iexciting-0.9.224
[exciting.git] / src / LAPACK / dsytrf.f
blob43a31248010b2c6300985f481ff41a375937c8be
1 SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
3 * -- LAPACK routine (version 3.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * November 2006
7 * .. Scalar Arguments ..
8 CHARACTER UPLO
9 INTEGER INFO, LDA, LWORK, N
10 * ..
11 * .. Array Arguments ..
12 INTEGER IPIV( * )
13 DOUBLE PRECISION A( LDA, * ), WORK( * )
14 * ..
16 * Purpose
17 * =======
19 * DSYTRF computes the factorization of a real symmetric matrix A using
20 * the Bunch-Kaufman diagonal pivoting method. The form of the
21 * factorization is
23 * A = U*D*U**T or A = L*D*L**T
25 * where U (or L) is a product of permutation and unit upper (lower)
26 * triangular matrices, and D is symmetric and block diagonal with
27 * 1-by-1 and 2-by-2 diagonal blocks.
29 * This is the blocked version of the algorithm, calling Level 3 BLAS.
31 * Arguments
32 * =========
34 * UPLO (input) CHARACTER*1
35 * = 'U': Upper triangle of A is stored;
36 * = 'L': Lower triangle of A is stored.
38 * N (input) INTEGER
39 * The order of the matrix A. N >= 0.
41 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
42 * On entry, the symmetric matrix A. If UPLO = 'U', the leading
43 * N-by-N upper triangular part of A contains the upper
44 * triangular part of the matrix A, and the strictly lower
45 * triangular part of A is not referenced. If UPLO = 'L', the
46 * leading N-by-N lower triangular part of A contains the lower
47 * triangular part of the matrix A, and the strictly upper
48 * triangular part of A is not referenced.
50 * On exit, the block diagonal matrix D and the multipliers used
51 * to obtain the factor U or L (see below for further details).
53 * LDA (input) INTEGER
54 * The leading dimension of the array A. LDA >= max(1,N).
56 * IPIV (output) INTEGER array, dimension (N)
57 * Details of the interchanges and the block structure of D.
58 * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
59 * interchanged and D(k,k) is a 1-by-1 diagonal block.
60 * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
61 * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
62 * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
63 * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
64 * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
66 * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
67 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
69 * LWORK (input) INTEGER
70 * The length of WORK. LWORK >=1. For best performance
71 * LWORK >= N*NB, where NB is the block size returned by ILAENV.
73 * If LWORK = -1, then a workspace query is assumed; the routine
74 * only calculates the optimal size of the WORK array, returns
75 * this value as the first entry of the WORK array, and no error
76 * message related to LWORK is issued by XERBLA.
78 * INFO (output) INTEGER
79 * = 0: successful exit
80 * < 0: if INFO = -i, the i-th argument had an illegal value
81 * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
82 * has been completed, but the block diagonal matrix D is
83 * exactly singular, and division by zero will occur if it
84 * is used to solve a system of equations.
86 * Further Details
87 * ===============
89 * If UPLO = 'U', then A = U*D*U', where
90 * U = P(n)*U(n)* ... *P(k)U(k)* ...,
91 * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
92 * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
93 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
94 * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
95 * that if the diagonal block D(k) is of order s (s = 1 or 2), then
97 * ( I v 0 ) k-s
98 * U(k) = ( 0 I 0 ) s
99 * ( 0 0 I ) n-k
100 * k-s s n-k
102 * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
103 * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
104 * and A(k,k), and v overwrites A(1:k-2,k-1:k).
106 * If UPLO = 'L', then A = L*D*L', where
107 * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
108 * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
109 * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
110 * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
111 * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
112 * that if the diagonal block D(k) is of order s (s = 1 or 2), then
114 * ( I 0 0 ) k-1
115 * L(k) = ( 0 I 0 ) s
116 * ( 0 v I ) n-k-s+1
117 * k-1 s n-k-s+1
119 * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
120 * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
121 * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
123 * =====================================================================
125 * .. Local Scalars ..
126 LOGICAL LQUERY, UPPER
127 INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
128 * ..
129 * .. External Functions ..
130 LOGICAL LSAME
131 INTEGER ILAENV
132 EXTERNAL LSAME, ILAENV
133 * ..
134 * .. External Subroutines ..
135 EXTERNAL DLASYF, DSYTF2, XERBLA
136 * ..
137 * .. Intrinsic Functions ..
138 INTRINSIC MAX
139 * ..
140 * .. Executable Statements ..
142 * Test the input parameters.
144 INFO = 0
145 UPPER = LSAME( UPLO, 'U' )
146 LQUERY = ( LWORK.EQ.-1 )
147 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
148 INFO = -1
149 ELSE IF( N.LT.0 ) THEN
150 INFO = -2
151 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
152 INFO = -4
153 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
154 INFO = -7
155 END IF
157 IF( INFO.EQ.0 ) THEN
159 * Determine the block size
161 NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 )
162 LWKOPT = N*NB
163 WORK( 1 ) = LWKOPT
164 END IF
166 IF( INFO.NE.0 ) THEN
167 CALL XERBLA( 'DSYTRF', -INFO )
168 RETURN
169 ELSE IF( LQUERY ) THEN
170 RETURN
171 END IF
173 NBMIN = 2
174 LDWORK = N
175 IF( NB.GT.1 .AND. NB.LT.N ) THEN
176 IWS = LDWORK*NB
177 IF( LWORK.LT.IWS ) THEN
178 NB = MAX( LWORK / LDWORK, 1 )
179 NBMIN = MAX( 2, ILAENV( 2, 'DSYTRF', UPLO, N, -1, -1, -1 ) )
180 END IF
181 ELSE
182 IWS = 1
183 END IF
184 IF( NB.LT.NBMIN )
185 $ NB = N
187 IF( UPPER ) THEN
189 * Factorize A as U*D*U' using the upper triangle of A
191 * K is the main loop index, decreasing from N to 1 in steps of
192 * KB, where KB is the number of columns factorized by DLASYF;
193 * KB is either NB or NB-1, or K for the last block
195 K = N
196 10 CONTINUE
198 * If K < 1, exit from loop
200 IF( K.LT.1 )
201 $ GO TO 40
203 IF( K.GT.NB ) THEN
205 * Factorize columns k-kb+1:k of A and use blocked code to
206 * update columns 1:k-kb
208 CALL DLASYF( UPLO, K, NB, KB, A, LDA, IPIV, WORK, LDWORK,
209 $ IINFO )
210 ELSE
212 * Use unblocked code to factorize columns 1:k of A
214 CALL DSYTF2( UPLO, K, A, LDA, IPIV, IINFO )
215 KB = K
216 END IF
218 * Set INFO on the first occurrence of a zero pivot
220 IF( INFO.EQ.0 .AND. IINFO.GT.0 )
221 $ INFO = IINFO
223 * Decrease K and return to the start of the main loop
225 K = K - KB
226 GO TO 10
228 ELSE
230 * Factorize A as L*D*L' using the lower triangle of A
232 * K is the main loop index, increasing from 1 to N in steps of
233 * KB, where KB is the number of columns factorized by DLASYF;
234 * KB is either NB or NB-1, or N-K+1 for the last block
236 K = 1
237 20 CONTINUE
239 * If K > N, exit from loop
241 IF( K.GT.N )
242 $ GO TO 40
244 IF( K.LE.N-NB ) THEN
246 * Factorize columns k:k+kb-1 of A and use blocked code to
247 * update columns k+kb:n
249 CALL DLASYF( UPLO, N-K+1, NB, KB, A( K, K ), LDA, IPIV( K ),
250 $ WORK, LDWORK, IINFO )
251 ELSE
253 * Use unblocked code to factorize columns k:n of A
255 CALL DSYTF2( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ), IINFO )
256 KB = N - K + 1
257 END IF
259 * Set INFO on the first occurrence of a zero pivot
261 IF( INFO.EQ.0 .AND. IINFO.GT.0 )
262 $ INFO = IINFO + K - 1
264 * Adjust IPIV
266 DO 30 J = K, K + KB - 1
267 IF( IPIV( J ).GT.0 ) THEN
268 IPIV( J ) = IPIV( J ) + K - 1
269 ELSE
270 IPIV( J ) = IPIV( J ) - K + 1
271 END IF
272 30 CONTINUE
274 * Increase K and return to the start of the main loop
276 K = K + KB
277 GO TO 20
279 END IF
281 40 CONTINUE
282 WORK( 1 ) = LWKOPT
283 RETURN
285 * End of DSYTRF