drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / kernel / irq / timings.c
blobc43e2ac2f8defd5e5c67e152a960209dec465e49
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2016, Linaro Ltd - Daniel Lezcano <daniel.lezcano@linaro.org>
3 #define pr_fmt(fmt) "irq_timings: " fmt
5 #include <linux/kernel.h>
6 #include <linux/percpu.h>
7 #include <linux/slab.h>
8 #include <linux/static_key.h>
9 #include <linux/init.h>
10 #include <linux/interrupt.h>
11 #include <linux/idr.h>
12 #include <linux/irq.h>
13 #include <linux/math64.h>
14 #include <linux/log2.h>
16 #include <trace/events/irq.h>
18 #include "internals.h"
20 DEFINE_STATIC_KEY_FALSE(irq_timing_enabled);
22 DEFINE_PER_CPU(struct irq_timings, irq_timings);
24 static DEFINE_IDR(irqt_stats);
26 void irq_timings_enable(void)
28 static_branch_enable(&irq_timing_enabled);
31 void irq_timings_disable(void)
33 static_branch_disable(&irq_timing_enabled);
37 * The main goal of this algorithm is to predict the next interrupt
38 * occurrence on the current CPU.
40 * Currently, the interrupt timings are stored in a circular array
41 * buffer every time there is an interrupt, as a tuple: the interrupt
42 * number and the associated timestamp when the event occurred <irq,
43 * timestamp>.
45 * For every interrupt occurring in a short period of time, we can
46 * measure the elapsed time between the occurrences for the same
47 * interrupt and we end up with a suite of intervals. The experience
48 * showed the interrupts are often coming following a periodic
49 * pattern.
51 * The objective of the algorithm is to find out this periodic pattern
52 * in a fastest way and use its period to predict the next irq event.
54 * When the next interrupt event is requested, we are in the situation
55 * where the interrupts are disabled and the circular buffer
56 * containing the timings is filled with the events which happened
57 * after the previous next-interrupt-event request.
59 * At this point, we read the circular buffer and we fill the irq
60 * related statistics structure. After this step, the circular array
61 * containing the timings is empty because all the values are
62 * dispatched in their corresponding buffers.
64 * Now for each interrupt, we can predict the next event by using the
65 * suffix array, log interval and exponential moving average
67 * 1. Suffix array
69 * Suffix array is an array of all the suffixes of a string. It is
70 * widely used as a data structure for compression, text search, ...
71 * For instance for the word 'banana', the suffixes will be: 'banana'
72 * 'anana' 'nana' 'ana' 'na' 'a'
74 * Usually, the suffix array is sorted but for our purpose it is
75 * not necessary and won't provide any improvement in the context of
76 * the solved problem where we clearly define the boundaries of the
77 * search by a max period and min period.
79 * The suffix array will build a suite of intervals of different
80 * length and will look for the repetition of each suite. If the suite
81 * is repeating then we have the period because it is the length of
82 * the suite whatever its position in the buffer.
84 * 2. Log interval
86 * We saw the irq timings allow to compute the interval of the
87 * occurrences for a specific interrupt. We can reasonably assume the
88 * longer is the interval, the higher is the error for the next event
89 * and we can consider storing those interval values into an array
90 * where each slot in the array correspond to an interval at the power
91 * of 2 of the index. For example, index 12 will contain values
92 * between 2^11 and 2^12.
94 * At the end we have an array of values where at each index defines a
95 * [2^index - 1, 2 ^ index] interval values allowing to store a large
96 * number of values inside a small array.
98 * For example, if we have the value 1123, then we store it at
99 * ilog2(1123) = 10 index value.
101 * Storing those value at the specific index is done by computing an
102 * exponential moving average for this specific slot. For instance,
103 * for values 1800, 1123, 1453, ... fall under the same slot (10) and
104 * the exponential moving average is computed every time a new value
105 * is stored at this slot.
107 * 3. Exponential Moving Average
109 * The EMA is largely used to track a signal for stocks or as a low
110 * pass filter. The magic of the formula, is it is very simple and the
111 * reactivity of the average can be tuned with the factors called
112 * alpha.
114 * The higher the alphas are, the faster the average respond to the
115 * signal change. In our case, if a slot in the array is a big
116 * interval, we can have numbers with a big difference between
117 * them. The impact of those differences in the average computation
118 * can be tuned by changing the alpha value.
121 * -- The algorithm --
123 * We saw the different processing above, now let's see how they are
124 * used together.
126 * For each interrupt:
127 * For each interval:
128 * Compute the index = ilog2(interval)
129 * Compute a new_ema(buffer[index], interval)
130 * Store the index in a circular buffer
132 * Compute the suffix array of the indexes
134 * For each suffix:
135 * If the suffix is reverse-found 3 times
136 * Return suffix
138 * Return Not found
140 * However we can not have endless suffix array to be build, it won't
141 * make sense and it will add an extra overhead, so we can restrict
142 * this to a maximum suffix length of 5 and a minimum suffix length of
143 * 2. The experience showed 5 is the majority of the maximum pattern
144 * period found for different devices.
146 * The result is a pattern finding less than 1us for an interrupt.
148 * Example based on real values:
150 * Example 1 : MMC write/read interrupt interval:
152 * 223947, 1240, 1384, 1386, 1386,
153 * 217416, 1236, 1384, 1386, 1387,
154 * 214719, 1241, 1386, 1387, 1384,
155 * 213696, 1234, 1384, 1386, 1388,
156 * 219904, 1240, 1385, 1389, 1385,
157 * 212240, 1240, 1386, 1386, 1386,
158 * 214415, 1236, 1384, 1386, 1387,
159 * 214276, 1234, 1384, 1388, ?
161 * For each element, apply ilog2(value)
163 * 15, 8, 8, 8, 8,
164 * 15, 8, 8, 8, 8,
165 * 15, 8, 8, 8, 8,
166 * 15, 8, 8, 8, 8,
167 * 15, 8, 8, 8, 8,
168 * 15, 8, 8, 8, 8,
169 * 15, 8, 8, 8, 8,
170 * 15, 8, 8, 8, ?
172 * Max period of 5, we take the last (max_period * 3) 15 elements as
173 * we can be confident if the pattern repeats itself three times it is
174 * a repeating pattern.
176 * 8,
177 * 15, 8, 8, 8, 8,
178 * 15, 8, 8, 8, 8,
179 * 15, 8, 8, 8, ?
181 * Suffixes are:
183 * 1) 8, 15, 8, 8, 8 <- max period
184 * 2) 8, 15, 8, 8
185 * 3) 8, 15, 8
186 * 4) 8, 15 <- min period
188 * From there we search the repeating pattern for each suffix.
190 * buffer: 8, 15, 8, 8, 8, 8, 15, 8, 8, 8, 8, 15, 8, 8, 8
191 * | | | | | | | | | | | | | | |
192 * 8, 15, 8, 8, 8 | | | | | | | | | |
193 * 8, 15, 8, 8, 8 | | | | |
194 * 8, 15, 8, 8, 8
196 * When moving the suffix, we found exactly 3 matches.
198 * The first suffix with period 5 is repeating.
200 * The next event is (3 * max_period) % suffix_period
202 * In this example, the result 0, so the next event is suffix[0] => 8
204 * However, 8 is the index in the array of exponential moving average
205 * which was calculated on the fly when storing the values, so the
206 * interval is ema[8] = 1366
209 * Example 2:
211 * 4, 3, 5, 100,
212 * 3, 3, 5, 117,
213 * 4, 4, 5, 112,
214 * 4, 3, 4, 110,
215 * 3, 5, 3, 117,
216 * 4, 4, 5, 112,
217 * 4, 3, 4, 110,
218 * 3, 4, 5, 112,
219 * 4, 3, 4, 110
221 * ilog2
223 * 0, 0, 0, 4,
224 * 0, 0, 0, 4,
225 * 0, 0, 0, 4,
226 * 0, 0, 0, 4,
227 * 0, 0, 0, 4,
228 * 0, 0, 0, 4,
229 * 0, 0, 0, 4,
230 * 0, 0, 0, 4,
231 * 0, 0, 0, 4
233 * Max period 5:
234 * 0, 0, 4,
235 * 0, 0, 0, 4,
236 * 0, 0, 0, 4,
237 * 0, 0, 0, 4
239 * Suffixes:
241 * 1) 0, 0, 4, 0, 0
242 * 2) 0, 0, 4, 0
243 * 3) 0, 0, 4
244 * 4) 0, 0
246 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
247 * | | | | | | X
248 * 0, 0, 4, 0, 0, | X
249 * 0, 0
251 * buffer: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4
252 * | | | | | | | | | | | | | | |
253 * 0, 0, 4, 0, | | | | | | | | | | |
254 * 0, 0, 4, 0, | | | | | | |
255 * 0, 0, 4, 0, | | |
256 * 0 0 4
258 * Pattern is found 3 times, the remaining is 1 which results from
259 * (max_period * 3) % suffix_period. This value is the index in the
260 * suffix arrays. The suffix array for a period 4 has the value 4
261 * at index 1.
263 #define EMA_ALPHA_VAL 64
264 #define EMA_ALPHA_SHIFT 7
266 #define PREDICTION_PERIOD_MIN 3
267 #define PREDICTION_PERIOD_MAX 5
268 #define PREDICTION_FACTOR 4
269 #define PREDICTION_MAX 10 /* 2 ^ PREDICTION_MAX useconds */
270 #define PREDICTION_BUFFER_SIZE 16 /* slots for EMAs, hardly more than 16 */
273 * Number of elements in the circular buffer: If it happens it was
274 * flushed before, then the number of elements could be smaller than
275 * IRQ_TIMINGS_SIZE, so the count is used, otherwise the array size is
276 * used as we wrapped. The index begins from zero when we did not
277 * wrap. That could be done in a nicer way with the proper circular
278 * array structure type but with the cost of extra computation in the
279 * interrupt handler hot path. We choose efficiency.
281 #define for_each_irqts(i, irqts) \
282 for (i = irqts->count < IRQ_TIMINGS_SIZE ? \
283 0 : irqts->count & IRQ_TIMINGS_MASK, \
284 irqts->count = min(IRQ_TIMINGS_SIZE, \
285 irqts->count); \
286 irqts->count > 0; irqts->count--, \
287 i = (i + 1) & IRQ_TIMINGS_MASK)
289 struct irqt_stat {
290 u64 last_ts;
291 u64 ema_time[PREDICTION_BUFFER_SIZE];
292 int timings[IRQ_TIMINGS_SIZE];
293 int circ_timings[IRQ_TIMINGS_SIZE];
294 int count;
298 * Exponential moving average computation
300 static u64 irq_timings_ema_new(u64 value, u64 ema_old)
302 s64 diff;
304 if (unlikely(!ema_old))
305 return value;
307 diff = (value - ema_old) * EMA_ALPHA_VAL;
309 * We can use a s64 type variable to be added with the u64
310 * ema_old variable as this one will never have its topmost
311 * bit set, it will be always smaller than 2^63 nanosec
312 * interrupt interval (292 years).
314 return ema_old + (diff >> EMA_ALPHA_SHIFT);
317 static int irq_timings_next_event_index(int *buffer, size_t len, int period_max)
319 int period;
322 * Move the beginning pointer to the end minus the max period x 3.
323 * We are at the point we can begin searching the pattern
325 buffer = &buffer[len - (period_max * 3)];
327 /* Adjust the length to the maximum allowed period x 3 */
328 len = period_max * 3;
331 * The buffer contains the suite of intervals, in a ilog2
332 * basis, we are looking for a repetition. We point the
333 * beginning of the search three times the length of the
334 * period beginning at the end of the buffer. We do that for
335 * each suffix.
337 for (period = period_max; period >= PREDICTION_PERIOD_MIN; period--) {
340 * The first comparison always succeed because the
341 * suffix is deduced from the first n-period bytes of
342 * the buffer and we compare the initial suffix with
343 * itself, so we can skip the first iteration.
345 int idx = period;
346 size_t size = period;
349 * We look if the suite with period 'i' repeat
350 * itself. If it is truncated at the end, as it
351 * repeats we can use the period to find out the next
352 * element with the modulo.
354 while (!memcmp(buffer, &buffer[idx], size * sizeof(int))) {
357 * Move the index in a period basis
359 idx += size;
362 * If this condition is reached, all previous
363 * memcmp were successful, so the period is
364 * found.
366 if (idx == len)
367 return buffer[len % period];
370 * If the remaining elements to compare are
371 * smaller than the period, readjust the size
372 * of the comparison for the last iteration.
374 if (len - idx < period)
375 size = len - idx;
379 return -1;
382 static u64 __irq_timings_next_event(struct irqt_stat *irqs, int irq, u64 now)
384 int index, i, period_max, count, start, min = INT_MAX;
386 if ((now - irqs->last_ts) >= NSEC_PER_SEC) {
387 irqs->count = irqs->last_ts = 0;
388 return U64_MAX;
392 * As we want to find three times the repetition, we need a
393 * number of intervals greater or equal to three times the
394 * maximum period, otherwise we truncate the max period.
396 period_max = irqs->count > (3 * PREDICTION_PERIOD_MAX) ?
397 PREDICTION_PERIOD_MAX : irqs->count / 3;
400 * If we don't have enough irq timings for this prediction,
401 * just bail out.
403 if (period_max <= PREDICTION_PERIOD_MIN)
404 return U64_MAX;
407 * 'count' will depends if the circular buffer wrapped or not
409 count = irqs->count < IRQ_TIMINGS_SIZE ?
410 irqs->count : IRQ_TIMINGS_SIZE;
412 start = irqs->count < IRQ_TIMINGS_SIZE ?
413 0 : (irqs->count & IRQ_TIMINGS_MASK);
416 * Copy the content of the circular buffer into another buffer
417 * in order to linearize the buffer instead of dealing with
418 * wrapping indexes and shifted array which will be prone to
419 * error and extremely difficult to debug.
421 for (i = 0; i < count; i++) {
422 int index = (start + i) & IRQ_TIMINGS_MASK;
424 irqs->timings[i] = irqs->circ_timings[index];
425 min = min_t(int, irqs->timings[i], min);
428 index = irq_timings_next_event_index(irqs->timings, count, period_max);
429 if (index < 0)
430 return irqs->last_ts + irqs->ema_time[min];
432 return irqs->last_ts + irqs->ema_time[index];
435 static __always_inline int irq_timings_interval_index(u64 interval)
438 * The PREDICTION_FACTOR increase the interval size for the
439 * array of exponential average.
441 u64 interval_us = (interval >> 10) / PREDICTION_FACTOR;
443 return likely(interval_us) ? ilog2(interval_us) : 0;
446 static __always_inline void __irq_timings_store(int irq, struct irqt_stat *irqs,
447 u64 interval)
449 int index;
452 * Get the index in the ema table for this interrupt.
454 index = irq_timings_interval_index(interval);
456 if (index > PREDICTION_BUFFER_SIZE - 1) {
457 irqs->count = 0;
458 return;
462 * Store the index as an element of the pattern in another
463 * circular array.
465 irqs->circ_timings[irqs->count & IRQ_TIMINGS_MASK] = index;
467 irqs->ema_time[index] = irq_timings_ema_new(interval,
468 irqs->ema_time[index]);
470 irqs->count++;
473 static inline void irq_timings_store(int irq, struct irqt_stat *irqs, u64 ts)
475 u64 old_ts = irqs->last_ts;
476 u64 interval;
479 * The timestamps are absolute time values, we need to compute
480 * the timing interval between two interrupts.
482 irqs->last_ts = ts;
485 * The interval type is u64 in order to deal with the same
486 * type in our computation, that prevent mindfuck issues with
487 * overflow, sign and division.
489 interval = ts - old_ts;
492 * The interrupt triggered more than one second apart, that
493 * ends the sequence as predictable for our purpose. In this
494 * case, assume we have the beginning of a sequence and the
495 * timestamp is the first value. As it is impossible to
496 * predict anything at this point, return.
498 * Note the first timestamp of the sequence will always fall
499 * in this test because the old_ts is zero. That is what we
500 * want as we need another timestamp to compute an interval.
502 if (interval >= NSEC_PER_SEC) {
503 irqs->count = 0;
504 return;
507 __irq_timings_store(irq, irqs, interval);
511 * irq_timings_next_event - Return when the next event is supposed to arrive
513 * During the last busy cycle, the number of interrupts is incremented
514 * and stored in the irq_timings structure. This information is
515 * necessary to:
517 * - know if the index in the table wrapped up:
519 * If more than the array size interrupts happened during the
520 * last busy/idle cycle, the index wrapped up and we have to
521 * begin with the next element in the array which is the last one
522 * in the sequence, otherwise it is at the index 0.
524 * - have an indication of the interrupts activity on this CPU
525 * (eg. irq/sec)
527 * The values are 'consumed' after inserting in the statistical model,
528 * thus the count is reinitialized.
530 * The array of values **must** be browsed in the time direction, the
531 * timestamp must increase between an element and the next one.
533 * Returns a nanosec time based estimation of the earliest interrupt,
534 * U64_MAX otherwise.
536 u64 irq_timings_next_event(u64 now)
538 struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
539 struct irqt_stat *irqs;
540 struct irqt_stat __percpu *s;
541 u64 ts, next_evt = U64_MAX;
542 int i, irq = 0;
545 * This function must be called with the local irq disabled in
546 * order to prevent the timings circular buffer to be updated
547 * while we are reading it.
549 lockdep_assert_irqs_disabled();
551 if (!irqts->count)
552 return next_evt;
555 * Number of elements in the circular buffer: If it happens it
556 * was flushed before, then the number of elements could be
557 * smaller than IRQ_TIMINGS_SIZE, so the count is used,
558 * otherwise the array size is used as we wrapped. The index
559 * begins from zero when we did not wrap. That could be done
560 * in a nicer way with the proper circular array structure
561 * type but with the cost of extra computation in the
562 * interrupt handler hot path. We choose efficiency.
564 * Inject measured irq/timestamp to the pattern prediction
565 * model while decrementing the counter because we consume the
566 * data from our circular buffer.
568 for_each_irqts(i, irqts) {
569 irq = irq_timing_decode(irqts->values[i], &ts);
570 s = idr_find(&irqt_stats, irq);
571 if (s)
572 irq_timings_store(irq, this_cpu_ptr(s), ts);
576 * Look in the list of interrupts' statistics, the earliest
577 * next event.
579 idr_for_each_entry(&irqt_stats, s, i) {
581 irqs = this_cpu_ptr(s);
583 ts = __irq_timings_next_event(irqs, i, now);
584 if (ts <= now)
585 return now;
587 if (ts < next_evt)
588 next_evt = ts;
591 return next_evt;
594 void irq_timings_free(int irq)
596 struct irqt_stat __percpu *s;
598 s = idr_find(&irqt_stats, irq);
599 if (s) {
600 free_percpu(s);
601 idr_remove(&irqt_stats, irq);
605 int irq_timings_alloc(int irq)
607 struct irqt_stat __percpu *s;
608 int id;
611 * Some platforms can have the same private interrupt per cpu,
612 * so this function may be called several times with the
613 * same interrupt number. Just bail out in case the per cpu
614 * stat structure is already allocated.
616 s = idr_find(&irqt_stats, irq);
617 if (s)
618 return 0;
620 s = alloc_percpu(*s);
621 if (!s)
622 return -ENOMEM;
624 idr_preload(GFP_KERNEL);
625 id = idr_alloc(&irqt_stats, s, irq, irq + 1, GFP_NOWAIT);
626 idr_preload_end();
628 if (id < 0) {
629 free_percpu(s);
630 return id;
633 return 0;
636 #ifdef CONFIG_TEST_IRQ_TIMINGS
637 struct timings_intervals {
638 u64 *intervals;
639 size_t count;
643 * Intervals are given in nanosecond base
645 static u64 intervals0[] __initdata = {
646 10000, 50000, 200000, 500000,
647 10000, 50000, 200000, 500000,
648 10000, 50000, 200000, 500000,
649 10000, 50000, 200000, 500000,
650 10000, 50000, 200000, 500000,
651 10000, 50000, 200000, 500000,
652 10000, 50000, 200000, 500000,
653 10000, 50000, 200000, 500000,
654 10000, 50000, 200000,
657 static u64 intervals1[] __initdata = {
658 223947000, 1240000, 1384000, 1386000, 1386000,
659 217416000, 1236000, 1384000, 1386000, 1387000,
660 214719000, 1241000, 1386000, 1387000, 1384000,
661 213696000, 1234000, 1384000, 1386000, 1388000,
662 219904000, 1240000, 1385000, 1389000, 1385000,
663 212240000, 1240000, 1386000, 1386000, 1386000,
664 214415000, 1236000, 1384000, 1386000, 1387000,
665 214276000, 1234000,
668 static u64 intervals2[] __initdata = {
669 4000, 3000, 5000, 100000,
670 3000, 3000, 5000, 117000,
671 4000, 4000, 5000, 112000,
672 4000, 3000, 4000, 110000,
673 3000, 5000, 3000, 117000,
674 4000, 4000, 5000, 112000,
675 4000, 3000, 4000, 110000,
676 3000, 4000, 5000, 112000,
677 4000,
680 static u64 intervals3[] __initdata = {
681 1385000, 212240000, 1240000,
682 1386000, 214415000, 1236000,
683 1384000, 214276000, 1234000,
684 1386000, 214415000, 1236000,
685 1385000, 212240000, 1240000,
686 1386000, 214415000, 1236000,
687 1384000, 214276000, 1234000,
688 1386000, 214415000, 1236000,
689 1385000, 212240000, 1240000,
692 static u64 intervals4[] __initdata = {
693 10000, 50000, 10000, 50000,
694 10000, 50000, 10000, 50000,
695 10000, 50000, 10000, 50000,
696 10000, 50000, 10000, 50000,
697 10000, 50000, 10000, 50000,
698 10000, 50000, 10000, 50000,
699 10000, 50000, 10000, 50000,
700 10000, 50000, 10000, 50000,
701 10000,
704 static struct timings_intervals tis[] __initdata = {
705 { intervals0, ARRAY_SIZE(intervals0) },
706 { intervals1, ARRAY_SIZE(intervals1) },
707 { intervals2, ARRAY_SIZE(intervals2) },
708 { intervals3, ARRAY_SIZE(intervals3) },
709 { intervals4, ARRAY_SIZE(intervals4) },
712 static int __init irq_timings_test_next_index(struct timings_intervals *ti)
714 int _buffer[IRQ_TIMINGS_SIZE];
715 int buffer[IRQ_TIMINGS_SIZE];
716 int index, start, i, count, period_max;
718 count = ti->count - 1;
720 period_max = count > (3 * PREDICTION_PERIOD_MAX) ?
721 PREDICTION_PERIOD_MAX : count / 3;
724 * Inject all values except the last one which will be used
725 * to compare with the next index result.
727 pr_debug("index suite: ");
729 for (i = 0; i < count; i++) {
730 index = irq_timings_interval_index(ti->intervals[i]);
731 _buffer[i & IRQ_TIMINGS_MASK] = index;
732 pr_cont("%d ", index);
735 start = count < IRQ_TIMINGS_SIZE ? 0 :
736 count & IRQ_TIMINGS_MASK;
738 count = min_t(int, count, IRQ_TIMINGS_SIZE);
740 for (i = 0; i < count; i++) {
741 int index = (start + i) & IRQ_TIMINGS_MASK;
742 buffer[i] = _buffer[index];
745 index = irq_timings_next_event_index(buffer, count, period_max);
746 i = irq_timings_interval_index(ti->intervals[ti->count - 1]);
748 if (index != i) {
749 pr_err("Expected (%d) and computed (%d) next indexes differ\n",
750 i, index);
751 return -EINVAL;
754 return 0;
757 static int __init irq_timings_next_index_selftest(void)
759 int i, ret;
761 for (i = 0; i < ARRAY_SIZE(tis); i++) {
763 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
764 i, tis[i].count);
766 ret = irq_timings_test_next_index(&tis[i]);
767 if (ret)
768 break;
771 return ret;
774 static int __init irq_timings_test_irqs(struct timings_intervals *ti)
776 struct irqt_stat __percpu *s;
777 struct irqt_stat *irqs;
778 int i, index, ret, irq = 0xACE5;
780 ret = irq_timings_alloc(irq);
781 if (ret) {
782 pr_err("Failed to allocate irq timings\n");
783 return ret;
786 s = idr_find(&irqt_stats, irq);
787 if (!s) {
788 ret = -EIDRM;
789 goto out;
792 irqs = this_cpu_ptr(s);
794 for (i = 0; i < ti->count; i++) {
796 index = irq_timings_interval_index(ti->intervals[i]);
797 pr_debug("%d: interval=%llu ema_index=%d\n",
798 i, ti->intervals[i], index);
800 __irq_timings_store(irq, irqs, ti->intervals[i]);
801 if (irqs->circ_timings[i & IRQ_TIMINGS_MASK] != index) {
802 ret = -EBADSLT;
803 pr_err("Failed to store in the circular buffer\n");
804 goto out;
808 if (irqs->count != ti->count) {
809 ret = -ERANGE;
810 pr_err("Count differs\n");
811 goto out;
814 ret = 0;
815 out:
816 irq_timings_free(irq);
818 return ret;
821 static int __init irq_timings_irqs_selftest(void)
823 int i, ret;
825 for (i = 0; i < ARRAY_SIZE(tis); i++) {
826 pr_info("---> Injecting intervals number #%d (count=%zd)\n",
827 i, tis[i].count);
828 ret = irq_timings_test_irqs(&tis[i]);
829 if (ret)
830 break;
833 return ret;
836 static int __init irq_timings_test_irqts(struct irq_timings *irqts,
837 unsigned count)
839 int start = count >= IRQ_TIMINGS_SIZE ? count - IRQ_TIMINGS_SIZE : 0;
840 int i, irq, oirq = 0xBEEF;
841 u64 ots = 0xDEAD, ts;
844 * Fill the circular buffer by using the dedicated function.
846 for (i = 0; i < count; i++) {
847 pr_debug("%d: index=%d, ts=%llX irq=%X\n",
848 i, i & IRQ_TIMINGS_MASK, ots + i, oirq + i);
850 irq_timings_push(ots + i, oirq + i);
854 * Compute the first elements values after the index wrapped
855 * up or not.
857 ots += start;
858 oirq += start;
861 * Test the circular buffer count is correct.
863 pr_debug("---> Checking timings array count (%d) is right\n", count);
864 if (WARN_ON(irqts->count != count))
865 return -EINVAL;
868 * Test the macro allowing to browse all the irqts.
870 pr_debug("---> Checking the for_each_irqts() macro\n");
871 for_each_irqts(i, irqts) {
873 irq = irq_timing_decode(irqts->values[i], &ts);
875 pr_debug("index=%d, ts=%llX / %llX, irq=%X / %X\n",
876 i, ts, ots, irq, oirq);
878 if (WARN_ON(ts != ots || irq != oirq))
879 return -EINVAL;
881 ots++; oirq++;
885 * The circular buffer should have be flushed when browsed
886 * with for_each_irqts
888 pr_debug("---> Checking timings array is empty after browsing it\n");
889 if (WARN_ON(irqts->count))
890 return -EINVAL;
892 return 0;
895 static int __init irq_timings_irqts_selftest(void)
897 struct irq_timings *irqts = this_cpu_ptr(&irq_timings);
898 int i, ret;
901 * Test the circular buffer with different number of
902 * elements. The purpose is to test at the limits (empty, half
903 * full, full, wrapped with the cursor at the boundaries,
904 * wrapped several times, etc ...
906 int count[] = { 0,
907 IRQ_TIMINGS_SIZE >> 1,
908 IRQ_TIMINGS_SIZE,
909 IRQ_TIMINGS_SIZE + (IRQ_TIMINGS_SIZE >> 1),
910 2 * IRQ_TIMINGS_SIZE,
911 (2 * IRQ_TIMINGS_SIZE) + 3,
914 for (i = 0; i < ARRAY_SIZE(count); i++) {
916 pr_info("---> Checking the timings with %d/%d values\n",
917 count[i], IRQ_TIMINGS_SIZE);
919 ret = irq_timings_test_irqts(irqts, count[i]);
920 if (ret)
921 break;
924 return ret;
927 static int __init irq_timings_selftest(void)
929 int ret;
931 pr_info("------------------- selftest start -----------------\n");
934 * At this point, we don't except any subsystem to use the irq
935 * timings but us, so it should not be enabled.
937 if (static_branch_unlikely(&irq_timing_enabled)) {
938 pr_warn("irq timings already initialized, skipping selftest\n");
939 return 0;
942 ret = irq_timings_irqts_selftest();
943 if (ret)
944 goto out;
946 ret = irq_timings_irqs_selftest();
947 if (ret)
948 goto out;
950 ret = irq_timings_next_index_selftest();
951 out:
952 pr_info("---------- selftest end with %s -----------\n",
953 ret ? "failure" : "success");
955 return ret;
957 early_initcall(irq_timings_selftest);
958 #endif