btrfs_warn(fs_info,
7440 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7441 btrfs_super_num_devices(fs_info->super_copy),
7442 total_dev);
7443 fs_info->fs_devices->total_devices = total_dev;
7444 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7446 if (btrfs_super_total_bytes(fs_info->super_copy) <
7447 fs_info->fs_devices->total_rw_bytes) {
7448 btrfs_err(fs_info,
7449 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7450 btrfs_super_total_bytes(fs_info->super_copy),
7451 fs_info->fs_devices->total_rw_bytes);
7452 ret = -EINVAL;
7453 goto error;
7455 ret = 0;
7456 error:
7457 mutex_unlock(&uuid_mutex);
7459 btrfs_free_path(path);
7460 return ret;
7463 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7465 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7466 struct btrfs_device *device;
7467 int ret = 0;
7469 fs_devices->fs_info = fs_info;
7471 mutex_lock(&fs_devices->device_list_mutex);
7472 list_for_each_entry(device, &fs_devices->devices, dev_list)
7473 device->fs_info = fs_info;
7475 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7476 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7477 device->fs_info = fs_info;
7478 ret = btrfs_get_dev_zone_info(device, false);
7479 if (ret)
7480 break;
7483 seed_devs->fs_info = fs_info;
7485 mutex_unlock(&fs_devices->device_list_mutex);
7487 return ret;
7490 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7491 const struct btrfs_dev_stats_item *ptr,
7492 int index)
7494 u64 val;
7496 read_extent_buffer(eb, &val,
7497 offsetof(struct btrfs_dev_stats_item, values) +
7498 ((unsigned long)ptr) + (index * sizeof(u64)),
7499 sizeof(val));
7500 return val;
7503 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7504 struct btrfs_dev_stats_item *ptr,
7505 int index, u64 val)
7507 write_extent_buffer(eb, &val,
7508 offsetof(struct btrfs_dev_stats_item, values) +
7509 ((unsigned long)ptr) + (index * sizeof(u64)),
7510 sizeof(val));
7513 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7514 struct btrfs_path *path)
7516 struct btrfs_dev_stats_item *ptr;
7517 struct extent_buffer *eb;
7518 struct btrfs_key key;
7519 int item_size;
7520 int i, ret, slot;
7522 if (!device->fs_info->dev_root)
7523 return 0;
7525 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7526 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7527 key.offset = device->devid;
7528 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7529 if (ret) {
7530 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7531 btrfs_dev_stat_set(device, i, 0);
7532 device->dev_stats_valid = 1;
7533 btrfs_release_path(path);
7534 return ret < 0 ? ret : 0;
7536 slot = path->slots[0];
7537 eb = path->nodes[0];
7538 item_size = btrfs_item_size(eb, slot);
7540 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7542 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7543 if (item_size >= (1 + i) * sizeof(__le64))
7544 btrfs_dev_stat_set(device, i,
7545 btrfs_dev_stats_value(eb, ptr, i));
7546 else
7547 btrfs_dev_stat_set(device, i, 0);
7550 device->dev_stats_valid = 1;
7551 btrfs_dev_stat_print_on_load(device);
7552 btrfs_release_path(path);
7554 return 0;
7557 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7559 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7560 struct btrfs_device *device;
7561 struct btrfs_path *path = NULL;
7562 int ret = 0;
7564 path = btrfs_alloc_path();
7565 if (!path)
7566 return -ENOMEM;
7568 mutex_lock(&fs_devices->device_list_mutex);
7569 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7570 ret = btrfs_device_init_dev_stats(device, path);
7571 if (ret)
7572 goto out;
7574 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7575 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7576 ret = btrfs_device_init_dev_stats(device, path);
7577 if (ret)
7578 goto out;
7581 out:
7582 mutex_unlock(&fs_devices->device_list_mutex);
7584 btrfs_free_path(path);
7585 return ret;
7588 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7589 struct btrfs_device *device)
7591 struct btrfs_fs_info *fs_info = trans->fs_info;
7592 struct btrfs_root *dev_root = fs_info->dev_root;
7593 struct btrfs_path *path;
7594 struct btrfs_key key;
7595 struct extent_buffer *eb;
7596 struct btrfs_dev_stats_item *ptr;
7597 int ret;
7598 int i;
7600 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7601 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7602 key.offset = device->devid;
7604 path = btrfs_alloc_path();
7605 if (!path)
7606 return -ENOMEM;
7607 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7608 if (ret < 0) {
7609 btrfs_warn_in_rcu(fs_info,
7610 "error %d while searching for dev_stats item for device %s",
7611 ret, btrfs_dev_name(device));
7612 goto out;
7615 if (ret == 0 &&
7616 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7617 /* need to delete old one and insert a new one */
7618 ret = btrfs_del_item(trans, dev_root, path);
7619 if (ret != 0) {
7620 btrfs_warn_in_rcu(fs_info,
7621 "delete too small dev_stats item for device %s failed %d",
7622 btrfs_dev_name(device), ret);
7623 goto out;
7625 ret = 1;
7628 if (ret == 1) {
7629 /* need to insert a new item */
7630 btrfs_release_path(path);
7631 ret = btrfs_insert_empty_item(trans, dev_root, path,
7632 &key, sizeof(*ptr));
7633 if (ret < 0) {
7634 btrfs_warn_in_rcu(fs_info,
7635 "insert dev_stats item for device %s failed %d",
7636 btrfs_dev_name(device), ret);
7637 goto out;
7641 eb = path->nodes[0];
7642 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7643 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7644 btrfs_set_dev_stats_value(eb, ptr, i,
7645 btrfs_dev_stat_read(device, i));
7646 btrfs_mark_buffer_dirty(trans, eb);
7648 out:
7649 btrfs_free_path(path);
7650 return ret;
7654 * called from commit_transaction. Writes all changed device stats to disk.
7656 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7658 struct btrfs_fs_info *fs_info = trans->fs_info;
7659 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7660 struct btrfs_device *device;
7661 int stats_cnt;
7662 int ret = 0;
7664 mutex_lock(&fs_devices->device_list_mutex);
7665 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7666 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7667 if (!device->dev_stats_valid || stats_cnt == 0)
7668 continue;
7672 * There is a LOAD-LOAD control dependency between the value of
7673 * dev_stats_ccnt and updating the on-disk values which requires
7674 * reading the in-memory counters. Such control dependencies
7675 * require explicit read memory barriers.
7677 * This memory barriers pairs with smp_mb__before_atomic in
7678 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7679 * barrier implied by atomic_xchg in
7680 * btrfs_dev_stats_read_and_reset
7682 smp_rmb();
7684 ret = update_dev_stat_item(trans, device);
7685 if (!ret)
7686 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7688 mutex_unlock(&fs_devices->device_list_mutex);
7690 return ret;
7693 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7695 btrfs_dev_stat_inc(dev, index);
7697 if (!dev->dev_stats_valid)
7698 return;
7699 btrfs_err_rl_in_rcu(dev->fs_info,
7700 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7701 btrfs_dev_name(dev),
7702 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7703 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7704 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7705 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7706 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7709 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7711 int i;
7713 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7714 if (btrfs_dev_stat_read(dev, i) != 0)
7715 break;
7716 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7717 return; /* all values == 0, suppress message */
7719 btrfs_info_in_rcu(dev->fs_info,
7720 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7721 btrfs_dev_name(dev),
7722 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7723 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7724 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7725 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7726 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7729 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7730 struct btrfs_ioctl_get_dev_stats *stats)
7732 BTRFS_DEV_LOOKUP_ARGS(args);
7733 struct btrfs_device *dev;
7734 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7735 int i;
7737 mutex_lock(&fs_devices->device_list_mutex);
7738 args.devid = stats->devid;
7739 dev = btrfs_find_device(fs_info->fs_devices, &args);
7740 mutex_unlock(&fs_devices->device_list_mutex);
7742 if (!dev) {
7743 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7744 return -ENODEV;
7745 } else if (!dev->dev_stats_valid) {
7746 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7747 return -ENODEV;
7748 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7749 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7750 if (stats->nr_items > i)
7751 stats->values[i] =
7752 btrfs_dev_stat_read_and_reset(dev, i);
7753 else
7754 btrfs_dev_stat_set(dev, i, 0);
7756 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7757 current->comm, task_pid_nr(current));
7758 } else {
7759 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7760 if (stats->nr_items > i)
7761 stats->values[i] = btrfs_dev_stat_read(dev, i);
7763 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7764 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7765 return 0;
7769 * Update the size and bytes used for each device where it changed. This is
7770 * delayed since we would otherwise get errors while writing out the
7771 * superblocks.
7773 * Must be invoked during transaction commit.
7775 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7777 struct btrfs_device *curr, *next;
7779 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7781 if (list_empty(&trans->dev_update_list))
7782 return;
7785 * We don't need the device_list_mutex here. This list is owned by the
7786 * transaction and the transaction must complete before the device is
7787 * released.
7789 mutex_lock(&trans->fs_info->chunk_mutex);
7790 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7791 post_commit_list) {
7792 list_del_init(&curr->post_commit_list);
7793 curr->commit_total_bytes = curr->disk_total_bytes;
7794 curr->commit_bytes_used = curr->bytes_used;
7796 mutex_unlock(&trans->fs_info->chunk_mutex);
7800 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7802 int btrfs_bg_type_to_factor(u64 flags)
7804 const int index = btrfs_bg_flags_to_raid_index(flags);
7806 return btrfs_raid_array[index].ncopies;
7811 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7812 u64 chunk_offset, u64 devid,
7813 u64 physical_offset, u64 physical_len)
7815 struct btrfs_dev_lookup_args args = { .devid = devid };
7816 struct btrfs_chunk_map *map;
7817 struct btrfs_device *dev;
7818 u64 stripe_len;
7819 bool found = false;
7820 int ret = 0;
7821 int i;
7823 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7824 if (!map) {
7825 btrfs_err(fs_info,
7826 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7827 physical_offset, devid);
7828 ret = -EUCLEAN;
7829 goto out;
7832 stripe_len = btrfs_calc_stripe_length(map);
7833 if (physical_len != stripe_len) {
7834 btrfs_err(fs_info,
7835 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7836 physical_offset, devid, map->start, physical_len,
7837 stripe_len);
7838 ret = -EUCLEAN;
7839 goto out;
7843 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7844 * space. Although kernel can handle it without problem, better to warn
7845 * the users.
7847 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7848 btrfs_warn(fs_info,
7849 "devid %llu physical %llu len %llu inside the reserved space",
7850 devid, physical_offset, physical_len);
7852 for (i = 0; i < map->num_stripes; i++) {
7853 if (map->stripes[i].dev->devid == devid &&
7854 map->stripes[i].physical == physical_offset) {
7855 found = true;
7856 if (map->verified_stripes >= map->num_stripes) {
7857 btrfs_err(fs_info,
7858 "too many dev extents for chunk %llu found",
7859 map->start);
7860 ret = -EUCLEAN;
7861 goto out;
7863 map->verified_stripes++;
7864 break;
7867 if (!found) {
7868 btrfs_err(fs_info,
7869 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7870 physical_offset, devid);
7871 ret = -EUCLEAN;
7874 /* Make sure no dev extent is beyond device boundary */
7875 dev = btrfs_find_device(fs_info->fs_devices, &args);
7876 if (!dev) {
7877 btrfs_err(fs_info, "failed to find devid %llu", devid);
7878 ret = -EUCLEAN;
7879 goto out;
7882 if (physical_offset + physical_len > dev->disk_total_bytes) {
7883 btrfs_err(fs_info,
7884 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7885 devid, physical_offset, physical_len,
7886 dev->disk_total_bytes);
7887 ret = -EUCLEAN;
7888 goto out;
7891 if (dev->zone_info) {
7892 u64 zone_size = dev->zone_info->zone_size;
7894 if (!IS_ALIGNED(physical_offset, zone_size) ||
7895 !IS_ALIGNED(physical_len, zone_size)) {
7896 btrfs_err(fs_info,
7897 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7898 devid, physical_offset, physical_len);
7899 ret = -EUCLEAN;
7900 goto out;
7904 out:
7905 btrfs_free_chunk_map(map);
7906 return ret;
7909 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7911 struct rb_node *node;
7912 int ret = 0;
7914 read_lock(&fs_info->mapping_tree_lock);
7915 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
7916 struct btrfs_chunk_map *map;
7918 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
7919 if (map->num_stripes != map->verified_stripes) {
7920 btrfs_err(fs_info,
7921 "chunk %llu has missing dev extent, have %d expect %d",
7922 map->start, map->verified_stripes, map->num_stripes);
7923 ret = -EUCLEAN;
7924 goto out;
7927 out:
7928 read_unlock(&fs_info->mapping_tree_lock);
7929 return ret;
7933 * Ensure that all dev extents are mapped to correct chunk, otherwise
7934 * later chunk allocation/free would cause unexpected behavior.
7936 * NOTE: This will iterate through the whole device tree, which should be of
7937 * the same size level as the chunk tree. This slightly increases mount time.
7939 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7941 struct btrfs_path *path;
7942 struct btrfs_root *root = fs_info->dev_root;
7943 struct btrfs_key key;
7944 u64 prev_devid = 0;
7945 u64 prev_dev_ext_end = 0;
7946 int ret = 0;
7949 * We don't have a dev_root because we mounted with ignorebadroots and
7950 * failed to load the root, so we want to skip the verification in this
7951 * case for sure.
7953 * However if the dev root is fine, but the tree itself is corrupted
7954 * we'd still fail to mount. This verification is only to make sure
7955 * writes can happen safely, so instead just bypass this check
7956 * completely in the case of IGNOREBADROOTS.
7958 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7959 return 0;
7961 key.objectid = 1;
7962 key.type = BTRFS_DEV_EXTENT_KEY;
7963 key.offset = 0;
7965 path = btrfs_alloc_path();
7966 if (!path)
7967 return -ENOMEM;
7969 path->reada = READA_FORWARD;
7970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7971 if (ret < 0)
7972 goto out;
7974 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7975 ret = btrfs_next_leaf(root, path);
7976 if (ret < 0)
7977 goto out;
7978 /* No dev extents at all? Not good */
7979 if (ret > 0) {
7980 ret = -EUCLEAN;
7981 goto out;
7984 while (1) {
7985 struct extent_buffer *leaf = path->nodes[0];
7986 struct btrfs_dev_extent *dext;
7987 int slot = path->slots[0];
7988 u64 chunk_offset;
7989 u64 physical_offset;
7990 u64 physical_len;
7991 u64 devid;
7993 btrfs_item_key_to_cpu(leaf, &key, slot);
7994 if (key.type != BTRFS_DEV_EXTENT_KEY)
7995 break;
7996 devid = key.objectid;
7997 physical_offset = key.offset;
7999 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8000 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8001 physical_len = btrfs_dev_extent_length(leaf, dext);
8003 /* Check if this dev extent overlaps with the previous one */
8004 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8005 btrfs_err(fs_info,
8006 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8007 devid, physical_offset, prev_dev_ext_end);
8008 ret = -EUCLEAN;
8009 goto out;
8012 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8013 physical_offset, physical_len);
8014 if (ret < 0)
8015 goto out;
8016 prev_devid = devid;
8017 prev_dev_ext_end = physical_offset + physical_len;
8019 ret = btrfs_next_item(root, path);
8020 if (ret < 0)
8021 goto out;
8022 if (ret > 0) {
8023 ret = 0;
8024 break;
8028 /* Ensure all chunks have corresponding dev extents */
8029 ret = verify_chunk_dev_extent_mapping(fs_info);
8030 out:
8031 btrfs_free_path(path);
8032 return ret;
8036 * Check whether the given block group or device is pinned by any inode being
8037 * used as a swapfile.
8039 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8041 struct btrfs_swapfile_pin *sp;
8042 struct rb_node *node;
8044 spin_lock(&fs_info->swapfile_pins_lock);
8045 node = fs_info->swapfile_pins.rb_node;
8046 while (node) {
8047 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8048 if (ptr < sp->ptr)
8049 node = node->rb_left;
8050 else if (ptr > sp->ptr)
8051 node = node->rb_right;
8052 else
8053 break;
8055 spin_unlock(&fs_info->swapfile_pins_lock);
8056 return node != NULL;
8059 static int relocating_repair_kthread(void *data)
8061 struct btrfs_block_group *cache = data;
8062 struct btrfs_fs_info *fs_info = cache->fs_info;
8063 u64 target;
8064 int ret = 0;
8066 target = cache->start;
8067 btrfs_put_block_group(cache);
8069 sb_start_write(fs_info->sb);
8070 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8071 btrfs_info(fs_info,
8072 "zoned: skip relocating block group %llu to repair: EBUSY",
8073 target);
8074 sb_end_write(fs_info->sb);
8075 return -EBUSY;
8078 mutex_lock(&fs_info->reclaim_bgs_lock);
8080 /* Ensure block group still exists */
8081 cache = btrfs_lookup_block_group(fs_info, target);
8082 if (!cache)
8083 goto out;
8085 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8086 goto out;
8088 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8089 if (ret < 0)
8090 goto out;
8092 btrfs_info(fs_info,
8093 "zoned: relocating block group %llu to repair IO failure",
8094 target);
8095 ret = btrfs_relocate_chunk(fs_info, target);
8097 out:
8098 if (cache)
8099 btrfs_put_block_group(cache);
8100 mutex_unlock(&fs_info->reclaim_bgs_lock);
8101 btrfs_exclop_finish(fs_info);
8102 sb_end_write(fs_info->sb);
8104 return ret;
8107 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8109 struct btrfs_block_group *cache;
8111 if (!btrfs_is_zoned(fs_info))
8112 return false;
8114 /* Do not attempt to repair in degraded state */
8115 if (btrfs_test_opt(fs_info, DEGRADED))
8116 return true;
8118 cache = btrfs_lookup_block_group(fs_info, logical);
8119 if (!cache)
8120 return true;
8122 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8123 btrfs_put_block_group(cache);
8124 return true;
8127 kthread_run(relocating_repair_kthread, cache,
8128 "btrfs-relocating-repair");
8130 return true;
8133 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8134 struct btrfs_io_stripe *smap,
8135 u64 logical)
8137 int data_stripes = nr_bioc_data_stripes(bioc);
8138 int i;
8140 for (i = 0; i < data_stripes; i++) {
8141 u64 stripe_start = bioc->full_stripe_logical +
8142 btrfs_stripe_nr_to_offset(i);
8144 if (logical >= stripe_start &&
8145 logical < stripe_start + BTRFS_STRIPE_LEN)
8146 break;
8148 ASSERT(i < data_stripes);
8149 smap->dev = bioc->stripes[i].dev;
8150 smap->physical = bioc->stripes[i].physical +
8151 ((logical - bioc->full_stripe_logical) &
8152 BTRFS_STRIPE_LEN_MASK);
8156 * Map a repair write into a single device.
8158 * A repair write is triggered by read time repair or scrub, which would only
8159 * update the contents of a single device.
8160 * Not update any other mirrors nor go through RMW path.
8162 * Callers should ensure:
8164 * - Call btrfs_bio_counter_inc_blocked() first
8165 * - The range does not cross stripe boundary
8166 * - Has a valid @mirror_num passed in.
8168 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8169 struct btrfs_io_stripe *smap, u64 logical,
8170 u32 length, int mirror_num)
8172 struct btrfs_io_context *bioc = NULL;
8173 u64 map_length = length;
8174 int mirror_ret = mirror_num;
8175 int ret;
8177 ASSERT(mirror_num > 0);
8179 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8180 &bioc, smap, &mirror_ret);
8181 if (ret < 0)
8182 return ret;
8184 /* The map range should not cross stripe boundary. */
8185 ASSERT(map_length >= length);
8187 /* Already mapped to single stripe. */
8188 if (!bioc)
8189 goto out;
8191 /* Map the RAID56 multi-stripe writes to a single one. */
8192 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8193 map_raid56_repair_block(bioc, smap, logical);
8194 goto out;
8197 ASSERT(mirror_num <= bioc->num_stripes);
8198 smap->dev = bioc->stripes[mirror_num - 1].dev;
8199 smap->physical = bioc->stripes[mirror_num - 1].physical;
8200 out:
8201 btrfs_put_bioc(bioc);
8202 ASSERT(smap->dev);
8203 return 0;