1 // SPDX-License-Identifier: GPL-2.0-only
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
11 * Notes on the allocation strategy:
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
38 #include <asm/runtime-const.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
61 * dentry->d_inode->i_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
76 int sysctl_vfs_cache_pressure __read_mostly
= 100;
77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
79 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
81 EXPORT_SYMBOL(rename_lock
);
83 static struct kmem_cache
*dentry_cache __ro_after_init
;
85 const struct qstr empty_name
= QSTR_INIT("", 0);
86 EXPORT_SYMBOL(empty_name
);
87 const struct qstr slash_name
= QSTR_INIT("/", 1);
88 EXPORT_SYMBOL(slash_name
);
89 const struct qstr dotdot_name
= QSTR_INIT("..", 2);
90 EXPORT_SYMBOL(dotdot_name
);
93 * This is the single most critical data structure when it comes
94 * to the dcache: the hashtable for lookups. Somebody should try
95 * to make this good - I've just made it work.
97 * This hash-function tries to avoid losing too many bits of hash
98 * information, yet avoid using a prime hash-size or similar.
100 * Marking the variables "used" ensures that the compiler doesn't
101 * optimize them away completely on architectures with runtime
102 * constant infrastructure, this allows debuggers to see their
103 * values. But updating these values has no effect on those arches.
106 static unsigned int d_hash_shift __ro_after_init __used
;
108 static struct hlist_bl_head
*dentry_hashtable __ro_after_init __used
;
110 static inline struct hlist_bl_head
*d_hash(unsigned long hashlen
)
112 return runtime_const_ptr(dentry_hashtable
) +
113 runtime_const_shift_right_32(hashlen
, d_hash_shift
);
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
119 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
122 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
123 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
126 struct dentry_stat_t
{
129 long age_limit
; /* age in seconds */
130 long want_pages
; /* pages requested by system */
131 long nr_negative
; /* # of unused negative dentries */
132 long dummy
; /* Reserved for future use */
135 static DEFINE_PER_CPU(long, nr_dentry
);
136 static DEFINE_PER_CPU(long, nr_dentry_unused
);
137 static DEFINE_PER_CPU(long, nr_dentry_negative
);
139 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
140 /* Statistics gathering. */
141 static struct dentry_stat_t dentry_stat
= {
146 * Here we resort to our own counters instead of using generic per-cpu counters
147 * for consistency with what the vfs inode code does. We are expected to harvest
148 * better code and performance by having our own specialized counters.
150 * Please note that the loop is done over all possible CPUs, not over all online
151 * CPUs. The reason for this is that we don't want to play games with CPUs going
152 * on and off. If one of them goes off, we will just keep their counters.
154 * glommer: See cffbc8a for details, and if you ever intend to change this,
155 * please update all vfs counters to match.
157 static long get_nr_dentry(void)
161 for_each_possible_cpu(i
)
162 sum
+= per_cpu(nr_dentry
, i
);
163 return sum
< 0 ? 0 : sum
;
166 static long get_nr_dentry_unused(void)
170 for_each_possible_cpu(i
)
171 sum
+= per_cpu(nr_dentry_unused
, i
);
172 return sum
< 0 ? 0 : sum
;
175 static long get_nr_dentry_negative(void)
180 for_each_possible_cpu(i
)
181 sum
+= per_cpu(nr_dentry_negative
, i
);
182 return sum
< 0 ? 0 : sum
;
185 static int proc_nr_dentry(const struct ctl_table
*table
, int write
, void *buffer
,
186 size_t *lenp
, loff_t
*ppos
)
188 dentry_stat
.nr_dentry
= get_nr_dentry();
189 dentry_stat
.nr_unused
= get_nr_dentry_unused();
190 dentry_stat
.nr_negative
= get_nr_dentry_negative();
191 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
194 static struct ctl_table fs_dcache_sysctls
[] = {
196 .procname
= "dentry-state",
197 .data
= &dentry_stat
,
198 .maxlen
= 6*sizeof(long),
200 .proc_handler
= proc_nr_dentry
,
204 static int __init
init_fs_dcache_sysctls(void)
206 register_sysctl_init("fs", fs_dcache_sysctls
);
209 fs_initcall(init_fs_dcache_sysctls
);
213 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
214 * The strings are both count bytes long, and count is non-zero.
216 #ifdef CONFIG_DCACHE_WORD_ACCESS
218 #include <asm/word-at-a-time.h>
220 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
221 * aligned allocation for this particular component. We don't
222 * strictly need the load_unaligned_zeropad() safety, but it
223 * doesn't hurt either.
225 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
226 * need the careful unaligned handling.
228 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
230 unsigned long a
,b
,mask
;
233 a
= read_word_at_a_time(cs
);
234 b
= load_unaligned_zeropad(ct
);
235 if (tcount
< sizeof(unsigned long))
237 if (unlikely(a
!= b
))
239 cs
+= sizeof(unsigned long);
240 ct
+= sizeof(unsigned long);
241 tcount
-= sizeof(unsigned long);
245 mask
= bytemask_from_count(tcount
);
246 return unlikely(!!((a
^ b
) & mask
));
251 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
265 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
268 * Be careful about RCU walk racing with rename:
269 * use 'READ_ONCE' to fetch the name pointer.
271 * NOTE! Even if a rename will mean that the length
272 * was not loaded atomically, we don't care. The
273 * RCU walk will check the sequence count eventually,
274 * and catch it. And we won't overrun the buffer,
275 * because we're reading the name pointer atomically,
276 * and a dentry name is guaranteed to be properly
277 * terminated with a NUL byte.
279 * End result: even if 'len' is wrong, we'll exit
280 * early because the data cannot match (there can
281 * be no NUL in the ct/tcount data)
283 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
285 return dentry_string_cmp(cs
, ct
, tcount
);
288 struct external_name
{
291 struct rcu_head head
;
293 unsigned char name
[];
296 static inline struct external_name
*external_name(struct dentry
*dentry
)
298 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
301 static void __d_free(struct rcu_head
*head
)
303 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
305 kmem_cache_free(dentry_cache
, dentry
);
308 static void __d_free_external(struct rcu_head
*head
)
310 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
311 kfree(external_name(dentry
));
312 kmem_cache_free(dentry_cache
, dentry
);
315 static inline int dname_external(const struct dentry
*dentry
)
317 return dentry
->d_name
.name
!= dentry
->d_iname
;
320 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
322 spin_lock(&dentry
->d_lock
);
323 name
->name
= dentry
->d_name
;
324 if (unlikely(dname_external(dentry
))) {
325 atomic_inc(&external_name(dentry
)->u
.count
);
327 memcpy(name
->inline_name
, dentry
->d_iname
,
328 dentry
->d_name
.len
+ 1);
329 name
->name
.name
= name
->inline_name
;
331 spin_unlock(&dentry
->d_lock
);
333 EXPORT_SYMBOL(take_dentry_name_snapshot
);
335 void release_dentry_name_snapshot(struct name_snapshot
*name
)
337 if (unlikely(name
->name
.name
!= name
->inline_name
)) {
338 struct external_name
*p
;
339 p
= container_of(name
->name
.name
, struct external_name
, name
[0]);
340 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
341 kfree_rcu(p
, u
.head
);
344 EXPORT_SYMBOL(release_dentry_name_snapshot
);
346 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
352 dentry
->d_inode
= inode
;
353 flags
= READ_ONCE(dentry
->d_flags
);
354 flags
&= ~DCACHE_ENTRY_TYPE
;
356 smp_store_release(&dentry
->d_flags
, flags
);
359 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
361 unsigned flags
= READ_ONCE(dentry
->d_flags
);
363 flags
&= ~DCACHE_ENTRY_TYPE
;
364 WRITE_ONCE(dentry
->d_flags
, flags
);
365 dentry
->d_inode
= NULL
;
367 * The negative counter only tracks dentries on the LRU. Don't inc if
368 * d_lru is on another list.
370 if ((flags
& (DCACHE_LRU_LIST
|DCACHE_SHRINK_LIST
)) == DCACHE_LRU_LIST
)
371 this_cpu_inc(nr_dentry_negative
);
374 static void dentry_free(struct dentry
*dentry
)
376 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
377 if (unlikely(dname_external(dentry
))) {
378 struct external_name
*p
= external_name(dentry
);
379 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
380 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
384 /* if dentry was never visible to RCU, immediate free is OK */
385 if (dentry
->d_flags
& DCACHE_NORCU
)
386 __d_free(&dentry
->d_u
.d_rcu
);
388 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
392 * Release the dentry's inode, using the filesystem
393 * d_iput() operation if defined.
395 static void dentry_unlink_inode(struct dentry
* dentry
)
396 __releases(dentry
->d_lock
)
397 __releases(dentry
->d_inode
->i_lock
)
399 struct inode
*inode
= dentry
->d_inode
;
401 raw_write_seqcount_begin(&dentry
->d_seq
);
402 __d_clear_type_and_inode(dentry
);
403 hlist_del_init(&dentry
->d_u
.d_alias
);
404 raw_write_seqcount_end(&dentry
->d_seq
);
405 spin_unlock(&dentry
->d_lock
);
406 spin_unlock(&inode
->i_lock
);
408 fsnotify_inoderemove(inode
);
409 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
410 dentry
->d_op
->d_iput(dentry
, inode
);
416 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
417 * is in use - which includes both the "real" per-superblock
418 * LRU list _and_ the DCACHE_SHRINK_LIST use.
420 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
421 * on the shrink list (ie not on the superblock LRU list).
423 * The per-cpu "nr_dentry_unused" counters are updated with
424 * the DCACHE_LRU_LIST bit.
426 * The per-cpu "nr_dentry_negative" counters are only updated
427 * when deleted from or added to the per-superblock LRU list, not
428 * from/to the shrink list. That is to avoid an unneeded dec/inc
429 * pair when moving from LRU to shrink list in select_collect().
431 * These helper functions make sure we always follow the
432 * rules. d_lock must be held by the caller.
434 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
435 static void d_lru_add(struct dentry
*dentry
)
437 D_FLAG_VERIFY(dentry
, 0);
438 dentry
->d_flags
|= DCACHE_LRU_LIST
;
439 this_cpu_inc(nr_dentry_unused
);
440 if (d_is_negative(dentry
))
441 this_cpu_inc(nr_dentry_negative
);
442 WARN_ON_ONCE(!list_lru_add_obj(
443 &dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
446 static void d_lru_del(struct dentry
*dentry
)
448 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
449 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
450 this_cpu_dec(nr_dentry_unused
);
451 if (d_is_negative(dentry
))
452 this_cpu_dec(nr_dentry_negative
);
453 WARN_ON_ONCE(!list_lru_del_obj(
454 &dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
457 static void d_shrink_del(struct dentry
*dentry
)
459 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
460 list_del_init(&dentry
->d_lru
);
461 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
462 this_cpu_dec(nr_dentry_unused
);
465 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
467 D_FLAG_VERIFY(dentry
, 0);
468 list_add(&dentry
->d_lru
, list
);
469 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
470 this_cpu_inc(nr_dentry_unused
);
474 * These can only be called under the global LRU lock, ie during the
475 * callback for freeing the LRU list. "isolate" removes it from the
476 * LRU lists entirely, while shrink_move moves it to the indicated
479 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
481 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
482 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
483 this_cpu_dec(nr_dentry_unused
);
484 if (d_is_negative(dentry
))
485 this_cpu_dec(nr_dentry_negative
);
486 list_lru_isolate(lru
, &dentry
->d_lru
);
489 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
490 struct list_head
*list
)
492 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
493 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
494 if (d_is_negative(dentry
))
495 this_cpu_dec(nr_dentry_negative
);
496 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
499 static void ___d_drop(struct dentry
*dentry
)
501 struct hlist_bl_head
*b
;
503 * Hashed dentries are normally on the dentry hashtable,
504 * with the exception of those newly allocated by
505 * d_obtain_root, which are always IS_ROOT:
507 if (unlikely(IS_ROOT(dentry
)))
508 b
= &dentry
->d_sb
->s_roots
;
510 b
= d_hash(dentry
->d_name
.hash
);
513 __hlist_bl_del(&dentry
->d_hash
);
517 void __d_drop(struct dentry
*dentry
)
519 if (!d_unhashed(dentry
)) {
521 dentry
->d_hash
.pprev
= NULL
;
522 write_seqcount_invalidate(&dentry
->d_seq
);
525 EXPORT_SYMBOL(__d_drop
);
528 * d_drop - drop a dentry
529 * @dentry: dentry to drop
531 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
532 * be found through a VFS lookup any more. Note that this is different from
533 * deleting the dentry - d_delete will try to mark the dentry negative if
534 * possible, giving a successful _negative_ lookup, while d_drop will
535 * just make the cache lookup fail.
537 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
538 * reason (NFS timeouts or autofs deletes).
540 * __d_drop requires dentry->d_lock
542 * ___d_drop doesn't mark dentry as "unhashed"
543 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
545 void d_drop(struct dentry
*dentry
)
547 spin_lock(&dentry
->d_lock
);
549 spin_unlock(&dentry
->d_lock
);
551 EXPORT_SYMBOL(d_drop
);
553 static inline void dentry_unlist(struct dentry
*dentry
)
557 * Inform d_walk() and shrink_dentry_list() that we are no longer
558 * attached to the dentry tree
560 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
561 if (unlikely(hlist_unhashed(&dentry
->d_sib
)))
563 __hlist_del(&dentry
->d_sib
);
565 * Cursors can move around the list of children. While we'd been
566 * a normal list member, it didn't matter - ->d_sib.next would've
567 * been updated. However, from now on it won't be and for the
568 * things like d_walk() it might end up with a nasty surprise.
569 * Normally d_walk() doesn't care about cursors moving around -
570 * ->d_lock on parent prevents that and since a cursor has no children
571 * of its own, we get through it without ever unlocking the parent.
572 * There is one exception, though - if we ascend from a child that
573 * gets killed as soon as we unlock it, the next sibling is found
574 * using the value left in its ->d_sib.next. And if _that_
575 * pointed to a cursor, and cursor got moved (e.g. by lseek())
576 * before d_walk() regains parent->d_lock, we'll end up skipping
577 * everything the cursor had been moved past.
579 * Solution: make sure that the pointer left behind in ->d_sib.next
580 * points to something that won't be moving around. I.e. skip the
583 while (dentry
->d_sib
.next
) {
584 next
= hlist_entry(dentry
->d_sib
.next
, struct dentry
, d_sib
);
585 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
587 dentry
->d_sib
.next
= next
->d_sib
.next
;
591 static struct dentry
*__dentry_kill(struct dentry
*dentry
)
593 struct dentry
*parent
= NULL
;
594 bool can_free
= true;
597 * The dentry is now unrecoverably dead to the world.
599 lockref_mark_dead(&dentry
->d_lockref
);
602 * inform the fs via d_prune that this dentry is about to be
603 * unhashed and destroyed.
605 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
606 dentry
->d_op
->d_prune(dentry
);
608 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
609 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
612 /* if it was on the hash then remove it */
615 dentry_unlink_inode(dentry
);
617 spin_unlock(&dentry
->d_lock
);
618 this_cpu_dec(nr_dentry
);
619 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
620 dentry
->d_op
->d_release(dentry
);
623 /* now that it's negative, ->d_parent is stable */
624 if (!IS_ROOT(dentry
)) {
625 parent
= dentry
->d_parent
;
626 spin_lock(&parent
->d_lock
);
628 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
629 dentry_unlist(dentry
);
630 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
)
632 spin_unlock(&dentry
->d_lock
);
633 if (likely(can_free
))
635 if (parent
&& --parent
->d_lockref
.count
) {
636 spin_unlock(&parent
->d_lock
);
643 * Lock a dentry for feeding it to __dentry_kill().
644 * Called under rcu_read_lock() and dentry->d_lock; the former
645 * guarantees that nothing we access will be freed under us.
646 * Note that dentry is *not* protected from concurrent dentry_kill(),
649 * Return false if dentry is busy. Otherwise, return true and have
650 * that dentry's inode locked.
653 static bool lock_for_kill(struct dentry
*dentry
)
655 struct inode
*inode
= dentry
->d_inode
;
657 if (unlikely(dentry
->d_lockref
.count
))
660 if (!inode
|| likely(spin_trylock(&inode
->i_lock
)))
664 spin_unlock(&dentry
->d_lock
);
665 spin_lock(&inode
->i_lock
);
666 spin_lock(&dentry
->d_lock
);
667 if (likely(inode
== dentry
->d_inode
))
669 spin_unlock(&inode
->i_lock
);
670 inode
= dentry
->d_inode
;
672 if (likely(!dentry
->d_lockref
.count
))
675 spin_unlock(&inode
->i_lock
);
680 * Decide if dentry is worth retaining. Usually this is called with dentry
681 * locked; if not locked, we are more limited and might not be able to tell
682 * without a lock. False in this case means "punt to locked path and recheck".
684 * In case we aren't locked, these predicates are not "stable". However, it is
685 * sufficient that at some point after we dropped the reference the dentry was
686 * hashed and the flags had the proper value. Other dentry users may have
687 * re-gotten a reference to the dentry and change that, but our work is done -
688 * we can leave the dentry around with a zero refcount.
690 static inline bool retain_dentry(struct dentry
*dentry
, bool locked
)
692 unsigned int d_flags
;
695 d_flags
= READ_ONCE(dentry
->d_flags
);
697 // Unreachable? Nobody would be able to look it up, no point retaining
698 if (unlikely(d_unhashed(dentry
)))
701 // Same if it's disconnected
702 if (unlikely(d_flags
& DCACHE_DISCONNECTED
))
705 // ->d_delete() might tell us not to bother, but that requires
706 // ->d_lock; can't decide without it
707 if (unlikely(d_flags
& DCACHE_OP_DELETE
)) {
708 if (!locked
|| dentry
->d_op
->d_delete(dentry
))
712 // Explicitly told not to bother
713 if (unlikely(d_flags
& DCACHE_DONTCACHE
))
716 // At this point it looks like we ought to keep it. We also might
717 // need to do something - put it on LRU if it wasn't there already
718 // and mark it referenced if it was on LRU, but not marked yet.
719 // Unfortunately, both actions require ->d_lock, so in lockless
720 // case we'd have to punt rather than doing those.
721 if (unlikely(!(d_flags
& DCACHE_LRU_LIST
))) {
725 } else if (unlikely(!(d_flags
& DCACHE_REFERENCED
))) {
728 dentry
->d_flags
|= DCACHE_REFERENCED
;
733 void d_mark_dontcache(struct inode
*inode
)
737 spin_lock(&inode
->i_lock
);
738 hlist_for_each_entry(de
, &inode
->i_dentry
, d_u
.d_alias
) {
739 spin_lock(&de
->d_lock
);
740 de
->d_flags
|= DCACHE_DONTCACHE
;
741 spin_unlock(&de
->d_lock
);
743 inode
->i_state
|= I_DONTCACHE
;
744 spin_unlock(&inode
->i_lock
);
746 EXPORT_SYMBOL(d_mark_dontcache
);
749 * Try to do a lockless dput(), and return whether that was successful.
751 * If unsuccessful, we return false, having already taken the dentry lock.
752 * In that case refcount is guaranteed to be zero and we have already
753 * decided that it's not worth keeping around.
755 * The caller needs to hold the RCU read lock, so that the dentry is
756 * guaranteed to stay around even if the refcount goes down to zero!
758 static inline bool fast_dput(struct dentry
*dentry
)
763 * try to decrement the lockref optimistically.
765 ret
= lockref_put_return(&dentry
->d_lockref
);
768 * If the lockref_put_return() failed due to the lock being held
769 * by somebody else, the fast path has failed. We will need to
770 * get the lock, and then check the count again.
772 if (unlikely(ret
< 0)) {
773 spin_lock(&dentry
->d_lock
);
774 if (WARN_ON_ONCE(dentry
->d_lockref
.count
<= 0)) {
775 spin_unlock(&dentry
->d_lock
);
778 dentry
->d_lockref
.count
--;
783 * If we weren't the last ref, we're done.
789 * Can we decide that decrement of refcount is all we needed without
790 * taking the lock? There's a very common case when it's all we need -
791 * dentry looks like it ought to be retained and there's nothing else
794 if (retain_dentry(dentry
, false))
798 * Either not worth retaining or we can't tell without the lock.
799 * Get the lock, then. We've already decremented the refcount to 0,
800 * but we'll need to re-check the situation after getting the lock.
802 spin_lock(&dentry
->d_lock
);
805 * Did somebody else grab a reference to it in the meantime, and
806 * we're no longer the last user after all? Alternatively, somebody
807 * else could have killed it and marked it dead. Either way, we
808 * don't need to do anything else.
811 if (dentry
->d_lockref
.count
|| retain_dentry(dentry
, true)) {
812 spin_unlock(&dentry
->d_lock
);
822 * This is complicated by the fact that we do not want to put
823 * dentries that are no longer on any hash chain on the unused
824 * list: we'd much rather just get rid of them immediately.
826 * However, that implies that we have to traverse the dentry
827 * tree upwards to the parents which might _also_ now be
828 * scheduled for deletion (it may have been only waiting for
829 * its last child to go away).
831 * This tail recursion is done by hand as we don't want to depend
832 * on the compiler to always get this right (gcc generally doesn't).
833 * Real recursion would eat up our stack space.
837 * dput - release a dentry
838 * @dentry: dentry to release
840 * Release a dentry. This will drop the usage count and if appropriate
841 * call the dentry unlink method as well as removing it from the queues and
842 * releasing its resources. If the parent dentries were scheduled for release
843 * they too may now get deleted.
845 void dput(struct dentry
*dentry
)
851 if (likely(fast_dput(dentry
))) {
855 while (lock_for_kill(dentry
)) {
857 dentry
= __dentry_kill(dentry
);
860 if (retain_dentry(dentry
, true)) {
861 spin_unlock(&dentry
->d_lock
);
867 spin_unlock(&dentry
->d_lock
);
871 static void to_shrink_list(struct dentry
*dentry
, struct list_head
*list
)
872 __must_hold(&dentry
->d_lock
)
874 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
875 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
877 d_shrink_add(dentry
, list
);
881 void dput_to_list(struct dentry
*dentry
, struct list_head
*list
)
884 if (likely(fast_dput(dentry
))) {
889 to_shrink_list(dentry
, list
);
890 spin_unlock(&dentry
->d_lock
);
893 struct dentry
*dget_parent(struct dentry
*dentry
)
900 * Do optimistic parent lookup without any
904 seq
= raw_seqcount_begin(&dentry
->d_seq
);
905 ret
= READ_ONCE(dentry
->d_parent
);
906 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
908 if (likely(gotref
)) {
909 if (!read_seqcount_retry(&dentry
->d_seq
, seq
))
916 * Don't need rcu_dereference because we re-check it was correct under
920 ret
= dentry
->d_parent
;
921 spin_lock(&ret
->d_lock
);
922 if (unlikely(ret
!= dentry
->d_parent
)) {
923 spin_unlock(&ret
->d_lock
);
928 BUG_ON(!ret
->d_lockref
.count
);
929 ret
->d_lockref
.count
++;
930 spin_unlock(&ret
->d_lock
);
933 EXPORT_SYMBOL(dget_parent
);
935 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
937 struct dentry
*alias
;
939 if (hlist_empty(&inode
->i_dentry
))
941 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
942 lockref_get(&alias
->d_lockref
);
947 * d_find_any_alias - find any alias for a given inode
948 * @inode: inode to find an alias for
950 * If any aliases exist for the given inode, take and return a
951 * reference for one of them. If no aliases exist, return %NULL.
953 struct dentry
*d_find_any_alias(struct inode
*inode
)
957 spin_lock(&inode
->i_lock
);
958 de
= __d_find_any_alias(inode
);
959 spin_unlock(&inode
->i_lock
);
962 EXPORT_SYMBOL(d_find_any_alias
);
964 static struct dentry
*__d_find_alias(struct inode
*inode
)
966 struct dentry
*alias
;
968 if (S_ISDIR(inode
->i_mode
))
969 return __d_find_any_alias(inode
);
971 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
972 spin_lock(&alias
->d_lock
);
973 if (!d_unhashed(alias
)) {
975 spin_unlock(&alias
->d_lock
);
978 spin_unlock(&alias
->d_lock
);
984 * d_find_alias - grab a hashed alias of inode
985 * @inode: inode in question
987 * If inode has a hashed alias, or is a directory and has any alias,
988 * acquire the reference to alias and return it. Otherwise return NULL.
989 * Notice that if inode is a directory there can be only one alias and
990 * it can be unhashed only if it has no children, or if it is the root
991 * of a filesystem, or if the directory was renamed and d_revalidate
992 * was the first vfs operation to notice.
994 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
995 * any other hashed alias over that one.
997 struct dentry
*d_find_alias(struct inode
*inode
)
999 struct dentry
*de
= NULL
;
1001 if (!hlist_empty(&inode
->i_dentry
)) {
1002 spin_lock(&inode
->i_lock
);
1003 de
= __d_find_alias(inode
);
1004 spin_unlock(&inode
->i_lock
);
1008 EXPORT_SYMBOL(d_find_alias
);
1011 * Caller MUST be holding rcu_read_lock() and be guaranteed
1012 * that inode won't get freed until rcu_read_unlock().
1014 struct dentry
*d_find_alias_rcu(struct inode
*inode
)
1016 struct hlist_head
*l
= &inode
->i_dentry
;
1017 struct dentry
*de
= NULL
;
1019 spin_lock(&inode
->i_lock
);
1020 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1021 // used without having I_FREEING set, which means no aliases left
1022 if (likely(!(inode
->i_state
& I_FREEING
) && !hlist_empty(l
))) {
1023 if (S_ISDIR(inode
->i_mode
)) {
1024 de
= hlist_entry(l
->first
, struct dentry
, d_u
.d_alias
);
1026 hlist_for_each_entry(de
, l
, d_u
.d_alias
)
1027 if (!d_unhashed(de
))
1031 spin_unlock(&inode
->i_lock
);
1036 * Try to kill dentries associated with this inode.
1037 * WARNING: you must own a reference to inode.
1039 void d_prune_aliases(struct inode
*inode
)
1042 struct dentry
*dentry
;
1044 spin_lock(&inode
->i_lock
);
1045 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
1046 spin_lock(&dentry
->d_lock
);
1047 if (!dentry
->d_lockref
.count
)
1048 to_shrink_list(dentry
, &dispose
);
1049 spin_unlock(&dentry
->d_lock
);
1051 spin_unlock(&inode
->i_lock
);
1052 shrink_dentry_list(&dispose
);
1054 EXPORT_SYMBOL(d_prune_aliases
);
1056 static inline void shrink_kill(struct dentry
*victim
)
1060 victim
= __dentry_kill(victim
);
1062 } while (victim
&& lock_for_kill(victim
));
1065 spin_unlock(&victim
->d_lock
);
1068 void shrink_dentry_list(struct list_head
*list
)
1070 while (!list_empty(list
)) {
1071 struct dentry
*dentry
;
1073 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
1074 spin_lock(&dentry
->d_lock
);
1076 if (!lock_for_kill(dentry
)) {
1079 d_shrink_del(dentry
);
1080 can_free
= dentry
->d_flags
& DCACHE_DENTRY_KILLED
;
1081 spin_unlock(&dentry
->d_lock
);
1083 dentry_free(dentry
);
1086 d_shrink_del(dentry
);
1087 shrink_kill(dentry
);
1091 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1092 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1094 struct list_head
*freeable
= arg
;
1095 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1099 * we are inverting the lru lock/dentry->d_lock here,
1100 * so use a trylock. If we fail to get the lock, just skip
1103 if (!spin_trylock(&dentry
->d_lock
))
1107 * Referenced dentries are still in use. If they have active
1108 * counts, just remove them from the LRU. Otherwise give them
1109 * another pass through the LRU.
1111 if (dentry
->d_lockref
.count
) {
1112 d_lru_isolate(lru
, dentry
);
1113 spin_unlock(&dentry
->d_lock
);
1117 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1118 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1119 spin_unlock(&dentry
->d_lock
);
1122 * The list move itself will be made by the common LRU code. At
1123 * this point, we've dropped the dentry->d_lock but keep the
1124 * lru lock. This is safe to do, since every list movement is
1125 * protected by the lru lock even if both locks are held.
1127 * This is guaranteed by the fact that all LRU management
1128 * functions are intermediated by the LRU API calls like
1129 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1130 * only ever occur through this functions or through callbacks
1131 * like this one, that are called from the LRU API.
1133 * The only exceptions to this are functions like
1134 * shrink_dentry_list, and code that first checks for the
1135 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1136 * operating only with stack provided lists after they are
1137 * properly isolated from the main list. It is thus, always a
1143 d_lru_shrink_move(lru
, dentry
, freeable
);
1144 spin_unlock(&dentry
->d_lock
);
1150 * prune_dcache_sb - shrink the dcache
1152 * @sc: shrink control, passed to list_lru_shrink_walk()
1154 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1155 * is done when we need more memory and called from the superblock shrinker
1158 * This function may fail to free any resources if all the dentries are in
1161 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1166 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1167 dentry_lru_isolate
, &dispose
);
1168 shrink_dentry_list(&dispose
);
1172 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1173 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1175 struct list_head
*freeable
= arg
;
1176 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1179 * we are inverting the lru lock/dentry->d_lock here,
1180 * so use a trylock. If we fail to get the lock, just skip
1183 if (!spin_trylock(&dentry
->d_lock
))
1186 d_lru_shrink_move(lru
, dentry
, freeable
);
1187 spin_unlock(&dentry
->d_lock
);
1194 * shrink_dcache_sb - shrink dcache for a superblock
1197 * Shrink the dcache for the specified super block. This is used to free
1198 * the dcache before unmounting a file system.
1200 void shrink_dcache_sb(struct super_block
*sb
)
1205 list_lru_walk(&sb
->s_dentry_lru
,
1206 dentry_lru_isolate_shrink
, &dispose
, 1024);
1207 shrink_dentry_list(&dispose
);
1208 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1210 EXPORT_SYMBOL(shrink_dcache_sb
);
1213 * enum d_walk_ret - action to talke during tree walk
1214 * @D_WALK_CONTINUE: contrinue walk
1215 * @D_WALK_QUIT: quit walk
1216 * @D_WALK_NORETRY: quit when retry is needed
1217 * @D_WALK_SKIP: skip this dentry and its children
1227 * d_walk - walk the dentry tree
1228 * @parent: start of walk
1229 * @data: data passed to @enter() and @finish()
1230 * @enter: callback when first entering the dentry
1232 * The @enter() callbacks are called with d_lock held.
1234 static void d_walk(struct dentry
*parent
, void *data
,
1235 enum d_walk_ret (*enter
)(void *, struct dentry
*))
1237 struct dentry
*this_parent
, *dentry
;
1239 enum d_walk_ret ret
;
1243 read_seqbegin_or_lock(&rename_lock
, &seq
);
1244 this_parent
= parent
;
1245 spin_lock(&this_parent
->d_lock
);
1247 ret
= enter(data
, this_parent
);
1249 case D_WALK_CONTINUE
:
1254 case D_WALK_NORETRY
:
1259 dentry
= d_first_child(this_parent
);
1261 hlist_for_each_entry_from(dentry
, d_sib
) {
1262 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1265 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1267 ret
= enter(data
, dentry
);
1269 case D_WALK_CONTINUE
:
1272 spin_unlock(&dentry
->d_lock
);
1274 case D_WALK_NORETRY
:
1278 spin_unlock(&dentry
->d_lock
);
1282 if (!hlist_empty(&dentry
->d_children
)) {
1283 spin_unlock(&this_parent
->d_lock
);
1284 spin_release(&dentry
->d_lock
.dep_map
, _RET_IP_
);
1285 this_parent
= dentry
;
1286 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1289 spin_unlock(&dentry
->d_lock
);
1292 * All done at this level ... ascend and resume the search.
1296 if (this_parent
!= parent
) {
1297 dentry
= this_parent
;
1298 this_parent
= dentry
->d_parent
;
1300 spin_unlock(&dentry
->d_lock
);
1301 spin_lock(&this_parent
->d_lock
);
1303 /* might go back up the wrong parent if we have had a rename. */
1304 if (need_seqretry(&rename_lock
, seq
))
1306 /* go into the first sibling still alive */
1307 hlist_for_each_entry_continue(dentry
, d_sib
) {
1308 if (likely(!(dentry
->d_flags
& DCACHE_DENTRY_KILLED
))) {
1315 if (need_seqretry(&rename_lock
, seq
))
1320 spin_unlock(&this_parent
->d_lock
);
1321 done_seqretry(&rename_lock
, seq
);
1325 spin_unlock(&this_parent
->d_lock
);
1334 struct check_mount
{
1335 struct vfsmount
*mnt
;
1336 unsigned int mounted
;
1339 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1341 struct check_mount
*info
= data
;
1342 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1344 if (likely(!d_mountpoint(dentry
)))
1345 return D_WALK_CONTINUE
;
1346 if (__path_is_mountpoint(&path
)) {
1350 return D_WALK_CONTINUE
;
1354 * path_has_submounts - check for mounts over a dentry in the
1355 * current namespace.
1356 * @parent: path to check.
1358 * Return true if the parent or its subdirectories contain
1359 * a mount point in the current namespace.
1361 int path_has_submounts(const struct path
*parent
)
1363 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1365 read_seqlock_excl(&mount_lock
);
1366 d_walk(parent
->dentry
, &data
, path_check_mount
);
1367 read_sequnlock_excl(&mount_lock
);
1369 return data
.mounted
;
1371 EXPORT_SYMBOL(path_has_submounts
);
1374 * Called by mount code to set a mountpoint and check if the mountpoint is
1375 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1376 * subtree can become unreachable).
1378 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1379 * this reason take rename_lock and d_lock on dentry and ancestors.
1381 int d_set_mounted(struct dentry
*dentry
)
1385 write_seqlock(&rename_lock
);
1386 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1387 /* Need exclusion wrt. d_invalidate() */
1388 spin_lock(&p
->d_lock
);
1389 if (unlikely(d_unhashed(p
))) {
1390 spin_unlock(&p
->d_lock
);
1393 spin_unlock(&p
->d_lock
);
1395 spin_lock(&dentry
->d_lock
);
1396 if (!d_unlinked(dentry
)) {
1398 if (!d_mountpoint(dentry
)) {
1399 dentry
->d_flags
|= DCACHE_MOUNTED
;
1403 spin_unlock(&dentry
->d_lock
);
1405 write_sequnlock(&rename_lock
);
1410 * Search the dentry child list of the specified parent,
1411 * and move any unused dentries to the end of the unused
1412 * list for prune_dcache(). We descend to the next level
1413 * whenever the d_children list is non-empty and continue
1416 * It returns zero iff there are no unused children,
1417 * otherwise it returns the number of children moved to
1418 * the end of the unused list. This may not be the total
1419 * number of unused children, because select_parent can
1420 * drop the lock and return early due to latency
1424 struct select_data
{
1425 struct dentry
*start
;
1428 struct dentry
*victim
;
1430 struct list_head dispose
;
1433 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1435 struct select_data
*data
= _data
;
1436 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1438 if (data
->start
== dentry
)
1441 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1443 } else if (!dentry
->d_lockref
.count
) {
1444 to_shrink_list(dentry
, &data
->dispose
);
1446 } else if (dentry
->d_lockref
.count
< 0) {
1450 * We can return to the caller if we have found some (this
1451 * ensures forward progress). We'll be coming back to find
1454 if (!list_empty(&data
->dispose
))
1455 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1460 static enum d_walk_ret
select_collect2(void *_data
, struct dentry
*dentry
)
1462 struct select_data
*data
= _data
;
1463 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1465 if (data
->start
== dentry
)
1468 if (!dentry
->d_lockref
.count
) {
1469 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1471 data
->victim
= dentry
;
1474 to_shrink_list(dentry
, &data
->dispose
);
1477 * We can return to the caller if we have found some (this
1478 * ensures forward progress). We'll be coming back to find
1481 if (!list_empty(&data
->dispose
))
1482 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1488 * shrink_dcache_parent - prune dcache
1489 * @parent: parent of entries to prune
1491 * Prune the dcache to remove unused children of the parent dentry.
1493 void shrink_dcache_parent(struct dentry
*parent
)
1496 struct select_data data
= {.start
= parent
};
1498 INIT_LIST_HEAD(&data
.dispose
);
1499 d_walk(parent
, &data
, select_collect
);
1501 if (!list_empty(&data
.dispose
)) {
1502 shrink_dentry_list(&data
.dispose
);
1510 d_walk(parent
, &data
, select_collect2
);
1512 spin_lock(&data
.victim
->d_lock
);
1513 if (!lock_for_kill(data
.victim
)) {
1514 spin_unlock(&data
.victim
->d_lock
);
1517 shrink_kill(data
.victim
);
1520 if (!list_empty(&data
.dispose
))
1521 shrink_dentry_list(&data
.dispose
);
1524 EXPORT_SYMBOL(shrink_dcache_parent
);
1526 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1528 /* it has busy descendents; complain about those instead */
1529 if (!hlist_empty(&dentry
->d_children
))
1530 return D_WALK_CONTINUE
;
1532 /* root with refcount 1 is fine */
1533 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1534 return D_WALK_CONTINUE
;
1536 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1537 " still in use (%d) [unmount of %s %s]\n",
1540 dentry
->d_inode
->i_ino
: 0UL,
1542 dentry
->d_lockref
.count
,
1543 dentry
->d_sb
->s_type
->name
,
1544 dentry
->d_sb
->s_id
);
1545 return D_WALK_CONTINUE
;
1548 static void do_one_tree(struct dentry
*dentry
)
1550 shrink_dcache_parent(dentry
);
1551 d_walk(dentry
, dentry
, umount_check
);
1557 * destroy the dentries attached to a superblock on unmounting
1559 void shrink_dcache_for_umount(struct super_block
*sb
)
1561 struct dentry
*dentry
;
1563 rwsem_assert_held_write(&sb
->s_umount
);
1565 dentry
= sb
->s_root
;
1567 do_one_tree(dentry
);
1569 while (!hlist_bl_empty(&sb
->s_roots
)) {
1570 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1571 do_one_tree(dentry
);
1575 static enum d_walk_ret
find_submount(void *_data
, struct dentry
*dentry
)
1577 struct dentry
**victim
= _data
;
1578 if (d_mountpoint(dentry
)) {
1579 *victim
= dget_dlock(dentry
);
1582 return D_WALK_CONTINUE
;
1586 * d_invalidate - detach submounts, prune dcache, and drop
1587 * @dentry: dentry to invalidate (aka detach, prune and drop)
1589 void d_invalidate(struct dentry
*dentry
)
1591 bool had_submounts
= false;
1592 spin_lock(&dentry
->d_lock
);
1593 if (d_unhashed(dentry
)) {
1594 spin_unlock(&dentry
->d_lock
);
1598 spin_unlock(&dentry
->d_lock
);
1600 /* Negative dentries can be dropped without further checks */
1601 if (!dentry
->d_inode
)
1604 shrink_dcache_parent(dentry
);
1606 struct dentry
*victim
= NULL
;
1607 d_walk(dentry
, &victim
, find_submount
);
1610 shrink_dcache_parent(dentry
);
1613 had_submounts
= true;
1614 detach_mounts(victim
);
1618 EXPORT_SYMBOL(d_invalidate
);
1621 * __d_alloc - allocate a dcache entry
1622 * @sb: filesystem it will belong to
1623 * @name: qstr of the name
1625 * Allocates a dentry. It returns %NULL if there is insufficient memory
1626 * available. On a success the dentry is returned. The name passed in is
1627 * copied and the copy passed in may be reused after this call.
1630 static struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1632 struct dentry
*dentry
;
1636 dentry
= kmem_cache_alloc_lru(dentry_cache
, &sb
->s_dentry_lru
,
1642 * We guarantee that the inline name is always NUL-terminated.
1643 * This way the memcpy() done by the name switching in rename
1644 * will still always have a NUL at the end, even if we might
1645 * be overwriting an internal NUL character
1647 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1648 if (unlikely(!name
)) {
1650 dname
= dentry
->d_iname
;
1651 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1652 size_t size
= offsetof(struct external_name
, name
[1]);
1653 struct external_name
*p
= kmalloc(size
+ name
->len
,
1654 GFP_KERNEL_ACCOUNT
|
1657 kmem_cache_free(dentry_cache
, dentry
);
1660 atomic_set(&p
->u
.count
, 1);
1663 dname
= dentry
->d_iname
;
1666 dentry
->d_name
.len
= name
->len
;
1667 dentry
->d_name
.hash
= name
->hash
;
1668 memcpy(dname
, name
->name
, name
->len
);
1669 dname
[name
->len
] = 0;
1671 /* Make sure we always see the terminating NUL character */
1672 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1674 dentry
->d_lockref
.count
= 1;
1675 dentry
->d_flags
= 0;
1676 spin_lock_init(&dentry
->d_lock
);
1677 seqcount_spinlock_init(&dentry
->d_seq
, &dentry
->d_lock
);
1678 dentry
->d_inode
= NULL
;
1679 dentry
->d_parent
= dentry
;
1681 dentry
->d_op
= NULL
;
1682 dentry
->d_fsdata
= NULL
;
1683 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1684 INIT_LIST_HEAD(&dentry
->d_lru
);
1685 INIT_HLIST_HEAD(&dentry
->d_children
);
1686 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1687 INIT_HLIST_NODE(&dentry
->d_sib
);
1688 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1690 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1691 err
= dentry
->d_op
->d_init(dentry
);
1693 if (dname_external(dentry
))
1694 kfree(external_name(dentry
));
1695 kmem_cache_free(dentry_cache
, dentry
);
1700 this_cpu_inc(nr_dentry
);
1706 * d_alloc - allocate a dcache entry
1707 * @parent: parent of entry to allocate
1708 * @name: qstr of the name
1710 * Allocates a dentry. It returns %NULL if there is insufficient memory
1711 * available. On a success the dentry is returned. The name passed in is
1712 * copied and the copy passed in may be reused after this call.
1714 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1716 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1719 spin_lock(&parent
->d_lock
);
1721 * don't need child lock because it is not subject
1722 * to concurrency here
1724 dentry
->d_parent
= dget_dlock(parent
);
1725 hlist_add_head(&dentry
->d_sib
, &parent
->d_children
);
1726 spin_unlock(&parent
->d_lock
);
1730 EXPORT_SYMBOL(d_alloc
);
1732 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1734 return __d_alloc(sb
, NULL
);
1736 EXPORT_SYMBOL(d_alloc_anon
);
1738 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1740 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1742 dentry
->d_flags
|= DCACHE_DENTRY_CURSOR
;
1743 dentry
->d_parent
= dget(parent
);
1749 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1750 * @sb: the superblock
1751 * @name: qstr of the name
1753 * For a filesystem that just pins its dentries in memory and never
1754 * performs lookups at all, return an unhashed IS_ROOT dentry.
1755 * This is used for pipes, sockets et.al. - the stuff that should
1756 * never be anyone's children or parents. Unlike all other
1757 * dentries, these will not have RCU delay between dropping the
1758 * last reference and freeing them.
1760 * The only user is alloc_file_pseudo() and that's what should
1761 * be considered a public interface. Don't use directly.
1763 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1765 static const struct dentry_operations anon_ops
= {
1766 .d_dname
= simple_dname
1768 struct dentry
*dentry
= __d_alloc(sb
, name
);
1769 if (likely(dentry
)) {
1770 dentry
->d_flags
|= DCACHE_NORCU
;
1772 d_set_d_op(dentry
, &anon_ops
);
1777 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1782 q
.hash_len
= hashlen_string(parent
, name
);
1783 return d_alloc(parent
, &q
);
1785 EXPORT_SYMBOL(d_alloc_name
);
1787 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1789 WARN_ON_ONCE(dentry
->d_op
);
1790 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1792 DCACHE_OP_REVALIDATE
|
1793 DCACHE_OP_WEAK_REVALIDATE
|
1800 dentry
->d_flags
|= DCACHE_OP_HASH
;
1802 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1803 if (op
->d_revalidate
)
1804 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1805 if (op
->d_weak_revalidate
)
1806 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1808 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1810 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1812 dentry
->d_flags
|= DCACHE_OP_REAL
;
1815 EXPORT_SYMBOL(d_set_d_op
);
1817 static unsigned d_flags_for_inode(struct inode
*inode
)
1819 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1822 return DCACHE_MISS_TYPE
;
1824 if (S_ISDIR(inode
->i_mode
)) {
1825 add_flags
= DCACHE_DIRECTORY_TYPE
;
1826 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1827 if (unlikely(!inode
->i_op
->lookup
))
1828 add_flags
= DCACHE_AUTODIR_TYPE
;
1830 inode
->i_opflags
|= IOP_LOOKUP
;
1832 goto type_determined
;
1835 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1836 if (unlikely(inode
->i_op
->get_link
)) {
1837 add_flags
= DCACHE_SYMLINK_TYPE
;
1838 goto type_determined
;
1840 inode
->i_opflags
|= IOP_NOFOLLOW
;
1843 if (unlikely(!S_ISREG(inode
->i_mode
)))
1844 add_flags
= DCACHE_SPECIAL_TYPE
;
1847 if (unlikely(IS_AUTOMOUNT(inode
)))
1848 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1852 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1854 unsigned add_flags
= d_flags_for_inode(inode
);
1855 WARN_ON(d_in_lookup(dentry
));
1857 spin_lock(&dentry
->d_lock
);
1859 * The negative counter only tracks dentries on the LRU. Don't dec if
1860 * d_lru is on another list.
1862 if ((dentry
->d_flags
&
1863 (DCACHE_LRU_LIST
|DCACHE_SHRINK_LIST
)) == DCACHE_LRU_LIST
)
1864 this_cpu_dec(nr_dentry_negative
);
1865 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1866 raw_write_seqcount_begin(&dentry
->d_seq
);
1867 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1868 raw_write_seqcount_end(&dentry
->d_seq
);
1869 fsnotify_update_flags(dentry
);
1870 spin_unlock(&dentry
->d_lock
);
1874 * d_instantiate - fill in inode information for a dentry
1875 * @entry: dentry to complete
1876 * @inode: inode to attach to this dentry
1878 * Fill in inode information in the entry.
1880 * This turns negative dentries into productive full members
1883 * NOTE! This assumes that the inode count has been incremented
1884 * (or otherwise set) by the caller to indicate that it is now
1885 * in use by the dcache.
1888 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1890 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1892 security_d_instantiate(entry
, inode
);
1893 spin_lock(&inode
->i_lock
);
1894 __d_instantiate(entry
, inode
);
1895 spin_unlock(&inode
->i_lock
);
1898 EXPORT_SYMBOL(d_instantiate
);
1901 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1902 * with lockdep-related part of unlock_new_inode() done before
1903 * anything else. Use that instead of open-coding d_instantiate()/
1904 * unlock_new_inode() combinations.
1906 void d_instantiate_new(struct dentry
*entry
, struct inode
*inode
)
1908 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1910 lockdep_annotate_inode_mutex_key(inode
);
1911 security_d_instantiate(entry
, inode
);
1912 spin_lock(&inode
->i_lock
);
1913 __d_instantiate(entry
, inode
);
1914 WARN_ON(!(inode
->i_state
& I_NEW
));
1915 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
1917 * Pairs with the barrier in prepare_to_wait_event() to make sure
1918 * ___wait_var_event() either sees the bit cleared or
1919 * waitqueue_active() check in wake_up_var() sees the waiter.
1922 inode_wake_up_bit(inode
, __I_NEW
);
1923 spin_unlock(&inode
->i_lock
);
1925 EXPORT_SYMBOL(d_instantiate_new
);
1927 struct dentry
*d_make_root(struct inode
*root_inode
)
1929 struct dentry
*res
= NULL
;
1932 res
= d_alloc_anon(root_inode
->i_sb
);
1934 d_instantiate(res
, root_inode
);
1940 EXPORT_SYMBOL(d_make_root
);
1942 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1944 struct super_block
*sb
;
1945 struct dentry
*new, *res
;
1948 return ERR_PTR(-ESTALE
);
1950 return ERR_CAST(inode
);
1954 res
= d_find_any_alias(inode
); /* existing alias? */
1958 new = d_alloc_anon(sb
);
1960 res
= ERR_PTR(-ENOMEM
);
1964 security_d_instantiate(new, inode
);
1965 spin_lock(&inode
->i_lock
);
1966 res
= __d_find_any_alias(inode
); /* recheck under lock */
1967 if (likely(!res
)) { /* still no alias, attach a disconnected dentry */
1968 unsigned add_flags
= d_flags_for_inode(inode
);
1971 add_flags
|= DCACHE_DISCONNECTED
;
1973 spin_lock(&new->d_lock
);
1974 __d_set_inode_and_type(new, inode
, add_flags
);
1975 hlist_add_head(&new->d_u
.d_alias
, &inode
->i_dentry
);
1976 if (!disconnected
) {
1977 hlist_bl_lock(&sb
->s_roots
);
1978 hlist_bl_add_head(&new->d_hash
, &sb
->s_roots
);
1979 hlist_bl_unlock(&sb
->s_roots
);
1981 spin_unlock(&new->d_lock
);
1982 spin_unlock(&inode
->i_lock
);
1983 inode
= NULL
; /* consumed by new->d_inode */
1986 spin_unlock(&inode
->i_lock
);
1996 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1997 * @inode: inode to allocate the dentry for
1999 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2000 * similar open by handle operations. The returned dentry may be anonymous,
2001 * or may have a full name (if the inode was already in the cache).
2003 * When called on a directory inode, we must ensure that the inode only ever
2004 * has one dentry. If a dentry is found, that is returned instead of
2005 * allocating a new one.
2007 * On successful return, the reference to the inode has been transferred
2008 * to the dentry. In case of an error the reference on the inode is released.
2009 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2010 * be passed in and the error will be propagated to the return value,
2011 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2013 struct dentry
*d_obtain_alias(struct inode
*inode
)
2015 return __d_obtain_alias(inode
, true);
2017 EXPORT_SYMBOL(d_obtain_alias
);
2020 * d_obtain_root - find or allocate a dentry for a given inode
2021 * @inode: inode to allocate the dentry for
2023 * Obtain an IS_ROOT dentry for the root of a filesystem.
2025 * We must ensure that directory inodes only ever have one dentry. If a
2026 * dentry is found, that is returned instead of allocating a new one.
2028 * On successful return, the reference to the inode has been transferred
2029 * to the dentry. In case of an error the reference on the inode is
2030 * released. A %NULL or IS_ERR inode may be passed in and will be the
2031 * error will be propagate to the return value, with a %NULL @inode
2032 * replaced by ERR_PTR(-ESTALE).
2034 struct dentry
*d_obtain_root(struct inode
*inode
)
2036 return __d_obtain_alias(inode
, false);
2038 EXPORT_SYMBOL(d_obtain_root
);
2041 * d_add_ci - lookup or allocate new dentry with case-exact name
2042 * @inode: the inode case-insensitive lookup has found
2043 * @dentry: the negative dentry that was passed to the parent's lookup func
2044 * @name: the case-exact name to be associated with the returned dentry
2046 * This is to avoid filling the dcache with case-insensitive names to the
2047 * same inode, only the actual correct case is stored in the dcache for
2048 * case-insensitive filesystems.
2050 * For a case-insensitive lookup match and if the case-exact dentry
2051 * already exists in the dcache, use it and return it.
2053 * If no entry exists with the exact case name, allocate new dentry with
2054 * the exact case, and return the spliced entry.
2056 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2059 struct dentry
*found
, *res
;
2062 * First check if a dentry matching the name already exists,
2063 * if not go ahead and create it now.
2065 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2070 if (d_in_lookup(dentry
)) {
2071 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2073 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2078 found
= d_alloc(dentry
->d_parent
, name
);
2081 return ERR_PTR(-ENOMEM
);
2084 res
= d_splice_alias(inode
, found
);
2086 d_lookup_done(found
);
2092 EXPORT_SYMBOL(d_add_ci
);
2095 * d_same_name - compare dentry name with case-exact name
2096 * @parent: parent dentry
2097 * @dentry: the negative dentry that was passed to the parent's lookup func
2098 * @name: the case-exact name to be associated with the returned dentry
2100 * Return: true if names are same, or false
2102 bool d_same_name(const struct dentry
*dentry
, const struct dentry
*parent
,
2103 const struct qstr
*name
)
2105 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2106 if (dentry
->d_name
.len
!= name
->len
)
2108 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2110 return parent
->d_op
->d_compare(dentry
,
2111 dentry
->d_name
.len
, dentry
->d_name
.name
,
2114 EXPORT_SYMBOL_GPL(d_same_name
);
2117 * This is __d_lookup_rcu() when the parent dentry has
2118 * DCACHE_OP_COMPARE, which makes things much nastier.
2120 static noinline
struct dentry
*__d_lookup_rcu_op_compare(
2121 const struct dentry
*parent
,
2122 const struct qstr
*name
,
2125 u64 hashlen
= name
->hash_len
;
2126 struct hlist_bl_head
*b
= d_hash(hashlen
);
2127 struct hlist_bl_node
*node
;
2128 struct dentry
*dentry
;
2130 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2136 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2137 if (dentry
->d_parent
!= parent
)
2139 if (d_unhashed(dentry
))
2141 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2143 tlen
= dentry
->d_name
.len
;
2144 tname
= dentry
->d_name
.name
;
2145 /* we want a consistent (name,len) pair */
2146 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2150 if (parent
->d_op
->d_compare(dentry
, tlen
, tname
, name
) != 0)
2159 * __d_lookup_rcu - search for a dentry (racy, store-free)
2160 * @parent: parent dentry
2161 * @name: qstr of name we wish to find
2162 * @seqp: returns d_seq value at the point where the dentry was found
2163 * Returns: dentry, or NULL
2165 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2166 * resolution (store-free path walking) design described in
2167 * Documentation/filesystems/path-lookup.txt.
2169 * This is not to be used outside core vfs.
2171 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2172 * held, and rcu_read_lock held. The returned dentry must not be stored into
2173 * without taking d_lock and checking d_seq sequence count against @seq
2176 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2177 * the returned dentry, so long as its parent's seqlock is checked after the
2178 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2179 * is formed, giving integrity down the path walk.
2181 * NOTE! The caller *has* to check the resulting dentry against the sequence
2182 * number we've returned before using any of the resulting dentry state!
2184 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2185 const struct qstr
*name
,
2188 u64 hashlen
= name
->hash_len
;
2189 const unsigned char *str
= name
->name
;
2190 struct hlist_bl_head
*b
= d_hash(hashlen
);
2191 struct hlist_bl_node
*node
;
2192 struct dentry
*dentry
;
2195 * Note: There is significant duplication with __d_lookup_rcu which is
2196 * required to prevent single threaded performance regressions
2197 * especially on architectures where smp_rmb (in seqcounts) are costly.
2198 * Keep the two functions in sync.
2201 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
))
2202 return __d_lookup_rcu_op_compare(parent
, name
, seqp
);
2205 * The hash list is protected using RCU.
2207 * Carefully use d_seq when comparing a candidate dentry, to avoid
2208 * races with d_move().
2210 * It is possible that concurrent renames can mess up our list
2211 * walk here and result in missing our dentry, resulting in the
2212 * false-negative result. d_lookup() protects against concurrent
2213 * renames using rename_lock seqlock.
2215 * See Documentation/filesystems/path-lookup.txt for more details.
2217 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2221 * The dentry sequence count protects us from concurrent
2222 * renames, and thus protects parent and name fields.
2224 * The caller must perform a seqcount check in order
2225 * to do anything useful with the returned dentry.
2227 * NOTE! We do a "raw" seqcount_begin here. That means that
2228 * we don't wait for the sequence count to stabilize if it
2229 * is in the middle of a sequence change. If we do the slow
2230 * dentry compare, we will do seqretries until it is stable,
2231 * and if we end up with a successful lookup, we actually
2232 * want to exit RCU lookup anyway.
2234 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2235 * we are still guaranteed NUL-termination of ->d_name.name.
2237 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2238 if (dentry
->d_parent
!= parent
)
2240 if (d_unhashed(dentry
))
2242 if (dentry
->d_name
.hash_len
!= hashlen
)
2244 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2253 * d_lookup - search for a dentry
2254 * @parent: parent dentry
2255 * @name: qstr of name we wish to find
2256 * Returns: dentry, or NULL
2258 * d_lookup searches the children of the parent dentry for the name in
2259 * question. If the dentry is found its reference count is incremented and the
2260 * dentry is returned. The caller must use dput to free the entry when it has
2261 * finished using it. %NULL is returned if the dentry does not exist.
2263 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2265 struct dentry
*dentry
;
2269 seq
= read_seqbegin(&rename_lock
);
2270 dentry
= __d_lookup(parent
, name
);
2273 } while (read_seqretry(&rename_lock
, seq
));
2276 EXPORT_SYMBOL(d_lookup
);
2279 * __d_lookup - search for a dentry (racy)
2280 * @parent: parent dentry
2281 * @name: qstr of name we wish to find
2282 * Returns: dentry, or NULL
2284 * __d_lookup is like d_lookup, however it may (rarely) return a
2285 * false-negative result due to unrelated rename activity.
2287 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2288 * however it must be used carefully, eg. with a following d_lookup in
2289 * the case of failure.
2291 * __d_lookup callers must be commented.
2293 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2295 unsigned int hash
= name
->hash
;
2296 struct hlist_bl_head
*b
= d_hash(hash
);
2297 struct hlist_bl_node
*node
;
2298 struct dentry
*found
= NULL
;
2299 struct dentry
*dentry
;
2302 * Note: There is significant duplication with __d_lookup_rcu which is
2303 * required to prevent single threaded performance regressions
2304 * especially on architectures where smp_rmb (in seqcounts) are costly.
2305 * Keep the two functions in sync.
2309 * The hash list is protected using RCU.
2311 * Take d_lock when comparing a candidate dentry, to avoid races
2314 * It is possible that concurrent renames can mess up our list
2315 * walk here and result in missing our dentry, resulting in the
2316 * false-negative result. d_lookup() protects against concurrent
2317 * renames using rename_lock seqlock.
2319 * See Documentation/filesystems/path-lookup.txt for more details.
2323 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2325 if (dentry
->d_name
.hash
!= hash
)
2328 spin_lock(&dentry
->d_lock
);
2329 if (dentry
->d_parent
!= parent
)
2331 if (d_unhashed(dentry
))
2334 if (!d_same_name(dentry
, parent
, name
))
2337 dentry
->d_lockref
.count
++;
2339 spin_unlock(&dentry
->d_lock
);
2342 spin_unlock(&dentry
->d_lock
);
2350 * d_hash_and_lookup - hash the qstr then search for a dentry
2351 * @dir: Directory to search in
2352 * @name: qstr of name we wish to find
2354 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2356 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2359 * Check for a fs-specific hash function. Note that we must
2360 * calculate the standard hash first, as the d_op->d_hash()
2361 * routine may choose to leave the hash value unchanged.
2363 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2364 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2365 int err
= dir
->d_op
->d_hash(dir
, name
);
2366 if (unlikely(err
< 0))
2367 return ERR_PTR(err
);
2369 return d_lookup(dir
, name
);
2371 EXPORT_SYMBOL(d_hash_and_lookup
);
2374 * When a file is deleted, we have two options:
2375 * - turn this dentry into a negative dentry
2376 * - unhash this dentry and free it.
2378 * Usually, we want to just turn this into
2379 * a negative dentry, but if anybody else is
2380 * currently using the dentry or the inode
2381 * we can't do that and we fall back on removing
2382 * it from the hash queues and waiting for
2383 * it to be deleted later when it has no users
2387 * d_delete - delete a dentry
2388 * @dentry: The dentry to delete
2390 * Turn the dentry into a negative dentry if possible, otherwise
2391 * remove it from the hash queues so it can be deleted later
2394 void d_delete(struct dentry
* dentry
)
2396 struct inode
*inode
= dentry
->d_inode
;
2398 spin_lock(&inode
->i_lock
);
2399 spin_lock(&dentry
->d_lock
);
2401 * Are we the only user?
2403 if (dentry
->d_lockref
.count
== 1) {
2404 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2405 dentry_unlink_inode(dentry
);
2408 spin_unlock(&dentry
->d_lock
);
2409 spin_unlock(&inode
->i_lock
);
2412 EXPORT_SYMBOL(d_delete
);
2414 static void __d_rehash(struct dentry
*entry
)
2416 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2419 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2424 * d_rehash - add an entry back to the hash
2425 * @entry: dentry to add to the hash
2427 * Adds a dentry to the hash according to its name.
2430 void d_rehash(struct dentry
* entry
)
2432 spin_lock(&entry
->d_lock
);
2434 spin_unlock(&entry
->d_lock
);
2436 EXPORT_SYMBOL(d_rehash
);
2438 static inline unsigned start_dir_add(struct inode
*dir
)
2440 preempt_disable_nested();
2442 unsigned n
= dir
->i_dir_seq
;
2443 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2449 static inline void end_dir_add(struct inode
*dir
, unsigned int n
,
2450 wait_queue_head_t
*d_wait
)
2452 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2453 preempt_enable_nested();
2454 wake_up_all(d_wait
);
2457 static void d_wait_lookup(struct dentry
*dentry
)
2459 if (d_in_lookup(dentry
)) {
2460 DECLARE_WAITQUEUE(wait
, current
);
2461 add_wait_queue(dentry
->d_wait
, &wait
);
2463 set_current_state(TASK_UNINTERRUPTIBLE
);
2464 spin_unlock(&dentry
->d_lock
);
2466 spin_lock(&dentry
->d_lock
);
2467 } while (d_in_lookup(dentry
));
2471 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2472 const struct qstr
*name
,
2473 wait_queue_head_t
*wq
)
2475 unsigned int hash
= name
->hash
;
2476 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2477 struct hlist_bl_node
*node
;
2478 struct dentry
*new = d_alloc(parent
, name
);
2479 struct dentry
*dentry
;
2480 unsigned seq
, r_seq
, d_seq
;
2483 return ERR_PTR(-ENOMEM
);
2487 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2488 r_seq
= read_seqbegin(&rename_lock
);
2489 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2490 if (unlikely(dentry
)) {
2491 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2495 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2504 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2509 if (unlikely(seq
& 1)) {
2515 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2521 * No changes for the parent since the beginning of d_lookup().
2522 * Since all removals from the chain happen with hlist_bl_lock(),
2523 * any potential in-lookup matches are going to stay here until
2524 * we unlock the chain. All fields are stable in everything
2527 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2528 if (dentry
->d_name
.hash
!= hash
)
2530 if (dentry
->d_parent
!= parent
)
2532 if (!d_same_name(dentry
, parent
, name
))
2535 /* now we can try to grab a reference */
2536 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2543 * somebody is likely to be still doing lookup for it;
2544 * wait for them to finish
2546 spin_lock(&dentry
->d_lock
);
2547 d_wait_lookup(dentry
);
2549 * it's not in-lookup anymore; in principle we should repeat
2550 * everything from dcache lookup, but it's likely to be what
2551 * d_lookup() would've found anyway. If it is, just return it;
2552 * otherwise we really have to repeat the whole thing.
2554 if (unlikely(dentry
->d_name
.hash
!= hash
))
2556 if (unlikely(dentry
->d_parent
!= parent
))
2558 if (unlikely(d_unhashed(dentry
)))
2560 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2562 /* OK, it *is* a hashed match; return it */
2563 spin_unlock(&dentry
->d_lock
);
2568 /* we can't take ->d_lock here; it's OK, though. */
2569 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2571 hlist_bl_add_head(&new->d_u
.d_in_lookup_hash
, b
);
2575 spin_unlock(&dentry
->d_lock
);
2579 EXPORT_SYMBOL(d_alloc_parallel
);
2582 * - Unhash the dentry
2583 * - Retrieve and clear the waitqueue head in dentry
2584 * - Return the waitqueue head
2586 static wait_queue_head_t
*__d_lookup_unhash(struct dentry
*dentry
)
2588 wait_queue_head_t
*d_wait
;
2589 struct hlist_bl_head
*b
;
2591 lockdep_assert_held(&dentry
->d_lock
);
2593 b
= in_lookup_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
2595 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2596 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2597 d_wait
= dentry
->d_wait
;
2598 dentry
->d_wait
= NULL
;
2600 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2601 INIT_LIST_HEAD(&dentry
->d_lru
);
2605 void __d_lookup_unhash_wake(struct dentry
*dentry
)
2607 spin_lock(&dentry
->d_lock
);
2608 wake_up_all(__d_lookup_unhash(dentry
));
2609 spin_unlock(&dentry
->d_lock
);
2611 EXPORT_SYMBOL(__d_lookup_unhash_wake
);
2613 /* inode->i_lock held if inode is non-NULL */
2615 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2617 wait_queue_head_t
*d_wait
;
2618 struct inode
*dir
= NULL
;
2620 spin_lock(&dentry
->d_lock
);
2621 if (unlikely(d_in_lookup(dentry
))) {
2622 dir
= dentry
->d_parent
->d_inode
;
2623 n
= start_dir_add(dir
);
2624 d_wait
= __d_lookup_unhash(dentry
);
2627 unsigned add_flags
= d_flags_for_inode(inode
);
2628 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2629 raw_write_seqcount_begin(&dentry
->d_seq
);
2630 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2631 raw_write_seqcount_end(&dentry
->d_seq
);
2632 fsnotify_update_flags(dentry
);
2636 end_dir_add(dir
, n
, d_wait
);
2637 spin_unlock(&dentry
->d_lock
);
2639 spin_unlock(&inode
->i_lock
);
2643 * d_add - add dentry to hash queues
2644 * @entry: dentry to add
2645 * @inode: The inode to attach to this dentry
2647 * This adds the entry to the hash queues and initializes @inode.
2648 * The entry was actually filled in earlier during d_alloc().
2651 void d_add(struct dentry
*entry
, struct inode
*inode
)
2654 security_d_instantiate(entry
, inode
);
2655 spin_lock(&inode
->i_lock
);
2657 __d_add(entry
, inode
);
2659 EXPORT_SYMBOL(d_add
);
2662 * d_exact_alias - find and hash an exact unhashed alias
2663 * @entry: dentry to add
2664 * @inode: The inode to go with this dentry
2666 * If an unhashed dentry with the same name/parent and desired
2667 * inode already exists, hash and return it. Otherwise, return
2670 * Parent directory should be locked.
2672 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2674 struct dentry
*alias
;
2675 unsigned int hash
= entry
->d_name
.hash
;
2677 spin_lock(&inode
->i_lock
);
2678 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2680 * Don't need alias->d_lock here, because aliases with
2681 * d_parent == entry->d_parent are not subject to name or
2682 * parent changes, because the parent inode i_mutex is held.
2684 if (alias
->d_name
.hash
!= hash
)
2686 if (alias
->d_parent
!= entry
->d_parent
)
2688 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2690 spin_lock(&alias
->d_lock
);
2691 if (!d_unhashed(alias
)) {
2692 spin_unlock(&alias
->d_lock
);
2697 spin_unlock(&alias
->d_lock
);
2699 spin_unlock(&inode
->i_lock
);
2702 spin_unlock(&inode
->i_lock
);
2705 EXPORT_SYMBOL(d_exact_alias
);
2707 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2709 if (unlikely(dname_external(target
))) {
2710 if (unlikely(dname_external(dentry
))) {
2712 * Both external: swap the pointers
2714 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2717 * dentry:internal, target:external. Steal target's
2718 * storage and make target internal.
2720 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2721 dentry
->d_name
.len
+ 1);
2722 dentry
->d_name
.name
= target
->d_name
.name
;
2723 target
->d_name
.name
= target
->d_iname
;
2726 if (unlikely(dname_external(dentry
))) {
2728 * dentry:external, target:internal. Give dentry's
2729 * storage to target and make dentry internal
2731 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2732 target
->d_name
.len
+ 1);
2733 target
->d_name
.name
= dentry
->d_name
.name
;
2734 dentry
->d_name
.name
= dentry
->d_iname
;
2737 * Both are internal.
2740 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2741 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2742 swap(((long *) &dentry
->d_iname
)[i
],
2743 ((long *) &target
->d_iname
)[i
]);
2747 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2750 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2752 struct external_name
*old_name
= NULL
;
2753 if (unlikely(dname_external(dentry
)))
2754 old_name
= external_name(dentry
);
2755 if (unlikely(dname_external(target
))) {
2756 atomic_inc(&external_name(target
)->u
.count
);
2757 dentry
->d_name
= target
->d_name
;
2759 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2760 target
->d_name
.len
+ 1);
2761 dentry
->d_name
.name
= dentry
->d_iname
;
2762 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2764 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2765 kfree_rcu(old_name
, u
.head
);
2769 * __d_move - move a dentry
2770 * @dentry: entry to move
2771 * @target: new dentry
2772 * @exchange: exchange the two dentries
2774 * Update the dcache to reflect the move of a file name. Negative
2775 * dcache entries should not be moved in this way. Caller must hold
2776 * rename_lock, the i_mutex of the source and target directories,
2777 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2779 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2782 struct dentry
*old_parent
, *p
;
2783 wait_queue_head_t
*d_wait
;
2784 struct inode
*dir
= NULL
;
2787 WARN_ON(!dentry
->d_inode
);
2788 if (WARN_ON(dentry
== target
))
2791 BUG_ON(d_ancestor(target
, dentry
));
2792 old_parent
= dentry
->d_parent
;
2793 p
= d_ancestor(old_parent
, target
);
2794 if (IS_ROOT(dentry
)) {
2796 spin_lock(&target
->d_parent
->d_lock
);
2798 /* target is not a descendent of dentry->d_parent */
2799 spin_lock(&target
->d_parent
->d_lock
);
2800 spin_lock_nested(&old_parent
->d_lock
, DENTRY_D_LOCK_NESTED
);
2802 BUG_ON(p
== dentry
);
2803 spin_lock(&old_parent
->d_lock
);
2805 spin_lock_nested(&target
->d_parent
->d_lock
,
2806 DENTRY_D_LOCK_NESTED
);
2808 spin_lock_nested(&dentry
->d_lock
, 2);
2809 spin_lock_nested(&target
->d_lock
, 3);
2811 if (unlikely(d_in_lookup(target
))) {
2812 dir
= target
->d_parent
->d_inode
;
2813 n
= start_dir_add(dir
);
2814 d_wait
= __d_lookup_unhash(target
);
2817 write_seqcount_begin(&dentry
->d_seq
);
2818 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2821 if (!d_unhashed(dentry
))
2823 if (!d_unhashed(target
))
2826 /* ... and switch them in the tree */
2827 dentry
->d_parent
= target
->d_parent
;
2829 copy_name(dentry
, target
);
2830 target
->d_hash
.pprev
= NULL
;
2831 dentry
->d_parent
->d_lockref
.count
++;
2832 if (dentry
!= old_parent
) /* wasn't IS_ROOT */
2833 WARN_ON(!--old_parent
->d_lockref
.count
);
2835 target
->d_parent
= old_parent
;
2836 swap_names(dentry
, target
);
2837 if (!hlist_unhashed(&target
->d_sib
))
2838 __hlist_del(&target
->d_sib
);
2839 hlist_add_head(&target
->d_sib
, &target
->d_parent
->d_children
);
2841 fsnotify_update_flags(target
);
2843 if (!hlist_unhashed(&dentry
->d_sib
))
2844 __hlist_del(&dentry
->d_sib
);
2845 hlist_add_head(&dentry
->d_sib
, &dentry
->d_parent
->d_children
);
2847 fsnotify_update_flags(dentry
);
2848 fscrypt_handle_d_move(dentry
);
2850 write_seqcount_end(&target
->d_seq
);
2851 write_seqcount_end(&dentry
->d_seq
);
2854 end_dir_add(dir
, n
, d_wait
);
2856 if (dentry
->d_parent
!= old_parent
)
2857 spin_unlock(&dentry
->d_parent
->d_lock
);
2858 if (dentry
!= old_parent
)
2859 spin_unlock(&old_parent
->d_lock
);
2860 spin_unlock(&target
->d_lock
);
2861 spin_unlock(&dentry
->d_lock
);
2865 * d_move - move a dentry
2866 * @dentry: entry to move
2867 * @target: new dentry
2869 * Update the dcache to reflect the move of a file name. Negative
2870 * dcache entries should not be moved in this way. See the locking
2871 * requirements for __d_move.
2873 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2875 write_seqlock(&rename_lock
);
2876 __d_move(dentry
, target
, false);
2877 write_sequnlock(&rename_lock
);
2879 EXPORT_SYMBOL(d_move
);
2882 * d_exchange - exchange two dentries
2883 * @dentry1: first dentry
2884 * @dentry2: second dentry
2886 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2888 write_seqlock(&rename_lock
);
2890 WARN_ON(!dentry1
->d_inode
);
2891 WARN_ON(!dentry2
->d_inode
);
2892 WARN_ON(IS_ROOT(dentry1
));
2893 WARN_ON(IS_ROOT(dentry2
));
2895 __d_move(dentry1
, dentry2
, true);
2897 write_sequnlock(&rename_lock
);
2901 * d_ancestor - search for an ancestor
2902 * @p1: ancestor dentry
2905 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2906 * an ancestor of p2, else NULL.
2908 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2912 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2913 if (p
->d_parent
== p1
)
2920 * This helper attempts to cope with remotely renamed directories
2922 * It assumes that the caller is already holding
2923 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2925 * Note: If ever the locking in lock_rename() changes, then please
2926 * remember to update this too...
2928 static int __d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
2930 struct mutex
*m1
= NULL
;
2931 struct rw_semaphore
*m2
= NULL
;
2934 /* If alias and dentry share a parent, then no extra locks required */
2935 if (alias
->d_parent
== dentry
->d_parent
)
2938 /* See lock_rename() */
2939 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2941 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2942 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2944 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2946 __d_move(alias
, dentry
, false);
2957 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2958 * @inode: the inode which may have a disconnected dentry
2959 * @dentry: a negative dentry which we want to point to the inode.
2961 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2962 * place of the given dentry and return it, else simply d_add the inode
2963 * to the dentry and return NULL.
2965 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2966 * we should error out: directories can't have multiple aliases.
2968 * This is needed in the lookup routine of any filesystem that is exportable
2969 * (via knfsd) so that we can build dcache paths to directories effectively.
2971 * If a dentry was found and moved, then it is returned. Otherwise NULL
2972 * is returned. This matches the expected return value of ->lookup.
2974 * Cluster filesystems may call this function with a negative, hashed dentry.
2975 * In that case, we know that the inode will be a regular file, and also this
2976 * will only occur during atomic_open. So we need to check for the dentry
2977 * being already hashed only in the final case.
2979 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2982 return ERR_CAST(inode
);
2984 BUG_ON(!d_unhashed(dentry
));
2989 security_d_instantiate(dentry
, inode
);
2990 spin_lock(&inode
->i_lock
);
2991 if (S_ISDIR(inode
->i_mode
)) {
2992 struct dentry
*new = __d_find_any_alias(inode
);
2993 if (unlikely(new)) {
2994 /* The reference to new ensures it remains an alias */
2995 spin_unlock(&inode
->i_lock
);
2996 write_seqlock(&rename_lock
);
2997 if (unlikely(d_ancestor(new, dentry
))) {
2998 write_sequnlock(&rename_lock
);
3000 new = ERR_PTR(-ELOOP
);
3001 pr_warn_ratelimited(
3002 "VFS: Lookup of '%s' in %s %s"
3003 " would have caused loop\n",
3004 dentry
->d_name
.name
,
3005 inode
->i_sb
->s_type
->name
,
3007 } else if (!IS_ROOT(new)) {
3008 struct dentry
*old_parent
= dget(new->d_parent
);
3009 int err
= __d_unalias(dentry
, new);
3010 write_sequnlock(&rename_lock
);
3017 __d_move(new, dentry
, false);
3018 write_sequnlock(&rename_lock
);
3025 __d_add(dentry
, inode
);
3028 EXPORT_SYMBOL(d_splice_alias
);
3031 * Test whether new_dentry is a subdirectory of old_dentry.
3033 * Trivially implemented using the dcache structure
3037 * is_subdir - is new dentry a subdirectory of old_dentry
3038 * @new_dentry: new dentry
3039 * @old_dentry: old dentry
3041 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3042 * Returns false otherwise.
3043 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3046 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3051 if (new_dentry
== old_dentry
)
3054 /* Access d_parent under rcu as d_move() may change it. */
3056 seq
= read_seqbegin(&rename_lock
);
3057 subdir
= d_ancestor(old_dentry
, new_dentry
);
3058 /* Try lockless once... */
3059 if (read_seqretry(&rename_lock
, seq
)) {
3060 /* ...else acquire lock for progress even on deep chains. */
3061 read_seqlock_excl(&rename_lock
);
3062 subdir
= d_ancestor(old_dentry
, new_dentry
);
3063 read_sequnlock_excl(&rename_lock
);
3068 EXPORT_SYMBOL(is_subdir
);
3070 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3072 struct dentry
*root
= data
;
3073 if (dentry
!= root
) {
3074 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3077 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3078 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3079 dentry
->d_lockref
.count
--;
3082 return D_WALK_CONTINUE
;
3085 void d_genocide(struct dentry
*parent
)
3087 d_walk(parent
, parent
, d_genocide_kill
);
3090 void d_mark_tmpfile(struct file
*file
, struct inode
*inode
)
3092 struct dentry
*dentry
= file
->f_path
.dentry
;
3094 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3095 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3096 !d_unlinked(dentry
));
3097 spin_lock(&dentry
->d_parent
->d_lock
);
3098 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3099 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3100 (unsigned long long)inode
->i_ino
);
3101 spin_unlock(&dentry
->d_lock
);
3102 spin_unlock(&dentry
->d_parent
->d_lock
);
3104 EXPORT_SYMBOL(d_mark_tmpfile
);
3106 void d_tmpfile(struct file
*file
, struct inode
*inode
)
3108 struct dentry
*dentry
= file
->f_path
.dentry
;
3110 inode_dec_link_count(inode
);
3111 d_mark_tmpfile(file
, inode
);
3112 d_instantiate(dentry
, inode
);
3114 EXPORT_SYMBOL(d_tmpfile
);
3117 * Obtain inode number of the parent dentry.
3119 ino_t
d_parent_ino(struct dentry
*dentry
)
3121 struct dentry
*parent
;
3122 struct inode
*iparent
;
3127 seq
= raw_seqcount_begin(&dentry
->d_seq
);
3128 parent
= READ_ONCE(dentry
->d_parent
);
3129 iparent
= d_inode_rcu(parent
);
3130 if (likely(iparent
)) {
3131 ret
= iparent
->i_ino
;
3132 if (!read_seqcount_retry(&dentry
->d_seq
, seq
))
3137 spin_lock(&dentry
->d_lock
);
3138 ret
= dentry
->d_parent
->d_inode
->i_ino
;
3139 spin_unlock(&dentry
->d_lock
);
3142 EXPORT_SYMBOL(d_parent_ino
);
3144 static __initdata
unsigned long dhash_entries
;
3145 static int __init
set_dhash_entries(char *str
)
3149 dhash_entries
= simple_strtoul(str
, &str
, 0);
3152 __setup("dhash_entries=", set_dhash_entries
);
3154 static void __init
dcache_init_early(void)
3156 /* If hashes are distributed across NUMA nodes, defer
3157 * hash allocation until vmalloc space is available.
3163 alloc_large_system_hash("Dentry cache",
3164 sizeof(struct hlist_bl_head
),
3167 HASH_EARLY
| HASH_ZERO
,
3172 d_hash_shift
= 32 - d_hash_shift
;
3174 runtime_const_init(shift
, d_hash_shift
);
3175 runtime_const_init(ptr
, dentry_hashtable
);
3178 static void __init
dcache_init(void)
3181 * A constructor could be added for stable state like the lists,
3182 * but it is probably not worth it because of the cache nature
3185 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3186 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_ACCOUNT
,
3189 /* Hash may have been set up in dcache_init_early */
3194 alloc_large_system_hash("Dentry cache",
3195 sizeof(struct hlist_bl_head
),
3203 d_hash_shift
= 32 - d_hash_shift
;
3205 runtime_const_init(shift
, d_hash_shift
);
3206 runtime_const_init(ptr
, dentry_hashtable
);
3209 /* SLAB cache for __getname() consumers */
3210 struct kmem_cache
*names_cachep __ro_after_init
;
3211 EXPORT_SYMBOL(names_cachep
);
3213 void __init
vfs_caches_init_early(void)
3217 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3218 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3220 dcache_init_early();
3224 void __init
vfs_caches_init(void)
3226 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3227 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3232 files_maxfiles_init();