drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / fs / ocfs2 / journal.c
blob1bf188b6866a6776ca39241e606b37f7b55880bb
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * journal.c
5 * Defines functions of journalling api
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
8 */
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
20 #include <cluster/masklog.h>
22 #include "ocfs2.h"
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
44 DEFINE_SPINLOCK(trans_inc_lock);
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50 int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55 int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57 int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59 int slot,
60 enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63 int slot_num,
64 struct ocfs2_dinode *la_dinode,
65 struct ocfs2_dinode *tl_dinode,
66 struct ocfs2_quota_recovery *qrec,
67 enum ocfs2_orphan_reco_type orphan_reco_type);
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 return __ocfs2_wait_on_mount(osb, 0);
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 return __ocfs2_wait_on_mount(osb, 1);
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
84 enum ocfs2_replay_state {
85 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
86 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
87 REPLAY_DONE /* Replay was already queued */
90 struct ocfs2_replay_map {
91 unsigned int rm_slots;
92 enum ocfs2_replay_state rm_state;
93 unsigned char rm_replay_slots[] __counted_by(rm_slots);
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 if (!osb->replay_map)
99 return;
101 /* If we've already queued the replay, we don't have any more to do */
102 if (osb->replay_map->rm_state == REPLAY_DONE)
103 return;
105 osb->replay_map->rm_state = state;
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 struct ocfs2_replay_map *replay_map;
111 int i, node_num;
113 /* If replay map is already set, we don't do it again */
114 if (osb->replay_map)
115 return 0;
117 replay_map = kzalloc(struct_size(replay_map, rm_replay_slots,
118 osb->max_slots),
119 GFP_KERNEL);
120 if (!replay_map) {
121 mlog_errno(-ENOMEM);
122 return -ENOMEM;
125 spin_lock(&osb->osb_lock);
127 replay_map->rm_slots = osb->max_slots;
128 replay_map->rm_state = REPLAY_UNNEEDED;
130 /* set rm_replay_slots for offline slot(s) */
131 for (i = 0; i < replay_map->rm_slots; i++) {
132 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133 replay_map->rm_replay_slots[i] = 1;
136 osb->replay_map = replay_map;
137 spin_unlock(&osb->osb_lock);
138 return 0;
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142 enum ocfs2_orphan_reco_type orphan_reco_type)
144 struct ocfs2_replay_map *replay_map = osb->replay_map;
145 int i;
147 if (!replay_map)
148 return;
150 if (replay_map->rm_state != REPLAY_NEEDED)
151 return;
153 for (i = 0; i < replay_map->rm_slots; i++)
154 if (replay_map->rm_replay_slots[i])
155 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156 NULL, NULL,
157 orphan_reco_type);
158 replay_map->rm_state = REPLAY_DONE;
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 struct ocfs2_replay_map *replay_map = osb->replay_map;
165 if (!osb->replay_map)
166 return;
168 kfree(replay_map);
169 osb->replay_map = NULL;
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 struct ocfs2_recovery_map *rm;
176 mutex_init(&osb->recovery_lock);
177 osb->disable_recovery = 0;
178 osb->recovery_thread_task = NULL;
179 init_waitqueue_head(&osb->recovery_event);
181 rm = kzalloc(struct_size(rm, rm_entries, osb->max_slots),
182 GFP_KERNEL);
183 if (!rm) {
184 mlog_errno(-ENOMEM);
185 return -ENOMEM;
188 osb->recovery_map = rm;
190 return 0;
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194 * memory barriers to make sure that we'll see the null task before
195 * being woken up */
196 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
198 mb();
199 return osb->recovery_thread_task != NULL;
202 void ocfs2_recovery_exit(struct ocfs2_super *osb)
204 struct ocfs2_recovery_map *rm;
206 /* disable any new recovery threads and wait for any currently
207 * running ones to exit. Do this before setting the vol_state. */
208 mutex_lock(&osb->recovery_lock);
209 osb->disable_recovery = 1;
210 mutex_unlock(&osb->recovery_lock);
211 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
213 /* At this point, we know that no more recovery threads can be
214 * launched, so wait for any recovery completion work to
215 * complete. */
216 if (osb->ocfs2_wq)
217 flush_workqueue(osb->ocfs2_wq);
220 * Now that recovery is shut down, and the osb is about to be
221 * freed, the osb_lock is not taken here.
223 rm = osb->recovery_map;
224 /* XXX: Should we bug if there are dirty entries? */
226 kfree(rm);
229 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
230 unsigned int node_num)
232 int i;
233 struct ocfs2_recovery_map *rm = osb->recovery_map;
235 assert_spin_locked(&osb->osb_lock);
237 for (i = 0; i < rm->rm_used; i++) {
238 if (rm->rm_entries[i] == node_num)
239 return 1;
242 return 0;
245 /* Behaves like test-and-set. Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
247 unsigned int node_num)
249 struct ocfs2_recovery_map *rm = osb->recovery_map;
251 spin_lock(&osb->osb_lock);
252 if (__ocfs2_recovery_map_test(osb, node_num)) {
253 spin_unlock(&osb->osb_lock);
254 return 1;
257 /* XXX: Can this be exploited? Not from o2dlm... */
258 BUG_ON(rm->rm_used >= osb->max_slots);
260 rm->rm_entries[rm->rm_used] = node_num;
261 rm->rm_used++;
262 spin_unlock(&osb->osb_lock);
264 return 0;
267 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
268 unsigned int node_num)
270 int i;
271 struct ocfs2_recovery_map *rm = osb->recovery_map;
273 spin_lock(&osb->osb_lock);
275 for (i = 0; i < rm->rm_used; i++) {
276 if (rm->rm_entries[i] == node_num)
277 break;
280 if (i < rm->rm_used) {
281 /* XXX: be careful with the pointer math */
282 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
283 (rm->rm_used - i - 1) * sizeof(unsigned int));
284 rm->rm_used--;
287 spin_unlock(&osb->osb_lock);
290 static int ocfs2_commit_cache(struct ocfs2_super *osb)
292 int status = 0;
293 unsigned int flushed;
294 struct ocfs2_journal *journal = NULL;
296 journal = osb->journal;
298 /* Flush all pending commits and checkpoint the journal. */
299 down_write(&journal->j_trans_barrier);
301 flushed = atomic_read(&journal->j_num_trans);
302 trace_ocfs2_commit_cache_begin(flushed);
303 if (flushed == 0) {
304 up_write(&journal->j_trans_barrier);
305 goto finally;
308 jbd2_journal_lock_updates(journal->j_journal);
309 status = jbd2_journal_flush(journal->j_journal, 0);
310 jbd2_journal_unlock_updates(journal->j_journal);
311 if (status < 0) {
312 up_write(&journal->j_trans_barrier);
313 mlog_errno(status);
314 goto finally;
317 ocfs2_inc_trans_id(journal);
319 flushed = atomic_read(&journal->j_num_trans);
320 atomic_set(&journal->j_num_trans, 0);
321 up_write(&journal->j_trans_barrier);
323 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
325 ocfs2_wake_downconvert_thread(osb);
326 wake_up(&journal->j_checkpointed);
327 finally:
328 return status;
331 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
333 journal_t *journal = osb->journal->j_journal;
334 handle_t *handle;
336 BUG_ON(!osb || !osb->journal->j_journal);
338 if (ocfs2_is_hard_readonly(osb))
339 return ERR_PTR(-EROFS);
341 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
342 BUG_ON(max_buffs <= 0);
344 /* Nested transaction? Just return the handle... */
345 if (journal_current_handle())
346 return jbd2_journal_start(journal, max_buffs);
348 sb_start_intwrite(osb->sb);
350 down_read(&osb->journal->j_trans_barrier);
352 handle = jbd2_journal_start(journal, max_buffs);
353 if (IS_ERR(handle)) {
354 up_read(&osb->journal->j_trans_barrier);
355 sb_end_intwrite(osb->sb);
357 mlog_errno(PTR_ERR(handle));
359 if (is_journal_aborted(journal)) {
360 ocfs2_abort(osb->sb, "Detected aborted journal\n");
361 handle = ERR_PTR(-EROFS);
363 } else {
364 if (!ocfs2_mount_local(osb))
365 atomic_inc(&(osb->journal->j_num_trans));
368 return handle;
371 int ocfs2_commit_trans(struct ocfs2_super *osb,
372 handle_t *handle)
374 int ret, nested;
375 struct ocfs2_journal *journal = osb->journal;
377 BUG_ON(!handle);
379 nested = handle->h_ref > 1;
380 ret = jbd2_journal_stop(handle);
381 if (ret < 0)
382 mlog_errno(ret);
384 if (!nested) {
385 up_read(&journal->j_trans_barrier);
386 sb_end_intwrite(osb->sb);
389 return ret;
393 * 'nblocks' is what you want to add to the current transaction.
395 * This might call jbd2_journal_restart() which will commit dirty buffers
396 * and then restart the transaction. Before calling
397 * ocfs2_extend_trans(), any changed blocks should have been
398 * dirtied. After calling it, all blocks which need to be changed must
399 * go through another set of journal_access/journal_dirty calls.
401 * WARNING: This will not release any semaphores or disk locks taken
402 * during the transaction, so make sure they were taken *before*
403 * start_trans or we'll have ordering deadlocks.
405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406 * good because transaction ids haven't yet been recorded on the
407 * cluster locks associated with this handle.
409 int ocfs2_extend_trans(handle_t *handle, int nblocks)
411 int status, old_nblocks;
413 BUG_ON(!handle);
414 BUG_ON(nblocks < 0);
416 if (!nblocks)
417 return 0;
419 old_nblocks = jbd2_handle_buffer_credits(handle);
421 trace_ocfs2_extend_trans(old_nblocks, nblocks);
423 #ifdef CONFIG_OCFS2_DEBUG_FS
424 status = 1;
425 #else
426 status = jbd2_journal_extend(handle, nblocks, 0);
427 if (status < 0) {
428 mlog_errno(status);
429 goto bail;
431 #endif
433 if (status > 0) {
434 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
435 status = jbd2_journal_restart(handle,
436 old_nblocks + nblocks);
437 if (status < 0) {
438 mlog_errno(status);
439 goto bail;
443 status = 0;
444 bail:
445 return status;
449 * Make sure handle has at least 'nblocks' credits available. If it does not
450 * have that many credits available, we will try to extend the handle to have
451 * enough credits. If that fails, we will restart transaction to have enough
452 * credits. Similar notes regarding data consistency and locking implications
453 * as for ocfs2_extend_trans() apply here.
455 int ocfs2_assure_trans_credits(handle_t *handle, int nblocks)
457 int old_nblks = jbd2_handle_buffer_credits(handle);
459 trace_ocfs2_assure_trans_credits(old_nblks);
460 if (old_nblks >= nblocks)
461 return 0;
462 return ocfs2_extend_trans(handle, nblocks - old_nblks);
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 int status, old_nblks;
475 BUG_ON(!handle);
477 old_nblks = jbd2_handle_buffer_credits(handle);
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480 if (old_nblks < thresh)
481 return 0;
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
495 bail:
496 return status;
499 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
501 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
505 struct buffer_head *bh,
506 void *data, size_t size)
508 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
516 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
524 struct buffer_head *bh,
525 void *data, size_t size)
527 struct ocfs2_disk_dqtrailer *dqt =
528 ocfs2_block_dqtrailer(size, data);
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
536 ocfs2_block_check_compute(data, size, &dqt->dq_check);
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
544 struct buffer_head *bh,
545 void *data, size_t size)
547 struct ocfs2_dir_block_trailer *trailer =
548 ocfs2_dir_trailer_from_size(size, data);
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
556 ocfs2_block_check_compute(data, size, &trailer->db_check);
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
560 struct buffer_head *bh)
562 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
564 mlog(ML_ERROR,
565 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
566 "bh->b_blocknr = %llu\n",
567 (unsigned long)bh,
568 (unsigned long long)bh->b_blocknr);
570 ocfs2_error(ot->sb,
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
574 static void ocfs2_setup_csum_triggers(struct super_block *sb,
575 enum ocfs2_journal_trigger_type type,
576 struct ocfs2_triggers *ot)
578 BUG_ON(type >= OCFS2_JOURNAL_TRIGGER_COUNT);
580 switch (type) {
581 case OCFS2_JTR_DI:
582 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
583 ot->ot_offset = offsetof(struct ocfs2_dinode, i_check);
584 break;
585 case OCFS2_JTR_EB:
586 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
587 ot->ot_offset = offsetof(struct ocfs2_extent_block, h_check);
588 break;
589 case OCFS2_JTR_RB:
590 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
591 ot->ot_offset = offsetof(struct ocfs2_refcount_block, rf_check);
592 break;
593 case OCFS2_JTR_GD:
594 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
595 ot->ot_offset = offsetof(struct ocfs2_group_desc, bg_check);
596 break;
597 case OCFS2_JTR_DB:
598 ot->ot_triggers.t_frozen = ocfs2_db_frozen_trigger;
599 break;
600 case OCFS2_JTR_XB:
601 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
602 ot->ot_offset = offsetof(struct ocfs2_xattr_block, xb_check);
603 break;
604 case OCFS2_JTR_DQ:
605 ot->ot_triggers.t_frozen = ocfs2_dq_frozen_trigger;
606 break;
607 case OCFS2_JTR_DR:
608 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
609 ot->ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check);
610 break;
611 case OCFS2_JTR_DL:
612 ot->ot_triggers.t_frozen = ocfs2_frozen_trigger;
613 ot->ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check);
614 break;
615 case OCFS2_JTR_NONE:
616 /* To make compiler happy... */
617 return;
620 ot->ot_triggers.t_abort = ocfs2_abort_trigger;
621 ot->sb = sb;
624 void ocfs2_initialize_journal_triggers(struct super_block *sb,
625 struct ocfs2_triggers triggers[])
627 enum ocfs2_journal_trigger_type type;
629 for (type = OCFS2_JTR_DI; type < OCFS2_JOURNAL_TRIGGER_COUNT; type++)
630 ocfs2_setup_csum_triggers(sb, type, &triggers[type]);
633 static int __ocfs2_journal_access(handle_t *handle,
634 struct ocfs2_caching_info *ci,
635 struct buffer_head *bh,
636 struct ocfs2_triggers *triggers,
637 int type)
639 int status;
640 struct ocfs2_super *osb =
641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
643 BUG_ON(!ci || !ci->ci_ops);
644 BUG_ON(!handle);
645 BUG_ON(!bh);
647 trace_ocfs2_journal_access(
648 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649 (unsigned long long)bh->b_blocknr, type, bh->b_size);
651 /* we can safely remove this assertion after testing. */
652 if (!buffer_uptodate(bh)) {
653 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655 (unsigned long long)bh->b_blocknr, bh->b_state);
657 lock_buffer(bh);
659 * A previous transaction with a couple of buffer heads fail
660 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 * For current transaction, the bh is just among those error
662 * bhs which previous transaction handle. We can't just clear
663 * its BH_Write_EIO and reuse directly, since other bhs are
664 * not written to disk yet and that will cause metadata
665 * inconsistency. So we should set fs read-only to avoid
666 * further damage.
668 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669 unlock_buffer(bh);
670 return ocfs2_error(osb->sb, "A previous attempt to "
671 "write this buffer head failed\n");
673 unlock_buffer(bh);
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb->journal, ci);
684 ocfs2_metadata_cache_io_lock(ci);
685 switch (type) {
686 case OCFS2_JOURNAL_ACCESS_CREATE:
687 case OCFS2_JOURNAL_ACCESS_WRITE:
688 status = jbd2_journal_get_write_access(handle, bh);
689 break;
691 case OCFS2_JOURNAL_ACCESS_UNDO:
692 status = jbd2_journal_get_undo_access(handle, bh);
693 break;
695 default:
696 status = -EINVAL;
697 mlog(ML_ERROR, "Unknown access type!\n");
699 if (!status && ocfs2_meta_ecc(osb) && triggers)
700 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701 ocfs2_metadata_cache_io_unlock(ci);
703 if (status < 0)
704 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705 status, type);
707 return status;
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711 struct buffer_head *bh, int type)
713 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
715 return __ocfs2_journal_access(handle, ci, bh,
716 &osb->s_journal_triggers[OCFS2_JTR_DI],
717 type);
720 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
721 struct buffer_head *bh, int type)
723 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
725 return __ocfs2_journal_access(handle, ci, bh,
726 &osb->s_journal_triggers[OCFS2_JTR_EB],
727 type);
730 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
733 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
735 return __ocfs2_journal_access(handle, ci, bh,
736 &osb->s_journal_triggers[OCFS2_JTR_RB],
737 type);
740 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
741 struct buffer_head *bh, int type)
743 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
745 return __ocfs2_journal_access(handle, ci, bh,
746 &osb->s_journal_triggers[OCFS2_JTR_GD],
747 type);
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 struct buffer_head *bh, int type)
753 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
755 return __ocfs2_journal_access(handle, ci, bh,
756 &osb->s_journal_triggers[OCFS2_JTR_DB],
757 type);
760 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
761 struct buffer_head *bh, int type)
763 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
765 return __ocfs2_journal_access(handle, ci, bh,
766 &osb->s_journal_triggers[OCFS2_JTR_XB],
767 type);
770 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
771 struct buffer_head *bh, int type)
773 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
775 return __ocfs2_journal_access(handle, ci, bh,
776 &osb->s_journal_triggers[OCFS2_JTR_DQ],
777 type);
780 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
781 struct buffer_head *bh, int type)
783 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
785 return __ocfs2_journal_access(handle, ci, bh,
786 &osb->s_journal_triggers[OCFS2_JTR_DR],
787 type);
790 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
791 struct buffer_head *bh, int type)
793 struct ocfs2_super *osb = OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
795 return __ocfs2_journal_access(handle, ci, bh,
796 &osb->s_journal_triggers[OCFS2_JTR_DL],
797 type);
800 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
801 struct buffer_head *bh, int type)
803 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
806 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
808 int status;
810 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
812 status = jbd2_journal_dirty_metadata(handle, bh);
813 if (status) {
814 mlog_errno(status);
815 if (!is_handle_aborted(handle)) {
816 journal_t *journal = handle->h_transaction->t_journal;
818 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed: "
819 "handle type %u started at line %u, credits %u/%u "
820 "errcode %d. Aborting transaction and journal.\n",
821 handle->h_type, handle->h_line_no,
822 handle->h_requested_credits,
823 jbd2_handle_buffer_credits(handle), status);
824 handle->h_err = status;
825 jbd2_journal_abort_handle(handle);
826 jbd2_journal_abort(journal, status);
831 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
833 void ocfs2_set_journal_params(struct ocfs2_super *osb)
835 journal_t *journal = osb->journal->j_journal;
836 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
838 if (osb->osb_commit_interval)
839 commit_interval = osb->osb_commit_interval;
841 write_lock(&journal->j_state_lock);
842 journal->j_commit_interval = commit_interval;
843 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
844 journal->j_flags |= JBD2_BARRIER;
845 else
846 journal->j_flags &= ~JBD2_BARRIER;
847 write_unlock(&journal->j_state_lock);
851 * alloc & initialize skeleton for journal structure.
852 * ocfs2_journal_init() will make fs have journal ability.
854 int ocfs2_journal_alloc(struct ocfs2_super *osb)
856 int status = 0;
857 struct ocfs2_journal *journal;
859 journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
860 if (!journal) {
861 mlog(ML_ERROR, "unable to alloc journal\n");
862 status = -ENOMEM;
863 goto bail;
865 osb->journal = journal;
866 journal->j_osb = osb;
868 atomic_set(&journal->j_num_trans, 0);
869 init_rwsem(&journal->j_trans_barrier);
870 init_waitqueue_head(&journal->j_checkpointed);
871 spin_lock_init(&journal->j_lock);
872 journal->j_trans_id = 1UL;
873 INIT_LIST_HEAD(&journal->j_la_cleanups);
874 INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
875 journal->j_state = OCFS2_JOURNAL_FREE;
877 bail:
878 return status;
881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
883 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
884 struct writeback_control wbc = {
885 .sync_mode = WB_SYNC_ALL,
886 .nr_to_write = mapping->nrpages * 2,
887 .range_start = jinode->i_dirty_start,
888 .range_end = jinode->i_dirty_end,
891 return filemap_fdatawrite_wbc(mapping, &wbc);
894 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
896 int status = -1;
897 struct inode *inode = NULL; /* the journal inode */
898 journal_t *j_journal = NULL;
899 struct ocfs2_journal *journal = osb->journal;
900 struct ocfs2_dinode *di = NULL;
901 struct buffer_head *bh = NULL;
902 int inode_lock = 0;
904 BUG_ON(!journal);
905 /* already have the inode for our journal */
906 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
907 osb->slot_num);
908 if (inode == NULL) {
909 status = -EACCES;
910 mlog_errno(status);
911 goto done;
913 if (is_bad_inode(inode)) {
914 mlog(ML_ERROR, "access error (bad inode)\n");
915 iput(inode);
916 inode = NULL;
917 status = -EACCES;
918 goto done;
921 SET_INODE_JOURNAL(inode);
922 OCFS2_I(inode)->ip_open_count++;
924 /* Skip recovery waits here - journal inode metadata never
925 * changes in a live cluster so it can be considered an
926 * exception to the rule. */
927 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
928 if (status < 0) {
929 if (status != -ERESTARTSYS)
930 mlog(ML_ERROR, "Could not get lock on journal!\n");
931 goto done;
934 inode_lock = 1;
935 di = (struct ocfs2_dinode *)bh->b_data;
937 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
938 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
939 i_size_read(inode));
940 status = -EINVAL;
941 goto done;
944 trace_ocfs2_journal_init(i_size_read(inode),
945 (unsigned long long)inode->i_blocks,
946 OCFS2_I(inode)->ip_clusters);
948 /* call the kernels journal init function now */
949 j_journal = jbd2_journal_init_inode(inode);
950 if (IS_ERR(j_journal)) {
951 mlog(ML_ERROR, "Linux journal layer error\n");
952 status = PTR_ERR(j_journal);
953 goto done;
956 trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
958 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
959 OCFS2_JOURNAL_DIRTY_FL);
961 journal->j_journal = j_journal;
962 journal->j_journal->j_submit_inode_data_buffers =
963 ocfs2_journal_submit_inode_data_buffers;
964 journal->j_journal->j_finish_inode_data_buffers =
965 jbd2_journal_finish_inode_data_buffers;
966 journal->j_inode = inode;
967 journal->j_bh = bh;
969 ocfs2_set_journal_params(osb);
971 journal->j_state = OCFS2_JOURNAL_LOADED;
973 status = 0;
974 done:
975 if (status < 0) {
976 if (inode_lock)
977 ocfs2_inode_unlock(inode, 1);
978 brelse(bh);
979 if (inode) {
980 OCFS2_I(inode)->ip_open_count--;
981 iput(inode);
985 return status;
988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
990 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
993 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
995 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
999 int dirty, int replayed)
1001 int status;
1002 unsigned int flags;
1003 struct ocfs2_journal *journal = osb->journal;
1004 struct buffer_head *bh = journal->j_bh;
1005 struct ocfs2_dinode *fe;
1007 fe = (struct ocfs2_dinode *)bh->b_data;
1009 /* The journal bh on the osb always comes from ocfs2_journal_init()
1010 * and was validated there inside ocfs2_inode_lock_full(). It's a
1011 * code bug if we mess it up. */
1012 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
1014 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1015 if (dirty)
1016 flags |= OCFS2_JOURNAL_DIRTY_FL;
1017 else
1018 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1019 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1021 if (replayed)
1022 ocfs2_bump_recovery_generation(fe);
1024 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1025 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
1026 if (status < 0)
1027 mlog_errno(status);
1029 return status;
1033 * If the journal has been kmalloc'd it needs to be freed after this
1034 * call.
1036 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1038 struct ocfs2_journal *journal = NULL;
1039 int status = 0;
1040 struct inode *inode = NULL;
1041 int num_running_trans = 0;
1043 BUG_ON(!osb);
1045 journal = osb->journal;
1046 if (!journal)
1047 goto done;
1049 inode = journal->j_inode;
1051 if (journal->j_state != OCFS2_JOURNAL_LOADED)
1052 goto done;
1054 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1055 if (!igrab(inode))
1056 BUG();
1058 num_running_trans = atomic_read(&(journal->j_num_trans));
1059 trace_ocfs2_journal_shutdown(num_running_trans);
1061 /* Do a commit_cache here. It will flush our journal, *and*
1062 * release any locks that are still held.
1063 * set the SHUTDOWN flag and release the trans lock.
1064 * the commit thread will take the trans lock for us below. */
1065 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1067 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 * drop the trans_lock (which we want to hold until we
1069 * completely destroy the journal. */
1070 if (osb->commit_task) {
1071 /* Wait for the commit thread */
1072 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1073 kthread_stop(osb->commit_task);
1074 osb->commit_task = NULL;
1077 BUG_ON(atomic_read(&(journal->j_num_trans)) != 0);
1079 if (ocfs2_mount_local(osb) &&
1080 (journal->j_journal->j_flags & JBD2_LOADED)) {
1081 jbd2_journal_lock_updates(journal->j_journal);
1082 status = jbd2_journal_flush(journal->j_journal, 0);
1083 jbd2_journal_unlock_updates(journal->j_journal);
1084 if (status < 0)
1085 mlog_errno(status);
1088 /* Shutdown the kernel journal system */
1089 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1091 * Do not toggle if flush was unsuccessful otherwise
1092 * will leave dirty metadata in a "clean" journal
1094 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1095 if (status < 0)
1096 mlog_errno(status);
1098 journal->j_journal = NULL;
1100 OCFS2_I(inode)->ip_open_count--;
1102 /* unlock our journal */
1103 ocfs2_inode_unlock(inode, 1);
1105 brelse(journal->j_bh);
1106 journal->j_bh = NULL;
1108 journal->j_state = OCFS2_JOURNAL_FREE;
1110 done:
1111 iput(inode);
1112 kfree(journal);
1113 osb->journal = NULL;
1116 static void ocfs2_clear_journal_error(struct super_block *sb,
1117 journal_t *journal,
1118 int slot)
1120 int olderr;
1122 olderr = jbd2_journal_errno(journal);
1123 if (olderr) {
1124 mlog(ML_ERROR, "File system error %d recorded in "
1125 "journal %u.\n", olderr, slot);
1126 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1127 sb->s_id);
1129 jbd2_journal_ack_err(journal);
1130 jbd2_journal_clear_err(journal);
1134 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1136 int status = 0;
1137 struct ocfs2_super *osb;
1139 BUG_ON(!journal);
1141 osb = journal->j_osb;
1143 status = jbd2_journal_load(journal->j_journal);
1144 if (status < 0) {
1145 mlog(ML_ERROR, "Failed to load journal!\n");
1146 goto done;
1149 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1151 if (replayed) {
1152 jbd2_journal_lock_updates(journal->j_journal);
1153 status = jbd2_journal_flush(journal->j_journal, 0);
1154 jbd2_journal_unlock_updates(journal->j_journal);
1155 if (status < 0)
1156 mlog_errno(status);
1159 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1160 if (status < 0) {
1161 mlog_errno(status);
1162 goto done;
1165 /* Launch the commit thread */
1166 if (!local) {
1167 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1168 "ocfs2cmt-%s", osb->uuid_str);
1169 if (IS_ERR(osb->commit_task)) {
1170 status = PTR_ERR(osb->commit_task);
1171 osb->commit_task = NULL;
1172 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1173 "error=%d", status);
1174 goto done;
1176 } else
1177 osb->commit_task = NULL;
1179 done:
1180 return status;
1184 /* 'full' flag tells us whether we clear out all blocks or if we just
1185 * mark the journal clean */
1186 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1188 int status;
1190 BUG_ON(!journal);
1192 status = jbd2_journal_wipe(journal->j_journal, full);
1193 if (status < 0) {
1194 mlog_errno(status);
1195 goto bail;
1198 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1199 if (status < 0)
1200 mlog_errno(status);
1202 bail:
1203 return status;
1206 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1208 int empty;
1209 struct ocfs2_recovery_map *rm = osb->recovery_map;
1211 spin_lock(&osb->osb_lock);
1212 empty = (rm->rm_used == 0);
1213 spin_unlock(&osb->osb_lock);
1215 return empty;
1218 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1220 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1224 * JBD Might read a cached version of another nodes journal file. We
1225 * don't want this as this file changes often and we get no
1226 * notification on those changes. The only way to be sure that we've
1227 * got the most up to date version of those blocks then is to force
1228 * read them off disk. Just searching through the buffer cache won't
1229 * work as there may be pages backing this file which are still marked
1230 * up to date. We know things can't change on this file underneath us
1231 * as we have the lock by now :)
1233 static int ocfs2_force_read_journal(struct inode *inode)
1235 int status = 0;
1236 int i;
1237 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1238 struct buffer_head *bh = NULL;
1239 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1241 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1242 v_blkno = 0;
1243 while (v_blkno < num_blocks) {
1244 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1245 &p_blkno, &p_blocks, NULL);
1246 if (status < 0) {
1247 mlog_errno(status);
1248 goto bail;
1251 for (i = 0; i < p_blocks; i++, p_blkno++) {
1252 bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1253 osb->sb->s_blocksize);
1254 /* block not cached. */
1255 if (!bh)
1256 continue;
1258 brelse(bh);
1259 bh = NULL;
1260 /* We are reading journal data which should not
1261 * be put in the uptodate cache.
1263 status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1264 if (status < 0) {
1265 mlog_errno(status);
1266 goto bail;
1269 brelse(bh);
1270 bh = NULL;
1273 v_blkno += p_blocks;
1276 bail:
1277 return status;
1280 struct ocfs2_la_recovery_item {
1281 struct list_head lri_list;
1282 int lri_slot;
1283 struct ocfs2_dinode *lri_la_dinode;
1284 struct ocfs2_dinode *lri_tl_dinode;
1285 struct ocfs2_quota_recovery *lri_qrec;
1286 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1289 /* Does the second half of the recovery process. By this point, the
1290 * node is marked clean and can actually be considered recovered,
1291 * hence it's no longer in the recovery map, but there's still some
1292 * cleanup we can do which shouldn't happen within the recovery thread
1293 * as locking in that context becomes very difficult if we are to take
1294 * recovering nodes into account.
1296 * NOTE: This function can and will sleep on recovery of other nodes
1297 * during cluster locking, just like any other ocfs2 process.
1299 void ocfs2_complete_recovery(struct work_struct *work)
1301 int ret = 0;
1302 struct ocfs2_journal *journal =
1303 container_of(work, struct ocfs2_journal, j_recovery_work);
1304 struct ocfs2_super *osb = journal->j_osb;
1305 struct ocfs2_dinode *la_dinode, *tl_dinode;
1306 struct ocfs2_la_recovery_item *item, *n;
1307 struct ocfs2_quota_recovery *qrec;
1308 enum ocfs2_orphan_reco_type orphan_reco_type;
1309 LIST_HEAD(tmp_la_list);
1311 trace_ocfs2_complete_recovery(
1312 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1314 spin_lock(&journal->j_lock);
1315 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1316 spin_unlock(&journal->j_lock);
1318 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1319 list_del_init(&item->lri_list);
1321 ocfs2_wait_on_quotas(osb);
1323 la_dinode = item->lri_la_dinode;
1324 tl_dinode = item->lri_tl_dinode;
1325 qrec = item->lri_qrec;
1326 orphan_reco_type = item->lri_orphan_reco_type;
1328 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1329 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1330 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1331 qrec);
1333 if (la_dinode) {
1334 ret = ocfs2_complete_local_alloc_recovery(osb,
1335 la_dinode);
1336 if (ret < 0)
1337 mlog_errno(ret);
1339 kfree(la_dinode);
1342 if (tl_dinode) {
1343 ret = ocfs2_complete_truncate_log_recovery(osb,
1344 tl_dinode);
1345 if (ret < 0)
1346 mlog_errno(ret);
1348 kfree(tl_dinode);
1351 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1352 orphan_reco_type);
1353 if (ret < 0)
1354 mlog_errno(ret);
1356 if (qrec) {
1357 ret = ocfs2_finish_quota_recovery(osb, qrec,
1358 item->lri_slot);
1359 if (ret < 0)
1360 mlog_errno(ret);
1361 /* Recovery info is already freed now */
1364 kfree(item);
1367 trace_ocfs2_complete_recovery_end(ret);
1370 /* NOTE: This function always eats your references to la_dinode and
1371 * tl_dinode, either manually on error, or by passing them to
1372 * ocfs2_complete_recovery */
1373 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1374 int slot_num,
1375 struct ocfs2_dinode *la_dinode,
1376 struct ocfs2_dinode *tl_dinode,
1377 struct ocfs2_quota_recovery *qrec,
1378 enum ocfs2_orphan_reco_type orphan_reco_type)
1380 struct ocfs2_la_recovery_item *item;
1382 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1383 if (!item) {
1384 /* Though we wish to avoid it, we are in fact safe in
1385 * skipping local alloc cleanup as fsck.ocfs2 is more
1386 * than capable of reclaiming unused space. */
1387 kfree(la_dinode);
1388 kfree(tl_dinode);
1390 if (qrec)
1391 ocfs2_free_quota_recovery(qrec);
1393 mlog_errno(-ENOMEM);
1394 return;
1397 INIT_LIST_HEAD(&item->lri_list);
1398 item->lri_la_dinode = la_dinode;
1399 item->lri_slot = slot_num;
1400 item->lri_tl_dinode = tl_dinode;
1401 item->lri_qrec = qrec;
1402 item->lri_orphan_reco_type = orphan_reco_type;
1404 spin_lock(&journal->j_lock);
1405 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1406 queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1407 spin_unlock(&journal->j_lock);
1410 /* Called by the mount code to queue recovery the last part of
1411 * recovery for it's own and offline slot(s). */
1412 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1414 struct ocfs2_journal *journal = osb->journal;
1416 if (ocfs2_is_hard_readonly(osb))
1417 return;
1419 /* No need to queue up our truncate_log as regular cleanup will catch
1420 * that */
1421 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1422 osb->local_alloc_copy, NULL, NULL,
1423 ORPHAN_NEED_TRUNCATE);
1424 ocfs2_schedule_truncate_log_flush(osb, 0);
1426 osb->local_alloc_copy = NULL;
1428 /* queue to recover orphan slots for all offline slots */
1429 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1430 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1431 ocfs2_free_replay_slots(osb);
1434 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1436 if (osb->quota_rec) {
1437 ocfs2_queue_recovery_completion(osb->journal,
1438 osb->slot_num,
1439 NULL,
1440 NULL,
1441 osb->quota_rec,
1442 ORPHAN_NEED_TRUNCATE);
1443 osb->quota_rec = NULL;
1447 static int __ocfs2_recovery_thread(void *arg)
1449 int status, node_num, slot_num;
1450 struct ocfs2_super *osb = arg;
1451 struct ocfs2_recovery_map *rm = osb->recovery_map;
1452 int *rm_quota = NULL;
1453 int rm_quota_used = 0, i;
1454 struct ocfs2_quota_recovery *qrec;
1456 /* Whether the quota supported. */
1457 int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1458 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1459 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1460 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1462 status = ocfs2_wait_on_mount(osb);
1463 if (status < 0) {
1464 goto bail;
1467 if (quota_enabled) {
1468 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1469 if (!rm_quota) {
1470 status = -ENOMEM;
1471 goto bail;
1474 restart:
1475 status = ocfs2_super_lock(osb, 1);
1476 if (status < 0) {
1477 mlog_errno(status);
1478 goto bail;
1481 status = ocfs2_compute_replay_slots(osb);
1482 if (status < 0)
1483 mlog_errno(status);
1485 /* queue recovery for our own slot */
1486 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1487 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1489 spin_lock(&osb->osb_lock);
1490 while (rm->rm_used) {
1491 /* It's always safe to remove entry zero, as we won't
1492 * clear it until ocfs2_recover_node() has succeeded. */
1493 node_num = rm->rm_entries[0];
1494 spin_unlock(&osb->osb_lock);
1495 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1496 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1497 if (slot_num == -ENOENT) {
1498 status = 0;
1499 goto skip_recovery;
1502 /* It is a bit subtle with quota recovery. We cannot do it
1503 * immediately because we have to obtain cluster locks from
1504 * quota files and we also don't want to just skip it because
1505 * then quota usage would be out of sync until some node takes
1506 * the slot. So we remember which nodes need quota recovery
1507 * and when everything else is done, we recover quotas. */
1508 if (quota_enabled) {
1509 for (i = 0; i < rm_quota_used
1510 && rm_quota[i] != slot_num; i++)
1513 if (i == rm_quota_used)
1514 rm_quota[rm_quota_used++] = slot_num;
1517 status = ocfs2_recover_node(osb, node_num, slot_num);
1518 skip_recovery:
1519 if (!status) {
1520 ocfs2_recovery_map_clear(osb, node_num);
1521 } else {
1522 mlog(ML_ERROR,
1523 "Error %d recovering node %d on device (%u,%u)!\n",
1524 status, node_num,
1525 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1526 mlog(ML_ERROR, "Volume requires unmount.\n");
1529 spin_lock(&osb->osb_lock);
1531 spin_unlock(&osb->osb_lock);
1532 trace_ocfs2_recovery_thread_end(status);
1534 /* Refresh all journal recovery generations from disk */
1535 status = ocfs2_check_journals_nolocks(osb);
1536 status = (status == -EROFS) ? 0 : status;
1537 if (status < 0)
1538 mlog_errno(status);
1540 /* Now it is right time to recover quotas... We have to do this under
1541 * superblock lock so that no one can start using the slot (and crash)
1542 * before we recover it */
1543 if (quota_enabled) {
1544 for (i = 0; i < rm_quota_used; i++) {
1545 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1546 if (IS_ERR(qrec)) {
1547 status = PTR_ERR(qrec);
1548 mlog_errno(status);
1549 continue;
1551 ocfs2_queue_recovery_completion(osb->journal,
1552 rm_quota[i],
1553 NULL, NULL, qrec,
1554 ORPHAN_NEED_TRUNCATE);
1558 ocfs2_super_unlock(osb, 1);
1560 /* queue recovery for offline slots */
1561 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1563 bail:
1564 mutex_lock(&osb->recovery_lock);
1565 if (!status && !ocfs2_recovery_completed(osb)) {
1566 mutex_unlock(&osb->recovery_lock);
1567 goto restart;
1570 ocfs2_free_replay_slots(osb);
1571 osb->recovery_thread_task = NULL;
1572 mb(); /* sync with ocfs2_recovery_thread_running */
1573 wake_up(&osb->recovery_event);
1575 mutex_unlock(&osb->recovery_lock);
1577 if (quota_enabled)
1578 kfree(rm_quota);
1580 return status;
1583 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1585 mutex_lock(&osb->recovery_lock);
1587 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1588 osb->disable_recovery, osb->recovery_thread_task,
1589 osb->disable_recovery ?
1590 -1 : ocfs2_recovery_map_set(osb, node_num));
1592 if (osb->disable_recovery)
1593 goto out;
1595 if (osb->recovery_thread_task)
1596 goto out;
1598 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1599 "ocfs2rec-%s", osb->uuid_str);
1600 if (IS_ERR(osb->recovery_thread_task)) {
1601 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1602 osb->recovery_thread_task = NULL;
1605 out:
1606 mutex_unlock(&osb->recovery_lock);
1607 wake_up(&osb->recovery_event);
1610 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1611 int slot_num,
1612 struct buffer_head **bh,
1613 struct inode **ret_inode)
1615 int status = -EACCES;
1616 struct inode *inode = NULL;
1618 BUG_ON(slot_num >= osb->max_slots);
1620 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1621 slot_num);
1622 if (!inode || is_bad_inode(inode)) {
1623 mlog_errno(status);
1624 goto bail;
1626 SET_INODE_JOURNAL(inode);
1628 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1629 if (status < 0) {
1630 mlog_errno(status);
1631 goto bail;
1634 status = 0;
1636 bail:
1637 if (inode) {
1638 if (status || !ret_inode)
1639 iput(inode);
1640 else
1641 *ret_inode = inode;
1643 return status;
1646 /* Does the actual journal replay and marks the journal inode as
1647 * clean. Will only replay if the journal inode is marked dirty. */
1648 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1649 int node_num,
1650 int slot_num)
1652 int status;
1653 int got_lock = 0;
1654 unsigned int flags;
1655 struct inode *inode = NULL;
1656 struct ocfs2_dinode *fe;
1657 journal_t *journal = NULL;
1658 struct buffer_head *bh = NULL;
1659 u32 slot_reco_gen;
1661 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1662 if (status) {
1663 mlog_errno(status);
1664 goto done;
1667 fe = (struct ocfs2_dinode *)bh->b_data;
1668 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1669 brelse(bh);
1670 bh = NULL;
1673 * As the fs recovery is asynchronous, there is a small chance that
1674 * another node mounted (and recovered) the slot before the recovery
1675 * thread could get the lock. To handle that, we dirty read the journal
1676 * inode for that slot to get the recovery generation. If it is
1677 * different than what we expected, the slot has been recovered.
1678 * If not, it needs recovery.
1680 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1681 trace_ocfs2_replay_journal_recovered(slot_num,
1682 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1683 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1684 status = -EBUSY;
1685 goto done;
1688 /* Continue with recovery as the journal has not yet been recovered */
1690 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1691 if (status < 0) {
1692 trace_ocfs2_replay_journal_lock_err(status);
1693 if (status != -ERESTARTSYS)
1694 mlog(ML_ERROR, "Could not lock journal!\n");
1695 goto done;
1697 got_lock = 1;
1699 fe = (struct ocfs2_dinode *) bh->b_data;
1701 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1702 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1704 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1705 trace_ocfs2_replay_journal_skip(node_num);
1706 /* Refresh recovery generation for the slot */
1707 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1708 goto done;
1711 /* we need to run complete recovery for offline orphan slots */
1712 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1714 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1715 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1716 MINOR(osb->sb->s_dev));
1718 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1720 status = ocfs2_force_read_journal(inode);
1721 if (status < 0) {
1722 mlog_errno(status);
1723 goto done;
1726 journal = jbd2_journal_init_inode(inode);
1727 if (IS_ERR(journal)) {
1728 mlog(ML_ERROR, "Linux journal layer error\n");
1729 status = PTR_ERR(journal);
1730 goto done;
1733 status = jbd2_journal_load(journal);
1734 if (status < 0) {
1735 mlog_errno(status);
1736 BUG_ON(!igrab(inode));
1737 jbd2_journal_destroy(journal);
1738 goto done;
1741 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1743 /* wipe the journal */
1744 jbd2_journal_lock_updates(journal);
1745 status = jbd2_journal_flush(journal, 0);
1746 jbd2_journal_unlock_updates(journal);
1747 if (status < 0)
1748 mlog_errno(status);
1750 /* This will mark the node clean */
1751 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1752 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1753 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1755 /* Increment recovery generation to indicate successful recovery */
1756 ocfs2_bump_recovery_generation(fe);
1757 osb->slot_recovery_generations[slot_num] =
1758 ocfs2_get_recovery_generation(fe);
1760 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1761 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1762 if (status < 0)
1763 mlog_errno(status);
1765 BUG_ON(!igrab(inode));
1767 jbd2_journal_destroy(journal);
1769 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1770 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1771 MINOR(osb->sb->s_dev));
1772 done:
1773 /* drop the lock on this nodes journal */
1774 if (got_lock)
1775 ocfs2_inode_unlock(inode, 1);
1777 iput(inode);
1778 brelse(bh);
1780 return status;
1784 * Do the most important parts of node recovery:
1785 * - Replay it's journal
1786 * - Stamp a clean local allocator file
1787 * - Stamp a clean truncate log
1788 * - Mark the node clean
1790 * If this function completes without error, a node in OCFS2 can be
1791 * said to have been safely recovered. As a result, failure during the
1792 * second part of a nodes recovery process (local alloc recovery) is
1793 * far less concerning.
1795 static int ocfs2_recover_node(struct ocfs2_super *osb,
1796 int node_num, int slot_num)
1798 int status = 0;
1799 struct ocfs2_dinode *la_copy = NULL;
1800 struct ocfs2_dinode *tl_copy = NULL;
1802 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1804 /* Should not ever be called to recover ourselves -- in that
1805 * case we should've called ocfs2_journal_load instead. */
1806 BUG_ON(osb->node_num == node_num);
1808 status = ocfs2_replay_journal(osb, node_num, slot_num);
1809 if (status < 0) {
1810 if (status == -EBUSY) {
1811 trace_ocfs2_recover_node_skip(slot_num, node_num);
1812 status = 0;
1813 goto done;
1815 mlog_errno(status);
1816 goto done;
1819 /* Stamp a clean local alloc file AFTER recovering the journal... */
1820 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1821 if (status < 0) {
1822 mlog_errno(status);
1823 goto done;
1826 /* An error from begin_truncate_log_recovery is not
1827 * serious enough to warrant halting the rest of
1828 * recovery. */
1829 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1830 if (status < 0)
1831 mlog_errno(status);
1833 /* Likewise, this would be a strange but ultimately not so
1834 * harmful place to get an error... */
1835 status = ocfs2_clear_slot(osb, slot_num);
1836 if (status < 0)
1837 mlog_errno(status);
1839 /* This will kfree the memory pointed to by la_copy and tl_copy */
1840 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1841 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1843 status = 0;
1844 done:
1846 return status;
1849 /* Test node liveness by trylocking his journal. If we get the lock,
1850 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851 * still alive (we couldn't get the lock) and < 0 on error. */
1852 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1853 int slot_num)
1855 int status, flags;
1856 struct inode *inode = NULL;
1858 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1859 slot_num);
1860 if (inode == NULL) {
1861 mlog(ML_ERROR, "access error\n");
1862 status = -EACCES;
1863 goto bail;
1865 if (is_bad_inode(inode)) {
1866 mlog(ML_ERROR, "access error (bad inode)\n");
1867 iput(inode);
1868 inode = NULL;
1869 status = -EACCES;
1870 goto bail;
1872 SET_INODE_JOURNAL(inode);
1874 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1875 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1876 if (status < 0) {
1877 if (status != -EAGAIN)
1878 mlog_errno(status);
1879 goto bail;
1882 ocfs2_inode_unlock(inode, 1);
1883 bail:
1884 iput(inode);
1886 return status;
1889 /* Call this underneath ocfs2_super_lock. It also assumes that the
1890 * slot info struct has been updated from disk. */
1891 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1893 unsigned int node_num;
1894 int status, i;
1895 u32 gen;
1896 struct buffer_head *bh = NULL;
1897 struct ocfs2_dinode *di;
1899 /* This is called with the super block cluster lock, so we
1900 * know that the slot map can't change underneath us. */
1902 for (i = 0; i < osb->max_slots; i++) {
1903 /* Read journal inode to get the recovery generation */
1904 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1905 if (status) {
1906 mlog_errno(status);
1907 goto bail;
1909 di = (struct ocfs2_dinode *)bh->b_data;
1910 gen = ocfs2_get_recovery_generation(di);
1911 brelse(bh);
1912 bh = NULL;
1914 spin_lock(&osb->osb_lock);
1915 osb->slot_recovery_generations[i] = gen;
1917 trace_ocfs2_mark_dead_nodes(i,
1918 osb->slot_recovery_generations[i]);
1920 if (i == osb->slot_num) {
1921 spin_unlock(&osb->osb_lock);
1922 continue;
1925 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1926 if (status == -ENOENT) {
1927 spin_unlock(&osb->osb_lock);
1928 continue;
1931 if (__ocfs2_recovery_map_test(osb, node_num)) {
1932 spin_unlock(&osb->osb_lock);
1933 continue;
1935 spin_unlock(&osb->osb_lock);
1937 /* Ok, we have a slot occupied by another node which
1938 * is not in the recovery map. We trylock his journal
1939 * file here to test if he's alive. */
1940 status = ocfs2_trylock_journal(osb, i);
1941 if (!status) {
1942 /* Since we're called from mount, we know that
1943 * the recovery thread can't race us on
1944 * setting / checking the recovery bits. */
1945 ocfs2_recovery_thread(osb, node_num);
1946 } else if ((status < 0) && (status != -EAGAIN)) {
1947 mlog_errno(status);
1948 goto bail;
1952 status = 0;
1953 bail:
1954 return status;
1958 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959 * randomness to the timeout to minimize multple nodes firing the timer at the
1960 * same time.
1962 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1964 unsigned long time;
1966 get_random_bytes(&time, sizeof(time));
1967 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1968 return msecs_to_jiffies(time);
1972 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974 * is done to catch any orphans that are left over in orphan directories.
1976 * It scans all slots, even ones that are in use. It does so to handle the
1977 * case described below:
1979 * Node 1 has an inode it was using. The dentry went away due to memory
1980 * pressure. Node 1 closes the inode, but it's on the free list. The node
1981 * has the open lock.
1982 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983 * but node 1 has no dentry and doesn't get the message. It trylocks the
1984 * open lock, sees that another node has a PR, and does nothing.
1985 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986 * open lock, sees the PR still, and does nothing.
1987 * Basically, we have to trigger an orphan iput on node 1. The only way
1988 * for this to happen is if node 1 runs node 2's orphan dir.
1990 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991 * seconds. It gets an EX lock on os_lockres and checks sequence number
1992 * stored in LVB. If the sequence number has changed, it means some other
1993 * node has done the scan. This node skips the scan and tracks the
1994 * sequence number. If the sequence number didn't change, it means a scan
1995 * hasn't happened. The node queues a scan and increments the
1996 * sequence number in the LVB.
1998 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
2000 struct ocfs2_orphan_scan *os;
2001 int status, i;
2002 u32 seqno = 0;
2004 os = &osb->osb_orphan_scan;
2006 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2007 goto out;
2009 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
2010 atomic_read(&os->os_state));
2012 status = ocfs2_orphan_scan_lock(osb, &seqno);
2013 if (status < 0) {
2014 if (status != -EAGAIN)
2015 mlog_errno(status);
2016 goto out;
2019 /* Do no queue the tasks if the volume is being umounted */
2020 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
2021 goto unlock;
2023 if (os->os_seqno != seqno) {
2024 os->os_seqno = seqno;
2025 goto unlock;
2028 for (i = 0; i < osb->max_slots; i++)
2029 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
2030 NULL, ORPHAN_NO_NEED_TRUNCATE);
2032 * We queued a recovery on orphan slots, increment the sequence
2033 * number and update LVB so other node will skip the scan for a while
2035 seqno++;
2036 os->os_count++;
2037 os->os_scantime = ktime_get_seconds();
2038 unlock:
2039 ocfs2_orphan_scan_unlock(osb, seqno);
2040 out:
2041 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2042 atomic_read(&os->os_state));
2043 return;
2046 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2047 static void ocfs2_orphan_scan_work(struct work_struct *work)
2049 struct ocfs2_orphan_scan *os;
2050 struct ocfs2_super *osb;
2052 os = container_of(work, struct ocfs2_orphan_scan,
2053 os_orphan_scan_work.work);
2054 osb = os->os_osb;
2056 mutex_lock(&os->os_lock);
2057 ocfs2_queue_orphan_scan(osb);
2058 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2059 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2060 ocfs2_orphan_scan_timeout());
2061 mutex_unlock(&os->os_lock);
2064 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2066 struct ocfs2_orphan_scan *os;
2068 os = &osb->osb_orphan_scan;
2069 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2070 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2071 mutex_lock(&os->os_lock);
2072 cancel_delayed_work(&os->os_orphan_scan_work);
2073 mutex_unlock(&os->os_lock);
2077 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2079 struct ocfs2_orphan_scan *os;
2081 os = &osb->osb_orphan_scan;
2082 os->os_osb = osb;
2083 os->os_count = 0;
2084 os->os_seqno = 0;
2085 mutex_init(&os->os_lock);
2086 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2089 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2091 struct ocfs2_orphan_scan *os;
2093 os = &osb->osb_orphan_scan;
2094 os->os_scantime = ktime_get_seconds();
2095 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2096 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2097 else {
2098 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2099 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2100 ocfs2_orphan_scan_timeout());
2104 struct ocfs2_orphan_filldir_priv {
2105 struct dir_context ctx;
2106 struct inode *head;
2107 struct ocfs2_super *osb;
2108 enum ocfs2_orphan_reco_type orphan_reco_type;
2111 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2112 int name_len, loff_t pos, u64 ino,
2113 unsigned type)
2115 struct ocfs2_orphan_filldir_priv *p =
2116 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2117 struct inode *iter;
2119 if (name_len == 1 && !strncmp(".", name, 1))
2120 return true;
2121 if (name_len == 2 && !strncmp("..", name, 2))
2122 return true;
2124 /* do not include dio entry in case of orphan scan */
2125 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2126 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2127 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2128 return true;
2130 /* Skip bad inodes so that recovery can continue */
2131 iter = ocfs2_iget(p->osb, ino,
2132 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2133 if (IS_ERR(iter))
2134 return true;
2136 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2137 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2138 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2140 /* Skip inodes which are already added to recover list, since dio may
2141 * happen concurrently with unlink/rename */
2142 if (OCFS2_I(iter)->ip_next_orphan) {
2143 iput(iter);
2144 return true;
2147 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2148 /* No locking is required for the next_orphan queue as there
2149 * is only ever a single process doing orphan recovery. */
2150 OCFS2_I(iter)->ip_next_orphan = p->head;
2151 p->head = iter;
2153 return true;
2156 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2157 int slot,
2158 struct inode **head,
2159 enum ocfs2_orphan_reco_type orphan_reco_type)
2161 int status;
2162 struct inode *orphan_dir_inode = NULL;
2163 struct ocfs2_orphan_filldir_priv priv = {
2164 .ctx.actor = ocfs2_orphan_filldir,
2165 .osb = osb,
2166 .head = *head,
2167 .orphan_reco_type = orphan_reco_type
2170 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2171 ORPHAN_DIR_SYSTEM_INODE,
2172 slot);
2173 if (!orphan_dir_inode) {
2174 status = -ENOENT;
2175 mlog_errno(status);
2176 return status;
2179 inode_lock(orphan_dir_inode);
2180 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2181 if (status < 0) {
2182 mlog_errno(status);
2183 goto out;
2186 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2187 if (status) {
2188 mlog_errno(status);
2189 goto out_cluster;
2192 *head = priv.head;
2194 out_cluster:
2195 ocfs2_inode_unlock(orphan_dir_inode, 0);
2196 out:
2197 inode_unlock(orphan_dir_inode);
2198 iput(orphan_dir_inode);
2199 return status;
2202 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2203 int slot)
2205 int ret;
2207 spin_lock(&osb->osb_lock);
2208 ret = !osb->osb_orphan_wipes[slot];
2209 spin_unlock(&osb->osb_lock);
2210 return ret;
2213 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2214 int slot)
2216 spin_lock(&osb->osb_lock);
2217 /* Mark ourselves such that new processes in delete_inode()
2218 * know to quit early. */
2219 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2220 while (osb->osb_orphan_wipes[slot]) {
2221 /* If any processes are already in the middle of an
2222 * orphan wipe on this dir, then we need to wait for
2223 * them. */
2224 spin_unlock(&osb->osb_lock);
2225 wait_event_interruptible(osb->osb_wipe_event,
2226 ocfs2_orphan_recovery_can_continue(osb, slot));
2227 spin_lock(&osb->osb_lock);
2229 spin_unlock(&osb->osb_lock);
2232 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2233 int slot)
2235 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2239 * Orphan recovery. Each mounted node has it's own orphan dir which we
2240 * must run during recovery. Our strategy here is to build a list of
2241 * the inodes in the orphan dir and iget/iput them. The VFS does
2242 * (most) of the rest of the work.
2244 * Orphan recovery can happen at any time, not just mount so we have a
2245 * couple of extra considerations.
2247 * - We grab as many inodes as we can under the orphan dir lock -
2248 * doing iget() outside the orphan dir risks getting a reference on
2249 * an invalid inode.
2250 * - We must be sure not to deadlock with other processes on the
2251 * system wanting to run delete_inode(). This can happen when they go
2252 * to lock the orphan dir and the orphan recovery process attempts to
2253 * iget() inside the orphan dir lock. This can be avoided by
2254 * advertising our state to ocfs2_delete_inode().
2256 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2257 int slot,
2258 enum ocfs2_orphan_reco_type orphan_reco_type)
2260 int ret = 0;
2261 struct inode *inode = NULL;
2262 struct inode *iter;
2263 struct ocfs2_inode_info *oi;
2264 struct buffer_head *di_bh = NULL;
2265 struct ocfs2_dinode *di = NULL;
2267 trace_ocfs2_recover_orphans(slot);
2269 ocfs2_mark_recovering_orphan_dir(osb, slot);
2270 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2271 ocfs2_clear_recovering_orphan_dir(osb, slot);
2273 /* Error here should be noted, but we want to continue with as
2274 * many queued inodes as we've got. */
2275 if (ret)
2276 mlog_errno(ret);
2278 while (inode) {
2279 oi = OCFS2_I(inode);
2280 trace_ocfs2_recover_orphans_iput(
2281 (unsigned long long)oi->ip_blkno);
2283 iter = oi->ip_next_orphan;
2284 oi->ip_next_orphan = NULL;
2286 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2287 inode_lock(inode);
2288 ret = ocfs2_rw_lock(inode, 1);
2289 if (ret < 0) {
2290 mlog_errno(ret);
2291 goto unlock_mutex;
2294 * We need to take and drop the inode lock to
2295 * force read inode from disk.
2297 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2298 if (ret) {
2299 mlog_errno(ret);
2300 goto unlock_rw;
2303 di = (struct ocfs2_dinode *)di_bh->b_data;
2305 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2306 ret = ocfs2_truncate_file(inode, di_bh,
2307 i_size_read(inode));
2308 if (ret < 0) {
2309 if (ret != -ENOSPC)
2310 mlog_errno(ret);
2311 goto unlock_inode;
2314 ret = ocfs2_del_inode_from_orphan(osb, inode,
2315 di_bh, 0, 0);
2316 if (ret)
2317 mlog_errno(ret);
2319 unlock_inode:
2320 ocfs2_inode_unlock(inode, 1);
2321 brelse(di_bh);
2322 di_bh = NULL;
2323 unlock_rw:
2324 ocfs2_rw_unlock(inode, 1);
2325 unlock_mutex:
2326 inode_unlock(inode);
2328 /* clear dio flag in ocfs2_inode_info */
2329 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2330 } else {
2331 spin_lock(&oi->ip_lock);
2332 /* Set the proper information to get us going into
2333 * ocfs2_delete_inode. */
2334 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2335 spin_unlock(&oi->ip_lock);
2338 iput(inode);
2339 inode = iter;
2342 return ret;
2345 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2347 /* This check is good because ocfs2 will wait on our recovery
2348 * thread before changing it to something other than MOUNTED
2349 * or DISABLED. */
2350 wait_event(osb->osb_mount_event,
2351 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2352 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2353 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2355 /* If there's an error on mount, then we may never get to the
2356 * MOUNTED flag, but this is set right before
2357 * dismount_volume() so we can trust it. */
2358 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2359 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2360 mlog(0, "mount error, exiting!\n");
2361 return -EBUSY;
2364 return 0;
2367 static int ocfs2_commit_thread(void *arg)
2369 int status;
2370 struct ocfs2_super *osb = arg;
2371 struct ocfs2_journal *journal = osb->journal;
2373 /* we can trust j_num_trans here because _should_stop() is only set in
2374 * shutdown and nobody other than ourselves should be able to start
2375 * transactions. committing on shutdown might take a few iterations
2376 * as final transactions put deleted inodes on the list */
2377 while (!(kthread_should_stop() &&
2378 atomic_read(&journal->j_num_trans) == 0)) {
2380 wait_event_interruptible(osb->checkpoint_event,
2381 atomic_read(&journal->j_num_trans)
2382 || kthread_should_stop());
2384 status = ocfs2_commit_cache(osb);
2385 if (status < 0) {
2386 static unsigned long abort_warn_time;
2388 /* Warn about this once per minute */
2389 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2390 mlog(ML_ERROR, "status = %d, journal is "
2391 "already aborted.\n", status);
2393 * After ocfs2_commit_cache() fails, j_num_trans has a
2394 * non-zero value. Sleep here to avoid a busy-wait
2395 * loop.
2397 msleep_interruptible(1000);
2400 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2401 mlog(ML_KTHREAD,
2402 "commit_thread: %u transactions pending on "
2403 "shutdown\n",
2404 atomic_read(&journal->j_num_trans));
2408 return 0;
2411 /* Reads all the journal inodes without taking any cluster locks. Used
2412 * for hard readonly access to determine whether any journal requires
2413 * recovery. Also used to refresh the recovery generation numbers after
2414 * a journal has been recovered by another node.
2416 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2418 int ret = 0;
2419 unsigned int slot;
2420 struct buffer_head *di_bh = NULL;
2421 struct ocfs2_dinode *di;
2422 int journal_dirty = 0;
2424 for(slot = 0; slot < osb->max_slots; slot++) {
2425 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2426 if (ret) {
2427 mlog_errno(ret);
2428 goto out;
2431 di = (struct ocfs2_dinode *) di_bh->b_data;
2433 osb->slot_recovery_generations[slot] =
2434 ocfs2_get_recovery_generation(di);
2436 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2437 OCFS2_JOURNAL_DIRTY_FL)
2438 journal_dirty = 1;
2440 brelse(di_bh);
2441 di_bh = NULL;
2444 out:
2445 if (journal_dirty)
2446 ret = -EROFS;
2447 return ret;