1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
23 #include "trace_gfs2.h"
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
31 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
52 s64 delta
= sample
- s
->stats
[index
];
53 s
->stats
[index
] += (delta
>> 3);
55 s
->stats
[index
] += (s64
)(abs(delta
) - s
->stats
[index
]) >> 2;
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
62 * This assumes that gl->gl_dstamp has been set earlier.
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
75 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
77 struct gfs2_pcpu_lkstats
*lks
;
78 const unsigned gltype
= gl
->gl_name
.ln_type
;
79 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
80 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
84 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
85 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
86 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
87 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
90 trace_gfs2_glock_lock_time(gl
, rtt
);
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
102 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
104 struct gfs2_pcpu_lkstats
*lks
;
105 const unsigned gltype
= gl
->gl_name
.ln_type
;
110 dstamp
= gl
->gl_dstamp
;
111 gl
->gl_dstamp
= ktime_get_real();
112 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
113 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
114 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
115 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
119 static void gdlm_ast(void *arg
)
121 struct gfs2_glock
*gl
= arg
;
122 unsigned ret
= gl
->gl_state
;
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl
->gl_lockref
) &&
126 gl
->gl_lksb
.sb_status
!= -DLM_EUNLOCK
)
129 gfs2_update_reply_times(gl
);
130 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
132 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
133 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
135 switch (gl
->gl_lksb
.sb_status
) {
136 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
137 if (gl
->gl_ops
->go_unlocked
)
138 gl
->gl_ops
->go_unlocked(gl
);
141 case -DLM_ECANCEL
: /* Cancel while getting lock */
142 ret
|= LM_OUT_CANCELED
;
144 case -EAGAIN
: /* Try lock fails */
145 case -EDEADLK
: /* Deadlock detected */
147 case -ETIMEDOUT
: /* Canceled due to timeout */
150 case 0: /* Success */
152 default: /* Something unexpected */
157 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
158 if (gl
->gl_req
== LM_ST_SHARED
)
159 ret
= LM_ST_DEFERRED
;
160 else if (gl
->gl_req
== LM_ST_DEFERRED
)
167 * The GLF_INITIAL flag is initially set for new glocks. Upon the
168 * first successful new (non-conversion) request, we clear this flag to
169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 * identifier to use for identifying it.
172 * Any failed initial requests do not create a DLM lock, so we ignore
173 * the gl->gl_lksb.sb_lkid values that come with such requests.
176 clear_bit(GLF_INITIAL
, &gl
->gl_flags
);
177 gfs2_glock_complete(gl
, ret
);
180 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
))
181 gl
->gl_lksb
.sb_lkid
= 0;
182 gfs2_glock_complete(gl
, ret
);
185 static void gdlm_bast(void *arg
, int mode
)
187 struct gfs2_glock
*gl
= arg
;
189 if (__lockref_is_dead(&gl
->gl_lockref
))
194 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
197 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
200 gfs2_glock_cb(gl
, LM_ST_SHARED
);
203 fs_err(gl
->gl_name
.ln_sbd
, "unknown bast mode %d\n", mode
);
208 /* convert gfs lock-state to dlm lock-mode */
210 static int make_mode(struct gfs2_sbd
*sdp
, const unsigned int lmstate
)
215 case LM_ST_EXCLUSIVE
:
222 fs_err(sdp
, "unknown LM state %d\n", lmstate
);
227 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
232 if (gl
->gl_lksb
.sb_lvbptr
)
233 lkf
|= DLM_LKF_VALBLK
;
235 if (gfs_flags
& LM_FLAG_TRY
)
236 lkf
|= DLM_LKF_NOQUEUE
;
238 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
239 lkf
|= DLM_LKF_NOQUEUE
;
240 lkf
|= DLM_LKF_NOQUEUEBAST
;
243 if (gfs_flags
& LM_FLAG_ANY
) {
244 if (req
== DLM_LOCK_PR
)
245 lkf
|= DLM_LKF_ALTCW
;
246 else if (req
== DLM_LOCK_CW
)
247 lkf
|= DLM_LKF_ALTPR
;
252 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
253 lkf
|= DLM_LKF_CONVERT
;
254 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
255 lkf
|= DLM_LKF_QUECVT
;
261 static void gfs2_reverse_hex(char *c
, u64 value
)
265 *c
-- = hex_asc
[value
& 0x0f];
270 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
273 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
276 char strname
[GDLM_STRNAME_BYTES
] = "";
279 req
= make_mode(gl
->gl_name
.ln_sbd
, req_state
);
280 lkf
= make_flags(gl
, flags
, req
);
281 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
282 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
283 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
284 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
285 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
286 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
287 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
288 gl
->gl_dstamp
= ktime_get_real();
290 gfs2_update_request_times(gl
);
293 * Submit the actual lock request.
297 error
= dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
298 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
299 if (error
== -EBUSY
) {
306 static void gdlm_put_lock(struct gfs2_glock
*gl
)
308 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
309 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
312 BUG_ON(!__lockref_is_dead(&gl
->gl_lockref
));
314 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
319 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
320 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
321 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
322 gfs2_update_request_times(gl
);
324 /* don't want to call dlm if we've unmounted the lock protocol */
325 if (test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
)) {
331 * When the lockspace is released, all remaining glocks will be
332 * unlocked automatically. This is more efficient than unlocking them
333 * individually, but when the lock is held in DLM_LOCK_EX or
334 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
337 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
338 (!gl
->gl_lksb
.sb_lvbptr
|| gl
->gl_state
!= LM_ST_EXCLUSIVE
)) {
339 gfs2_glock_free_later(gl
);
344 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
346 if (error
== -EBUSY
) {
352 fs_err(sdp
, "gdlm_unlock %x,%llx err=%d\n",
354 (unsigned long long)gl
->gl_name
.ln_number
, error
);
358 static void gdlm_cancel(struct gfs2_glock
*gl
)
360 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
361 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
365 * dlm/gfs2 recovery coordination using dlm_recover callbacks
367 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
368 * 1. dlm_controld sees lockspace members change
369 * 2. dlm_controld blocks dlm-kernel locking activity
370 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
371 * 4. dlm_controld starts and finishes its own user level recovery
372 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
373 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
374 * 7. dlm_recoverd does its own lock recovery
375 * 8. dlm_recoverd unblocks dlm-kernel locking activity
376 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
377 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
378 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
379 * 12. gfs2_recover dequeues and recovers journals of failed nodes
380 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
381 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
382 * 15. gfs2_control unblocks normal locking when all journals are recovered
384 * - failures during recovery
386 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
387 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
388 * recovering for a prior failure. gfs2_control needs a way to detect
389 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
390 * the recover_block and recover_start values.
392 * recover_done() provides a new lockspace generation number each time it
393 * is called (step 9). This generation number is saved as recover_start.
394 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
395 * recover_block = recover_start. So, while recover_block is equal to
396 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
397 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
399 * - more specific gfs2 steps in sequence above
401 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
402 * 6. recover_slot records any failed jids (maybe none)
403 * 9. recover_done sets recover_start = new generation number
404 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
405 * 12. gfs2_recover does journal recoveries for failed jids identified above
406 * 14. gfs2_control clears control_lock lvb bits for recovered jids
407 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
408 * again) then do nothing, otherwise if recover_start > recover_block
409 * then clear BLOCK_LOCKS.
411 * - parallel recovery steps across all nodes
413 * All nodes attempt to update the control_lock lvb with the new generation
414 * number and jid bits, but only the first to get the control_lock EX will
415 * do so; others will see that it's already done (lvb already contains new
416 * generation number.)
418 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
419 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
420 * . One node gets control_lock first and writes the lvb, others see it's done
421 * . All nodes attempt to recover jids for which they see control_lock bits set
422 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
423 * . All nodes will eventually see all lvb bits clear and unblock locks
425 * - is there a problem with clearing an lvb bit that should be set
426 * and missing a journal recovery?
429 * 2. lvb bit set for step 1
430 * 3. jid recovered for step 1
431 * 4. jid taken again (new mount)
432 * 5. jid fails (for step 4)
433 * 6. lvb bit set for step 5 (will already be set)
434 * 7. lvb bit cleared for step 3
436 * This is not a problem because the failure in step 5 does not
437 * require recovery, because the mount in step 4 could not have
438 * progressed far enough to unblock locks and access the fs. The
439 * control_mount() function waits for all recoveries to be complete
440 * for the latest lockspace generation before ever unblocking locks
441 * and returning. The mount in step 4 waits until the recovery in
444 * - special case of first mounter: first node to mount the fs
446 * The first node to mount a gfs2 fs needs to check all the journals
447 * and recover any that need recovery before other nodes are allowed
448 * to mount the fs. (Others may begin mounting, but they must wait
449 * for the first mounter to be done before taking locks on the fs
450 * or accessing the fs.) This has two parts:
452 * 1. The mounted_lock tells a node it's the first to mount the fs.
453 * Each node holds the mounted_lock in PR while it's mounted.
454 * Each node tries to acquire the mounted_lock in EX when it mounts.
455 * If a node is granted the mounted_lock EX it means there are no
456 * other mounted nodes (no PR locks exist), and it is the first mounter.
457 * The mounted_lock is demoted to PR when first recovery is done, so
458 * others will fail to get an EX lock, but will get a PR lock.
460 * 2. The control_lock blocks others in control_mount() while the first
461 * mounter is doing first mount recovery of all journals.
462 * A mounting node needs to acquire control_lock in EX mode before
463 * it can proceed. The first mounter holds control_lock in EX while doing
464 * the first mount recovery, blocking mounts from other nodes, then demotes
465 * control_lock to NL when it's done (others_may_mount/first_done),
466 * allowing other nodes to continue mounting.
469 * control_lock EX/NOQUEUE success
470 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
472 * do first mounter recovery
473 * mounted_lock EX->PR
474 * control_lock EX->NL, write lvb generation
477 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
478 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
479 * mounted_lock PR/NOQUEUE success
480 * read lvb generation
481 * control_lock EX->NL
484 * - mount during recovery
486 * If a node mounts while others are doing recovery (not first mounter),
487 * the mounting node will get its initial recover_done() callback without
488 * having seen any previous failures/callbacks.
490 * It must wait for all recoveries preceding its mount to be finished
491 * before it unblocks locks. It does this by repeating the "other mounter"
492 * steps above until the lvb generation number is >= its mount generation
493 * number (from initial recover_done) and all lvb bits are clear.
495 * - control_lock lvb format
497 * 4 bytes generation number: the latest dlm lockspace generation number
498 * from recover_done callback. Indicates the jid bitmap has been updated
499 * to reflect all slot failures through that generation.
501 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
502 * that jid N needs recovery.
505 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
507 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
511 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
512 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
513 *lvb_gen
= le32_to_cpu(gen
);
516 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
520 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
521 gen
= cpu_to_le32(lvb_gen
);
522 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
525 static int all_jid_bits_clear(char *lvb
)
527 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
528 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
531 static void sync_wait_cb(void *arg
)
533 struct lm_lockstruct
*ls
= arg
;
534 complete(&ls
->ls_sync_wait
);
537 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
539 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
542 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
544 fs_err(sdp
, "%s lkid %x error %d\n",
545 name
, lksb
->sb_lkid
, error
);
549 wait_for_completion(&ls
->ls_sync_wait
);
551 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
552 fs_err(sdp
, "%s lkid %x status %d\n",
553 name
, lksb
->sb_lkid
, lksb
->sb_status
);
559 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
560 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
562 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
563 char strname
[GDLM_STRNAME_BYTES
];
566 memset(strname
, 0, GDLM_STRNAME_BYTES
);
567 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
569 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
570 strname
, GDLM_STRNAME_BYTES
- 1,
571 0, sync_wait_cb
, ls
, NULL
);
573 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
574 name
, lksb
->sb_lkid
, flags
, mode
, error
);
578 wait_for_completion(&ls
->ls_sync_wait
);
580 status
= lksb
->sb_status
;
582 if (status
&& status
!= -EAGAIN
) {
583 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
584 name
, lksb
->sb_lkid
, flags
, mode
, status
);
590 static int mounted_unlock(struct gfs2_sbd
*sdp
)
592 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
593 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
596 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
598 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
599 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
600 &ls
->ls_mounted_lksb
, "mounted_lock");
603 static int control_unlock(struct gfs2_sbd
*sdp
)
605 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
606 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
609 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
611 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
612 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
613 &ls
->ls_control_lksb
, "control_lock");
617 * remote_withdraw - react to a node withdrawing from the file system
618 * @sdp: The superblock
620 static void remote_withdraw(struct gfs2_sbd
*sdp
)
622 struct gfs2_jdesc
*jd
;
623 int ret
= 0, count
= 0;
625 list_for_each_entry(jd
, &sdp
->sd_jindex_list
, jd_list
) {
626 if (jd
->jd_jid
== sdp
->sd_lockstruct
.ls_jid
)
628 ret
= gfs2_recover_journal(jd
, true);
634 /* Now drop the additional reference we acquired */
635 fs_err(sdp
, "Journals checked: %d, ret = %d.\n", count
, ret
);
638 static void gfs2_control_func(struct work_struct
*work
)
640 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
641 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
642 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
648 /* First check for other nodes that may have done a withdraw. */
649 if (test_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
)) {
650 remote_withdraw(sdp
);
651 clear_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
);
655 spin_lock(&ls
->ls_recover_spin
);
657 * No MOUNT_DONE means we're still mounting; control_mount()
658 * will set this flag, after which this thread will take over
659 * all further clearing of BLOCK_LOCKS.
661 * FIRST_MOUNT means this node is doing first mounter recovery,
662 * for which recovery control is handled by
663 * control_mount()/control_first_done(), not this thread.
665 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
666 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
667 spin_unlock(&ls
->ls_recover_spin
);
670 block_gen
= ls
->ls_recover_block
;
671 start_gen
= ls
->ls_recover_start
;
672 spin_unlock(&ls
->ls_recover_spin
);
675 * Equal block_gen and start_gen implies we are between
676 * recover_prep and recover_done callbacks, which means
677 * dlm recovery is in progress and dlm locking is blocked.
678 * There's no point trying to do any work until recover_done.
681 if (block_gen
== start_gen
)
685 * Propagate recover_submit[] and recover_result[] to lvb:
686 * dlm_recoverd adds to recover_submit[] jids needing recovery
687 * gfs2_recover adds to recover_result[] journal recovery results
689 * set lvb bit for jids in recover_submit[] if the lvb has not
690 * yet been updated for the generation of the failure
692 * clear lvb bit for jids in recover_result[] if the result of
693 * the journal recovery is SUCCESS
696 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
698 fs_err(sdp
, "control lock EX error %d\n", error
);
702 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
704 spin_lock(&ls
->ls_recover_spin
);
705 if (block_gen
!= ls
->ls_recover_block
||
706 start_gen
!= ls
->ls_recover_start
) {
707 fs_info(sdp
, "recover generation %u block1 %u %u\n",
708 start_gen
, block_gen
, ls
->ls_recover_block
);
709 spin_unlock(&ls
->ls_recover_spin
);
710 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
714 recover_size
= ls
->ls_recover_size
;
716 if (lvb_gen
<= start_gen
) {
718 * Clear lvb bits for jids we've successfully recovered.
719 * Because all nodes attempt to recover failed journals,
720 * a journal can be recovered multiple times successfully
721 * in succession. Only the first will really do recovery,
722 * the others find it clean, but still report a successful
723 * recovery. So, another node may have already recovered
724 * the jid and cleared the lvb bit for it.
726 for (i
= 0; i
< recover_size
; i
++) {
727 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
730 ls
->ls_recover_result
[i
] = 0;
732 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
735 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
740 if (lvb_gen
== start_gen
) {
742 * Failed slots before start_gen are already set in lvb.
744 for (i
= 0; i
< recover_size
; i
++) {
745 if (!ls
->ls_recover_submit
[i
])
747 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
748 ls
->ls_recover_submit
[i
] = 0;
750 } else if (lvb_gen
< start_gen
) {
752 * Failed slots before start_gen are not yet set in lvb.
754 for (i
= 0; i
< recover_size
; i
++) {
755 if (!ls
->ls_recover_submit
[i
])
757 if (ls
->ls_recover_submit
[i
] < start_gen
) {
758 ls
->ls_recover_submit
[i
] = 0;
759 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
762 /* even if there are no bits to set, we need to write the
763 latest generation to the lvb */
767 * we should be getting a recover_done() for lvb_gen soon
770 spin_unlock(&ls
->ls_recover_spin
);
773 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
774 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
776 flags
= DLM_LKF_CONVERT
;
779 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
781 fs_err(sdp
, "control lock NL error %d\n", error
);
786 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
787 * and clear a jid bit in the lvb if the recovery is a success.
788 * Eventually all journals will be recovered, all jid bits will
789 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
792 for (i
= 0; i
< recover_size
; i
++) {
793 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
794 fs_info(sdp
, "recover generation %u jid %d\n",
796 gfs2_recover_set(sdp
, i
);
804 * No more jid bits set in lvb, all recovery is done, unblock locks
805 * (unless a new recover_prep callback has occured blocking locks
806 * again while working above)
809 spin_lock(&ls
->ls_recover_spin
);
810 if (ls
->ls_recover_block
== block_gen
&&
811 ls
->ls_recover_start
== start_gen
) {
812 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
813 spin_unlock(&ls
->ls_recover_spin
);
814 fs_info(sdp
, "recover generation %u done\n", start_gen
);
815 gfs2_glock_thaw(sdp
);
817 fs_info(sdp
, "recover generation %u block2 %u %u\n",
818 start_gen
, block_gen
, ls
->ls_recover_block
);
819 spin_unlock(&ls
->ls_recover_spin
);
823 static int control_mount(struct gfs2_sbd
*sdp
)
825 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
826 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
831 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
832 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
833 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
834 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
835 init_completion(&ls
->ls_sync_wait
);
837 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
839 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
841 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
845 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
847 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
851 mounted_mode
= DLM_LOCK_NL
;
854 if (retries
++ && signal_pending(current
)) {
860 * We always start with both locks in NL. control_lock is
861 * demoted to NL below so we don't need to do it here.
864 if (mounted_mode
!= DLM_LOCK_NL
) {
865 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
868 mounted_mode
= DLM_LOCK_NL
;
872 * Other nodes need to do some work in dlm recovery and gfs2_control
873 * before the recover_done and control_lock will be ready for us below.
874 * A delay here is not required but often avoids having to retry.
877 msleep_interruptible(500);
880 * Acquire control_lock in EX and mounted_lock in either EX or PR.
881 * control_lock lvb keeps track of any pending journal recoveries.
882 * mounted_lock indicates if any other nodes have the fs mounted.
885 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
886 if (error
== -EAGAIN
) {
889 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
894 * If we're a spectator, we don't want to take the lock in EX because
895 * we cannot do the first-mount responsibility it implies: recovery.
897 if (sdp
->sd_args
.ar_spectator
)
900 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
902 mounted_mode
= DLM_LOCK_EX
;
904 } else if (error
!= -EAGAIN
) {
905 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
909 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
911 mounted_mode
= DLM_LOCK_PR
;
914 /* not even -EAGAIN should happen here */
915 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
921 * If we got both locks above in EX, then we're the first mounter.
922 * If not, then we need to wait for the control_lock lvb to be
923 * updated by other mounted nodes to reflect our mount generation.
925 * In simple first mounter cases, first mounter will see zero lvb_gen,
926 * but in cases where all existing nodes leave/fail before mounting
927 * nodes finish control_mount, then all nodes will be mounting and
928 * lvb_gen will be non-zero.
931 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
933 if (lvb_gen
== 0xFFFFFFFF) {
934 /* special value to force mount attempts to fail */
935 fs_err(sdp
, "control_mount control_lock disabled\n");
940 if (mounted_mode
== DLM_LOCK_EX
) {
941 /* first mounter, keep both EX while doing first recovery */
942 spin_lock(&ls
->ls_recover_spin
);
943 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
944 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
945 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
946 spin_unlock(&ls
->ls_recover_spin
);
947 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
951 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
956 * We are not first mounter, now we need to wait for the control_lock
957 * lvb generation to be >= the generation from our first recover_done
958 * and all lvb bits to be clear (no pending journal recoveries.)
961 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
962 /* journals need recovery, wait until all are clear */
963 fs_info(sdp
, "control_mount wait for journal recovery\n");
967 spin_lock(&ls
->ls_recover_spin
);
968 block_gen
= ls
->ls_recover_block
;
969 start_gen
= ls
->ls_recover_start
;
970 mount_gen
= ls
->ls_recover_mount
;
972 if (lvb_gen
< mount_gen
) {
973 /* wait for mounted nodes to update control_lock lvb to our
974 generation, which might include new recovery bits set */
975 if (sdp
->sd_args
.ar_spectator
) {
976 fs_info(sdp
, "Recovery is required. Waiting for a "
977 "non-spectator to mount.\n");
978 msleep_interruptible(1000);
980 fs_info(sdp
, "control_mount wait1 block %u start %u "
981 "mount %u lvb %u flags %lx\n", block_gen
,
982 start_gen
, mount_gen
, lvb_gen
,
983 ls
->ls_recover_flags
);
985 spin_unlock(&ls
->ls_recover_spin
);
989 if (lvb_gen
!= start_gen
) {
990 /* wait for mounted nodes to update control_lock lvb to the
991 latest recovery generation */
992 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
993 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
994 lvb_gen
, ls
->ls_recover_flags
);
995 spin_unlock(&ls
->ls_recover_spin
);
999 if (block_gen
== start_gen
) {
1000 /* dlm recovery in progress, wait for it to finish */
1001 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
1002 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
1003 lvb_gen
, ls
->ls_recover_flags
);
1004 spin_unlock(&ls
->ls_recover_spin
);
1008 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1009 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
1010 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1011 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1012 spin_unlock(&ls
->ls_recover_spin
);
1016 mounted_unlock(sdp
);
1017 control_unlock(sdp
);
1021 static int control_first_done(struct gfs2_sbd
*sdp
)
1023 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1024 uint32_t start_gen
, block_gen
;
1028 spin_lock(&ls
->ls_recover_spin
);
1029 start_gen
= ls
->ls_recover_start
;
1030 block_gen
= ls
->ls_recover_block
;
1032 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
1033 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1034 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1035 /* sanity check, should not happen */
1036 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
1037 start_gen
, block_gen
, ls
->ls_recover_flags
);
1038 spin_unlock(&ls
->ls_recover_spin
);
1039 control_unlock(sdp
);
1043 if (start_gen
== block_gen
) {
1045 * Wait for the end of a dlm recovery cycle to switch from
1046 * first mounter recovery. We can ignore any recover_slot
1047 * callbacks between the recover_prep and next recover_done
1048 * because we are still the first mounter and any failed nodes
1049 * have not fully mounted, so they don't need recovery.
1051 spin_unlock(&ls
->ls_recover_spin
);
1052 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
1054 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
1055 TASK_UNINTERRUPTIBLE
);
1059 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1060 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
1061 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1062 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1063 spin_unlock(&ls
->ls_recover_spin
);
1065 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
1066 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
1068 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
1070 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
1072 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
1074 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
1080 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1081 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1082 * gfs2 jids start at 0, so jid = slot - 1)
1085 #define RECOVER_SIZE_INC 16
1087 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1090 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1091 uint32_t *submit
= NULL
;
1092 uint32_t *result
= NULL
;
1093 uint32_t old_size
, new_size
;
1096 if (!ls
->ls_lvb_bits
) {
1097 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1098 if (!ls
->ls_lvb_bits
)
1103 for (i
= 0; i
< num_slots
; i
++) {
1104 if (max_jid
< slots
[i
].slot
- 1)
1105 max_jid
= slots
[i
].slot
- 1;
1108 old_size
= ls
->ls_recover_size
;
1109 new_size
= old_size
;
1110 while (new_size
< max_jid
+ 1)
1111 new_size
+= RECOVER_SIZE_INC
;
1112 if (new_size
== old_size
)
1115 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1116 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1117 if (!submit
|| !result
) {
1123 spin_lock(&ls
->ls_recover_spin
);
1124 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1125 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1126 kfree(ls
->ls_recover_submit
);
1127 kfree(ls
->ls_recover_result
);
1128 ls
->ls_recover_submit
= submit
;
1129 ls
->ls_recover_result
= result
;
1130 ls
->ls_recover_size
= new_size
;
1131 spin_unlock(&ls
->ls_recover_spin
);
1135 static void free_recover_size(struct lm_lockstruct
*ls
)
1137 kfree(ls
->ls_lvb_bits
);
1138 kfree(ls
->ls_recover_submit
);
1139 kfree(ls
->ls_recover_result
);
1140 ls
->ls_recover_submit
= NULL
;
1141 ls
->ls_recover_result
= NULL
;
1142 ls
->ls_recover_size
= 0;
1143 ls
->ls_lvb_bits
= NULL
;
1146 /* dlm calls before it does lock recovery */
1148 static void gdlm_recover_prep(void *arg
)
1150 struct gfs2_sbd
*sdp
= arg
;
1151 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1153 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1154 fs_err(sdp
, "recover_prep ignored due to withdraw.\n");
1157 spin_lock(&ls
->ls_recover_spin
);
1158 ls
->ls_recover_block
= ls
->ls_recover_start
;
1159 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1161 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1162 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1163 spin_unlock(&ls
->ls_recover_spin
);
1166 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1167 spin_unlock(&ls
->ls_recover_spin
);
1170 /* dlm calls after recover_prep has been completed on all lockspace members;
1171 identifies slot/jid of failed member */
1173 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1175 struct gfs2_sbd
*sdp
= arg
;
1176 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1177 int jid
= slot
->slot
- 1;
1179 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1180 fs_err(sdp
, "recover_slot jid %d ignored due to withdraw.\n",
1184 spin_lock(&ls
->ls_recover_spin
);
1185 if (ls
->ls_recover_size
< jid
+ 1) {
1186 fs_err(sdp
, "recover_slot jid %d gen %u short size %d\n",
1187 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1188 spin_unlock(&ls
->ls_recover_spin
);
1192 if (ls
->ls_recover_submit
[jid
]) {
1193 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1194 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1196 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1197 spin_unlock(&ls
->ls_recover_spin
);
1200 /* dlm calls after recover_slot and after it completes lock recovery */
1202 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1203 int our_slot
, uint32_t generation
)
1205 struct gfs2_sbd
*sdp
= arg
;
1206 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1208 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1209 fs_err(sdp
, "recover_done ignored due to withdraw.\n");
1212 /* ensure the ls jid arrays are large enough */
1213 set_recover_size(sdp
, slots
, num_slots
);
1215 spin_lock(&ls
->ls_recover_spin
);
1216 ls
->ls_recover_start
= generation
;
1218 if (!ls
->ls_recover_mount
) {
1219 ls
->ls_recover_mount
= generation
;
1220 ls
->ls_jid
= our_slot
- 1;
1223 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1224 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1226 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1227 smp_mb__after_atomic();
1228 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1229 spin_unlock(&ls
->ls_recover_spin
);
1232 /* gfs2_recover thread has a journal recovery result */
1234 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1235 unsigned int result
)
1237 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1239 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1240 fs_err(sdp
, "recovery_result jid %d ignored due to withdraw.\n",
1244 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1247 /* don't care about the recovery of own journal during mount */
1248 if (jid
== ls
->ls_jid
)
1251 spin_lock(&ls
->ls_recover_spin
);
1252 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1253 spin_unlock(&ls
->ls_recover_spin
);
1256 if (ls
->ls_recover_size
< jid
+ 1) {
1257 fs_err(sdp
, "recovery_result jid %d short size %d\n",
1258 jid
, ls
->ls_recover_size
);
1259 spin_unlock(&ls
->ls_recover_spin
);
1263 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1264 result
== LM_RD_GAVEUP
? "busy" : "success");
1266 ls
->ls_recover_result
[jid
] = result
;
1268 /* GAVEUP means another node is recovering the journal; delay our
1269 next attempt to recover it, to give the other node a chance to
1270 finish before trying again */
1272 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1273 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1274 result
== LM_RD_GAVEUP
? HZ
: 0);
1275 spin_unlock(&ls
->ls_recover_spin
);
1278 static const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1279 .recover_prep
= gdlm_recover_prep
,
1280 .recover_slot
= gdlm_recover_slot
,
1281 .recover_done
= gdlm_recover_done
,
1284 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1286 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1287 char cluster
[GFS2_LOCKNAME_LEN
];
1290 int error
, ops_result
;
1293 * initialize everything
1296 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1297 spin_lock_init(&ls
->ls_recover_spin
);
1298 ls
->ls_recover_flags
= 0;
1299 ls
->ls_recover_mount
= 0;
1300 ls
->ls_recover_start
= 0;
1301 ls
->ls_recover_block
= 0;
1302 ls
->ls_recover_size
= 0;
1303 ls
->ls_recover_submit
= NULL
;
1304 ls
->ls_recover_result
= NULL
;
1305 ls
->ls_lvb_bits
= NULL
;
1307 error
= set_recover_size(sdp
, NULL
, 0);
1312 * prepare dlm_new_lockspace args
1315 fsname
= strchr(table
, ':');
1317 fs_info(sdp
, "no fsname found\n");
1321 memset(cluster
, 0, sizeof(cluster
));
1322 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1325 flags
= DLM_LSFL_NEWEXCL
;
1328 * create/join lockspace
1331 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1332 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1335 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1339 if (ops_result
< 0) {
1341 * dlm does not support ops callbacks,
1342 * old dlm_controld/gfs_controld are used, try without ops.
1344 fs_info(sdp
, "dlm lockspace ops not used\n");
1345 free_recover_size(ls
);
1346 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1350 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1351 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1357 * control_mount() uses control_lock to determine first mounter,
1358 * and for later mounts, waits for any recoveries to be cleared.
1361 error
= control_mount(sdp
);
1363 fs_err(sdp
, "mount control error %d\n", error
);
1367 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1368 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1369 smp_mb__after_atomic();
1370 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1374 dlm_release_lockspace(ls
->ls_dlm
, 2);
1376 free_recover_size(ls
);
1381 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1383 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1386 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1389 error
= control_first_done(sdp
);
1391 fs_err(sdp
, "mount first_done error %d\n", error
);
1394 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1396 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1398 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1401 /* wait for gfs2_control_wq to be done with this mount */
1403 spin_lock(&ls
->ls_recover_spin
);
1404 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1405 spin_unlock(&ls
->ls_recover_spin
);
1406 flush_delayed_work(&sdp
->sd_control_work
);
1408 /* mounted_lock and control_lock will be purged in dlm recovery */
1411 dlm_release_lockspace(ls
->ls_dlm
, 2);
1415 free_recover_size(ls
);
1418 static const match_table_t dlm_tokens
= {
1419 { Opt_jid
, "jid=%d"},
1421 { Opt_first
, "first=%d"},
1422 { Opt_nodir
, "nodir=%d"},
1426 const struct lm_lockops gfs2_dlm_ops
= {
1427 .lm_proto_name
= "lock_dlm",
1428 .lm_mount
= gdlm_mount
,
1429 .lm_first_done
= gdlm_first_done
,
1430 .lm_recovery_result
= gdlm_recovery_result
,
1431 .lm_unmount
= gdlm_unmount
,
1432 .lm_put_lock
= gdlm_put_lock
,
1433 .lm_lock
= gdlm_lock
,
1434 .lm_cancel
= gdlm_cancel
,
1435 .lm_tokens
= &dlm_tokens
,