drm/panthor: Don't add write fences to the shared BOs
[drm/drm-misc.git] / kernel / sched / psi.c
blob020d58967d4e8e13197f6547a35f0de7bbb7efe3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Pressure stall information for CPU, memory and IO
5 * Copyright (c) 2018 Facebook, Inc.
6 * Author: Johannes Weiner <hannes@cmpxchg.org>
8 * Polling support by Suren Baghdasaryan <surenb@google.com>
9 * Copyright (c) 2018 Google, Inc.
11 * When CPU, memory and IO are contended, tasks experience delays that
12 * reduce throughput and introduce latencies into the workload. Memory
13 * and IO contention, in addition, can cause a full loss of forward
14 * progress in which the CPU goes idle.
16 * This code aggregates individual task delays into resource pressure
17 * metrics that indicate problems with both workload health and
18 * resource utilization.
20 * Model
22 * The time in which a task can execute on a CPU is our baseline for
23 * productivity. Pressure expresses the amount of time in which this
24 * potential cannot be realized due to resource contention.
26 * This concept of productivity has two components: the workload and
27 * the CPU. To measure the impact of pressure on both, we define two
28 * contention states for a resource: SOME and FULL.
30 * In the SOME state of a given resource, one or more tasks are
31 * delayed on that resource. This affects the workload's ability to
32 * perform work, but the CPU may still be executing other tasks.
34 * In the FULL state of a given resource, all non-idle tasks are
35 * delayed on that resource such that nobody is advancing and the CPU
36 * goes idle. This leaves both workload and CPU unproductive.
38 * SOME = nr_delayed_tasks != 0
39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
41 * What it means for a task to be productive is defined differently
42 * for each resource. For IO, productive means a running task. For
43 * memory, productive means a running task that isn't a reclaimer. For
44 * CPU, productive means an on-CPU task.
46 * Naturally, the FULL state doesn't exist for the CPU resource at the
47 * system level, but exist at the cgroup level. At the cgroup level,
48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49 * resource which is being used by others outside of the cgroup or
50 * throttled by the cgroup cpu.max configuration.
52 * The percentage of wall clock time spent in those compound stall
53 * states gives pressure numbers between 0 and 100 for each resource,
54 * where the SOME percentage indicates workload slowdowns and the FULL
55 * percentage indicates reduced CPU utilization:
57 * %SOME = time(SOME) / period
58 * %FULL = time(FULL) / period
60 * Multiple CPUs
62 * The more tasks and available CPUs there are, the more work can be
63 * performed concurrently. This means that the potential that can go
64 * unrealized due to resource contention *also* scales with non-idle
65 * tasks and CPUs.
67 * Consider a scenario where 257 number crunching tasks are trying to
68 * run concurrently on 256 CPUs. If we simply aggregated the task
69 * states, we would have to conclude a CPU SOME pressure number of
70 * 100%, since *somebody* is waiting on a runqueue at all
71 * times. However, that is clearly not the amount of contention the
72 * workload is experiencing: only one out of 256 possible execution
73 * threads will be contended at any given time, or about 0.4%.
75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76 * given time *one* of the tasks is delayed due to a lack of memory.
77 * Again, looking purely at the task state would yield a memory FULL
78 * pressure number of 0%, since *somebody* is always making forward
79 * progress. But again this wouldn't capture the amount of execution
80 * potential lost, which is 1 out of 4 CPUs, or 25%.
82 * To calculate wasted potential (pressure) with multiple processors,
83 * we have to base our calculation on the number of non-idle tasks in
84 * conjunction with the number of available CPUs, which is the number
85 * of potential execution threads. SOME becomes then the proportion of
86 * delayed tasks to possible threads, and FULL is the share of possible
87 * threads that are unproductive due to delays:
89 * threads = min(nr_nonidle_tasks, nr_cpus)
90 * SOME = min(nr_delayed_tasks / threads, 1)
91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads
93 * For the 257 number crunchers on 256 CPUs, this yields:
95 * threads = min(257, 256)
96 * SOME = min(1 / 256, 1) = 0.4%
97 * FULL = (256 - min(256, 256)) / 256 = 0%
99 * For the 1 out of 4 memory-delayed tasks, this yields:
101 * threads = min(4, 4)
102 * SOME = min(1 / 4, 1) = 25%
103 * FULL = (4 - min(3, 4)) / 4 = 25%
105 * [ Substitute nr_cpus with 1, and you can see that it's a natural
106 * extension of the single-CPU model. ]
108 * Implementation
110 * To assess the precise time spent in each such state, we would have
111 * to freeze the system on task changes and start/stop the state
112 * clocks accordingly. Obviously that doesn't scale in practice.
114 * Because the scheduler aims to distribute the compute load evenly
115 * among the available CPUs, we can track task state locally to each
116 * CPU and, at much lower frequency, extrapolate the global state for
117 * the cumulative stall times and the running averages.
119 * For each runqueue, we track:
121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
125 * and then periodically aggregate:
127 * tNONIDLE = sum(tNONIDLE[i])
129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
132 * %SOME = tSOME / period
133 * %FULL = tFULL / period
135 * This gives us an approximation of pressure that is practical
136 * cost-wise, yet way more sensitive and accurate than periodic
137 * sampling of the aggregate task states would be.
140 static int psi_bug __read_mostly;
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
147 #else
148 static bool psi_enable = true;
149 #endif
150 static int __init setup_psi(char *str)
152 return kstrtobool(str, &psi_enable) == 0;
154 __setup("psi=", setup_psi);
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s 1981 /* 1/exp(2s/60s) */
160 #define EXP_300s 2034 /* 1/exp(2s/300s) */
162 /* PSI trigger definitions */
163 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
164 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
166 /* Sampling frequency in nanoseconds */
167 static u64 psi_period __read_mostly;
169 /* System-level pressure and stall tracking */
170 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
171 struct psi_group psi_system = {
172 .pcpu = &system_group_pcpu,
175 static void psi_avgs_work(struct work_struct *work);
177 static void poll_timer_fn(struct timer_list *t);
179 static void group_init(struct psi_group *group)
181 int cpu;
183 group->enabled = true;
184 for_each_possible_cpu(cpu)
185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
186 group->avg_last_update = sched_clock();
187 group->avg_next_update = group->avg_last_update + psi_period;
188 mutex_init(&group->avgs_lock);
190 /* Init avg trigger-related members */
191 INIT_LIST_HEAD(&group->avg_triggers);
192 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
195 /* Init rtpoll trigger-related members */
196 atomic_set(&group->rtpoll_scheduled, 0);
197 mutex_init(&group->rtpoll_trigger_lock);
198 INIT_LIST_HEAD(&group->rtpoll_triggers);
199 group->rtpoll_min_period = U32_MAX;
200 group->rtpoll_next_update = ULLONG_MAX;
201 init_waitqueue_head(&group->rtpoll_wait);
202 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
203 rcu_assign_pointer(group->rtpoll_task, NULL);
206 void __init psi_init(void)
208 if (!psi_enable) {
209 static_branch_enable(&psi_disabled);
210 static_branch_disable(&psi_cgroups_enabled);
211 return;
214 if (!cgroup_psi_enabled())
215 static_branch_disable(&psi_cgroups_enabled);
217 psi_period = jiffies_to_nsecs(PSI_FREQ);
218 group_init(&psi_system);
221 static u32 test_states(unsigned int *tasks, u32 state_mask)
223 const bool oncpu = state_mask & PSI_ONCPU;
225 if (tasks[NR_IOWAIT]) {
226 state_mask |= BIT(PSI_IO_SOME);
227 if (!tasks[NR_RUNNING])
228 state_mask |= BIT(PSI_IO_FULL);
231 if (tasks[NR_MEMSTALL]) {
232 state_mask |= BIT(PSI_MEM_SOME);
233 if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
234 state_mask |= BIT(PSI_MEM_FULL);
237 if (tasks[NR_RUNNING] > oncpu)
238 state_mask |= BIT(PSI_CPU_SOME);
240 if (tasks[NR_RUNNING] && !oncpu)
241 state_mask |= BIT(PSI_CPU_FULL);
243 if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
244 state_mask |= BIT(PSI_NONIDLE);
246 return state_mask;
249 static void get_recent_times(struct psi_group *group, int cpu,
250 enum psi_aggregators aggregator, u32 *times,
251 u32 *pchanged_states)
253 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
254 int current_cpu = raw_smp_processor_id();
255 unsigned int tasks[NR_PSI_TASK_COUNTS];
256 u64 now, state_start;
257 enum psi_states s;
258 unsigned int seq;
259 u32 state_mask;
261 *pchanged_states = 0;
263 /* Snapshot a coherent view of the CPU state */
264 do {
265 seq = read_seqcount_begin(&groupc->seq);
266 now = cpu_clock(cpu);
267 memcpy(times, groupc->times, sizeof(groupc->times));
268 state_mask = groupc->state_mask;
269 state_start = groupc->state_start;
270 if (cpu == current_cpu)
271 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
272 } while (read_seqcount_retry(&groupc->seq, seq));
274 /* Calculate state time deltas against the previous snapshot */
275 for (s = 0; s < NR_PSI_STATES; s++) {
276 u32 delta;
278 * In addition to already concluded states, we also
279 * incorporate currently active states on the CPU,
280 * since states may last for many sampling periods.
282 * This way we keep our delta sampling buckets small
283 * (u32) and our reported pressure close to what's
284 * actually happening.
286 if (state_mask & (1 << s))
287 times[s] += now - state_start;
289 delta = times[s] - groupc->times_prev[aggregator][s];
290 groupc->times_prev[aggregator][s] = times[s];
292 times[s] = delta;
293 if (delta)
294 *pchanged_states |= (1 << s);
298 * When collect_percpu_times() from the avgs_work, we don't want to
299 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
300 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
301 * So for the current CPU, we need to re-arm avgs_work only when
302 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
303 * we can just check PSI_NONIDLE delta.
305 if (current_work() == &group->avgs_work.work) {
306 bool reschedule;
308 if (cpu == current_cpu)
309 reschedule = tasks[NR_RUNNING] +
310 tasks[NR_IOWAIT] +
311 tasks[NR_MEMSTALL] > 1;
312 else
313 reschedule = *pchanged_states & (1 << PSI_NONIDLE);
315 if (reschedule)
316 *pchanged_states |= PSI_STATE_RESCHEDULE;
320 static void calc_avgs(unsigned long avg[3], int missed_periods,
321 u64 time, u64 period)
323 unsigned long pct;
325 /* Fill in zeroes for periods of no activity */
326 if (missed_periods) {
327 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
328 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
329 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
332 /* Sample the most recent active period */
333 pct = div_u64(time * 100, period);
334 pct *= FIXED_1;
335 avg[0] = calc_load(avg[0], EXP_10s, pct);
336 avg[1] = calc_load(avg[1], EXP_60s, pct);
337 avg[2] = calc_load(avg[2], EXP_300s, pct);
340 static void collect_percpu_times(struct psi_group *group,
341 enum psi_aggregators aggregator,
342 u32 *pchanged_states)
344 u64 deltas[NR_PSI_STATES - 1] = { 0, };
345 unsigned long nonidle_total = 0;
346 u32 changed_states = 0;
347 int cpu;
348 int s;
351 * Collect the per-cpu time buckets and average them into a
352 * single time sample that is normalized to wall clock time.
354 * For averaging, each CPU is weighted by its non-idle time in
355 * the sampling period. This eliminates artifacts from uneven
356 * loading, or even entirely idle CPUs.
358 for_each_possible_cpu(cpu) {
359 u32 times[NR_PSI_STATES];
360 u32 nonidle;
361 u32 cpu_changed_states;
363 get_recent_times(group, cpu, aggregator, times,
364 &cpu_changed_states);
365 changed_states |= cpu_changed_states;
367 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
368 nonidle_total += nonidle;
370 for (s = 0; s < PSI_NONIDLE; s++)
371 deltas[s] += (u64)times[s] * nonidle;
375 * Integrate the sample into the running statistics that are
376 * reported to userspace: the cumulative stall times and the
377 * decaying averages.
379 * Pressure percentages are sampled at PSI_FREQ. We might be
380 * called more often when the user polls more frequently than
381 * that; we might be called less often when there is no task
382 * activity, thus no data, and clock ticks are sporadic. The
383 * below handles both.
386 /* total= */
387 for (s = 0; s < NR_PSI_STATES - 1; s++)
388 group->total[aggregator][s] +=
389 div_u64(deltas[s], max(nonidle_total, 1UL));
391 if (pchanged_states)
392 *pchanged_states = changed_states;
395 /* Trigger tracking window manipulations */
396 static void window_reset(struct psi_window *win, u64 now, u64 value,
397 u64 prev_growth)
399 win->start_time = now;
400 win->start_value = value;
401 win->prev_growth = prev_growth;
405 * PSI growth tracking window update and growth calculation routine.
407 * This approximates a sliding tracking window by interpolating
408 * partially elapsed windows using historical growth data from the
409 * previous intervals. This minimizes memory requirements (by not storing
410 * all the intermediate values in the previous window) and simplifies
411 * the calculations. It works well because PSI signal changes only in
412 * positive direction and over relatively small window sizes the growth
413 * is close to linear.
415 static u64 window_update(struct psi_window *win, u64 now, u64 value)
417 u64 elapsed;
418 u64 growth;
420 elapsed = now - win->start_time;
421 growth = value - win->start_value;
423 * After each tracking window passes win->start_value and
424 * win->start_time get reset and win->prev_growth stores
425 * the average per-window growth of the previous window.
426 * win->prev_growth is then used to interpolate additional
427 * growth from the previous window assuming it was linear.
429 if (elapsed > win->size)
430 window_reset(win, now, value, growth);
431 else {
432 u32 remaining;
434 remaining = win->size - elapsed;
435 growth += div64_u64(win->prev_growth * remaining, win->size);
438 return growth;
441 static void update_triggers(struct psi_group *group, u64 now,
442 enum psi_aggregators aggregator)
444 struct psi_trigger *t;
445 u64 *total = group->total[aggregator];
446 struct list_head *triggers;
447 u64 *aggregator_total;
449 if (aggregator == PSI_AVGS) {
450 triggers = &group->avg_triggers;
451 aggregator_total = group->avg_total;
452 } else {
453 triggers = &group->rtpoll_triggers;
454 aggregator_total = group->rtpoll_total;
458 * On subsequent updates, calculate growth deltas and let
459 * watchers know when their specified thresholds are exceeded.
461 list_for_each_entry(t, triggers, node) {
462 u64 growth;
463 bool new_stall;
465 new_stall = aggregator_total[t->state] != total[t->state];
467 /* Check for stall activity or a previous threshold breach */
468 if (!new_stall && !t->pending_event)
469 continue;
471 * Check for new stall activity, as well as deferred
472 * events that occurred in the last window after the
473 * trigger had already fired (we want to ratelimit
474 * events without dropping any).
476 if (new_stall) {
477 /* Calculate growth since last update */
478 growth = window_update(&t->win, now, total[t->state]);
479 if (!t->pending_event) {
480 if (growth < t->threshold)
481 continue;
483 t->pending_event = true;
486 /* Limit event signaling to once per window */
487 if (now < t->last_event_time + t->win.size)
488 continue;
490 /* Generate an event */
491 if (cmpxchg(&t->event, 0, 1) == 0) {
492 if (t->of)
493 kernfs_notify(t->of->kn);
494 else
495 wake_up_interruptible(&t->event_wait);
497 t->last_event_time = now;
498 /* Reset threshold breach flag once event got generated */
499 t->pending_event = false;
503 static u64 update_averages(struct psi_group *group, u64 now)
505 unsigned long missed_periods = 0;
506 u64 expires, period;
507 u64 avg_next_update;
508 int s;
510 /* avgX= */
511 expires = group->avg_next_update;
512 if (now - expires >= psi_period)
513 missed_periods = div_u64(now - expires, psi_period);
516 * The periodic clock tick can get delayed for various
517 * reasons, especially on loaded systems. To avoid clock
518 * drift, we schedule the clock in fixed psi_period intervals.
519 * But the deltas we sample out of the per-cpu buckets above
520 * are based on the actual time elapsing between clock ticks.
522 avg_next_update = expires + ((1 + missed_periods) * psi_period);
523 period = now - (group->avg_last_update + (missed_periods * psi_period));
524 group->avg_last_update = now;
526 for (s = 0; s < NR_PSI_STATES - 1; s++) {
527 u32 sample;
529 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
531 * Due to the lockless sampling of the time buckets,
532 * recorded time deltas can slip into the next period,
533 * which under full pressure can result in samples in
534 * excess of the period length.
536 * We don't want to report non-sensical pressures in
537 * excess of 100%, nor do we want to drop such events
538 * on the floor. Instead we punt any overage into the
539 * future until pressure subsides. By doing this we
540 * don't underreport the occurring pressure curve, we
541 * just report it delayed by one period length.
543 * The error isn't cumulative. As soon as another
544 * delta slips from a period P to P+1, by definition
545 * it frees up its time T in P.
547 if (sample > period)
548 sample = period;
549 group->avg_total[s] += sample;
550 calc_avgs(group->avg[s], missed_periods, sample, period);
553 return avg_next_update;
556 static void psi_avgs_work(struct work_struct *work)
558 struct delayed_work *dwork;
559 struct psi_group *group;
560 u32 changed_states;
561 u64 now;
563 dwork = to_delayed_work(work);
564 group = container_of(dwork, struct psi_group, avgs_work);
566 mutex_lock(&group->avgs_lock);
568 now = sched_clock();
570 collect_percpu_times(group, PSI_AVGS, &changed_states);
572 * If there is task activity, periodically fold the per-cpu
573 * times and feed samples into the running averages. If things
574 * are idle and there is no data to process, stop the clock.
575 * Once restarted, we'll catch up the running averages in one
576 * go - see calc_avgs() and missed_periods.
578 if (now >= group->avg_next_update) {
579 update_triggers(group, now, PSI_AVGS);
580 group->avg_next_update = update_averages(group, now);
583 if (changed_states & PSI_STATE_RESCHEDULE) {
584 schedule_delayed_work(dwork, nsecs_to_jiffies(
585 group->avg_next_update - now) + 1);
588 mutex_unlock(&group->avgs_lock);
591 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
593 struct psi_trigger *t;
595 list_for_each_entry(t, &group->rtpoll_triggers, node)
596 window_reset(&t->win, now,
597 group->total[PSI_POLL][t->state], 0);
598 memcpy(group->rtpoll_total, group->total[PSI_POLL],
599 sizeof(group->rtpoll_total));
600 group->rtpoll_next_update = now + group->rtpoll_min_period;
603 /* Schedule rtpolling if it's not already scheduled or forced. */
604 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
605 bool force)
607 struct task_struct *task;
610 * atomic_xchg should be called even when !force to provide a
611 * full memory barrier (see the comment inside psi_rtpoll_work).
613 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
614 return;
616 rcu_read_lock();
618 task = rcu_dereference(group->rtpoll_task);
620 * kworker might be NULL in case psi_trigger_destroy races with
621 * psi_task_change (hotpath) which can't use locks
623 if (likely(task))
624 mod_timer(&group->rtpoll_timer, jiffies + delay);
625 else
626 atomic_set(&group->rtpoll_scheduled, 0);
628 rcu_read_unlock();
631 static void psi_rtpoll_work(struct psi_group *group)
633 bool force_reschedule = false;
634 u32 changed_states;
635 u64 now;
637 mutex_lock(&group->rtpoll_trigger_lock);
639 now = sched_clock();
641 if (now > group->rtpoll_until) {
643 * We are either about to start or might stop rtpolling if no
644 * state change was recorded. Resetting rtpoll_scheduled leaves
645 * a small window for psi_group_change to sneak in and schedule
646 * an immediate rtpoll_work before we get to rescheduling. One
647 * potential extra wakeup at the end of the rtpolling window
648 * should be negligible and rtpoll_next_update still keeps
649 * updates correctly on schedule.
651 atomic_set(&group->rtpoll_scheduled, 0);
653 * A task change can race with the rtpoll worker that is supposed to
654 * report on it. To avoid missing events, ensure ordering between
655 * rtpoll_scheduled and the task state accesses, such that if the
656 * rtpoll worker misses the state update, the task change is
657 * guaranteed to reschedule the rtpoll worker:
659 * rtpoll worker:
660 * atomic_set(rtpoll_scheduled, 0)
661 * smp_mb()
662 * LOAD states
664 * task change:
665 * STORE states
666 * if atomic_xchg(rtpoll_scheduled, 1) == 0:
667 * schedule rtpoll worker
669 * The atomic_xchg() implies a full barrier.
671 smp_mb();
672 } else {
673 /* The rtpolling window is not over, keep rescheduling */
674 force_reschedule = true;
678 collect_percpu_times(group, PSI_POLL, &changed_states);
680 if (changed_states & group->rtpoll_states) {
681 /* Initialize trigger windows when entering rtpolling mode */
682 if (now > group->rtpoll_until)
683 init_rtpoll_triggers(group, now);
686 * Keep the monitor active for at least the duration of the
687 * minimum tracking window as long as monitor states are
688 * changing.
690 group->rtpoll_until = now +
691 group->rtpoll_min_period * UPDATES_PER_WINDOW;
694 if (now > group->rtpoll_until) {
695 group->rtpoll_next_update = ULLONG_MAX;
696 goto out;
699 if (now >= group->rtpoll_next_update) {
700 if (changed_states & group->rtpoll_states) {
701 update_triggers(group, now, PSI_POLL);
702 memcpy(group->rtpoll_total, group->total[PSI_POLL],
703 sizeof(group->rtpoll_total));
705 group->rtpoll_next_update = now + group->rtpoll_min_period;
708 psi_schedule_rtpoll_work(group,
709 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
710 force_reschedule);
712 out:
713 mutex_unlock(&group->rtpoll_trigger_lock);
716 static int psi_rtpoll_worker(void *data)
718 struct psi_group *group = (struct psi_group *)data;
720 sched_set_fifo_low(current);
722 while (true) {
723 wait_event_interruptible(group->rtpoll_wait,
724 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
725 kthread_should_stop());
726 if (kthread_should_stop())
727 break;
729 psi_rtpoll_work(group);
731 return 0;
734 static void poll_timer_fn(struct timer_list *t)
736 struct psi_group *group = from_timer(group, t, rtpoll_timer);
738 atomic_set(&group->rtpoll_wakeup, 1);
739 wake_up_interruptible(&group->rtpoll_wait);
742 static void record_times(struct psi_group_cpu *groupc, u64 now)
744 u32 delta;
746 delta = now - groupc->state_start;
747 groupc->state_start = now;
749 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
750 groupc->times[PSI_IO_SOME] += delta;
751 if (groupc->state_mask & (1 << PSI_IO_FULL))
752 groupc->times[PSI_IO_FULL] += delta;
755 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
756 groupc->times[PSI_MEM_SOME] += delta;
757 if (groupc->state_mask & (1 << PSI_MEM_FULL))
758 groupc->times[PSI_MEM_FULL] += delta;
761 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
762 groupc->times[PSI_CPU_SOME] += delta;
763 if (groupc->state_mask & (1 << PSI_CPU_FULL))
764 groupc->times[PSI_CPU_FULL] += delta;
767 if (groupc->state_mask & (1 << PSI_NONIDLE))
768 groupc->times[PSI_NONIDLE] += delta;
771 static void psi_group_change(struct psi_group *group, int cpu,
772 unsigned int clear, unsigned int set, u64 now,
773 bool wake_clock)
775 struct psi_group_cpu *groupc;
776 unsigned int t, m;
777 u32 state_mask;
779 lockdep_assert_rq_held(cpu_rq(cpu));
780 groupc = per_cpu_ptr(group->pcpu, cpu);
783 * First we update the task counts according to the state
784 * change requested through the @clear and @set bits.
786 * Then if the cgroup PSI stats accounting enabled, we
787 * assess the aggregate resource states this CPU's tasks
788 * have been in since the last change, and account any
789 * SOME and FULL time these may have resulted in.
791 write_seqcount_begin(&groupc->seq);
794 * Start with TSK_ONCPU, which doesn't have a corresponding
795 * task count - it's just a boolean flag directly encoded in
796 * the state mask. Clear, set, or carry the current state if
797 * no changes are requested.
799 if (unlikely(clear & TSK_ONCPU)) {
800 state_mask = 0;
801 clear &= ~TSK_ONCPU;
802 } else if (unlikely(set & TSK_ONCPU)) {
803 state_mask = PSI_ONCPU;
804 set &= ~TSK_ONCPU;
805 } else {
806 state_mask = groupc->state_mask & PSI_ONCPU;
810 * The rest of the state mask is calculated based on the task
811 * counts. Update those first, then construct the mask.
813 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
814 if (!(m & (1 << t)))
815 continue;
816 if (groupc->tasks[t]) {
817 groupc->tasks[t]--;
818 } else if (!psi_bug) {
819 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
820 cpu, t, groupc->tasks[0],
821 groupc->tasks[1], groupc->tasks[2],
822 groupc->tasks[3], clear, set);
823 psi_bug = 1;
827 for (t = 0; set; set &= ~(1 << t), t++)
828 if (set & (1 << t))
829 groupc->tasks[t]++;
831 if (!group->enabled) {
833 * On the first group change after disabling PSI, conclude
834 * the current state and flush its time. This is unlikely
835 * to matter to the user, but aggregation (get_recent_times)
836 * may have already incorporated the live state into times_prev;
837 * avoid a delta sample underflow when PSI is later re-enabled.
839 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
840 record_times(groupc, now);
842 groupc->state_mask = state_mask;
844 write_seqcount_end(&groupc->seq);
845 return;
848 state_mask = test_states(groupc->tasks, state_mask);
851 * Since we care about lost potential, a memstall is FULL
852 * when there are no other working tasks, but also when
853 * the CPU is actively reclaiming and nothing productive
854 * could run even if it were runnable. So when the current
855 * task in a cgroup is in_memstall, the corresponding groupc
856 * on that cpu is in PSI_MEM_FULL state.
858 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
859 state_mask |= (1 << PSI_MEM_FULL);
861 record_times(groupc, now);
863 groupc->state_mask = state_mask;
865 write_seqcount_end(&groupc->seq);
867 if (state_mask & group->rtpoll_states)
868 psi_schedule_rtpoll_work(group, 1, false);
870 if (wake_clock && !delayed_work_pending(&group->avgs_work))
871 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
874 static inline struct psi_group *task_psi_group(struct task_struct *task)
876 #ifdef CONFIG_CGROUPS
877 if (static_branch_likely(&psi_cgroups_enabled))
878 return cgroup_psi(task_dfl_cgroup(task));
879 #endif
880 return &psi_system;
883 static void psi_flags_change(struct task_struct *task, int clear, int set)
885 if (((task->psi_flags & set) ||
886 (task->psi_flags & clear) != clear) &&
887 !psi_bug) {
888 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
889 task->pid, task->comm, task_cpu(task),
890 task->psi_flags, clear, set);
891 psi_bug = 1;
894 task->psi_flags &= ~clear;
895 task->psi_flags |= set;
898 void psi_task_change(struct task_struct *task, int clear, int set)
900 int cpu = task_cpu(task);
901 struct psi_group *group;
902 u64 now;
904 if (!task->pid)
905 return;
907 psi_flags_change(task, clear, set);
909 now = cpu_clock(cpu);
911 group = task_psi_group(task);
912 do {
913 psi_group_change(group, cpu, clear, set, now, true);
914 } while ((group = group->parent));
917 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
918 bool sleep)
920 struct psi_group *group, *common = NULL;
921 int cpu = task_cpu(prev);
922 u64 now = cpu_clock(cpu);
924 if (next->pid) {
925 psi_flags_change(next, 0, TSK_ONCPU);
927 * Set TSK_ONCPU on @next's cgroups. If @next shares any
928 * ancestors with @prev, those will already have @prev's
929 * TSK_ONCPU bit set, and we can stop the iteration there.
931 group = task_psi_group(next);
932 do {
933 if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
934 PSI_ONCPU) {
935 common = group;
936 break;
939 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
940 } while ((group = group->parent));
943 if (prev->pid) {
944 int clear = TSK_ONCPU, set = 0;
945 bool wake_clock = true;
948 * When we're going to sleep, psi_dequeue() lets us
949 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
950 * TSK_IOWAIT here, where we can combine it with
951 * TSK_ONCPU and save walking common ancestors twice.
953 if (sleep) {
954 clear |= TSK_RUNNING;
955 if (prev->in_memstall)
956 clear |= TSK_MEMSTALL_RUNNING;
957 if (prev->in_iowait)
958 set |= TSK_IOWAIT;
961 * Periodic aggregation shuts off if there is a period of no
962 * task changes, so we wake it back up if necessary. However,
963 * don't do this if the task change is the aggregation worker
964 * itself going to sleep, or we'll ping-pong forever.
966 if (unlikely((prev->flags & PF_WQ_WORKER) &&
967 wq_worker_last_func(prev) == psi_avgs_work))
968 wake_clock = false;
971 psi_flags_change(prev, clear, set);
973 group = task_psi_group(prev);
974 do {
975 if (group == common)
976 break;
977 psi_group_change(group, cpu, clear, set, now, wake_clock);
978 } while ((group = group->parent));
981 * TSK_ONCPU is handled up to the common ancestor. If there are
982 * any other differences between the two tasks (e.g. prev goes
983 * to sleep, or only one task is memstall), finish propagating
984 * those differences all the way up to the root.
986 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
987 clear &= ~TSK_ONCPU;
988 for (; group; group = group->parent)
989 psi_group_change(group, cpu, clear, set, now, wake_clock);
994 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
995 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
997 int cpu = task_cpu(curr);
998 struct psi_group *group;
999 struct psi_group_cpu *groupc;
1000 u64 now, irq;
1001 s64 delta;
1003 if (static_branch_likely(&psi_disabled))
1004 return;
1006 if (!curr->pid)
1007 return;
1009 lockdep_assert_rq_held(rq);
1010 group = task_psi_group(curr);
1011 if (prev && task_psi_group(prev) == group)
1012 return;
1014 now = cpu_clock(cpu);
1015 irq = irq_time_read(cpu);
1016 delta = (s64)(irq - rq->psi_irq_time);
1017 if (delta < 0)
1018 return;
1019 rq->psi_irq_time = irq;
1021 do {
1022 if (!group->enabled)
1023 continue;
1025 groupc = per_cpu_ptr(group->pcpu, cpu);
1027 write_seqcount_begin(&groupc->seq);
1029 record_times(groupc, now);
1030 groupc->times[PSI_IRQ_FULL] += delta;
1032 write_seqcount_end(&groupc->seq);
1034 if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1035 psi_schedule_rtpoll_work(group, 1, false);
1036 } while ((group = group->parent));
1038 #endif
1041 * psi_memstall_enter - mark the beginning of a memory stall section
1042 * @flags: flags to handle nested sections
1044 * Marks the calling task as being stalled due to a lack of memory,
1045 * such as waiting for a refault or performing reclaim.
1047 void psi_memstall_enter(unsigned long *flags)
1049 struct rq_flags rf;
1050 struct rq *rq;
1052 if (static_branch_likely(&psi_disabled))
1053 return;
1055 *flags = current->in_memstall;
1056 if (*flags)
1057 return;
1059 * in_memstall setting & accounting needs to be atomic wrt
1060 * changes to the task's scheduling state, otherwise we can
1061 * race with CPU migration.
1063 rq = this_rq_lock_irq(&rf);
1065 current->in_memstall = 1;
1066 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1068 rq_unlock_irq(rq, &rf);
1070 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1073 * psi_memstall_leave - mark the end of an memory stall section
1074 * @flags: flags to handle nested memdelay sections
1076 * Marks the calling task as no longer stalled due to lack of memory.
1078 void psi_memstall_leave(unsigned long *flags)
1080 struct rq_flags rf;
1081 struct rq *rq;
1083 if (static_branch_likely(&psi_disabled))
1084 return;
1086 if (*flags)
1087 return;
1089 * in_memstall clearing & accounting needs to be atomic wrt
1090 * changes to the task's scheduling state, otherwise we could
1091 * race with CPU migration.
1093 rq = this_rq_lock_irq(&rf);
1095 current->in_memstall = 0;
1096 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1098 rq_unlock_irq(rq, &rf);
1100 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1102 #ifdef CONFIG_CGROUPS
1103 int psi_cgroup_alloc(struct cgroup *cgroup)
1105 if (!static_branch_likely(&psi_cgroups_enabled))
1106 return 0;
1108 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1109 if (!cgroup->psi)
1110 return -ENOMEM;
1112 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1113 if (!cgroup->psi->pcpu) {
1114 kfree(cgroup->psi);
1115 return -ENOMEM;
1117 group_init(cgroup->psi);
1118 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1119 return 0;
1122 void psi_cgroup_free(struct cgroup *cgroup)
1124 if (!static_branch_likely(&psi_cgroups_enabled))
1125 return;
1127 cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1128 free_percpu(cgroup->psi->pcpu);
1129 /* All triggers must be removed by now */
1130 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1131 kfree(cgroup->psi);
1135 * cgroup_move_task - move task to a different cgroup
1136 * @task: the task
1137 * @to: the target css_set
1139 * Move task to a new cgroup and safely migrate its associated stall
1140 * state between the different groups.
1142 * This function acquires the task's rq lock to lock out concurrent
1143 * changes to the task's scheduling state and - in case the task is
1144 * running - concurrent changes to its stall state.
1146 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1148 unsigned int task_flags;
1149 struct rq_flags rf;
1150 struct rq *rq;
1152 if (!static_branch_likely(&psi_cgroups_enabled)) {
1154 * Lame to do this here, but the scheduler cannot be locked
1155 * from the outside, so we move cgroups from inside sched/.
1157 rcu_assign_pointer(task->cgroups, to);
1158 return;
1161 rq = task_rq_lock(task, &rf);
1164 * We may race with schedule() dropping the rq lock between
1165 * deactivating prev and switching to next. Because the psi
1166 * updates from the deactivation are deferred to the switch
1167 * callback to save cgroup tree updates, the task's scheduling
1168 * state here is not coherent with its psi state:
1170 * schedule() cgroup_move_task()
1171 * rq_lock()
1172 * deactivate_task()
1173 * p->on_rq = 0
1174 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1175 * pick_next_task()
1176 * rq_unlock()
1177 * rq_lock()
1178 * psi_task_change() // old cgroup
1179 * task->cgroups = to
1180 * psi_task_change() // new cgroup
1181 * rq_unlock()
1182 * rq_lock()
1183 * psi_sched_switch() // does deferred updates in new cgroup
1185 * Don't rely on the scheduling state. Use psi_flags instead.
1187 task_flags = task->psi_flags;
1189 if (task_flags)
1190 psi_task_change(task, task_flags, 0);
1192 /* See comment above */
1193 rcu_assign_pointer(task->cgroups, to);
1195 if (task_flags)
1196 psi_task_change(task, 0, task_flags);
1198 task_rq_unlock(rq, task, &rf);
1201 void psi_cgroup_restart(struct psi_group *group)
1203 int cpu;
1206 * After we disable psi_group->enabled, we don't actually
1207 * stop percpu tasks accounting in each psi_group_cpu,
1208 * instead only stop test_states() loop, record_times()
1209 * and averaging worker, see psi_group_change() for details.
1211 * When disable cgroup PSI, this function has nothing to sync
1212 * since cgroup pressure files are hidden and percpu psi_group_cpu
1213 * would see !psi_group->enabled and only do task accounting.
1215 * When re-enable cgroup PSI, this function use psi_group_change()
1216 * to get correct state mask from test_states() loop on tasks[],
1217 * and restart groupc->state_start from now, use .clear = .set = 0
1218 * here since no task status really changed.
1220 if (!group->enabled)
1221 return;
1223 for_each_possible_cpu(cpu) {
1224 struct rq *rq = cpu_rq(cpu);
1225 struct rq_flags rf;
1226 u64 now;
1228 rq_lock_irq(rq, &rf);
1229 now = cpu_clock(cpu);
1230 psi_group_change(group, cpu, 0, 0, now, true);
1231 rq_unlock_irq(rq, &rf);
1234 #endif /* CONFIG_CGROUPS */
1236 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1238 bool only_full = false;
1239 int full;
1240 u64 now;
1242 if (static_branch_likely(&psi_disabled))
1243 return -EOPNOTSUPP;
1245 /* Update averages before reporting them */
1246 mutex_lock(&group->avgs_lock);
1247 now = sched_clock();
1248 collect_percpu_times(group, PSI_AVGS, NULL);
1249 if (now >= group->avg_next_update)
1250 group->avg_next_update = update_averages(group, now);
1251 mutex_unlock(&group->avgs_lock);
1253 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1254 only_full = res == PSI_IRQ;
1255 #endif
1257 for (full = 0; full < 2 - only_full; full++) {
1258 unsigned long avg[3] = { 0, };
1259 u64 total = 0;
1260 int w;
1262 /* CPU FULL is undefined at the system level */
1263 if (!(group == &psi_system && res == PSI_CPU && full)) {
1264 for (w = 0; w < 3; w++)
1265 avg[w] = group->avg[res * 2 + full][w];
1266 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1267 NSEC_PER_USEC);
1270 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1271 full || only_full ? "full" : "some",
1272 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1273 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1274 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1275 total);
1278 return 0;
1281 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1282 enum psi_res res, struct file *file,
1283 struct kernfs_open_file *of)
1285 struct psi_trigger *t;
1286 enum psi_states state;
1287 u32 threshold_us;
1288 bool privileged;
1289 u32 window_us;
1291 if (static_branch_likely(&psi_disabled))
1292 return ERR_PTR(-EOPNOTSUPP);
1295 * Checking the privilege here on file->f_cred implies that a privileged user
1296 * could open the file and delegate the write to an unprivileged one.
1298 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1300 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1301 state = PSI_IO_SOME + res * 2;
1302 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1303 state = PSI_IO_FULL + res * 2;
1304 else
1305 return ERR_PTR(-EINVAL);
1307 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1308 if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1309 return ERR_PTR(-EINVAL);
1310 #endif
1312 if (state >= PSI_NONIDLE)
1313 return ERR_PTR(-EINVAL);
1315 if (window_us == 0 || window_us > WINDOW_MAX_US)
1316 return ERR_PTR(-EINVAL);
1319 * Unprivileged users can only use 2s windows so that averages aggregation
1320 * work is used, and no RT threads need to be spawned.
1322 if (!privileged && window_us % 2000000)
1323 return ERR_PTR(-EINVAL);
1325 /* Check threshold */
1326 if (threshold_us == 0 || threshold_us > window_us)
1327 return ERR_PTR(-EINVAL);
1329 t = kmalloc(sizeof(*t), GFP_KERNEL);
1330 if (!t)
1331 return ERR_PTR(-ENOMEM);
1333 t->group = group;
1334 t->state = state;
1335 t->threshold = threshold_us * NSEC_PER_USEC;
1336 t->win.size = window_us * NSEC_PER_USEC;
1337 window_reset(&t->win, sched_clock(),
1338 group->total[PSI_POLL][t->state], 0);
1340 t->event = 0;
1341 t->last_event_time = 0;
1342 t->of = of;
1343 if (!of)
1344 init_waitqueue_head(&t->event_wait);
1345 t->pending_event = false;
1346 t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1348 if (privileged) {
1349 mutex_lock(&group->rtpoll_trigger_lock);
1351 if (!rcu_access_pointer(group->rtpoll_task)) {
1352 struct task_struct *task;
1354 task = kthread_create(psi_rtpoll_worker, group, "psimon");
1355 if (IS_ERR(task)) {
1356 kfree(t);
1357 mutex_unlock(&group->rtpoll_trigger_lock);
1358 return ERR_CAST(task);
1360 atomic_set(&group->rtpoll_wakeup, 0);
1361 wake_up_process(task);
1362 rcu_assign_pointer(group->rtpoll_task, task);
1365 list_add(&t->node, &group->rtpoll_triggers);
1366 group->rtpoll_min_period = min(group->rtpoll_min_period,
1367 div_u64(t->win.size, UPDATES_PER_WINDOW));
1368 group->rtpoll_nr_triggers[t->state]++;
1369 group->rtpoll_states |= (1 << t->state);
1371 mutex_unlock(&group->rtpoll_trigger_lock);
1372 } else {
1373 mutex_lock(&group->avgs_lock);
1375 list_add(&t->node, &group->avg_triggers);
1376 group->avg_nr_triggers[t->state]++;
1378 mutex_unlock(&group->avgs_lock);
1380 return t;
1383 void psi_trigger_destroy(struct psi_trigger *t)
1385 struct psi_group *group;
1386 struct task_struct *task_to_destroy = NULL;
1389 * We do not check psi_disabled since it might have been disabled after
1390 * the trigger got created.
1392 if (!t)
1393 return;
1395 group = t->group;
1397 * Wakeup waiters to stop polling and clear the queue to prevent it from
1398 * being accessed later. Can happen if cgroup is deleted from under a
1399 * polling process.
1401 if (t->of)
1402 kernfs_notify(t->of->kn);
1403 else
1404 wake_up_interruptible(&t->event_wait);
1406 if (t->aggregator == PSI_AVGS) {
1407 mutex_lock(&group->avgs_lock);
1408 if (!list_empty(&t->node)) {
1409 list_del(&t->node);
1410 group->avg_nr_triggers[t->state]--;
1412 mutex_unlock(&group->avgs_lock);
1413 } else {
1414 mutex_lock(&group->rtpoll_trigger_lock);
1415 if (!list_empty(&t->node)) {
1416 struct psi_trigger *tmp;
1417 u64 period = ULLONG_MAX;
1419 list_del(&t->node);
1420 group->rtpoll_nr_triggers[t->state]--;
1421 if (!group->rtpoll_nr_triggers[t->state])
1422 group->rtpoll_states &= ~(1 << t->state);
1424 * Reset min update period for the remaining triggers
1425 * iff the destroying trigger had the min window size.
1427 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1428 list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1429 period = min(period, div_u64(tmp->win.size,
1430 UPDATES_PER_WINDOW));
1431 group->rtpoll_min_period = period;
1433 /* Destroy rtpoll_task when the last trigger is destroyed */
1434 if (group->rtpoll_states == 0) {
1435 group->rtpoll_until = 0;
1436 task_to_destroy = rcu_dereference_protected(
1437 group->rtpoll_task,
1438 lockdep_is_held(&group->rtpoll_trigger_lock));
1439 rcu_assign_pointer(group->rtpoll_task, NULL);
1440 del_timer(&group->rtpoll_timer);
1443 mutex_unlock(&group->rtpoll_trigger_lock);
1447 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1448 * critical section before destroying the trigger and optionally the
1449 * rtpoll_task.
1451 synchronize_rcu();
1453 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1454 * a deadlock while waiting for psi_rtpoll_work to acquire
1455 * rtpoll_trigger_lock
1457 if (task_to_destroy) {
1459 * After the RCU grace period has expired, the worker
1460 * can no longer be found through group->rtpoll_task.
1462 kthread_stop(task_to_destroy);
1463 atomic_set(&group->rtpoll_scheduled, 0);
1465 kfree(t);
1468 __poll_t psi_trigger_poll(void **trigger_ptr,
1469 struct file *file, poll_table *wait)
1471 __poll_t ret = DEFAULT_POLLMASK;
1472 struct psi_trigger *t;
1474 if (static_branch_likely(&psi_disabled))
1475 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1477 t = smp_load_acquire(trigger_ptr);
1478 if (!t)
1479 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1481 if (t->of)
1482 kernfs_generic_poll(t->of, wait);
1483 else
1484 poll_wait(file, &t->event_wait, wait);
1486 if (cmpxchg(&t->event, 1, 0) == 1)
1487 ret |= EPOLLPRI;
1489 return ret;
1492 #ifdef CONFIG_PROC_FS
1493 static int psi_io_show(struct seq_file *m, void *v)
1495 return psi_show(m, &psi_system, PSI_IO);
1498 static int psi_memory_show(struct seq_file *m, void *v)
1500 return psi_show(m, &psi_system, PSI_MEM);
1503 static int psi_cpu_show(struct seq_file *m, void *v)
1505 return psi_show(m, &psi_system, PSI_CPU);
1508 static int psi_io_open(struct inode *inode, struct file *file)
1510 return single_open(file, psi_io_show, NULL);
1513 static int psi_memory_open(struct inode *inode, struct file *file)
1515 return single_open(file, psi_memory_show, NULL);
1518 static int psi_cpu_open(struct inode *inode, struct file *file)
1520 return single_open(file, psi_cpu_show, NULL);
1523 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1524 size_t nbytes, enum psi_res res)
1526 char buf[32];
1527 size_t buf_size;
1528 struct seq_file *seq;
1529 struct psi_trigger *new;
1531 if (static_branch_likely(&psi_disabled))
1532 return -EOPNOTSUPP;
1534 if (!nbytes)
1535 return -EINVAL;
1537 buf_size = min(nbytes, sizeof(buf));
1538 if (copy_from_user(buf, user_buf, buf_size))
1539 return -EFAULT;
1541 buf[buf_size - 1] = '\0';
1543 seq = file->private_data;
1545 /* Take seq->lock to protect seq->private from concurrent writes */
1546 mutex_lock(&seq->lock);
1548 /* Allow only one trigger per file descriptor */
1549 if (seq->private) {
1550 mutex_unlock(&seq->lock);
1551 return -EBUSY;
1554 new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1555 if (IS_ERR(new)) {
1556 mutex_unlock(&seq->lock);
1557 return PTR_ERR(new);
1560 smp_store_release(&seq->private, new);
1561 mutex_unlock(&seq->lock);
1563 return nbytes;
1566 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1567 size_t nbytes, loff_t *ppos)
1569 return psi_write(file, user_buf, nbytes, PSI_IO);
1572 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1573 size_t nbytes, loff_t *ppos)
1575 return psi_write(file, user_buf, nbytes, PSI_MEM);
1578 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1579 size_t nbytes, loff_t *ppos)
1581 return psi_write(file, user_buf, nbytes, PSI_CPU);
1584 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1586 struct seq_file *seq = file->private_data;
1588 return psi_trigger_poll(&seq->private, file, wait);
1591 static int psi_fop_release(struct inode *inode, struct file *file)
1593 struct seq_file *seq = file->private_data;
1595 psi_trigger_destroy(seq->private);
1596 return single_release(inode, file);
1599 static const struct proc_ops psi_io_proc_ops = {
1600 .proc_open = psi_io_open,
1601 .proc_read = seq_read,
1602 .proc_lseek = seq_lseek,
1603 .proc_write = psi_io_write,
1604 .proc_poll = psi_fop_poll,
1605 .proc_release = psi_fop_release,
1608 static const struct proc_ops psi_memory_proc_ops = {
1609 .proc_open = psi_memory_open,
1610 .proc_read = seq_read,
1611 .proc_lseek = seq_lseek,
1612 .proc_write = psi_memory_write,
1613 .proc_poll = psi_fop_poll,
1614 .proc_release = psi_fop_release,
1617 static const struct proc_ops psi_cpu_proc_ops = {
1618 .proc_open = psi_cpu_open,
1619 .proc_read = seq_read,
1620 .proc_lseek = seq_lseek,
1621 .proc_write = psi_cpu_write,
1622 .proc_poll = psi_fop_poll,
1623 .proc_release = psi_fop_release,
1626 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1627 static int psi_irq_show(struct seq_file *m, void *v)
1629 return psi_show(m, &psi_system, PSI_IRQ);
1632 static int psi_irq_open(struct inode *inode, struct file *file)
1634 return single_open(file, psi_irq_show, NULL);
1637 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1638 size_t nbytes, loff_t *ppos)
1640 return psi_write(file, user_buf, nbytes, PSI_IRQ);
1643 static const struct proc_ops psi_irq_proc_ops = {
1644 .proc_open = psi_irq_open,
1645 .proc_read = seq_read,
1646 .proc_lseek = seq_lseek,
1647 .proc_write = psi_irq_write,
1648 .proc_poll = psi_fop_poll,
1649 .proc_release = psi_fop_release,
1651 #endif
1653 static int __init psi_proc_init(void)
1655 if (psi_enable) {
1656 proc_mkdir("pressure", NULL);
1657 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1658 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1659 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1660 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1661 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1662 #endif
1664 return 0;
1666 module_init(psi_proc_init);
1668 #endif /* CONFIG_PROC_FS */