1 // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3 // + This file is part of enGrid. +
5 // + Copyright 2008-2014 enGits GmbH +
7 // + enGrid is free software: you can redistribute it and/or modify +
8 // + it under the terms of the GNU General Public License as published by +
9 // + the Free Software Foundation, either version 3 of the License, or +
10 // + (at your option) any later version. +
12 // + enGrid is distributed in the hope that it will be useful, +
13 // + but WITHOUT ANY WARRANTY; without even the implied warranty of +
14 // + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +
15 // + GNU General Public License for more details. +
17 // + You should have received a copy of the GNU General Public License +
18 // + along with enGrid. If not, see <http://www.gnu.org/licenses/>. +
20 // ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
22 #ifndef MESHPARTITION_H
23 #define MESHPARTITION_H
27 #include "egvtkobject.h"
29 class MeshPartition
: public EgVtkObject
32 private: // attributes
35 vtkUnstructuredGrid
* m_Grid
; ///< the grid underlying this mesh partition
36 QVector
<vtkIdType
> m_Cells
; ///< all cells of the mesh partition
37 QVector
<int> m_LCells
; ///< inverse indexing for the cells
38 QVector
<vtkIdType
> m_Nodes
; ///< all nodes of the mesh partition
39 QVector
<int> m_LNodes
; ///< inverse indexing for the nodes
40 QVector
<QVector
<int> > m_N2C
; ///< node to cell information
41 QVector
<QVector
<int> > m_N2BC
; ///< node to boundary code information
42 QVector
<QVector
<int> > m_N2N
; ///< node to node information
43 QVector
<QVector
<int> > m_C2C
; ///< cell to cell information
45 int m_CellsStamp
; ///< "time"-stamp
46 int m_LCellsStamp
; ///< "time"-stamp
47 int m_NodesStamp
; ///< "time"-stamp
48 int m_LNodesStamp
; ///< "time"-stamp
49 int m_N2NStamp
; ///< "time"-stamp
50 int m_N2CStamp
; ///< "time"-stamp
51 int m_N2BCStamp
; ///< "time"-stamp
52 int m_C2CStamp
; ///< "time"-stamp
54 bool m_TrackGrid
; ///< flag to determine if grid should be tracked (make sure that all cells are always included)
55 unsigned long int m_GridMTime
; ///< VTK's modification time of the underlying grid
59 void createNodeToBC();
61 void resetTimeStamps();
73 /// Create an empty (undefined) mesh partition
77 * Create a mesh partition with the grid set. Optionally all cells can be selected.
78 * @param grid the grid to use
79 * @param use_all_cells if set to true all cells will be selected;
81 MeshPartition(vtkUnstructuredGrid
*grid
, bool use_all_cells
= false);
84 * Create a mesh partition from a global volume definition
85 * @param volume_name the name of the volume
87 MeshPartition(QString volume_name
);
91 * @param a pointer to the grid
93 void setGrid(vtkUnstructuredGrid
*grid
) { m_Grid
= grid
; }
96 * Set the grid and make sure all cells are always included (automatic tracking).
97 * @param a pointer to the grid
99 void trackGrid(vtkUnstructuredGrid
*grid
);
102 * Access to the grid.
103 * @return a pointer to the grid
105 vtkUnstructuredGrid
* getGrid() const { return m_Grid
; }
108 * Define the mesh partition by defining its cells.
109 * @param cls the cells of the subset
112 void setCells(const C
& cls
);
115 * Define the mesh partition by defining its nodes.
116 * @param nds the nodes of the subset
119 void setNodes(const C
& nds
);
122 * Define the mesh partition by defining boundary codes.
123 * @param bcs the boundary codes of the subset
126 void setBCs(const C
& bcs
);
129 * Define the mesh partition by defining all its cells.
134 * Define the mesh partition by giving a symbolic volume name.
135 * The grid will be changed to the default (main) grid that is currently loaded into ENGRID.
136 * @param volume_name the symbolic volume name
138 void setVolume(QString volume_name
);
141 * Define the mesh partition as the remainder of an existing partition.
142 * @param part the existing partition
144 void setRemainder(const MeshPartition
& part
);
146 const QVector
<vtkIdType
>& getCells() const; ///< Access to the cell indices
147 const QVector
<int>& getLocalCells(); ///< Access to the local cell indices
148 const QVector
<vtkIdType
>& getNodes(); ///< Access to the node indices
149 const QVector
<int>& getLocalNodes(); ///< Access to the local node indices
150 const QVector
<QVector
<int> >& getN2N(); ///< Access to the local node to node structure
151 const QVector
<QVector
<int> >& getN2C(); ///< Access to the local node to cell structure
152 const QVector
<QVector
<int> >& getC2C(); ///< Access to the local cell to cell structure
154 void setVolumeOrientation(); ///< change the face orientation to match the volume definition
155 void setOriginalOrientation(); ///< change the orientation to match the original orientation
158 * Copy the partition to a VTK grid.
159 * @param new_grid the grid to copy the partition to (will be resized accordingly).
161 void extractToVtkGrid(vtkUnstructuredGrid
*new_grid
);
164 * Add another partition to this one.
165 * At the moment overlapping partitions on two different grids will not be handled well.
166 * If both partitions do not have the same underlying grid the grid will be extended in order
167 * to add the other partition.
168 * @param part the partition to add
169 * @param tol the tolerance to identify duplicate nodes
170 * (negative values denote a relative tolerance -- relative to the smallest edge length)
172 void addPartition(const MeshPartition
& part
, double tol
= -1e-3);
175 * compute the smallest edge length of the partition
176 * @return the smallest edge length
178 double getSmallestEdgeLength() const;
181 * Get the number of nodes in the partition.
182 * @return the number of nodes
184 int getNumberOfNodes();
187 * Get the number of cells in the partition.
188 * @return the number of cells
190 int getNumberOfCells();
193 * Get the average length of all surface edges connected to this node.
194 * @param id_node the node ID of the node in question
195 * @return the average length of all connected surface edges
197 double getAverageSurfaceEdgeLength(vtkIdType id_node
);
200 * @brief compute the minimal and maximal edge length of a surface stencil
201 * A surface stencil consists of all surface elements which have a single node in common.
202 * @param id_node the node in common
203 * @param l_min on return this will hold the minimal edge length
204 * @param l_max on return this will hold the maximal edge length
206 void computeMinAndMaxSurfaceStencilEdgeLengths(vtkIdType id_node
, double &l_min
, double &l_max
);
209 * @brief get the minimal edge length of a surface stencil
210 * A surface stencil consists of all surface elements which have a single node in common.
211 * @param id_node the node in common
212 * @return the minimal edge length
214 double getMinSurfaceStencilEdgeLength(vtkIdType id_node
);
217 * @brief get the maximal edge length of a surface stencil
218 * A surface stencil consists of all surface elements which have a single node in common.
219 * @param id_node the node in common
220 * @return the maximal edge length
222 double getMaxSurfaceStencilEdgeLength(vtkIdType id_node
);
224 vtkIdType
getVolumeCell(vtkIdType id_face
);
226 int localNode(vtkIdType id_node
);
227 vtkIdType
globalNode(int i
);
228 int localCell(vtkIdType id_cell
);
229 vtkIdType
globalCell(int i
);
232 int n2nLSize(int i_nodes
);
233 int n2nLL(int i_nodes
, int j
);
234 vtkIdType
n2nLG(int i_nodes
, int j
);
235 int n2nGSize(vtkIdType id_node
);
236 int n2nGL(vtkIdType id_node
, int j
);
237 vtkIdType
n2nGG(vtkIdType id_node
, int j
);
238 int n2cLSize(int i_nodes
);
239 int n2cLL(int i_nodes
, int j
);
240 vtkIdType
n2cLG(int i_nodes
, int j
);
241 int n2cGSize(vtkIdType id_node
);
242 int n2cGL(vtkIdType id_node
, int j
);
243 vtkIdType
n2cGG(vtkIdType id_node
, int j
);
244 int c2cLSize(int i_cells
);
245 int c2cLL(int i_cells
, int j
);
246 vtkIdType
c2cLG(int i_cells
, int j
);
247 int c2cGSize(vtkIdType id_cell
);
248 int c2cGL(vtkIdType id_cell
, int j
);
249 vtkIdType
c2cGG(vtkIdType id_cell
, int j
);
250 int n2bcLSize(int i_nodes
);
251 int n2bcL(int i_nodes
, int j
);
252 int n2bcGSize(vtkIdType id_node
);
253 int n2bcG(vtkIdType id_node
, int j
);
255 bool hasNeighNode(vtkIdType id_node
, vtkIdType id_neigh
);
256 bool hasBC(vtkIdType id_node
, int bc
);
259 * Compute the normal vector of a node.
260 * @param id_node the global ID of the node
261 * @return the normalised normal vector
263 vec3_t
globalNormal(vtkIdType id_node
);
265 template <typename C
>
266 void getGlobalN2N(vtkIdType id_node
, C
& cont
);
268 int getNumberOfFeatureNeighbours(vtkIdType id_node
);
270 template <typename C
>
271 void getEdgeFaces(vtkIdType id_node1
, vtkIdType id_node2
, C
&edge_faces
);
273 int getEdgeType(vtkIdType id_node1
, vtkIdType id_node2
);
276 * @brief compute topological distance between two nodes
277 * @param id_node1 index of the first node
278 * @param id_node2 index of the second node
279 * @param max_dist maximal search distance
280 * @param restriction_type (0: no restriction, 1: only surface nodes, 2: only edge nodes)
281 * @return the number of edges for the shortest connection between the two nodes
283 int computeTopoDistance(vtkIdType id_node1
, vtkIdType id_node2
, int max_dist
, int restriction_type
);
285 template <typename C
>
286 void getCommonNodes(vtkIdType id_cell1
, vtkIdType id_cell2
, C
&common_nodes
);
292 inline void MeshPartition::setCells(const C
& cls
)
294 m_Cells
.resize(cls
.size());
295 qCopy(cls
.begin(), cls
.end(), m_Cells
.begin());
300 inline void MeshPartition::setNodes(const C
& nds
)
302 QList
<vtkIdType
> cls
;
303 QVector
<bool> node_inside(m_Grid
->GetNumberOfPoints(), false);
304 foreach (vtkIdType id_node
, nds
) {
305 node_inside
[id_node
] = true;
307 for (vtkIdType id_cell
= 0; id_cell
< m_Grid
->GetNumberOfCells(); ++id_cell
) {
308 vtkIdType N_pts
, *pts
;
309 m_Grid
->GetCellPoints(id_cell
, N_pts
, pts
);
310 bool append_cell
= true;
311 for (int i
= 0; i
< N_pts
; ++i
) {
312 if (!node_inside
[pts
[i
]]) {
325 inline void MeshPartition::setBCs(const C
& bcs
)
327 QList
<vtkIdType
> cls
;
328 EG_VTKDCC(vtkIntArray
, cell_code
, m_Grid
, "cell_code");
329 for (vtkIdType id_cell
= 0; id_cell
< m_Grid
->GetNumberOfCells(); ++id_cell
) {
330 foreach (int bc
, bcs
) {
331 if (cell_code
->GetValue(id_cell
) == bc
) {
340 inline void MeshPartition::setAllCells()
342 QVector
<vtkIdType
> all_cells
;
343 getAllCells(all_cells
, m_Grid
);
344 this->setCells(all_cells
);
347 inline void MeshPartition::checkCells()
349 if (m_Grid
->GetMTime() > m_GridMTime
) {
351 m_GridMTime
= m_Grid
->GetMTime();
355 inline void MeshPartition::checkNodes()
360 if (m_CellsStamp
> m_NodesStamp
) {
361 getNodesFromCells(m_Cells
, m_Nodes
, m_Grid
);
362 m_NodesStamp
= m_CellsStamp
;
366 inline void MeshPartition::checkLCells()
371 if (m_CellsStamp
> m_LCellsStamp
) {
372 createCellMapping(m_Cells
, m_LCells
, m_Grid
);
373 m_LCellsStamp
= m_CellsStamp
;
377 inline void MeshPartition::checkLNodes()
380 if (m_NodesStamp
> m_LNodesStamp
) {
381 createNodeMapping(m_Nodes
, m_LNodes
, m_Grid
);
382 m_LNodesStamp
= m_NodesStamp
;
386 inline void MeshPartition::checkN2N()
389 if (m_LNodesStamp
> m_N2NStamp
) {
390 createNodeToNode(m_Cells
, m_Nodes
, m_LNodes
, m_N2N
, m_Grid
);
391 m_N2NStamp
= m_LNodesStamp
;
395 inline void MeshPartition::checkN2C()
398 if (m_LNodesStamp
> m_N2CStamp
) {
399 createNodeToCell(m_Cells
, m_Nodes
, m_LNodes
, m_N2C
, m_Grid
);
400 m_N2CStamp
= m_LNodesStamp
;
404 inline void MeshPartition::checkN2BC()
407 if (m_N2CStamp
> m_N2BCStamp
) {
409 m_N2BCStamp
= m_N2CStamp
;
413 inline void MeshPartition::checkC2C()
416 if (m_CellsStamp
> m_C2CStamp
) {
417 createCellToCell(m_Cells
, m_C2C
, m_Grid
);
418 m_C2CStamp
= m_CellsStamp
;
422 inline const QVector
<vtkIdType
>& MeshPartition::getCells() const
427 inline const QVector
<int>& MeshPartition::getLocalCells()
433 inline const QVector
<vtkIdType
>& MeshPartition::getNodes()
439 inline const QVector
<int>& MeshPartition::getLocalNodes()
445 inline const QVector
<QVector
<int> >& MeshPartition::getN2N()
451 inline const QVector
<QVector
<int> >& MeshPartition::getN2C()
457 inline const QVector
<QVector
<int> >& MeshPartition::getC2C()
463 inline int MeshPartition::n2nLSize(int i_nodes
)
466 return m_N2N
[i_nodes
].size();
469 inline int MeshPartition::n2nLL(int i_nodes
, int j
)
472 return m_N2N
[i_nodes
][j
];
475 inline vtkIdType
MeshPartition::n2nLG(int i_nodes
, int j
)
478 return m_Nodes
[m_N2N
[i_nodes
][j
]];
481 inline int MeshPartition::n2nGSize(vtkIdType id_node
)
484 return m_N2N
[m_LNodes
[id_node
]].size();
487 inline int MeshPartition::n2nGL(vtkIdType id_node
, int j
)
490 return m_N2N
[m_LNodes
[id_node
]][j
];
493 inline vtkIdType
MeshPartition::n2nGG(vtkIdType id_node
, int j
)
496 return m_Nodes
[m_N2N
[m_LNodes
[id_node
]][j
]];
499 inline int MeshPartition::n2cLSize(int i_nodes
)
502 return m_N2C
[i_nodes
].size();
505 inline int MeshPartition::n2cLL(int i_nodes
, int j
)
508 return m_N2C
[i_nodes
][j
];
511 inline vtkIdType
MeshPartition::n2cLG(int i_nodes
, int j
)
514 int i_cell
= m_N2C
[i_nodes
][j
];
515 if(i_cell
<0) return(-1);
516 else return m_Cells
[i_cell
];
519 inline int MeshPartition::n2cGSize(vtkIdType id_node
)
522 return m_N2C
[m_LNodes
[id_node
]].size();
525 inline int MeshPartition::n2cGL(vtkIdType id_node
, int j
)
528 return m_N2C
[m_LNodes
[id_node
]][j
];
531 inline vtkIdType
MeshPartition::n2cGG(vtkIdType id_node
, int j
)
534 int i_cell
= m_N2C
[m_LNodes
[id_node
]][j
];
535 if(i_cell
<0) return(-1);
536 else return m_Cells
[i_cell
];
539 inline int MeshPartition::c2cLSize(int i_cells
)
542 return m_C2C
[i_cells
].size();
545 inline int MeshPartition::c2cLL(int i_cells
, int j
)
548 return m_C2C
[i_cells
][j
];
551 inline vtkIdType
MeshPartition::c2cLG(int i_cells
, int j
)
554 int i_cell
= m_C2C
[i_cells
][j
];
555 if(i_cell
<0) return(-1);
556 else return m_Cells
[i_cell
];
559 inline int MeshPartition::c2cGSize(vtkIdType id_cell
)
563 return m_C2C
[m_LCells
[id_cell
]].size();
566 inline int MeshPartition::c2cGL(vtkIdType id_cell
, int j
)
570 return m_C2C
[m_LCells
[id_cell
]][j
];
573 inline vtkIdType
MeshPartition::c2cGG(vtkIdType id_cell
, int j
)
577 int i_cell
= m_C2C
[m_LCells
[id_cell
]][j
];
578 if(i_cell
<0) return(-1);
579 else return m_Cells
[i_cell
];
582 inline int MeshPartition::getNumberOfCells()
584 return m_Cells
.size();
587 inline int MeshPartition::getNumberOfNodes()
590 return m_Nodes
.size();
593 inline int MeshPartition::localNode(vtkIdType id_node
)
596 return m_LNodes
[id_node
];
599 inline vtkIdType
MeshPartition::globalNode(int i
)
605 inline int MeshPartition::localCell(vtkIdType id_cell
)
608 return m_LCells
[id_cell
];
611 inline vtkIdType
MeshPartition::globalCell(int i
)
614 else return m_Cells
[i
];
617 inline int MeshPartition::n2bcLSize(int i_nodes
)
620 return m_N2BC
[i_nodes
].size();
623 inline int MeshPartition::n2bcL(int i_nodes
, int j
)
626 return m_N2BC
[i_nodes
][j
];
629 inline int MeshPartition::n2bcGSize(vtkIdType id_node
)
632 return m_N2BC
[m_LNodes
[id_node
]].size();
635 inline int MeshPartition::n2bcG(vtkIdType id_node
, int j
)
638 return m_N2BC
[m_LNodes
[id_node
]][j
];
641 template <typename C
>
642 void MeshPartition::getGlobalN2N(vtkIdType id_node
, C
& cont
)
645 for (int i
= 0; i
< n2nGSize(id_node
); ++i
) {
646 cont
<< n2nGG(id_node
, i
);
650 template <typename C
>
651 void MeshPartition::getEdgeFaces(vtkIdType id_node1
, vtkIdType id_node2
, C
&edge_faces
)
654 for (int i
= 0; i
< n2cGSize(id_node1
); ++i
) {
655 vtkIdType id_cell
= n2cGG(id_node1
, i
);
656 if (isSurface(id_cell
, m_Grid
)) {
657 vtkIdType num_pts
, *pts
;
658 m_Grid
->GetCellPoints(id_cell
, num_pts
, pts
);
659 for (int j
= 0; j
< num_pts
; ++j
) {
660 if (pts
[j
] == id_node2
) {
661 edge_faces
<< id_cell
;
669 template <typename C
>
670 void MeshPartition::getCommonNodes(vtkIdType id_cell1
, vtkIdType id_cell2
, C
&common_nodes
)
672 common_nodes
.clear();
673 QSet
<vtkIdType
> nodes1
, nodes2
;
674 vtkIdType num_pts
, *pts
;
675 m_Grid
->GetCellPoints(id_cell1
, num_pts
, pts
);
676 for (int i
= 0; i
< num_pts
; ++i
) {
677 nodes1
.insert(pts
[i
]);
679 m_Grid
->GetCellPoints(id_cell2
, num_pts
, pts
);
680 for (int i
= 0; i
< num_pts
; ++i
) {
681 nodes2
.insert(pts
[i
]);
683 nodes1
.intersect(nodes2
);
684 common_nodes
.resize(nodes1
.size());
685 qCopy(nodes1
.begin(), nodes1
.end(), common_nodes
.begin());
688 #endif // MESHPARTITION_H