exciting-0.9.218
[exciting.git] / src / LAPACK / dsytrd.f
blob569ee35b21e1deb5893237c63784a10c26be5351
1 SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
3 * -- LAPACK routine (version 3.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * November 2006
7 * .. Scalar Arguments ..
8 CHARACTER UPLO
9 INTEGER INFO, LDA, LWORK, N
10 * ..
11 * .. Array Arguments ..
12 DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ),
13 $ WORK( * )
14 * ..
16 * Purpose
17 * =======
19 * DSYTRD reduces a real symmetric matrix A to real symmetric
20 * tridiagonal form T by an orthogonal similarity transformation:
21 * Q**T * A * Q = T.
23 * Arguments
24 * =========
26 * UPLO (input) CHARACTER*1
27 * = 'U': Upper triangle of A is stored;
28 * = 'L': Lower triangle of A is stored.
30 * N (input) INTEGER
31 * The order of the matrix A. N >= 0.
33 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
34 * On entry, the symmetric matrix A. If UPLO = 'U', the leading
35 * N-by-N upper triangular part of A contains the upper
36 * triangular part of the matrix A, and the strictly lower
37 * triangular part of A is not referenced. If UPLO = 'L', the
38 * leading N-by-N lower triangular part of A contains the lower
39 * triangular part of the matrix A, and the strictly upper
40 * triangular part of A is not referenced.
41 * On exit, if UPLO = 'U', the diagonal and first superdiagonal
42 * of A are overwritten by the corresponding elements of the
43 * tridiagonal matrix T, and the elements above the first
44 * superdiagonal, with the array TAU, represent the orthogonal
45 * matrix Q as a product of elementary reflectors; if UPLO
46 * = 'L', the diagonal and first subdiagonal of A are over-
47 * written by the corresponding elements of the tridiagonal
48 * matrix T, and the elements below the first subdiagonal, with
49 * the array TAU, represent the orthogonal matrix Q as a product
50 * of elementary reflectors. See Further Details.
52 * LDA (input) INTEGER
53 * The leading dimension of the array A. LDA >= max(1,N).
55 * D (output) DOUBLE PRECISION array, dimension (N)
56 * The diagonal elements of the tridiagonal matrix T:
57 * D(i) = A(i,i).
59 * E (output) DOUBLE PRECISION array, dimension (N-1)
60 * The off-diagonal elements of the tridiagonal matrix T:
61 * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
63 * TAU (output) DOUBLE PRECISION array, dimension (N-1)
64 * The scalar factors of the elementary reflectors (see Further
65 * Details).
67 * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
68 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
70 * LWORK (input) INTEGER
71 * The dimension of the array WORK. LWORK >= 1.
72 * For optimum performance LWORK >= N*NB, where NB is the
73 * optimal blocksize.
75 * If LWORK = -1, then a workspace query is assumed; the routine
76 * only calculates the optimal size of the WORK array, returns
77 * this value as the first entry of the WORK array, and no error
78 * message related to LWORK is issued by XERBLA.
80 * INFO (output) INTEGER
81 * = 0: successful exit
82 * < 0: if INFO = -i, the i-th argument had an illegal value
84 * Further Details
85 * ===============
87 * If UPLO = 'U', the matrix Q is represented as a product of elementary
88 * reflectors
90 * Q = H(n-1) . . . H(2) H(1).
92 * Each H(i) has the form
94 * H(i) = I - tau * v * v'
96 * where tau is a real scalar, and v is a real vector with
97 * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
98 * A(1:i-1,i+1), and tau in TAU(i).
100 * If UPLO = 'L', the matrix Q is represented as a product of elementary
101 * reflectors
103 * Q = H(1) H(2) . . . H(n-1).
105 * Each H(i) has the form
107 * H(i) = I - tau * v * v'
109 * where tau is a real scalar, and v is a real vector with
110 * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
111 * and tau in TAU(i).
113 * The contents of A on exit are illustrated by the following examples
114 * with n = 5:
116 * if UPLO = 'U': if UPLO = 'L':
118 * ( d e v2 v3 v4 ) ( d )
119 * ( d e v3 v4 ) ( e d )
120 * ( d e v4 ) ( v1 e d )
121 * ( d e ) ( v1 v2 e d )
122 * ( d ) ( v1 v2 v3 e d )
124 * where d and e denote diagonal and off-diagonal elements of T, and vi
125 * denotes an element of the vector defining H(i).
127 * =====================================================================
129 * .. Parameters ..
130 DOUBLE PRECISION ONE
131 PARAMETER ( ONE = 1.0D+0 )
132 * ..
133 * .. Local Scalars ..
134 LOGICAL LQUERY, UPPER
135 INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
136 $ NBMIN, NX
137 * ..
138 * .. External Subroutines ..
139 EXTERNAL DLATRD, DSYR2K, DSYTD2, XERBLA
140 * ..
141 * .. Intrinsic Functions ..
142 INTRINSIC MAX
143 * ..
144 * .. External Functions ..
145 LOGICAL LSAME
146 INTEGER ILAENV
147 EXTERNAL LSAME, ILAENV
148 * ..
149 * .. Executable Statements ..
151 * Test the input parameters
153 INFO = 0
154 UPPER = LSAME( UPLO, 'U' )
155 LQUERY = ( LWORK.EQ.-1 )
156 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
157 INFO = -1
158 ELSE IF( N.LT.0 ) THEN
159 INFO = -2
160 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
161 INFO = -4
162 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
163 INFO = -9
164 END IF
166 IF( INFO.EQ.0 ) THEN
168 * Determine the block size.
170 NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
171 LWKOPT = N*NB
172 WORK( 1 ) = LWKOPT
173 END IF
175 IF( INFO.NE.0 ) THEN
176 CALL XERBLA( 'DSYTRD', -INFO )
177 RETURN
178 ELSE IF( LQUERY ) THEN
179 RETURN
180 END IF
182 * Quick return if possible
184 IF( N.EQ.0 ) THEN
185 WORK( 1 ) = 1
186 RETURN
187 END IF
189 NX = N
190 IWS = 1
191 IF( NB.GT.1 .AND. NB.LT.N ) THEN
193 * Determine when to cross over from blocked to unblocked code
194 * (last block is always handled by unblocked code).
196 NX = MAX( NB, ILAENV( 3, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
197 IF( NX.LT.N ) THEN
199 * Determine if workspace is large enough for blocked code.
201 LDWORK = N
202 IWS = LDWORK*NB
203 IF( LWORK.LT.IWS ) THEN
205 * Not enough workspace to use optimal NB: determine the
206 * minimum value of NB, and reduce NB or force use of
207 * unblocked code by setting NX = N.
209 NB = MAX( LWORK / LDWORK, 1 )
210 NBMIN = ILAENV( 2, 'DSYTRD', UPLO, N, -1, -1, -1 )
211 IF( NB.LT.NBMIN )
212 $ NX = N
213 END IF
214 ELSE
215 NX = N
216 END IF
217 ELSE
218 NB = 1
219 END IF
221 IF( UPPER ) THEN
223 * Reduce the upper triangle of A.
224 * Columns 1:kk are handled by the unblocked method.
226 KK = N - ( ( N-NX+NB-1 ) / NB )*NB
227 DO 20 I = N - NB + 1, KK + 1, -NB
229 * Reduce columns i:i+nb-1 to tridiagonal form and form the
230 * matrix W which is needed to update the unreduced part of
231 * the matrix
233 CALL DLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
234 $ LDWORK )
236 * Update the unreduced submatrix A(1:i-1,1:i-1), using an
237 * update of the form: A := A - V*W' - W*V'
239 CALL DSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
240 $ LDA, WORK, LDWORK, ONE, A, LDA )
242 * Copy superdiagonal elements back into A, and diagonal
243 * elements into D
245 DO 10 J = I, I + NB - 1
246 A( J-1, J ) = E( J-1 )
247 D( J ) = A( J, J )
248 10 CONTINUE
249 20 CONTINUE
251 * Use unblocked code to reduce the last or only block
253 CALL DSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
254 ELSE
256 * Reduce the lower triangle of A
258 DO 40 I = 1, N - NX, NB
260 * Reduce columns i:i+nb-1 to tridiagonal form and form the
261 * matrix W which is needed to update the unreduced part of
262 * the matrix
264 CALL DLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
265 $ TAU( I ), WORK, LDWORK )
267 * Update the unreduced submatrix A(i+ib:n,i+ib:n), using
268 * an update of the form: A := A - V*W' - W*V'
270 CALL DSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
271 $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
272 $ A( I+NB, I+NB ), LDA )
274 * Copy subdiagonal elements back into A, and diagonal
275 * elements into D
277 DO 30 J = I, I + NB - 1
278 A( J+1, J ) = E( J )
279 D( J ) = A( J, J )
280 30 CONTINUE
281 40 CONTINUE
283 * Use unblocked code to reduce the last or only block
285 CALL DSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
286 $ TAU( I ), IINFO )
287 END IF
289 WORK( 1 ) = LWKOPT
290 RETURN
292 * End of DSYTRD