1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Defines functions of journalling api
7 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
20 #include <cluster/masklog.h>
25 #include "blockcheck.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
32 #include "localalloc.h"
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
44 DEFINE_SPINLOCK(trans_inc_lock
);
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48 static int ocfs2_force_read_journal(struct inode
*inode
);
49 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
50 int node_num
, int slot_num
);
51 static int __ocfs2_recovery_thread(void *arg
);
52 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
55 int dirty
, int replayed
);
56 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
58 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
60 enum ocfs2_orphan_reco_type orphan_reco_type
);
61 static int ocfs2_commit_thread(void *arg
);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
64 struct ocfs2_dinode
*la_dinode
,
65 struct ocfs2_dinode
*tl_dinode
,
66 struct ocfs2_quota_recovery
*qrec
,
67 enum ocfs2_orphan_reco_type orphan_reco_type
);
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
71 return __ocfs2_wait_on_mount(osb
, 0);
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
76 return __ocfs2_wait_on_mount(osb
, 1);
80 * This replay_map is to track online/offline slots, so we could recover
81 * offline slots during recovery and mount
84 enum ocfs2_replay_state
{
85 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
86 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
87 REPLAY_DONE
/* Replay was already queued */
90 struct ocfs2_replay_map
{
91 unsigned int rm_slots
;
92 enum ocfs2_replay_state rm_state
;
93 unsigned char rm_replay_slots
[] __counted_by(rm_slots
);
96 static void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
101 /* If we've already queued the replay, we don't have any more to do */
102 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
105 osb
->replay_map
->rm_state
= state
;
108 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
110 struct ocfs2_replay_map
*replay_map
;
113 /* If replay map is already set, we don't do it again */
117 replay_map
= kzalloc(struct_size(replay_map
, rm_replay_slots
,
125 spin_lock(&osb
->osb_lock
);
127 replay_map
->rm_slots
= osb
->max_slots
;
128 replay_map
->rm_state
= REPLAY_UNNEEDED
;
130 /* set rm_replay_slots for offline slot(s) */
131 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
132 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
133 replay_map
->rm_replay_slots
[i
] = 1;
136 osb
->replay_map
= replay_map
;
137 spin_unlock(&osb
->osb_lock
);
141 static void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
,
142 enum ocfs2_orphan_reco_type orphan_reco_type
)
144 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
150 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
153 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
154 if (replay_map
->rm_replay_slots
[i
])
155 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
158 replay_map
->rm_state
= REPLAY_DONE
;
161 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
163 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
165 if (!osb
->replay_map
)
169 osb
->replay_map
= NULL
;
172 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
174 struct ocfs2_recovery_map
*rm
;
176 mutex_init(&osb
->recovery_lock
);
177 osb
->disable_recovery
= 0;
178 osb
->recovery_thread_task
= NULL
;
179 init_waitqueue_head(&osb
->recovery_event
);
181 rm
= kzalloc(struct_size(rm
, rm_entries
, osb
->max_slots
),
188 osb
->recovery_map
= rm
;
193 /* we can't grab the goofy sem lock from inside wait_event, so we use
194 * memory barriers to make sure that we'll see the null task before
196 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
199 return osb
->recovery_thread_task
!= NULL
;
202 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
204 struct ocfs2_recovery_map
*rm
;
206 /* disable any new recovery threads and wait for any currently
207 * running ones to exit. Do this before setting the vol_state. */
208 mutex_lock(&osb
->recovery_lock
);
209 osb
->disable_recovery
= 1;
210 mutex_unlock(&osb
->recovery_lock
);
211 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
213 /* At this point, we know that no more recovery threads can be
214 * launched, so wait for any recovery completion work to
217 flush_workqueue(osb
->ocfs2_wq
);
220 * Now that recovery is shut down, and the osb is about to be
221 * freed, the osb_lock is not taken here.
223 rm
= osb
->recovery_map
;
224 /* XXX: Should we bug if there are dirty entries? */
229 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
230 unsigned int node_num
)
233 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
235 assert_spin_locked(&osb
->osb_lock
);
237 for (i
= 0; i
< rm
->rm_used
; i
++) {
238 if (rm
->rm_entries
[i
] == node_num
)
245 /* Behaves like test-and-set. Returns the previous value */
246 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
247 unsigned int node_num
)
249 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
251 spin_lock(&osb
->osb_lock
);
252 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
253 spin_unlock(&osb
->osb_lock
);
257 /* XXX: Can this be exploited? Not from o2dlm... */
258 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
260 rm
->rm_entries
[rm
->rm_used
] = node_num
;
262 spin_unlock(&osb
->osb_lock
);
267 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
268 unsigned int node_num
)
271 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
273 spin_lock(&osb
->osb_lock
);
275 for (i
= 0; i
< rm
->rm_used
; i
++) {
276 if (rm
->rm_entries
[i
] == node_num
)
280 if (i
< rm
->rm_used
) {
281 /* XXX: be careful with the pointer math */
282 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
283 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
287 spin_unlock(&osb
->osb_lock
);
290 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
293 unsigned int flushed
;
294 struct ocfs2_journal
*journal
= NULL
;
296 journal
= osb
->journal
;
298 /* Flush all pending commits and checkpoint the journal. */
299 down_write(&journal
->j_trans_barrier
);
301 flushed
= atomic_read(&journal
->j_num_trans
);
302 trace_ocfs2_commit_cache_begin(flushed
);
304 up_write(&journal
->j_trans_barrier
);
308 jbd2_journal_lock_updates(journal
->j_journal
);
309 status
= jbd2_journal_flush(journal
->j_journal
, 0);
310 jbd2_journal_unlock_updates(journal
->j_journal
);
312 up_write(&journal
->j_trans_barrier
);
317 ocfs2_inc_trans_id(journal
);
319 flushed
= atomic_read(&journal
->j_num_trans
);
320 atomic_set(&journal
->j_num_trans
, 0);
321 up_write(&journal
->j_trans_barrier
);
323 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
325 ocfs2_wake_downconvert_thread(osb
);
326 wake_up(&journal
->j_checkpointed
);
331 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
333 journal_t
*journal
= osb
->journal
->j_journal
;
336 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
338 if (ocfs2_is_hard_readonly(osb
))
339 return ERR_PTR(-EROFS
);
341 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
342 BUG_ON(max_buffs
<= 0);
344 /* Nested transaction? Just return the handle... */
345 if (journal_current_handle())
346 return jbd2_journal_start(journal
, max_buffs
);
348 sb_start_intwrite(osb
->sb
);
350 down_read(&osb
->journal
->j_trans_barrier
);
352 handle
= jbd2_journal_start(journal
, max_buffs
);
353 if (IS_ERR(handle
)) {
354 up_read(&osb
->journal
->j_trans_barrier
);
355 sb_end_intwrite(osb
->sb
);
357 mlog_errno(PTR_ERR(handle
));
359 if (is_journal_aborted(journal
)) {
360 ocfs2_abort(osb
->sb
, "Detected aborted journal\n");
361 handle
= ERR_PTR(-EROFS
);
364 if (!ocfs2_mount_local(osb
))
365 atomic_inc(&(osb
->journal
->j_num_trans
));
371 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
375 struct ocfs2_journal
*journal
= osb
->journal
;
379 nested
= handle
->h_ref
> 1;
380 ret
= jbd2_journal_stop(handle
);
385 up_read(&journal
->j_trans_barrier
);
386 sb_end_intwrite(osb
->sb
);
393 * 'nblocks' is what you want to add to the current transaction.
395 * This might call jbd2_journal_restart() which will commit dirty buffers
396 * and then restart the transaction. Before calling
397 * ocfs2_extend_trans(), any changed blocks should have been
398 * dirtied. After calling it, all blocks which need to be changed must
399 * go through another set of journal_access/journal_dirty calls.
401 * WARNING: This will not release any semaphores or disk locks taken
402 * during the transaction, so make sure they were taken *before*
403 * start_trans or we'll have ordering deadlocks.
405 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
406 * good because transaction ids haven't yet been recorded on the
407 * cluster locks associated with this handle.
409 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
411 int status
, old_nblocks
;
419 old_nblocks
= jbd2_handle_buffer_credits(handle
);
421 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
423 #ifdef CONFIG_OCFS2_DEBUG_FS
426 status
= jbd2_journal_extend(handle
, nblocks
, 0);
434 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
435 status
= jbd2_journal_restart(handle
,
436 old_nblocks
+ nblocks
);
449 * Make sure handle has at least 'nblocks' credits available. If it does not
450 * have that many credits available, we will try to extend the handle to have
451 * enough credits. If that fails, we will restart transaction to have enough
452 * credits. Similar notes regarding data consistency and locking implications
453 * as for ocfs2_extend_trans() apply here.
455 int ocfs2_assure_trans_credits(handle_t
*handle
, int nblocks
)
457 int old_nblks
= jbd2_handle_buffer_credits(handle
);
459 trace_ocfs2_assure_trans_credits(old_nblks
);
460 if (old_nblks
>= nblocks
)
462 return ocfs2_extend_trans(handle
, nblocks
- old_nblks
);
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
473 int status
, old_nblks
;
477 old_nblks
= jbd2_handle_buffer_credits(handle
);
478 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
480 if (old_nblks
< thresh
)
483 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
, 0);
490 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
499 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
501 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
504 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
505 struct buffer_head
*bh
,
506 void *data
, size_t size
)
508 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
511 * We aren't guaranteed to have the superblock here, so we
512 * must unconditionally compute the ecc data.
513 * __ocfs2_journal_access() will only set the triggers if
514 * metaecc is enabled.
516 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
520 * Quota blocks have their own trigger because the struct ocfs2_block_check
521 * offset depends on the blocksize.
523 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
524 struct buffer_head
*bh
,
525 void *data
, size_t size
)
527 struct ocfs2_disk_dqtrailer
*dqt
=
528 ocfs2_block_dqtrailer(size
, data
);
531 * We aren't guaranteed to have the superblock here, so we
532 * must unconditionally compute the ecc data.
533 * __ocfs2_journal_access() will only set the triggers if
534 * metaecc is enabled.
536 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
540 * Directory blocks also have their own trigger because the
541 * struct ocfs2_block_check offset depends on the blocksize.
543 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
544 struct buffer_head
*bh
,
545 void *data
, size_t size
)
547 struct ocfs2_dir_block_trailer
*trailer
=
548 ocfs2_dir_trailer_from_size(size
, data
);
551 * We aren't guaranteed to have the superblock here, so we
552 * must unconditionally compute the ecc data.
553 * __ocfs2_journal_access() will only set the triggers if
554 * metaecc is enabled.
556 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
559 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
560 struct buffer_head
*bh
)
562 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
565 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
566 "bh->b_blocknr = %llu\n",
568 (unsigned long long)bh
->b_blocknr
);
571 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
574 static void ocfs2_setup_csum_triggers(struct super_block
*sb
,
575 enum ocfs2_journal_trigger_type type
,
576 struct ocfs2_triggers
*ot
)
578 BUG_ON(type
>= OCFS2_JOURNAL_TRIGGER_COUNT
);
582 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
583 ot
->ot_offset
= offsetof(struct ocfs2_dinode
, i_check
);
586 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
587 ot
->ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
);
590 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
591 ot
->ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
);
594 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
595 ot
->ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
);
598 ot
->ot_triggers
.t_frozen
= ocfs2_db_frozen_trigger
;
601 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
602 ot
->ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
);
605 ot
->ot_triggers
.t_frozen
= ocfs2_dq_frozen_trigger
;
608 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
609 ot
->ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
);
612 ot
->ot_triggers
.t_frozen
= ocfs2_frozen_trigger
;
613 ot
->ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
);
616 /* To make compiler happy... */
620 ot
->ot_triggers
.t_abort
= ocfs2_abort_trigger
;
624 void ocfs2_initialize_journal_triggers(struct super_block
*sb
,
625 struct ocfs2_triggers triggers
[])
627 enum ocfs2_journal_trigger_type type
;
629 for (type
= OCFS2_JTR_DI
; type
< OCFS2_JOURNAL_TRIGGER_COUNT
; type
++)
630 ocfs2_setup_csum_triggers(sb
, type
, &triggers
[type
]);
633 static int __ocfs2_journal_access(handle_t
*handle
,
634 struct ocfs2_caching_info
*ci
,
635 struct buffer_head
*bh
,
636 struct ocfs2_triggers
*triggers
,
640 struct ocfs2_super
*osb
=
641 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
643 BUG_ON(!ci
|| !ci
->ci_ops
);
647 trace_ocfs2_journal_access(
648 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
649 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
651 /* we can safely remove this assertion after testing. */
652 if (!buffer_uptodate(bh
)) {
653 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
654 mlog(ML_ERROR
, "b_blocknr=%llu, b_state=0x%lx\n",
655 (unsigned long long)bh
->b_blocknr
, bh
->b_state
);
659 * A previous transaction with a couple of buffer heads fail
660 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661 * For current transaction, the bh is just among those error
662 * bhs which previous transaction handle. We can't just clear
663 * its BH_Write_EIO and reuse directly, since other bhs are
664 * not written to disk yet and that will cause metadata
665 * inconsistency. So we should set fs read-only to avoid
668 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
)) {
670 return ocfs2_error(osb
->sb
, "A previous attempt to "
671 "write this buffer head failed\n");
676 /* Set the current transaction information on the ci so
677 * that the locking code knows whether it can drop it's locks
678 * on this ci or not. We're protected from the commit
679 * thread updating the current transaction id until
680 * ocfs2_commit_trans() because ocfs2_start_trans() took
681 * j_trans_barrier for us. */
682 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
684 ocfs2_metadata_cache_io_lock(ci
);
686 case OCFS2_JOURNAL_ACCESS_CREATE
:
687 case OCFS2_JOURNAL_ACCESS_WRITE
:
688 status
= jbd2_journal_get_write_access(handle
, bh
);
691 case OCFS2_JOURNAL_ACCESS_UNDO
:
692 status
= jbd2_journal_get_undo_access(handle
, bh
);
697 mlog(ML_ERROR
, "Unknown access type!\n");
699 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
700 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
701 ocfs2_metadata_cache_io_unlock(ci
);
704 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
710 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
711 struct buffer_head
*bh
, int type
)
713 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
715 return __ocfs2_journal_access(handle
, ci
, bh
,
716 &osb
->s_journal_triggers
[OCFS2_JTR_DI
],
720 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
721 struct buffer_head
*bh
, int type
)
723 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
725 return __ocfs2_journal_access(handle
, ci
, bh
,
726 &osb
->s_journal_triggers
[OCFS2_JTR_EB
],
730 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
731 struct buffer_head
*bh
, int type
)
733 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
735 return __ocfs2_journal_access(handle
, ci
, bh
,
736 &osb
->s_journal_triggers
[OCFS2_JTR_RB
],
740 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
741 struct buffer_head
*bh
, int type
)
743 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
745 return __ocfs2_journal_access(handle
, ci
, bh
,
746 &osb
->s_journal_triggers
[OCFS2_JTR_GD
],
750 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
751 struct buffer_head
*bh
, int type
)
753 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
755 return __ocfs2_journal_access(handle
, ci
, bh
,
756 &osb
->s_journal_triggers
[OCFS2_JTR_DB
],
760 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
761 struct buffer_head
*bh
, int type
)
763 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
765 return __ocfs2_journal_access(handle
, ci
, bh
,
766 &osb
->s_journal_triggers
[OCFS2_JTR_XB
],
770 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
771 struct buffer_head
*bh
, int type
)
773 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
775 return __ocfs2_journal_access(handle
, ci
, bh
,
776 &osb
->s_journal_triggers
[OCFS2_JTR_DQ
],
780 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
781 struct buffer_head
*bh
, int type
)
783 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
785 return __ocfs2_journal_access(handle
, ci
, bh
,
786 &osb
->s_journal_triggers
[OCFS2_JTR_DR
],
790 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
791 struct buffer_head
*bh
, int type
)
793 struct ocfs2_super
*osb
= OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
795 return __ocfs2_journal_access(handle
, ci
, bh
,
796 &osb
->s_journal_triggers
[OCFS2_JTR_DL
],
800 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
801 struct buffer_head
*bh
, int type
)
803 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
806 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
810 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
812 status
= jbd2_journal_dirty_metadata(handle
, bh
);
815 if (!is_handle_aborted(handle
)) {
816 journal_t
*journal
= handle
->h_transaction
->t_journal
;
818 mlog(ML_ERROR
, "jbd2_journal_dirty_metadata failed: "
819 "handle type %u started at line %u, credits %u/%u "
820 "errcode %d. Aborting transaction and journal.\n",
821 handle
->h_type
, handle
->h_line_no
,
822 handle
->h_requested_credits
,
823 jbd2_handle_buffer_credits(handle
), status
);
824 handle
->h_err
= status
;
825 jbd2_journal_abort_handle(handle
);
826 jbd2_journal_abort(journal
, status
);
831 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
833 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
835 journal_t
*journal
= osb
->journal
->j_journal
;
836 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
838 if (osb
->osb_commit_interval
)
839 commit_interval
= osb
->osb_commit_interval
;
841 write_lock(&journal
->j_state_lock
);
842 journal
->j_commit_interval
= commit_interval
;
843 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
844 journal
->j_flags
|= JBD2_BARRIER
;
846 journal
->j_flags
&= ~JBD2_BARRIER
;
847 write_unlock(&journal
->j_state_lock
);
851 * alloc & initialize skeleton for journal structure.
852 * ocfs2_journal_init() will make fs have journal ability.
854 int ocfs2_journal_alloc(struct ocfs2_super
*osb
)
857 struct ocfs2_journal
*journal
;
859 journal
= kzalloc(sizeof(struct ocfs2_journal
), GFP_KERNEL
);
861 mlog(ML_ERROR
, "unable to alloc journal\n");
865 osb
->journal
= journal
;
866 journal
->j_osb
= osb
;
868 atomic_set(&journal
->j_num_trans
, 0);
869 init_rwsem(&journal
->j_trans_barrier
);
870 init_waitqueue_head(&journal
->j_checkpointed
);
871 spin_lock_init(&journal
->j_lock
);
872 journal
->j_trans_id
= 1UL;
873 INIT_LIST_HEAD(&journal
->j_la_cleanups
);
874 INIT_WORK(&journal
->j_recovery_work
, ocfs2_complete_recovery
);
875 journal
->j_state
= OCFS2_JOURNAL_FREE
;
881 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode
*jinode
)
883 struct address_space
*mapping
= jinode
->i_vfs_inode
->i_mapping
;
884 struct writeback_control wbc
= {
885 .sync_mode
= WB_SYNC_ALL
,
886 .nr_to_write
= mapping
->nrpages
* 2,
887 .range_start
= jinode
->i_dirty_start
,
888 .range_end
= jinode
->i_dirty_end
,
891 return filemap_fdatawrite_wbc(mapping
, &wbc
);
894 int ocfs2_journal_init(struct ocfs2_super
*osb
, int *dirty
)
897 struct inode
*inode
= NULL
; /* the journal inode */
898 journal_t
*j_journal
= NULL
;
899 struct ocfs2_journal
*journal
= osb
->journal
;
900 struct ocfs2_dinode
*di
= NULL
;
901 struct buffer_head
*bh
= NULL
;
905 /* already have the inode for our journal */
906 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
913 if (is_bad_inode(inode
)) {
914 mlog(ML_ERROR
, "access error (bad inode)\n");
921 SET_INODE_JOURNAL(inode
);
922 OCFS2_I(inode
)->ip_open_count
++;
924 /* Skip recovery waits here - journal inode metadata never
925 * changes in a live cluster so it can be considered an
926 * exception to the rule. */
927 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
929 if (status
!= -ERESTARTSYS
)
930 mlog(ML_ERROR
, "Could not get lock on journal!\n");
935 di
= (struct ocfs2_dinode
*)bh
->b_data
;
937 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
938 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
944 trace_ocfs2_journal_init(i_size_read(inode
),
945 (unsigned long long)inode
->i_blocks
,
946 OCFS2_I(inode
)->ip_clusters
);
948 /* call the kernels journal init function now */
949 j_journal
= jbd2_journal_init_inode(inode
);
950 if (IS_ERR(j_journal
)) {
951 mlog(ML_ERROR
, "Linux journal layer error\n");
952 status
= PTR_ERR(j_journal
);
956 trace_ocfs2_journal_init_maxlen(j_journal
->j_total_len
);
958 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
959 OCFS2_JOURNAL_DIRTY_FL
);
961 journal
->j_journal
= j_journal
;
962 journal
->j_journal
->j_submit_inode_data_buffers
=
963 ocfs2_journal_submit_inode_data_buffers
;
964 journal
->j_journal
->j_finish_inode_data_buffers
=
965 jbd2_journal_finish_inode_data_buffers
;
966 journal
->j_inode
= inode
;
969 ocfs2_set_journal_params(osb
);
971 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
977 ocfs2_inode_unlock(inode
, 1);
980 OCFS2_I(inode
)->ip_open_count
--;
988 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
990 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
993 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
995 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
998 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
999 int dirty
, int replayed
)
1003 struct ocfs2_journal
*journal
= osb
->journal
;
1004 struct buffer_head
*bh
= journal
->j_bh
;
1005 struct ocfs2_dinode
*fe
;
1007 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1009 /* The journal bh on the osb always comes from ocfs2_journal_init()
1010 * and was validated there inside ocfs2_inode_lock_full(). It's a
1011 * code bug if we mess it up. */
1012 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
1014 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1016 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
1018 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1019 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1022 ocfs2_bump_recovery_generation(fe
);
1024 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1025 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
1033 * If the journal has been kmalloc'd it needs to be freed after this
1036 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
1038 struct ocfs2_journal
*journal
= NULL
;
1040 struct inode
*inode
= NULL
;
1041 int num_running_trans
= 0;
1045 journal
= osb
->journal
;
1049 inode
= journal
->j_inode
;
1051 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
1054 /* need to inc inode use count - jbd2_journal_destroy will iput. */
1058 num_running_trans
= atomic_read(&(journal
->j_num_trans
));
1059 trace_ocfs2_journal_shutdown(num_running_trans
);
1061 /* Do a commit_cache here. It will flush our journal, *and*
1062 * release any locks that are still held.
1063 * set the SHUTDOWN flag and release the trans lock.
1064 * the commit thread will take the trans lock for us below. */
1065 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
1067 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1068 * drop the trans_lock (which we want to hold until we
1069 * completely destroy the journal. */
1070 if (osb
->commit_task
) {
1071 /* Wait for the commit thread */
1072 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
1073 kthread_stop(osb
->commit_task
);
1074 osb
->commit_task
= NULL
;
1077 BUG_ON(atomic_read(&(journal
->j_num_trans
)) != 0);
1079 if (ocfs2_mount_local(osb
) &&
1080 (journal
->j_journal
->j_flags
& JBD2_LOADED
)) {
1081 jbd2_journal_lock_updates(journal
->j_journal
);
1082 status
= jbd2_journal_flush(journal
->j_journal
, 0);
1083 jbd2_journal_unlock_updates(journal
->j_journal
);
1088 /* Shutdown the kernel journal system */
1089 if (!jbd2_journal_destroy(journal
->j_journal
) && !status
) {
1091 * Do not toggle if flush was unsuccessful otherwise
1092 * will leave dirty metadata in a "clean" journal
1094 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
1098 journal
->j_journal
= NULL
;
1100 OCFS2_I(inode
)->ip_open_count
--;
1102 /* unlock our journal */
1103 ocfs2_inode_unlock(inode
, 1);
1105 brelse(journal
->j_bh
);
1106 journal
->j_bh
= NULL
;
1108 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1113 osb
->journal
= NULL
;
1116 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1122 olderr
= jbd2_journal_errno(journal
);
1124 mlog(ML_ERROR
, "File system error %d recorded in "
1125 "journal %u.\n", olderr
, slot
);
1126 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1129 jbd2_journal_ack_err(journal
);
1130 jbd2_journal_clear_err(journal
);
1134 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1137 struct ocfs2_super
*osb
;
1141 osb
= journal
->j_osb
;
1143 status
= jbd2_journal_load(journal
->j_journal
);
1145 mlog(ML_ERROR
, "Failed to load journal!\n");
1149 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1152 jbd2_journal_lock_updates(journal
->j_journal
);
1153 status
= jbd2_journal_flush(journal
->j_journal
, 0);
1154 jbd2_journal_unlock_updates(journal
->j_journal
);
1159 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1165 /* Launch the commit thread */
1167 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1168 "ocfs2cmt-%s", osb
->uuid_str
);
1169 if (IS_ERR(osb
->commit_task
)) {
1170 status
= PTR_ERR(osb
->commit_task
);
1171 osb
->commit_task
= NULL
;
1172 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1173 "error=%d", status
);
1177 osb
->commit_task
= NULL
;
1184 /* 'full' flag tells us whether we clear out all blocks or if we just
1185 * mark the journal clean */
1186 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1192 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1198 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1206 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1209 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1211 spin_lock(&osb
->osb_lock
);
1212 empty
= (rm
->rm_used
== 0);
1213 spin_unlock(&osb
->osb_lock
);
1218 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1220 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1224 * JBD Might read a cached version of another nodes journal file. We
1225 * don't want this as this file changes often and we get no
1226 * notification on those changes. The only way to be sure that we've
1227 * got the most up to date version of those blocks then is to force
1228 * read them off disk. Just searching through the buffer cache won't
1229 * work as there may be pages backing this file which are still marked
1230 * up to date. We know things can't change on this file underneath us
1231 * as we have the lock by now :)
1233 static int ocfs2_force_read_journal(struct inode
*inode
)
1237 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1238 struct buffer_head
*bh
= NULL
;
1239 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1241 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1243 while (v_blkno
< num_blocks
) {
1244 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1245 &p_blkno
, &p_blocks
, NULL
);
1251 for (i
= 0; i
< p_blocks
; i
++, p_blkno
++) {
1252 bh
= __find_get_block(osb
->sb
->s_bdev
, p_blkno
,
1253 osb
->sb
->s_blocksize
);
1254 /* block not cached. */
1260 /* We are reading journal data which should not
1261 * be put in the uptodate cache.
1263 status
= ocfs2_read_blocks_sync(osb
, p_blkno
, 1, &bh
);
1273 v_blkno
+= p_blocks
;
1280 struct ocfs2_la_recovery_item
{
1281 struct list_head lri_list
;
1283 struct ocfs2_dinode
*lri_la_dinode
;
1284 struct ocfs2_dinode
*lri_tl_dinode
;
1285 struct ocfs2_quota_recovery
*lri_qrec
;
1286 enum ocfs2_orphan_reco_type lri_orphan_reco_type
;
1289 /* Does the second half of the recovery process. By this point, the
1290 * node is marked clean and can actually be considered recovered,
1291 * hence it's no longer in the recovery map, but there's still some
1292 * cleanup we can do which shouldn't happen within the recovery thread
1293 * as locking in that context becomes very difficult if we are to take
1294 * recovering nodes into account.
1296 * NOTE: This function can and will sleep on recovery of other nodes
1297 * during cluster locking, just like any other ocfs2 process.
1299 void ocfs2_complete_recovery(struct work_struct
*work
)
1302 struct ocfs2_journal
*journal
=
1303 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1304 struct ocfs2_super
*osb
= journal
->j_osb
;
1305 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1306 struct ocfs2_la_recovery_item
*item
, *n
;
1307 struct ocfs2_quota_recovery
*qrec
;
1308 enum ocfs2_orphan_reco_type orphan_reco_type
;
1309 LIST_HEAD(tmp_la_list
);
1311 trace_ocfs2_complete_recovery(
1312 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1314 spin_lock(&journal
->j_lock
);
1315 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1316 spin_unlock(&journal
->j_lock
);
1318 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1319 list_del_init(&item
->lri_list
);
1321 ocfs2_wait_on_quotas(osb
);
1323 la_dinode
= item
->lri_la_dinode
;
1324 tl_dinode
= item
->lri_tl_dinode
;
1325 qrec
= item
->lri_qrec
;
1326 orphan_reco_type
= item
->lri_orphan_reco_type
;
1328 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1329 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1330 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1334 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1343 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1351 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
,
1357 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1361 /* Recovery info is already freed now */
1367 trace_ocfs2_complete_recovery_end(ret
);
1370 /* NOTE: This function always eats your references to la_dinode and
1371 * tl_dinode, either manually on error, or by passing them to
1372 * ocfs2_complete_recovery */
1373 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1375 struct ocfs2_dinode
*la_dinode
,
1376 struct ocfs2_dinode
*tl_dinode
,
1377 struct ocfs2_quota_recovery
*qrec
,
1378 enum ocfs2_orphan_reco_type orphan_reco_type
)
1380 struct ocfs2_la_recovery_item
*item
;
1382 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1384 /* Though we wish to avoid it, we are in fact safe in
1385 * skipping local alloc cleanup as fsck.ocfs2 is more
1386 * than capable of reclaiming unused space. */
1391 ocfs2_free_quota_recovery(qrec
);
1393 mlog_errno(-ENOMEM
);
1397 INIT_LIST_HEAD(&item
->lri_list
);
1398 item
->lri_la_dinode
= la_dinode
;
1399 item
->lri_slot
= slot_num
;
1400 item
->lri_tl_dinode
= tl_dinode
;
1401 item
->lri_qrec
= qrec
;
1402 item
->lri_orphan_reco_type
= orphan_reco_type
;
1404 spin_lock(&journal
->j_lock
);
1405 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1406 queue_work(journal
->j_osb
->ocfs2_wq
, &journal
->j_recovery_work
);
1407 spin_unlock(&journal
->j_lock
);
1410 /* Called by the mount code to queue recovery the last part of
1411 * recovery for it's own and offline slot(s). */
1412 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1414 struct ocfs2_journal
*journal
= osb
->journal
;
1416 if (ocfs2_is_hard_readonly(osb
))
1419 /* No need to queue up our truncate_log as regular cleanup will catch
1421 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1422 osb
->local_alloc_copy
, NULL
, NULL
,
1423 ORPHAN_NEED_TRUNCATE
);
1424 ocfs2_schedule_truncate_log_flush(osb
, 0);
1426 osb
->local_alloc_copy
= NULL
;
1428 /* queue to recover orphan slots for all offline slots */
1429 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1430 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1431 ocfs2_free_replay_slots(osb
);
1434 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1436 if (osb
->quota_rec
) {
1437 ocfs2_queue_recovery_completion(osb
->journal
,
1442 ORPHAN_NEED_TRUNCATE
);
1443 osb
->quota_rec
= NULL
;
1447 static int __ocfs2_recovery_thread(void *arg
)
1449 int status
, node_num
, slot_num
;
1450 struct ocfs2_super
*osb
= arg
;
1451 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1452 int *rm_quota
= NULL
;
1453 int rm_quota_used
= 0, i
;
1454 struct ocfs2_quota_recovery
*qrec
;
1456 /* Whether the quota supported. */
1457 int quota_enabled
= OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1458 OCFS2_FEATURE_RO_COMPAT_USRQUOTA
)
1459 || OCFS2_HAS_RO_COMPAT_FEATURE(osb
->sb
,
1460 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA
);
1462 status
= ocfs2_wait_on_mount(osb
);
1467 if (quota_enabled
) {
1468 rm_quota
= kcalloc(osb
->max_slots
, sizeof(int), GFP_NOFS
);
1475 status
= ocfs2_super_lock(osb
, 1);
1481 status
= ocfs2_compute_replay_slots(osb
);
1485 /* queue recovery for our own slot */
1486 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1487 NULL
, NULL
, ORPHAN_NO_NEED_TRUNCATE
);
1489 spin_lock(&osb
->osb_lock
);
1490 while (rm
->rm_used
) {
1491 /* It's always safe to remove entry zero, as we won't
1492 * clear it until ocfs2_recover_node() has succeeded. */
1493 node_num
= rm
->rm_entries
[0];
1494 spin_unlock(&osb
->osb_lock
);
1495 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1496 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1497 if (slot_num
== -ENOENT
) {
1502 /* It is a bit subtle with quota recovery. We cannot do it
1503 * immediately because we have to obtain cluster locks from
1504 * quota files and we also don't want to just skip it because
1505 * then quota usage would be out of sync until some node takes
1506 * the slot. So we remember which nodes need quota recovery
1507 * and when everything else is done, we recover quotas. */
1508 if (quota_enabled
) {
1509 for (i
= 0; i
< rm_quota_used
1510 && rm_quota
[i
] != slot_num
; i
++)
1513 if (i
== rm_quota_used
)
1514 rm_quota
[rm_quota_used
++] = slot_num
;
1517 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1520 ocfs2_recovery_map_clear(osb
, node_num
);
1523 "Error %d recovering node %d on device (%u,%u)!\n",
1525 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1526 mlog(ML_ERROR
, "Volume requires unmount.\n");
1529 spin_lock(&osb
->osb_lock
);
1531 spin_unlock(&osb
->osb_lock
);
1532 trace_ocfs2_recovery_thread_end(status
);
1534 /* Refresh all journal recovery generations from disk */
1535 status
= ocfs2_check_journals_nolocks(osb
);
1536 status
= (status
== -EROFS
) ? 0 : status
;
1540 /* Now it is right time to recover quotas... We have to do this under
1541 * superblock lock so that no one can start using the slot (and crash)
1542 * before we recover it */
1543 if (quota_enabled
) {
1544 for (i
= 0; i
< rm_quota_used
; i
++) {
1545 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1547 status
= PTR_ERR(qrec
);
1551 ocfs2_queue_recovery_completion(osb
->journal
,
1554 ORPHAN_NEED_TRUNCATE
);
1558 ocfs2_super_unlock(osb
, 1);
1560 /* queue recovery for offline slots */
1561 ocfs2_queue_replay_slots(osb
, ORPHAN_NEED_TRUNCATE
);
1564 mutex_lock(&osb
->recovery_lock
);
1565 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1566 mutex_unlock(&osb
->recovery_lock
);
1570 ocfs2_free_replay_slots(osb
);
1571 osb
->recovery_thread_task
= NULL
;
1572 mb(); /* sync with ocfs2_recovery_thread_running */
1573 wake_up(&osb
->recovery_event
);
1575 mutex_unlock(&osb
->recovery_lock
);
1583 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1585 mutex_lock(&osb
->recovery_lock
);
1587 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1588 osb
->disable_recovery
, osb
->recovery_thread_task
,
1589 osb
->disable_recovery
?
1590 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1592 if (osb
->disable_recovery
)
1595 if (osb
->recovery_thread_task
)
1598 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1599 "ocfs2rec-%s", osb
->uuid_str
);
1600 if (IS_ERR(osb
->recovery_thread_task
)) {
1601 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1602 osb
->recovery_thread_task
= NULL
;
1606 mutex_unlock(&osb
->recovery_lock
);
1607 wake_up(&osb
->recovery_event
);
1610 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1612 struct buffer_head
**bh
,
1613 struct inode
**ret_inode
)
1615 int status
= -EACCES
;
1616 struct inode
*inode
= NULL
;
1618 BUG_ON(slot_num
>= osb
->max_slots
);
1620 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1622 if (!inode
|| is_bad_inode(inode
)) {
1626 SET_INODE_JOURNAL(inode
);
1628 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1638 if (status
|| !ret_inode
)
1646 /* Does the actual journal replay and marks the journal inode as
1647 * clean. Will only replay if the journal inode is marked dirty. */
1648 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1655 struct inode
*inode
= NULL
;
1656 struct ocfs2_dinode
*fe
;
1657 journal_t
*journal
= NULL
;
1658 struct buffer_head
*bh
= NULL
;
1661 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1667 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1668 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1673 * As the fs recovery is asynchronous, there is a small chance that
1674 * another node mounted (and recovered) the slot before the recovery
1675 * thread could get the lock. To handle that, we dirty read the journal
1676 * inode for that slot to get the recovery generation. If it is
1677 * different than what we expected, the slot has been recovered.
1678 * If not, it needs recovery.
1680 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1681 trace_ocfs2_replay_journal_recovered(slot_num
,
1682 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1683 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1688 /* Continue with recovery as the journal has not yet been recovered */
1690 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1692 trace_ocfs2_replay_journal_lock_err(status
);
1693 if (status
!= -ERESTARTSYS
)
1694 mlog(ML_ERROR
, "Could not lock journal!\n");
1699 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1701 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1702 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1704 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1705 trace_ocfs2_replay_journal_skip(node_num
);
1706 /* Refresh recovery generation for the slot */
1707 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1711 /* we need to run complete recovery for offline orphan slots */
1712 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1714 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1715 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1716 MINOR(osb
->sb
->s_dev
));
1718 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1720 status
= ocfs2_force_read_journal(inode
);
1726 journal
= jbd2_journal_init_inode(inode
);
1727 if (IS_ERR(journal
)) {
1728 mlog(ML_ERROR
, "Linux journal layer error\n");
1729 status
= PTR_ERR(journal
);
1733 status
= jbd2_journal_load(journal
);
1736 BUG_ON(!igrab(inode
));
1737 jbd2_journal_destroy(journal
);
1741 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1743 /* wipe the journal */
1744 jbd2_journal_lock_updates(journal
);
1745 status
= jbd2_journal_flush(journal
, 0);
1746 jbd2_journal_unlock_updates(journal
);
1750 /* This will mark the node clean */
1751 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1752 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1753 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1755 /* Increment recovery generation to indicate successful recovery */
1756 ocfs2_bump_recovery_generation(fe
);
1757 osb
->slot_recovery_generations
[slot_num
] =
1758 ocfs2_get_recovery_generation(fe
);
1760 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1761 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1765 BUG_ON(!igrab(inode
));
1767 jbd2_journal_destroy(journal
);
1769 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1770 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1771 MINOR(osb
->sb
->s_dev
));
1773 /* drop the lock on this nodes journal */
1775 ocfs2_inode_unlock(inode
, 1);
1784 * Do the most important parts of node recovery:
1785 * - Replay it's journal
1786 * - Stamp a clean local allocator file
1787 * - Stamp a clean truncate log
1788 * - Mark the node clean
1790 * If this function completes without error, a node in OCFS2 can be
1791 * said to have been safely recovered. As a result, failure during the
1792 * second part of a nodes recovery process (local alloc recovery) is
1793 * far less concerning.
1795 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1796 int node_num
, int slot_num
)
1799 struct ocfs2_dinode
*la_copy
= NULL
;
1800 struct ocfs2_dinode
*tl_copy
= NULL
;
1802 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1804 /* Should not ever be called to recover ourselves -- in that
1805 * case we should've called ocfs2_journal_load instead. */
1806 BUG_ON(osb
->node_num
== node_num
);
1808 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1810 if (status
== -EBUSY
) {
1811 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1819 /* Stamp a clean local alloc file AFTER recovering the journal... */
1820 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1826 /* An error from begin_truncate_log_recovery is not
1827 * serious enough to warrant halting the rest of
1829 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1833 /* Likewise, this would be a strange but ultimately not so
1834 * harmful place to get an error... */
1835 status
= ocfs2_clear_slot(osb
, slot_num
);
1839 /* This will kfree the memory pointed to by la_copy and tl_copy */
1840 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1841 tl_copy
, NULL
, ORPHAN_NEED_TRUNCATE
);
1849 /* Test node liveness by trylocking his journal. If we get the lock,
1850 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1851 * still alive (we couldn't get the lock) and < 0 on error. */
1852 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1856 struct inode
*inode
= NULL
;
1858 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1860 if (inode
== NULL
) {
1861 mlog(ML_ERROR
, "access error\n");
1865 if (is_bad_inode(inode
)) {
1866 mlog(ML_ERROR
, "access error (bad inode)\n");
1872 SET_INODE_JOURNAL(inode
);
1874 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1875 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1877 if (status
!= -EAGAIN
)
1882 ocfs2_inode_unlock(inode
, 1);
1889 /* Call this underneath ocfs2_super_lock. It also assumes that the
1890 * slot info struct has been updated from disk. */
1891 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1893 unsigned int node_num
;
1896 struct buffer_head
*bh
= NULL
;
1897 struct ocfs2_dinode
*di
;
1899 /* This is called with the super block cluster lock, so we
1900 * know that the slot map can't change underneath us. */
1902 for (i
= 0; i
< osb
->max_slots
; i
++) {
1903 /* Read journal inode to get the recovery generation */
1904 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1909 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1910 gen
= ocfs2_get_recovery_generation(di
);
1914 spin_lock(&osb
->osb_lock
);
1915 osb
->slot_recovery_generations
[i
] = gen
;
1917 trace_ocfs2_mark_dead_nodes(i
,
1918 osb
->slot_recovery_generations
[i
]);
1920 if (i
== osb
->slot_num
) {
1921 spin_unlock(&osb
->osb_lock
);
1925 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1926 if (status
== -ENOENT
) {
1927 spin_unlock(&osb
->osb_lock
);
1931 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1932 spin_unlock(&osb
->osb_lock
);
1935 spin_unlock(&osb
->osb_lock
);
1937 /* Ok, we have a slot occupied by another node which
1938 * is not in the recovery map. We trylock his journal
1939 * file here to test if he's alive. */
1940 status
= ocfs2_trylock_journal(osb
, i
);
1942 /* Since we're called from mount, we know that
1943 * the recovery thread can't race us on
1944 * setting / checking the recovery bits. */
1945 ocfs2_recovery_thread(osb
, node_num
);
1946 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1958 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1959 * randomness to the timeout to minimize multple nodes firing the timer at the
1962 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1966 get_random_bytes(&time
, sizeof(time
));
1967 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1968 return msecs_to_jiffies(time
);
1972 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1973 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1974 * is done to catch any orphans that are left over in orphan directories.
1976 * It scans all slots, even ones that are in use. It does so to handle the
1977 * case described below:
1979 * Node 1 has an inode it was using. The dentry went away due to memory
1980 * pressure. Node 1 closes the inode, but it's on the free list. The node
1981 * has the open lock.
1982 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1983 * but node 1 has no dentry and doesn't get the message. It trylocks the
1984 * open lock, sees that another node has a PR, and does nothing.
1985 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1986 * open lock, sees the PR still, and does nothing.
1987 * Basically, we have to trigger an orphan iput on node 1. The only way
1988 * for this to happen is if node 1 runs node 2's orphan dir.
1990 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1991 * seconds. It gets an EX lock on os_lockres and checks sequence number
1992 * stored in LVB. If the sequence number has changed, it means some other
1993 * node has done the scan. This node skips the scan and tracks the
1994 * sequence number. If the sequence number didn't change, it means a scan
1995 * hasn't happened. The node queues a scan and increments the
1996 * sequence number in the LVB.
1998 static void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
2000 struct ocfs2_orphan_scan
*os
;
2004 os
= &osb
->osb_orphan_scan
;
2006 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
2009 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
2010 atomic_read(&os
->os_state
));
2012 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
2014 if (status
!= -EAGAIN
)
2019 /* Do no queue the tasks if the volume is being umounted */
2020 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
2023 if (os
->os_seqno
!= seqno
) {
2024 os
->os_seqno
= seqno
;
2028 for (i
= 0; i
< osb
->max_slots
; i
++)
2029 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
2030 NULL
, ORPHAN_NO_NEED_TRUNCATE
);
2032 * We queued a recovery on orphan slots, increment the sequence
2033 * number and update LVB so other node will skip the scan for a while
2037 os
->os_scantime
= ktime_get_seconds();
2039 ocfs2_orphan_scan_unlock(osb
, seqno
);
2041 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
2042 atomic_read(&os
->os_state
));
2046 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2047 static void ocfs2_orphan_scan_work(struct work_struct
*work
)
2049 struct ocfs2_orphan_scan
*os
;
2050 struct ocfs2_super
*osb
;
2052 os
= container_of(work
, struct ocfs2_orphan_scan
,
2053 os_orphan_scan_work
.work
);
2056 mutex_lock(&os
->os_lock
);
2057 ocfs2_queue_orphan_scan(osb
);
2058 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
2059 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
2060 ocfs2_orphan_scan_timeout());
2061 mutex_unlock(&os
->os_lock
);
2064 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
2066 struct ocfs2_orphan_scan
*os
;
2068 os
= &osb
->osb_orphan_scan
;
2069 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
2070 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
2071 mutex_lock(&os
->os_lock
);
2072 cancel_delayed_work(&os
->os_orphan_scan_work
);
2073 mutex_unlock(&os
->os_lock
);
2077 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
2079 struct ocfs2_orphan_scan
*os
;
2081 os
= &osb
->osb_orphan_scan
;
2085 mutex_init(&os
->os_lock
);
2086 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
2089 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
2091 struct ocfs2_orphan_scan
*os
;
2093 os
= &osb
->osb_orphan_scan
;
2094 os
->os_scantime
= ktime_get_seconds();
2095 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
2096 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
2098 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
2099 queue_delayed_work(osb
->ocfs2_wq
, &os
->os_orphan_scan_work
,
2100 ocfs2_orphan_scan_timeout());
2104 struct ocfs2_orphan_filldir_priv
{
2105 struct dir_context ctx
;
2107 struct ocfs2_super
*osb
;
2108 enum ocfs2_orphan_reco_type orphan_reco_type
;
2111 static bool ocfs2_orphan_filldir(struct dir_context
*ctx
, const char *name
,
2112 int name_len
, loff_t pos
, u64 ino
,
2115 struct ocfs2_orphan_filldir_priv
*p
=
2116 container_of(ctx
, struct ocfs2_orphan_filldir_priv
, ctx
);
2119 if (name_len
== 1 && !strncmp(".", name
, 1))
2121 if (name_len
== 2 && !strncmp("..", name
, 2))
2124 /* do not include dio entry in case of orphan scan */
2125 if ((p
->orphan_reco_type
== ORPHAN_NO_NEED_TRUNCATE
) &&
2126 (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2127 OCFS2_DIO_ORPHAN_PREFIX_LEN
)))
2130 /* Skip bad inodes so that recovery can continue */
2131 iter
= ocfs2_iget(p
->osb
, ino
,
2132 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2136 if (!strncmp(name
, OCFS2_DIO_ORPHAN_PREFIX
,
2137 OCFS2_DIO_ORPHAN_PREFIX_LEN
))
2138 OCFS2_I(iter
)->ip_flags
|= OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2140 /* Skip inodes which are already added to recover list, since dio may
2141 * happen concurrently with unlink/rename */
2142 if (OCFS2_I(iter
)->ip_next_orphan
) {
2147 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2148 /* No locking is required for the next_orphan queue as there
2149 * is only ever a single process doing orphan recovery. */
2150 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2156 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2158 struct inode
**head
,
2159 enum ocfs2_orphan_reco_type orphan_reco_type
)
2162 struct inode
*orphan_dir_inode
= NULL
;
2163 struct ocfs2_orphan_filldir_priv priv
= {
2164 .ctx
.actor
= ocfs2_orphan_filldir
,
2167 .orphan_reco_type
= orphan_reco_type
2170 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2171 ORPHAN_DIR_SYSTEM_INODE
,
2173 if (!orphan_dir_inode
) {
2179 inode_lock(orphan_dir_inode
);
2180 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2186 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2195 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2197 inode_unlock(orphan_dir_inode
);
2198 iput(orphan_dir_inode
);
2202 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2207 spin_lock(&osb
->osb_lock
);
2208 ret
= !osb
->osb_orphan_wipes
[slot
];
2209 spin_unlock(&osb
->osb_lock
);
2213 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2216 spin_lock(&osb
->osb_lock
);
2217 /* Mark ourselves such that new processes in delete_inode()
2218 * know to quit early. */
2219 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2220 while (osb
->osb_orphan_wipes
[slot
]) {
2221 /* If any processes are already in the middle of an
2222 * orphan wipe on this dir, then we need to wait for
2224 spin_unlock(&osb
->osb_lock
);
2225 wait_event_interruptible(osb
->osb_wipe_event
,
2226 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2227 spin_lock(&osb
->osb_lock
);
2229 spin_unlock(&osb
->osb_lock
);
2232 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2235 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2239 * Orphan recovery. Each mounted node has it's own orphan dir which we
2240 * must run during recovery. Our strategy here is to build a list of
2241 * the inodes in the orphan dir and iget/iput them. The VFS does
2242 * (most) of the rest of the work.
2244 * Orphan recovery can happen at any time, not just mount so we have a
2245 * couple of extra considerations.
2247 * - We grab as many inodes as we can under the orphan dir lock -
2248 * doing iget() outside the orphan dir risks getting a reference on
2250 * - We must be sure not to deadlock with other processes on the
2251 * system wanting to run delete_inode(). This can happen when they go
2252 * to lock the orphan dir and the orphan recovery process attempts to
2253 * iget() inside the orphan dir lock. This can be avoided by
2254 * advertising our state to ocfs2_delete_inode().
2256 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2258 enum ocfs2_orphan_reco_type orphan_reco_type
)
2261 struct inode
*inode
= NULL
;
2263 struct ocfs2_inode_info
*oi
;
2264 struct buffer_head
*di_bh
= NULL
;
2265 struct ocfs2_dinode
*di
= NULL
;
2267 trace_ocfs2_recover_orphans(slot
);
2269 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2270 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
, orphan_reco_type
);
2271 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2273 /* Error here should be noted, but we want to continue with as
2274 * many queued inodes as we've got. */
2279 oi
= OCFS2_I(inode
);
2280 trace_ocfs2_recover_orphans_iput(
2281 (unsigned long long)oi
->ip_blkno
);
2283 iter
= oi
->ip_next_orphan
;
2284 oi
->ip_next_orphan
= NULL
;
2286 if (oi
->ip_flags
& OCFS2_INODE_DIO_ORPHAN_ENTRY
) {
2288 ret
= ocfs2_rw_lock(inode
, 1);
2294 * We need to take and drop the inode lock to
2295 * force read inode from disk.
2297 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
2303 di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
2305 if (di
->i_flags
& cpu_to_le32(OCFS2_DIO_ORPHANED_FL
)) {
2306 ret
= ocfs2_truncate_file(inode
, di_bh
,
2307 i_size_read(inode
));
2314 ret
= ocfs2_del_inode_from_orphan(osb
, inode
,
2320 ocfs2_inode_unlock(inode
, 1);
2324 ocfs2_rw_unlock(inode
, 1);
2326 inode_unlock(inode
);
2328 /* clear dio flag in ocfs2_inode_info */
2329 oi
->ip_flags
&= ~OCFS2_INODE_DIO_ORPHAN_ENTRY
;
2331 spin_lock(&oi
->ip_lock
);
2332 /* Set the proper information to get us going into
2333 * ocfs2_delete_inode. */
2334 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2335 spin_unlock(&oi
->ip_lock
);
2345 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2347 /* This check is good because ocfs2 will wait on our recovery
2348 * thread before changing it to something other than MOUNTED
2350 wait_event(osb
->osb_mount_event
,
2351 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2352 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2353 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2355 /* If there's an error on mount, then we may never get to the
2356 * MOUNTED flag, but this is set right before
2357 * dismount_volume() so we can trust it. */
2358 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2359 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2360 mlog(0, "mount error, exiting!\n");
2367 static int ocfs2_commit_thread(void *arg
)
2370 struct ocfs2_super
*osb
= arg
;
2371 struct ocfs2_journal
*journal
= osb
->journal
;
2373 /* we can trust j_num_trans here because _should_stop() is only set in
2374 * shutdown and nobody other than ourselves should be able to start
2375 * transactions. committing on shutdown might take a few iterations
2376 * as final transactions put deleted inodes on the list */
2377 while (!(kthread_should_stop() &&
2378 atomic_read(&journal
->j_num_trans
) == 0)) {
2380 wait_event_interruptible(osb
->checkpoint_event
,
2381 atomic_read(&journal
->j_num_trans
)
2382 || kthread_should_stop());
2384 status
= ocfs2_commit_cache(osb
);
2386 static unsigned long abort_warn_time
;
2388 /* Warn about this once per minute */
2389 if (printk_timed_ratelimit(&abort_warn_time
, 60*HZ
))
2390 mlog(ML_ERROR
, "status = %d, journal is "
2391 "already aborted.\n", status
);
2393 * After ocfs2_commit_cache() fails, j_num_trans has a
2394 * non-zero value. Sleep here to avoid a busy-wait
2397 msleep_interruptible(1000);
2400 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2402 "commit_thread: %u transactions pending on "
2404 atomic_read(&journal
->j_num_trans
));
2411 /* Reads all the journal inodes without taking any cluster locks. Used
2412 * for hard readonly access to determine whether any journal requires
2413 * recovery. Also used to refresh the recovery generation numbers after
2414 * a journal has been recovered by another node.
2416 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2420 struct buffer_head
*di_bh
= NULL
;
2421 struct ocfs2_dinode
*di
;
2422 int journal_dirty
= 0;
2424 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2425 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2431 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2433 osb
->slot_recovery_generations
[slot
] =
2434 ocfs2_get_recovery_generation(di
);
2436 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2437 OCFS2_JOURNAL_DIRTY_FL
)