exciting-0.9.218
[exciting.git] / src / LAPACK / dlaruv.f
blob687c2c454d6be51c841532127d622c0bad0df0ca
1 SUBROUTINE DLARUV( ISEED, N, X )
3 * -- LAPACK auxiliary routine (version 3.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * November 2006
7 * .. Scalar Arguments ..
8 INTEGER N
9 * ..
10 * .. Array Arguments ..
11 INTEGER ISEED( 4 )
12 DOUBLE PRECISION X( N )
13 * ..
15 * Purpose
16 * =======
18 * DLARUV returns a vector of n random real numbers from a uniform (0,1)
19 * distribution (n <= 128).
21 * This is an auxiliary routine called by DLARNV and ZLARNV.
23 * Arguments
24 * =========
26 * ISEED (input/output) INTEGER array, dimension (4)
27 * On entry, the seed of the random number generator; the array
28 * elements must be between 0 and 4095, and ISEED(4) must be
29 * odd.
30 * On exit, the seed is updated.
32 * N (input) INTEGER
33 * The number of random numbers to be generated. N <= 128.
35 * X (output) DOUBLE PRECISION array, dimension (N)
36 * The generated random numbers.
38 * Further Details
39 * ===============
41 * This routine uses a multiplicative congruential method with modulus
42 * 2**48 and multiplier 33952834046453 (see G.S.Fishman,
43 * 'Multiplicative congruential random number generators with modulus
44 * 2**b: an exhaustive analysis for b = 32 and a partial analysis for
45 * b = 48', Math. Comp. 189, pp 331-344, 1990).
47 * 48-bit integers are stored in 4 integer array elements with 12 bits
48 * per element. Hence the routine is portable across machines with
49 * integers of 32 bits or more.
51 * =====================================================================
53 * .. Parameters ..
54 DOUBLE PRECISION ONE
55 PARAMETER ( ONE = 1.0D0 )
56 INTEGER LV, IPW2
57 DOUBLE PRECISION R
58 PARAMETER ( LV = 128, IPW2 = 4096, R = ONE / IPW2 )
59 * ..
60 * .. Local Scalars ..
61 INTEGER I, I1, I2, I3, I4, IT1, IT2, IT3, IT4, J
62 * ..
63 * .. Local Arrays ..
64 INTEGER MM( LV, 4 )
65 * ..
66 * .. Intrinsic Functions ..
67 INTRINSIC DBLE, MIN, MOD
68 * ..
69 * .. Data statements ..
70 DATA ( MM( 1, J ), J = 1, 4 ) / 494, 322, 2508,
71 $ 2549 /
72 DATA ( MM( 2, J ), J = 1, 4 ) / 2637, 789, 3754,
73 $ 1145 /
74 DATA ( MM( 3, J ), J = 1, 4 ) / 255, 1440, 1766,
75 $ 2253 /
76 DATA ( MM( 4, J ), J = 1, 4 ) / 2008, 752, 3572,
77 $ 305 /
78 DATA ( MM( 5, J ), J = 1, 4 ) / 1253, 2859, 2893,
79 $ 3301 /
80 DATA ( MM( 6, J ), J = 1, 4 ) / 3344, 123, 307,
81 $ 1065 /
82 DATA ( MM( 7, J ), J = 1, 4 ) / 4084, 1848, 1297,
83 $ 3133 /
84 DATA ( MM( 8, J ), J = 1, 4 ) / 1739, 643, 3966,
85 $ 2913 /
86 DATA ( MM( 9, J ), J = 1, 4 ) / 3143, 2405, 758,
87 $ 3285 /
88 DATA ( MM( 10, J ), J = 1, 4 ) / 3468, 2638, 2598,
89 $ 1241 /
90 DATA ( MM( 11, J ), J = 1, 4 ) / 688, 2344, 3406,
91 $ 1197 /
92 DATA ( MM( 12, J ), J = 1, 4 ) / 1657, 46, 2922,
93 $ 3729 /
94 DATA ( MM( 13, J ), J = 1, 4 ) / 1238, 3814, 1038,
95 $ 2501 /
96 DATA ( MM( 14, J ), J = 1, 4 ) / 3166, 913, 2934,
97 $ 1673 /
98 DATA ( MM( 15, J ), J = 1, 4 ) / 1292, 3649, 2091,
99 $ 541 /
100 DATA ( MM( 16, J ), J = 1, 4 ) / 3422, 339, 2451,
101 $ 2753 /
102 DATA ( MM( 17, J ), J = 1, 4 ) / 1270, 3808, 1580,
103 $ 949 /
104 DATA ( MM( 18, J ), J = 1, 4 ) / 2016, 822, 1958,
105 $ 2361 /
106 DATA ( MM( 19, J ), J = 1, 4 ) / 154, 2832, 2055,
107 $ 1165 /
108 DATA ( MM( 20, J ), J = 1, 4 ) / 2862, 3078, 1507,
109 $ 4081 /
110 DATA ( MM( 21, J ), J = 1, 4 ) / 697, 3633, 1078,
111 $ 2725 /
112 DATA ( MM( 22, J ), J = 1, 4 ) / 1706, 2970, 3273,
113 $ 3305 /
114 DATA ( MM( 23, J ), J = 1, 4 ) / 491, 637, 17,
115 $ 3069 /
116 DATA ( MM( 24, J ), J = 1, 4 ) / 931, 2249, 854,
117 $ 3617 /
118 DATA ( MM( 25, J ), J = 1, 4 ) / 1444, 2081, 2916,
119 $ 3733 /
120 DATA ( MM( 26, J ), J = 1, 4 ) / 444, 4019, 3971,
121 $ 409 /
122 DATA ( MM( 27, J ), J = 1, 4 ) / 3577, 1478, 2889,
123 $ 2157 /
124 DATA ( MM( 28, J ), J = 1, 4 ) / 3944, 242, 3831,
125 $ 1361 /
126 DATA ( MM( 29, J ), J = 1, 4 ) / 2184, 481, 2621,
127 $ 3973 /
128 DATA ( MM( 30, J ), J = 1, 4 ) / 1661, 2075, 1541,
129 $ 1865 /
130 DATA ( MM( 31, J ), J = 1, 4 ) / 3482, 4058, 893,
131 $ 2525 /
132 DATA ( MM( 32, J ), J = 1, 4 ) / 657, 622, 736,
133 $ 1409 /
134 DATA ( MM( 33, J ), J = 1, 4 ) / 3023, 3376, 3992,
135 $ 3445 /
136 DATA ( MM( 34, J ), J = 1, 4 ) / 3618, 812, 787,
137 $ 3577 /
138 DATA ( MM( 35, J ), J = 1, 4 ) / 1267, 234, 2125,
139 $ 77 /
140 DATA ( MM( 36, J ), J = 1, 4 ) / 1828, 641, 2364,
141 $ 3761 /
142 DATA ( MM( 37, J ), J = 1, 4 ) / 164, 4005, 2460,
143 $ 2149 /
144 DATA ( MM( 38, J ), J = 1, 4 ) / 3798, 1122, 257,
145 $ 1449 /
146 DATA ( MM( 39, J ), J = 1, 4 ) / 3087, 3135, 1574,
147 $ 3005 /
148 DATA ( MM( 40, J ), J = 1, 4 ) / 2400, 2640, 3912,
149 $ 225 /
150 DATA ( MM( 41, J ), J = 1, 4 ) / 2870, 2302, 1216,
151 $ 85 /
152 DATA ( MM( 42, J ), J = 1, 4 ) / 3876, 40, 3248,
153 $ 3673 /
154 DATA ( MM( 43, J ), J = 1, 4 ) / 1905, 1832, 3401,
155 $ 3117 /
156 DATA ( MM( 44, J ), J = 1, 4 ) / 1593, 2247, 2124,
157 $ 3089 /
158 DATA ( MM( 45, J ), J = 1, 4 ) / 1797, 2034, 2762,
159 $ 1349 /
160 DATA ( MM( 46, J ), J = 1, 4 ) / 1234, 2637, 149,
161 $ 2057 /
162 DATA ( MM( 47, J ), J = 1, 4 ) / 3460, 1287, 2245,
163 $ 413 /
164 DATA ( MM( 48, J ), J = 1, 4 ) / 328, 1691, 166,
165 $ 65 /
166 DATA ( MM( 49, J ), J = 1, 4 ) / 2861, 496, 466,
167 $ 1845 /
168 DATA ( MM( 50, J ), J = 1, 4 ) / 1950, 1597, 4018,
169 $ 697 /
170 DATA ( MM( 51, J ), J = 1, 4 ) / 617, 2394, 1399,
171 $ 3085 /
172 DATA ( MM( 52, J ), J = 1, 4 ) / 2070, 2584, 190,
173 $ 3441 /
174 DATA ( MM( 53, J ), J = 1, 4 ) / 3331, 1843, 2879,
175 $ 1573 /
176 DATA ( MM( 54, J ), J = 1, 4 ) / 769, 336, 153,
177 $ 3689 /
178 DATA ( MM( 55, J ), J = 1, 4 ) / 1558, 1472, 2320,
179 $ 2941 /
180 DATA ( MM( 56, J ), J = 1, 4 ) / 2412, 2407, 18,
181 $ 929 /
182 DATA ( MM( 57, J ), J = 1, 4 ) / 2800, 433, 712,
183 $ 533 /
184 DATA ( MM( 58, J ), J = 1, 4 ) / 189, 2096, 2159,
185 $ 2841 /
186 DATA ( MM( 59, J ), J = 1, 4 ) / 287, 1761, 2318,
187 $ 4077 /
188 DATA ( MM( 60, J ), J = 1, 4 ) / 2045, 2810, 2091,
189 $ 721 /
190 DATA ( MM( 61, J ), J = 1, 4 ) / 1227, 566, 3443,
191 $ 2821 /
192 DATA ( MM( 62, J ), J = 1, 4 ) / 2838, 442, 1510,
193 $ 2249 /
194 DATA ( MM( 63, J ), J = 1, 4 ) / 209, 41, 449,
195 $ 2397 /
196 DATA ( MM( 64, J ), J = 1, 4 ) / 2770, 1238, 1956,
197 $ 2817 /
198 DATA ( MM( 65, J ), J = 1, 4 ) / 3654, 1086, 2201,
199 $ 245 /
200 DATA ( MM( 66, J ), J = 1, 4 ) / 3993, 603, 3137,
201 $ 1913 /
202 DATA ( MM( 67, J ), J = 1, 4 ) / 192, 840, 3399,
203 $ 1997 /
204 DATA ( MM( 68, J ), J = 1, 4 ) / 2253, 3168, 1321,
205 $ 3121 /
206 DATA ( MM( 69, J ), J = 1, 4 ) / 3491, 1499, 2271,
207 $ 997 /
208 DATA ( MM( 70, J ), J = 1, 4 ) / 2889, 1084, 3667,
209 $ 1833 /
210 DATA ( MM( 71, J ), J = 1, 4 ) / 2857, 3438, 2703,
211 $ 2877 /
212 DATA ( MM( 72, J ), J = 1, 4 ) / 2094, 2408, 629,
213 $ 1633 /
214 DATA ( MM( 73, J ), J = 1, 4 ) / 1818, 1589, 2365,
215 $ 981 /
216 DATA ( MM( 74, J ), J = 1, 4 ) / 688, 2391, 2431,
217 $ 2009 /
218 DATA ( MM( 75, J ), J = 1, 4 ) / 1407, 288, 1113,
219 $ 941 /
220 DATA ( MM( 76, J ), J = 1, 4 ) / 634, 26, 3922,
221 $ 2449 /
222 DATA ( MM( 77, J ), J = 1, 4 ) / 3231, 512, 2554,
223 $ 197 /
224 DATA ( MM( 78, J ), J = 1, 4 ) / 815, 1456, 184,
225 $ 2441 /
226 DATA ( MM( 79, J ), J = 1, 4 ) / 3524, 171, 2099,
227 $ 285 /
228 DATA ( MM( 80, J ), J = 1, 4 ) / 1914, 1677, 3228,
229 $ 1473 /
230 DATA ( MM( 81, J ), J = 1, 4 ) / 516, 2657, 4012,
231 $ 2741 /
232 DATA ( MM( 82, J ), J = 1, 4 ) / 164, 2270, 1921,
233 $ 3129 /
234 DATA ( MM( 83, J ), J = 1, 4 ) / 303, 2587, 3452,
235 $ 909 /
236 DATA ( MM( 84, J ), J = 1, 4 ) / 2144, 2961, 3901,
237 $ 2801 /
238 DATA ( MM( 85, J ), J = 1, 4 ) / 3480, 1970, 572,
239 $ 421 /
240 DATA ( MM( 86, J ), J = 1, 4 ) / 119, 1817, 3309,
241 $ 4073 /
242 DATA ( MM( 87, J ), J = 1, 4 ) / 3357, 676, 3171,
243 $ 2813 /
244 DATA ( MM( 88, J ), J = 1, 4 ) / 837, 1410, 817,
245 $ 2337 /
246 DATA ( MM( 89, J ), J = 1, 4 ) / 2826, 3723, 3039,
247 $ 1429 /
248 DATA ( MM( 90, J ), J = 1, 4 ) / 2332, 2803, 1696,
249 $ 1177 /
250 DATA ( MM( 91, J ), J = 1, 4 ) / 2089, 3185, 1256,
251 $ 1901 /
252 DATA ( MM( 92, J ), J = 1, 4 ) / 3780, 184, 3715,
253 $ 81 /
254 DATA ( MM( 93, J ), J = 1, 4 ) / 1700, 663, 2077,
255 $ 1669 /
256 DATA ( MM( 94, J ), J = 1, 4 ) / 3712, 499, 3019,
257 $ 2633 /
258 DATA ( MM( 95, J ), J = 1, 4 ) / 150, 3784, 1497,
259 $ 2269 /
260 DATA ( MM( 96, J ), J = 1, 4 ) / 2000, 1631, 1101,
261 $ 129 /
262 DATA ( MM( 97, J ), J = 1, 4 ) / 3375, 1925, 717,
263 $ 1141 /
264 DATA ( MM( 98, J ), J = 1, 4 ) / 1621, 3912, 51,
265 $ 249 /
266 DATA ( MM( 99, J ), J = 1, 4 ) / 3090, 1398, 981,
267 $ 3917 /
268 DATA ( MM( 100, J ), J = 1, 4 ) / 3765, 1349, 1978,
269 $ 2481 /
270 DATA ( MM( 101, J ), J = 1, 4 ) / 1149, 1441, 1813,
271 $ 3941 /
272 DATA ( MM( 102, J ), J = 1, 4 ) / 3146, 2224, 3881,
273 $ 2217 /
274 DATA ( MM( 103, J ), J = 1, 4 ) / 33, 2411, 76,
275 $ 2749 /
276 DATA ( MM( 104, J ), J = 1, 4 ) / 3082, 1907, 3846,
277 $ 3041 /
278 DATA ( MM( 105, J ), J = 1, 4 ) / 2741, 3192, 3694,
279 $ 1877 /
280 DATA ( MM( 106, J ), J = 1, 4 ) / 359, 2786, 1682,
281 $ 345 /
282 DATA ( MM( 107, J ), J = 1, 4 ) / 3316, 382, 124,
283 $ 2861 /
284 DATA ( MM( 108, J ), J = 1, 4 ) / 1749, 37, 1660,
285 $ 1809 /
286 DATA ( MM( 109, J ), J = 1, 4 ) / 185, 759, 3997,
287 $ 3141 /
288 DATA ( MM( 110, J ), J = 1, 4 ) / 2784, 2948, 479,
289 $ 2825 /
290 DATA ( MM( 111, J ), J = 1, 4 ) / 2202, 1862, 1141,
291 $ 157 /
292 DATA ( MM( 112, J ), J = 1, 4 ) / 2199, 3802, 886,
293 $ 2881 /
294 DATA ( MM( 113, J ), J = 1, 4 ) / 1364, 2423, 3514,
295 $ 3637 /
296 DATA ( MM( 114, J ), J = 1, 4 ) / 1244, 2051, 1301,
297 $ 1465 /
298 DATA ( MM( 115, J ), J = 1, 4 ) / 2020, 2295, 3604,
299 $ 2829 /
300 DATA ( MM( 116, J ), J = 1, 4 ) / 3160, 1332, 1888,
301 $ 2161 /
302 DATA ( MM( 117, J ), J = 1, 4 ) / 2785, 1832, 1836,
303 $ 3365 /
304 DATA ( MM( 118, J ), J = 1, 4 ) / 2772, 2405, 1990,
305 $ 361 /
306 DATA ( MM( 119, J ), J = 1, 4 ) / 1217, 3638, 2058,
307 $ 2685 /
308 DATA ( MM( 120, J ), J = 1, 4 ) / 1822, 3661, 692,
309 $ 3745 /
310 DATA ( MM( 121, J ), J = 1, 4 ) / 1245, 327, 1194,
311 $ 2325 /
312 DATA ( MM( 122, J ), J = 1, 4 ) / 2252, 3660, 20,
313 $ 3609 /
314 DATA ( MM( 123, J ), J = 1, 4 ) / 3904, 716, 3285,
315 $ 3821 /
316 DATA ( MM( 124, J ), J = 1, 4 ) / 2774, 1842, 2046,
317 $ 3537 /
318 DATA ( MM( 125, J ), J = 1, 4 ) / 997, 3987, 2107,
319 $ 517 /
320 DATA ( MM( 126, J ), J = 1, 4 ) / 2573, 1368, 3508,
321 $ 3017 /
322 DATA ( MM( 127, J ), J = 1, 4 ) / 1148, 1848, 3525,
323 $ 2141 /
324 DATA ( MM( 128, J ), J = 1, 4 ) / 545, 2366, 3801,
325 $ 1537 /
326 * ..
327 * .. Executable Statements ..
329 I1 = ISEED( 1 )
330 I2 = ISEED( 2 )
331 I3 = ISEED( 3 )
332 I4 = ISEED( 4 )
334 DO 10 I = 1, MIN( N, LV )
336 20 CONTINUE
338 * Multiply the seed by i-th power of the multiplier modulo 2**48
340 IT4 = I4*MM( I, 4 )
341 IT3 = IT4 / IPW2
342 IT4 = IT4 - IPW2*IT3
343 IT3 = IT3 + I3*MM( I, 4 ) + I4*MM( I, 3 )
344 IT2 = IT3 / IPW2
345 IT3 = IT3 - IPW2*IT2
346 IT2 = IT2 + I2*MM( I, 4 ) + I3*MM( I, 3 ) + I4*MM( I, 2 )
347 IT1 = IT2 / IPW2
348 IT2 = IT2 - IPW2*IT1
349 IT1 = IT1 + I1*MM( I, 4 ) + I2*MM( I, 3 ) + I3*MM( I, 2 ) +
350 $ I4*MM( I, 1 )
351 IT1 = MOD( IT1, IPW2 )
353 * Convert 48-bit integer to a real number in the interval (0,1)
355 X( I ) = R*( DBLE( IT1 )+R*( DBLE( IT2 )+R*( DBLE( IT3 )+R*
356 $ DBLE( IT4 ) ) ) )
358 IF (X( I ).EQ.1.0D0) THEN
359 * If a real number has n bits of precision, and the first
360 * n bits of the 48-bit integer above happen to be all 1 (which
361 * will occur about once every 2**n calls), then X( I ) will
362 * be rounded to exactly 1.0.
363 * Since X( I ) is not supposed to return exactly 0.0 or 1.0,
364 * the statistically correct thing to do in this situation is
365 * simply to iterate again.
366 * N.B. the case X( I ) = 0.0 should not be possible.
367 I1 = I1 + 2
368 I2 = I2 + 2
369 I3 = I3 + 2
370 I4 = I4 + 2
371 GOTO 20
372 END IF
374 10 CONTINUE
376 * Return final value of seed
378 ISEED( 1 ) = IT1
379 ISEED( 2 ) = IT2
380 ISEED( 3 ) = IT3
381 ISEED( 4 ) = IT4
382 RETURN
384 * End of DLARUV