limited volume meshing to boundary layer only
[engrid-github.git] / src / libengrid / geometrytools.h
blob2c334ba31439a7bb1e676fd7e1e128b3064640b2
1 // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 // + +
3 // + This file is part of enGrid. +
4 // + +
5 // + Copyright 2008-2014 enGits GmbH +
6 // + +
7 // + enGrid is free software: you can redistribute it and/or modify +
8 // + it under the terms of the GNU General Public License as published by +
9 // + the Free Software Foundation, either version 3 of the License, or +
10 // + (at your option) any later version. +
11 // + +
12 // + enGrid is distributed in the hope that it will be useful, +
13 // + but WITHOUT ANY WARRANTY; without even the implied warranty of +
14 // + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +
15 // + GNU General Public License for more details. +
16 // + +
17 // + You should have received a copy of the GNU General Public License +
18 // + along with enGrid. If not, see <http://www.gnu.org/licenses/>. +
19 // + +
20 // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
21 #ifndef geometrytools_H
22 #define geometrytools_H
24 #include "math/mathvector.h"
25 #include "math/smallsquarematrix.h"
27 #include <QVector>
29 #include <vtkUnstructuredGrid.h>
31 namespace GeometryTools
35 double rad2deg( double rad ); ///< Converts radians to degrees
36 double deg2rad( double deg ); ///< Converts degrees to radians
38 void rotate(vec3_t g1, vec3_t g2, vec3_t g3, vec3_t &b, double theta);
40 /** Rotates vector v around vector axis by an angle theta */
41 vec3_t rotate(vec3_t v, vec3_t axis, double theta);
43 /** Returns a normalized vector orthogonal to v */
44 vec3_t orthogonalVector(vec3_t v);
46 /** Calculates the intersection between a line and a plane.
47 * @param x_straight A point of the line.
48 * @param v_straight Direction of the line.
49 * @param x_plane A point of the plane
50 * @param n_plane Normal of the plane
52 double intersection(vec3_t x_straight, vec3_t v_straight,
53 vec3_t x_plane, vec3_t n_plane);
55 /** Calculates the intersection between a line and a plane.
56 * @param x_straight A point of the line.
57 * @param v_straight Direction of the line.
58 * @param x_plane A point of the plane
59 * @param u_plane A vector of the plane
60 * @param v_plane Another vector of the plane not colinear with u_plane
62 double intersection(vec3_t x_straight, vec3_t v_straight,
63 vec3_t x_plane, vec3_t u_plane, vec3_t v_plane);
65 /**
66 * Calculates the intersection of a segment [x1,x2] with a triangle (a,b,c)
67 * Note: (xi,ri) will always be set to the intersection of the line (x1,x2) with the plane (a,b,c) even if the segment does not intersect the triangle!
68 * @param a Input: Triangle point 1
69 * @param b Input: Triangle point 2
70 * @param c Input: Triangle point 3
71 * @param x1 Input: Segment point 1
72 * @param x2 Input: Segment point 2
73 * @param xi Output: 3D Global coordinates of the intersection point
74 * @param ri Output: 3D local triangle coordinates of the intersection point
75 * @param tol Input: Relative tolerance: There can only be an intersection if:
76 * 0-tol*(x1-x2).abs()<=k<=1+tol*(x1-x2).abs()
77 * 0-tol<=ri[0]<=1+tol
78 * 0-tol<=ri[1]<=1+tol
79 * @return true if an intersection point was found, else false.
81 bool intersectEdgeAndTriangle(const vec3_t& a, const vec3_t& b, const vec3_t& c,
82 const vec3_t& x1, const vec3_t& x2, vec3_t& xi, vec3_t& ri, double tol = 1e-4);
84 bool isInsideTriangle(vec2_t t_M, double tol = 1e-4);
86 /** Calculates the intersection point M between the lines (r1,u1) and (r2,u2).
87 * @param k1 Returned by reference. Verifies M = r1+k1*u1
88 * @param k2 Returned by reference. Verifies M = r2+k2*u2
89 * @param r1 point of line 1
90 * @param r2 point of line 2
91 * @param u1 direction of line 1
92 * @param u2 direction of line 2
93 * @return true if an intersection has been found, else false.
95 bool intersection (double &k1, double &k2, vec2_t r1, vec2_t u1, vec2_t r2, vec2_t u2);
97 void sliceTriangle(const vector<vec3_t> &Tin, vec3_t x, vec3_t n, vector<vector<vec3_t> > &Tout);
99 /** Returns the volume of a tetrahedron.
100 * V= v1*(v2^v3) with vi=xi-x0
101 * If neg = false and V<0, it will return V=-1e99, else it returns V.
102 * @param x0 point 0 of the tetrahedron
103 * @param x1 point 1 of the tetrahedron
104 * @param x2 point 2 of the tetrahedron
105 * @param x3 point 3 of the tetrahedron
106 * @param neg If neg = false and V<0, it will return V=-1e99, else it returns V.
107 * @return volume of the tetrahedron
109 double tetraVol(const vec3_t& x0, const vec3_t& x1, const vec3_t& x2, const vec3_t& x3, bool neg = false);
111 double pyraVol(vec3_t x1, vec3_t x2, vec3_t x3, vec3_t x4, vec3_t x5, bool neg = false);
113 double prismVol(vec3_t x1, vec3_t x2, vec3_t x3, vec3_t x4, vec3_t x5, vec3_t x6, bool neg = false);
115 double hexaVol(vec3_t x1, vec3_t x2, vec3_t x3, vec3_t x4, vec3_t x5, vec3_t x6, vec3_t x7, vec3_t x8, bool neg = false);
117 double triArea(vec3_t x1, vec3_t x2, vec3_t x3);
119 double quadArea(vec3_t x1, vec3_t x2, vec3_t x3, vec3_t x4);
121 vec3_t triNormal(vec3_t x0, vec3_t x1, vec3_t x2);///< Returns the normal of the surface defined by x0,x1,x2
123 vec3_t quadNormal(vec3_t x0, vec3_t x1, vec3_t x2, vec3_t x3);///< Returns the normal of the surface defined by x0,x1,x2,x3
125 vec3_t triNormal(vtkUnstructuredGrid *grid, vtkIdType p1, vtkIdType p2, vtkIdType p3);
127 vec3_t quadNormal(vtkUnstructuredGrid *grid, vtkIdType p1, vtkIdType p2, vtkIdType p3, vtkIdType p4);
129 vec3_t cellNormal(vtkUnstructuredGrid *grid, vtkIdType i);
131 /// Returns the area or volume of a cell.
132 double cellVA(vtkUnstructuredGrid *grid, vtkIdType cellId, bool neg = false);
134 inline vec2_t turnRight(const vec2_t &v)
136 vec2_t u;
137 u[0] = v[1];
138 u[1] = -v[0];
139 return u;
142 inline vec2_t turnLeft(const vec2_t &v)
144 vec2_t u;
145 u[0] = -v[1];
146 u[1] = v[0];
147 return u;
150 //polygon must be numbered clockwise
151 inline bool IsConvex(vec3_t a,vec3_t b,vec3_t c,vec3_t d)
153 vec3_t u[4];
154 u[0]=b-a;
155 u[1]=c-b;
156 u[2]=d-c;
157 u[3]=a-d;
159 for(int i=0;i<4;i++) {
160 vec3_t n=u[i].cross(u[(i+1)%4]);
161 if(n[2]>0) return(false);
163 return(true);
166 inline bool IsConvex(vec2_t a_2D,vec2_t b_2D,vec2_t c_2D,vec2_t d_2D)
168 vec3_t a_3D(a_2D[0],a_2D[1]);
169 vec3_t b_3D(b_2D[0],b_2D[1]);
170 vec3_t c_3D(c_2D[0],c_2D[1]);
171 vec3_t d_3D(d_2D[0],d_2D[1]);
172 return(IsConvex(a_3D,b_3D,c_3D,d_3D));
175 /// return the angle with relation to another 3-vector
176 double angle(const vec3_t & u, const vec3_t & v);
178 /** return the deviation p1->p2->p3 (angle(p2-p1,p3-p2)) */
179 double deviation(vtkUnstructuredGrid *grid, vtkIdType p1, vtkIdType p2, vtkIdType p3);
181 /** return the angle p1,p2,p3 (angle(p1-p2,p3-p2)) */
182 double angle(vtkUnstructuredGrid *grid, vtkIdType p1, vtkIdType p2, vtkIdType p3);
184 /** return the cosine of the angle between the normals of cell1 and cell2 */
185 double cosAngle(vtkUnstructuredGrid *grid, vtkIdType cell1, vtkIdType cell2);
187 /** Returns the center of mass of cellId + passes the minimal and maximal center to corner distances by reference */
188 vec3_t getCenter(vtkUnstructuredGrid *grid, vtkIdType cellId, double& Rmin, double& Rmax);
190 /** Returns the distance between id_node1 and id_node2 */
191 double distance(vtkUnstructuredGrid *grid, vtkIdType id_node1, vtkIdType id_node2);
193 /** Returns the distance squared between id_node1 and id_node2 */
194 double distance2(vtkUnstructuredGrid *grid, vtkIdType id_node1, vtkIdType id_node2);
196 /** area of the circumscribed circle of the triangle */
197 double areaOfCircumscribedCircle(vtkUnstructuredGrid *grid, vtkIdType id_cell);
199 /** Compute the circumscribed circle of a triangle in 3D coordinates.
200 * @param a first node of the triangle
201 * @param b second node of the triangle
202 * @param c third node of the triangle
203 * @param x on return this will be the centre of the circumscribed circle
204 * @param radius on return this will be the radius of the circumscribed circle
206 void computeCircumscribedCircle(vec3_t a, vec3_t b, vec3_t c, vec3_t &x, double &radius);
208 vec3_t getBarycentricCoordinates(double x, double y);
210 vec3_t intersectionOnPlane(vec3_t v, vec3_t A, vec3_t nA, vec3_t B, vec3_t nB);
212 /** Projects vector V onto plane (O,i,j)
213 * @param V The vector to project
214 * @param i A vector of the plane
215 * @param j A vector of the plane
216 * @return Returns a 2D vector (x,y) so that V = x*i +y*j
218 vec2_t projectVectorOnPlane(vec3_t V,vec3_t i,vec3_t j);
220 vec3_t projectPointOnEdge(const vec3_t& M,const vec3_t& A, const vec3_t& u);
222 vec3_t projectPointOnPlane(const vec3_t& M, const vec3_t& A, const vec3_t& N);
224 void cart2spherical(vec3_t x, double &alpha, double& beta, double& r);
226 inline void cart2spherical(vec3_t x, const vec3_t& x0, double &alpha, double& beta, double& r)
228 return cart2spherical(x - x0, alpha, beta, r);
231 inline vec3_t spherical2cart(double alpha, double beta, double r)
233 return r*vec3_t(cos(alpha)*cos(beta), sin(alpha)*cos(beta), sin(beta));
236 inline vec3_t spherical2cart(vec3_t x0, double alpha, double beta, double r)
238 return x0 + spherical2cart(alpha, beta, r);
241 template <class C>
242 void planeFit(const C &pts, vec3_t &x0, vec3_t &n, bool closed_loop = false)
244 x0 = vec3_t(0,0,0);
245 int N = pts.size();
246 if (!closed_loop) {
247 ++N;
249 QVector<vec3_t> x(N);
250 for (int i = 0; i < pts.size(); ++i) {
251 x[i] = pts[i];
252 x0 += x[i];
254 if (!closed_loop) {
255 x.last() = x.first();
257 x0 *= 1.0/pts.size();
258 for (int i = 0; i < x.size(); ++i) {
259 x[i] -= x0;
261 n = vec3_t(0,0,0);
262 for (int i = 0; i < x.size() - 1; ++i) {
263 n += x[i].cross(x[i+1]);
265 double a11 = 0, a12 = 0, a13 = 0;
266 double a21 = 0, a22 = 0, a23 = 0;
267 double a31 = 0, a32 = 0, a33 = 0;
268 for (int i = 0; i < x.size() - 1; ++i) {
269 a11 += x[i][0]*x[i][0];
270 a12 += x[i][0]*x[i][1];
271 a13 += x[i][0]*x[i][2];
273 a21 += x[i][0]*x[i][1];
274 a22 += x[i][1]*x[i][1];
275 a23 += x[i][1]*x[i][2];
277 a31 += x[i][0]*x[i][2];
278 a32 += x[i][1]*x[i][2];
279 a33 += x[i][2]*x[i][2];
281 //n[2] = n[2];
282 //n[1] = -a33*n[2]/(a22*a31 - a21*a32);
283 //n[0] = -(a12*n[1] + a13*n[2])/a11;
284 n.normalise();
287 template <class C>
288 vec3_t polyNormal(const C &pts, bool closed_loop = false)
290 vec3_t x0(0,0,0);
291 int N = pts.size();
292 if (!closed_loop) {
293 ++N;
295 QVector<vec3_t> x(N);
296 for (int i = 0; i < pts.size(); ++i) {
297 x[i] = pts[i];
298 x0 += x[i];
300 if (!closed_loop) {
301 x.last() = x.first();
303 x0 *= 1.0/pts.size();
304 for (int i = 0; i < x.size(); ++i) {
305 x[i] -= x0;
307 vec3_t n(0,0,0);
308 for (int i = 0; i < x.size() - 1; ++i) {
309 n += x[i].cross(x[i+1]);
311 return n;
316 #endif