exciting-0.9.218
[exciting.git] / src / LAPACK / zhetrd.f
blobfb0cd0b2f5a1551c074db37425e9dc388e1dde57
1 SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
3 * -- LAPACK routine (version 3.1) --
4 * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
5 * November 2006
7 * .. Scalar Arguments ..
8 CHARACTER UPLO
9 INTEGER INFO, LDA, LWORK, N
10 * ..
11 * .. Array Arguments ..
12 DOUBLE PRECISION D( * ), E( * )
13 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
14 * ..
16 * Purpose
17 * =======
19 * ZHETRD reduces a complex Hermitian matrix A to real symmetric
20 * tridiagonal form T by a unitary similarity transformation:
21 * Q**H * A * Q = T.
23 * Arguments
24 * =========
26 * UPLO (input) CHARACTER*1
27 * = 'U': Upper triangle of A is stored;
28 * = 'L': Lower triangle of A is stored.
30 * N (input) INTEGER
31 * The order of the matrix A. N >= 0.
33 * A (input/output) COMPLEX*16 array, dimension (LDA,N)
34 * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
35 * N-by-N upper triangular part of A contains the upper
36 * triangular part of the matrix A, and the strictly lower
37 * triangular part of A is not referenced. If UPLO = 'L', the
38 * leading N-by-N lower triangular part of A contains the lower
39 * triangular part of the matrix A, and the strictly upper
40 * triangular part of A is not referenced.
41 * On exit, if UPLO = 'U', the diagonal and first superdiagonal
42 * of A are overwritten by the corresponding elements of the
43 * tridiagonal matrix T, and the elements above the first
44 * superdiagonal, with the array TAU, represent the unitary
45 * matrix Q as a product of elementary reflectors; if UPLO
46 * = 'L', the diagonal and first subdiagonal of A are over-
47 * written by the corresponding elements of the tridiagonal
48 * matrix T, and the elements below the first subdiagonal, with
49 * the array TAU, represent the unitary matrix Q as a product
50 * of elementary reflectors. See Further Details.
52 * LDA (input) INTEGER
53 * The leading dimension of the array A. LDA >= max(1,N).
55 * D (output) DOUBLE PRECISION array, dimension (N)
56 * The diagonal elements of the tridiagonal matrix T:
57 * D(i) = A(i,i).
59 * E (output) DOUBLE PRECISION array, dimension (N-1)
60 * The off-diagonal elements of the tridiagonal matrix T:
61 * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
63 * TAU (output) COMPLEX*16 array, dimension (N-1)
64 * The scalar factors of the elementary reflectors (see Further
65 * Details).
67 * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
68 * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
70 * LWORK (input) INTEGER
71 * The dimension of the array WORK. LWORK >= 1.
72 * For optimum performance LWORK >= N*NB, where NB is the
73 * optimal blocksize.
75 * If LWORK = -1, then a workspace query is assumed; the routine
76 * only calculates the optimal size of the WORK array, returns
77 * this value as the first entry of the WORK array, and no error
78 * message related to LWORK is issued by XERBLA.
80 * INFO (output) INTEGER
81 * = 0: successful exit
82 * < 0: if INFO = -i, the i-th argument had an illegal value
84 * Further Details
85 * ===============
87 * If UPLO = 'U', the matrix Q is represented as a product of elementary
88 * reflectors
90 * Q = H(n-1) . . . H(2) H(1).
92 * Each H(i) has the form
94 * H(i) = I - tau * v * v'
96 * where tau is a complex scalar, and v is a complex vector with
97 * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
98 * A(1:i-1,i+1), and tau in TAU(i).
100 * If UPLO = 'L', the matrix Q is represented as a product of elementary
101 * reflectors
103 * Q = H(1) H(2) . . . H(n-1).
105 * Each H(i) has the form
107 * H(i) = I - tau * v * v'
109 * where tau is a complex scalar, and v is a complex vector with
110 * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
111 * and tau in TAU(i).
113 * The contents of A on exit are illustrated by the following examples
114 * with n = 5:
116 * if UPLO = 'U': if UPLO = 'L':
118 * ( d e v2 v3 v4 ) ( d )
119 * ( d e v3 v4 ) ( e d )
120 * ( d e v4 ) ( v1 e d )
121 * ( d e ) ( v1 v2 e d )
122 * ( d ) ( v1 v2 v3 e d )
124 * where d and e denote diagonal and off-diagonal elements of T, and vi
125 * denotes an element of the vector defining H(i).
127 * =====================================================================
129 * .. Parameters ..
130 DOUBLE PRECISION ONE
131 PARAMETER ( ONE = 1.0D+0 )
132 COMPLEX*16 CONE
133 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
134 * ..
135 * .. Local Scalars ..
136 LOGICAL LQUERY, UPPER
137 INTEGER I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
138 $ NBMIN, NX
139 * ..
140 * .. External Subroutines ..
141 EXTERNAL XERBLA, ZHER2K, ZHETD2, ZLATRD
142 * ..
143 * .. Intrinsic Functions ..
144 INTRINSIC MAX
145 * ..
146 * .. External Functions ..
147 LOGICAL LSAME
148 INTEGER ILAENV
149 EXTERNAL LSAME, ILAENV
150 * ..
151 * .. Executable Statements ..
153 * Test the input parameters
155 INFO = 0
156 UPPER = LSAME( UPLO, 'U' )
157 LQUERY = ( LWORK.EQ.-1 )
158 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
159 INFO = -1
160 ELSE IF( N.LT.0 ) THEN
161 INFO = -2
162 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
163 INFO = -4
164 ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
165 INFO = -9
166 END IF
168 IF( INFO.EQ.0 ) THEN
170 * Determine the block size.
172 NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 )
173 LWKOPT = N*NB
174 WORK( 1 ) = LWKOPT
175 END IF
177 IF( INFO.NE.0 ) THEN
178 CALL XERBLA( 'ZHETRD', -INFO )
179 RETURN
180 ELSE IF( LQUERY ) THEN
181 RETURN
182 END IF
184 * Quick return if possible
186 IF( N.EQ.0 ) THEN
187 WORK( 1 ) = 1
188 RETURN
189 END IF
191 NX = N
192 IWS = 1
193 IF( NB.GT.1 .AND. NB.LT.N ) THEN
195 * Determine when to cross over from blocked to unblocked code
196 * (last block is always handled by unblocked code).
198 NX = MAX( NB, ILAENV( 3, 'ZHETRD', UPLO, N, -1, -1, -1 ) )
199 IF( NX.LT.N ) THEN
201 * Determine if workspace is large enough for blocked code.
203 LDWORK = N
204 IWS = LDWORK*NB
205 IF( LWORK.LT.IWS ) THEN
207 * Not enough workspace to use optimal NB: determine the
208 * minimum value of NB, and reduce NB or force use of
209 * unblocked code by setting NX = N.
211 NB = MAX( LWORK / LDWORK, 1 )
212 NBMIN = ILAENV( 2, 'ZHETRD', UPLO, N, -1, -1, -1 )
213 IF( NB.LT.NBMIN )
214 $ NX = N
215 END IF
216 ELSE
217 NX = N
218 END IF
219 ELSE
220 NB = 1
221 END IF
223 IF( UPPER ) THEN
225 * Reduce the upper triangle of A.
226 * Columns 1:kk are handled by the unblocked method.
228 KK = N - ( ( N-NX+NB-1 ) / NB )*NB
229 DO 20 I = N - NB + 1, KK + 1, -NB
231 * Reduce columns i:i+nb-1 to tridiagonal form and form the
232 * matrix W which is needed to update the unreduced part of
233 * the matrix
235 CALL ZLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
236 $ LDWORK )
238 * Update the unreduced submatrix A(1:i-1,1:i-1), using an
239 * update of the form: A := A - V*W' - W*V'
241 CALL ZHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
242 $ A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
244 * Copy superdiagonal elements back into A, and diagonal
245 * elements into D
247 DO 10 J = I, I + NB - 1
248 A( J-1, J ) = E( J-1 )
249 D( J ) = A( J, J )
250 10 CONTINUE
251 20 CONTINUE
253 * Use unblocked code to reduce the last or only block
255 CALL ZHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
256 ELSE
258 * Reduce the lower triangle of A
260 DO 40 I = 1, N - NX, NB
262 * Reduce columns i:i+nb-1 to tridiagonal form and form the
263 * matrix W which is needed to update the unreduced part of
264 * the matrix
266 CALL ZLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
267 $ TAU( I ), WORK, LDWORK )
269 * Update the unreduced submatrix A(i+nb:n,i+nb:n), using
270 * an update of the form: A := A - V*W' - W*V'
272 CALL ZHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
273 $ A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
274 $ A( I+NB, I+NB ), LDA )
276 * Copy subdiagonal elements back into A, and diagonal
277 * elements into D
279 DO 30 J = I, I + NB - 1
280 A( J+1, J ) = E( J )
281 D( J ) = A( J, J )
282 30 CONTINUE
283 40 CONTINUE
285 * Use unblocked code to reduce the last or only block
287 CALL ZHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
288 $ TAU( I ), IINFO )
289 END IF
291 WORK( 1 ) = LWKOPT
292 RETURN
294 * End of ZHETRD