avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / aaccoder.c
blob4ce54ca88675ecbea0e2989569dd5418c00db61f
1 /*
2 * AAC coefficients encoder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file
24 * AAC coefficients encoder
27 /***********************************
28 * TODOs:
29 * speedup quantizer selection
30 * add sane pulse detection
31 ***********************************/
33 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
35 #include <float.h>
37 #include "libavutil/mathematics.h"
38 #include "mathops.h"
39 #include "avcodec.h"
40 #include "put_bits.h"
41 #include "aac.h"
42 #include "aacenc.h"
43 #include "aactab.h"
44 #include "aacenctab.h"
45 #include "aacenc_utils.h"
46 #include "aacenc_quantization.h"
48 #include "aacenc_is.h"
49 #include "aacenc_tns.h"
50 #include "aacenc_ltp.h"
51 #include "aacenc_pred.h"
53 #include "libavcodec/aaccoder_twoloop.h"
55 /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
56 * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
57 #define NOISE_SPREAD_THRESHOLD 0.9f
59 /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
60 * replace low energy non zero bands */
61 #define NOISE_LAMBDA_REPLACE 1.948f
63 #include "libavcodec/aaccoder_trellis.h"
65 typedef float (*quantize_and_encode_band_func)(struct AACEncContext *s, PutBitContext *pb,
66 const float *in, float *quant, const float *scaled,
67 int size, int scale_idx, int cb,
68 const float lambda, const float uplim,
69 int *bits, float *energy);
71 /**
72 * Calculate rate distortion cost for quantizing with given codebook
74 * @return quantization distortion
76 static av_always_inline float quantize_and_encode_band_cost_template(
77 struct AACEncContext *s,
78 PutBitContext *pb, const float *in, float *out,
79 const float *scaled, int size, int scale_idx,
80 int cb, const float lambda, const float uplim,
81 int *bits, float *energy, int BT_ZERO, int BT_UNSIGNED,
82 int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO,
83 const float ROUNDING)
85 const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
86 const float Q = ff_aac_pow2sf_tab [q_idx];
87 const float Q34 = ff_aac_pow34sf_tab[q_idx];
88 const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
89 const float CLIPPED_ESCAPE = 165140.0f*IQ;
90 float cost = 0;
91 float qenergy = 0;
92 const int dim = BT_PAIR ? 2 : 4;
93 int resbits = 0;
94 int off;
96 if (BT_ZERO || BT_NOISE || BT_STEREO) {
97 for (int i = 0; i < size; i++)
98 cost += in[i]*in[i];
99 if (bits)
100 *bits = 0;
101 if (energy)
102 *energy = qenergy;
103 if (out) {
104 for (int i = 0; i < size; i += dim)
105 for (int j = 0; j < dim; j++)
106 out[i+j] = 0.0f;
108 return cost * lambda;
110 if (!scaled) {
111 s->aacdsp.abs_pow34(s->scoefs, in, size);
112 scaled = s->scoefs;
114 s->aacdsp.quant_bands(s->qcoefs, in, scaled, size, !BT_UNSIGNED, aac_cb_maxval[cb], Q34, ROUNDING);
115 if (BT_UNSIGNED) {
116 off = 0;
117 } else {
118 off = aac_cb_maxval[cb];
120 for (int i = 0; i < size; i += dim) {
121 const float *vec;
122 int *quants = s->qcoefs + i;
123 int curidx = 0;
124 int curbits;
125 float quantized, rd = 0.0f;
126 for (int j = 0; j < dim; j++) {
127 curidx *= aac_cb_range[cb];
128 curidx += quants[j] + off;
130 curbits = ff_aac_spectral_bits[cb-1][curidx];
131 vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
132 if (BT_UNSIGNED) {
133 for (int j = 0; j < dim; j++) {
134 float t = fabsf(in[i+j]);
135 float di;
136 if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
137 if (t >= CLIPPED_ESCAPE) {
138 quantized = CLIPPED_ESCAPE;
139 curbits += 21;
140 } else {
141 int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13);
142 quantized = c*cbrtf(c)*IQ;
143 curbits += av_log2(c)*2 - 4 + 1;
145 } else {
146 quantized = vec[j]*IQ;
148 di = t - quantized;
149 if (out)
150 out[i+j] = in[i+j] >= 0 ? quantized : -quantized;
151 if (vec[j] != 0.0f)
152 curbits++;
153 qenergy += quantized*quantized;
154 rd += di*di;
156 } else {
157 for (int j = 0; j < dim; j++) {
158 quantized = vec[j]*IQ;
159 qenergy += quantized*quantized;
160 if (out)
161 out[i+j] = quantized;
162 rd += (in[i+j] - quantized)*(in[i+j] - quantized);
165 cost += rd * lambda + curbits;
166 resbits += curbits;
167 if (cost >= uplim)
168 return uplim;
169 if (pb) {
170 put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
171 if (BT_UNSIGNED)
172 for (int j = 0; j < dim; j++)
173 if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
174 put_bits(pb, 1, in[i+j] < 0.0f);
175 if (BT_ESC) {
176 for (int j = 0; j < 2; j++) {
177 if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
178 int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13);
179 int len = av_log2(coef);
181 put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
182 put_sbits(pb, len, coef);
189 if (bits)
190 *bits = resbits;
191 if (energy)
192 *energy = qenergy;
193 return cost;
196 static inline float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb,
197 const float *in, float *quant, const float *scaled,
198 int size, int scale_idx, int cb,
199 const float lambda, const float uplim,
200 int *bits, float *energy) {
201 av_assert0(0);
202 return 0.0f;
205 #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, ROUNDING) \
206 static float quantize_and_encode_band_cost_ ## NAME( \
207 struct AACEncContext *s, \
208 PutBitContext *pb, const float *in, float *quant, \
209 const float *scaled, int size, int scale_idx, \
210 int cb, const float lambda, const float uplim, \
211 int *bits, float *energy) { \
212 return quantize_and_encode_band_cost_template( \
213 s, pb, in, quant, scaled, size, scale_idx, \
214 BT_ESC ? ESC_BT : cb, lambda, uplim, bits, energy, \
215 BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, \
216 ROUNDING); \
219 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0, 0, 0, ROUND_STANDARD)
220 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD)
221 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD)
222 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD)
223 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD)
224 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1, 0, 0, ROUND_STANDARD)
225 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO)
226 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD)
227 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD)
229 static const quantize_and_encode_band_func quantize_and_encode_band_cost_arr[] =
231 quantize_and_encode_band_cost_ZERO,
232 quantize_and_encode_band_cost_SQUAD,
233 quantize_and_encode_band_cost_SQUAD,
234 quantize_and_encode_band_cost_UQUAD,
235 quantize_and_encode_band_cost_UQUAD,
236 quantize_and_encode_band_cost_SPAIR,
237 quantize_and_encode_band_cost_SPAIR,
238 quantize_and_encode_band_cost_UPAIR,
239 quantize_and_encode_band_cost_UPAIR,
240 quantize_and_encode_band_cost_UPAIR,
241 quantize_and_encode_band_cost_UPAIR,
242 quantize_and_encode_band_cost_ESC,
243 quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
244 quantize_and_encode_band_cost_NOISE,
245 quantize_and_encode_band_cost_STEREO,
246 quantize_and_encode_band_cost_STEREO,
249 static const quantize_and_encode_band_func quantize_and_encode_band_cost_rtz_arr[] =
251 quantize_and_encode_band_cost_ZERO,
252 quantize_and_encode_band_cost_SQUAD,
253 quantize_and_encode_band_cost_SQUAD,
254 quantize_and_encode_band_cost_UQUAD,
255 quantize_and_encode_band_cost_UQUAD,
256 quantize_and_encode_band_cost_SPAIR,
257 quantize_and_encode_band_cost_SPAIR,
258 quantize_and_encode_band_cost_UPAIR,
259 quantize_and_encode_band_cost_UPAIR,
260 quantize_and_encode_band_cost_UPAIR,
261 quantize_and_encode_band_cost_UPAIR,
262 quantize_and_encode_band_cost_ESC_RTZ,
263 quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
264 quantize_and_encode_band_cost_NOISE,
265 quantize_and_encode_band_cost_STEREO,
266 quantize_and_encode_band_cost_STEREO,
269 float ff_quantize_and_encode_band_cost(struct AACEncContext *s, PutBitContext *pb,
270 const float *in, float *quant, const float *scaled,
271 int size, int scale_idx, int cb,
272 const float lambda, const float uplim,
273 int *bits, float *energy)
275 return quantize_and_encode_band_cost_arr[cb](s, pb, in, quant, scaled, size,
276 scale_idx, cb, lambda, uplim,
277 bits, energy);
280 static inline void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
281 const float *in, float *out, int size, int scale_idx,
282 int cb, const float lambda, int rtz)
284 (rtz ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb](s, pb, in, out, NULL, size, scale_idx, cb,
285 lambda, INFINITY, NULL, NULL);
289 * structure used in optimal codebook search
291 typedef struct BandCodingPath {
292 int prev_idx; ///< pointer to the previous path point
293 float cost; ///< path cost
294 int run;
295 } BandCodingPath;
298 * Encode band info for single window group bands.
300 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
301 int win, int group_len, const float lambda)
303 BandCodingPath path[120][CB_TOT_ALL];
304 int w, swb, cb, start, size;
305 int i, j;
306 const int max_sfb = sce->ics.max_sfb;
307 const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
308 const int run_esc = (1 << run_bits) - 1;
309 int idx, ppos, count;
310 int stackrun[120], stackcb[120], stack_len;
311 float next_minrd = INFINITY;
312 int next_mincb = 0;
314 s->aacdsp.abs_pow34(s->scoefs, sce->coeffs, 1024);
315 start = win*128;
316 for (cb = 0; cb < CB_TOT_ALL; cb++) {
317 path[0][cb].cost = 0.0f;
318 path[0][cb].prev_idx = -1;
319 path[0][cb].run = 0;
321 for (swb = 0; swb < max_sfb; swb++) {
322 size = sce->ics.swb_sizes[swb];
323 if (sce->zeroes[win*16 + swb]) {
324 for (cb = 0; cb < CB_TOT_ALL; cb++) {
325 path[swb+1][cb].prev_idx = cb;
326 path[swb+1][cb].cost = path[swb][cb].cost;
327 path[swb+1][cb].run = path[swb][cb].run + 1;
329 } else {
330 float minrd = next_minrd;
331 int mincb = next_mincb;
332 next_minrd = INFINITY;
333 next_mincb = 0;
334 for (cb = 0; cb < CB_TOT_ALL; cb++) {
335 float cost_stay_here, cost_get_here;
336 float rd = 0.0f;
337 if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
338 cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
339 path[swb+1][cb].prev_idx = -1;
340 path[swb+1][cb].cost = INFINITY;
341 path[swb+1][cb].run = path[swb][cb].run + 1;
342 continue;
344 for (w = 0; w < group_len; w++) {
345 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
346 rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
347 &s->scoefs[start + w*128], size,
348 sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
349 lambda / band->threshold, INFINITY, NULL, NULL);
351 cost_stay_here = path[swb][cb].cost + rd;
352 cost_get_here = minrd + rd + run_bits + 4;
353 if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
354 != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
355 cost_stay_here += run_bits;
356 if (cost_get_here < cost_stay_here) {
357 path[swb+1][cb].prev_idx = mincb;
358 path[swb+1][cb].cost = cost_get_here;
359 path[swb+1][cb].run = 1;
360 } else {
361 path[swb+1][cb].prev_idx = cb;
362 path[swb+1][cb].cost = cost_stay_here;
363 path[swb+1][cb].run = path[swb][cb].run + 1;
365 if (path[swb+1][cb].cost < next_minrd) {
366 next_minrd = path[swb+1][cb].cost;
367 next_mincb = cb;
371 start += sce->ics.swb_sizes[swb];
374 //convert resulting path from backward-linked list
375 stack_len = 0;
376 idx = 0;
377 for (cb = 1; cb < CB_TOT_ALL; cb++)
378 if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
379 idx = cb;
380 ppos = max_sfb;
381 while (ppos > 0) {
382 av_assert1(idx >= 0);
383 cb = idx;
384 stackrun[stack_len] = path[ppos][cb].run;
385 stackcb [stack_len] = cb;
386 idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
387 ppos -= path[ppos][cb].run;
388 stack_len++;
390 //perform actual band info encoding
391 start = 0;
392 for (i = stack_len - 1; i >= 0; i--) {
393 cb = aac_cb_out_map[stackcb[i]];
394 put_bits(&s->pb, 4, cb);
395 count = stackrun[i];
396 memset(sce->zeroes + win*16 + start, !cb, count);
397 //XXX: memset when band_type is also uint8_t
398 for (j = 0; j < count; j++) {
399 sce->band_type[win*16 + start] = cb;
400 start++;
402 while (count >= run_esc) {
403 put_bits(&s->pb, run_bits, run_esc);
404 count -= run_esc;
406 put_bits(&s->pb, run_bits, count);
411 typedef struct TrellisPath {
412 float cost;
413 int prev;
414 } TrellisPath;
416 #define TRELLIS_STAGES 121
417 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
419 static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
421 int w, g;
422 int prevscaler_n = -255, prevscaler_i = 0;
423 int bands = 0;
425 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
426 for (g = 0; g < sce->ics.num_swb; g++) {
427 if (sce->zeroes[w*16+g])
428 continue;
429 if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
430 sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
431 bands++;
432 } else if (sce->band_type[w*16+g] == NOISE_BT) {
433 sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
434 if (prevscaler_n == -255)
435 prevscaler_n = sce->sf_idx[w*16+g];
436 bands++;
441 if (!bands)
442 return;
444 /* Clip the scalefactor indices */
445 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
446 for (g = 0; g < sce->ics.num_swb; g++) {
447 if (sce->zeroes[w*16+g])
448 continue;
449 if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
450 sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
451 } else if (sce->band_type[w*16+g] == NOISE_BT) {
452 sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
458 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
459 SingleChannelElement *sce,
460 const float lambda)
462 int q, w, w2, g, start = 0;
463 int i, j;
464 int idx;
465 TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
466 int bandaddr[TRELLIS_STAGES];
467 int minq;
468 float mincost;
469 float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
470 int q0, q1, qcnt = 0;
472 for (i = 0; i < 1024; i++) {
473 float t = fabsf(sce->coeffs[i]);
474 if (t > 0.0f) {
475 q0f = FFMIN(q0f, t);
476 q1f = FFMAX(q1f, t);
477 qnrgf += t*t;
478 qcnt++;
482 if (!qcnt) {
483 memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
484 memset(sce->zeroes, 1, sizeof(sce->zeroes));
485 return;
488 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
489 q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
490 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
491 q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
492 if (q1 - q0 > 60) {
493 int q0low = q0;
494 int q1high = q1;
495 //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
496 int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
497 q1 = qnrg + 30;
498 q0 = qnrg - 30;
499 if (q0 < q0low) {
500 q1 += q0low - q0;
501 q0 = q0low;
502 } else if (q1 > q1high) {
503 q0 -= q1 - q1high;
504 q1 = q1high;
507 // q0 == q1 isn't really a legal situation
508 if (q0 == q1) {
509 // the following is indirect but guarantees q1 != q0 && q1 near q0
510 q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
511 q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
514 for (i = 0; i < TRELLIS_STATES; i++) {
515 paths[0][i].cost = 0.0f;
516 paths[0][i].prev = -1;
518 for (j = 1; j < TRELLIS_STAGES; j++) {
519 for (i = 0; i < TRELLIS_STATES; i++) {
520 paths[j][i].cost = INFINITY;
521 paths[j][i].prev = -2;
524 idx = 1;
525 s->aacdsp.abs_pow34(s->scoefs, sce->coeffs, 1024);
526 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
527 start = w*128;
528 for (g = 0; g < sce->ics.num_swb; g++) {
529 const float *coefs = &sce->coeffs[start];
530 float qmin, qmax;
531 int nz = 0;
533 bandaddr[idx] = w * 16 + g;
534 qmin = INT_MAX;
535 qmax = 0.0f;
536 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
537 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
538 if (band->energy <= band->threshold || band->threshold == 0.0f) {
539 sce->zeroes[(w+w2)*16+g] = 1;
540 continue;
542 sce->zeroes[(w+w2)*16+g] = 0;
543 nz = 1;
544 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
545 float t = fabsf(coefs[w2*128+i]);
546 if (t > 0.0f)
547 qmin = FFMIN(qmin, t);
548 qmax = FFMAX(qmax, t);
551 if (nz) {
552 int minscale, maxscale;
553 float minrd = INFINITY;
554 float maxval;
555 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
556 minscale = coef2minsf(qmin);
557 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
558 maxscale = coef2maxsf(qmax);
559 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
560 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
561 if (minscale == maxscale) {
562 maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
563 minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
565 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
566 for (q = minscale; q < maxscale; q++) {
567 float dist = 0;
568 int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
569 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
570 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
571 dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
572 q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL);
574 minrd = FFMIN(minrd, dist);
576 for (i = 0; i < q1 - q0; i++) {
577 float cost;
578 cost = paths[idx - 1][i].cost + dist
579 + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
580 if (cost < paths[idx][q].cost) {
581 paths[idx][q].cost = cost;
582 paths[idx][q].prev = i;
586 } else {
587 for (q = 0; q < q1 - q0; q++) {
588 paths[idx][q].cost = paths[idx - 1][q].cost + 1;
589 paths[idx][q].prev = q;
592 sce->zeroes[w*16+g] = !nz;
593 start += sce->ics.swb_sizes[g];
594 idx++;
597 idx--;
598 mincost = paths[idx][0].cost;
599 minq = 0;
600 for (i = 1; i < TRELLIS_STATES; i++) {
601 if (paths[idx][i].cost < mincost) {
602 mincost = paths[idx][i].cost;
603 minq = i;
606 while (idx) {
607 sce->sf_idx[bandaddr[idx]] = minq + q0;
608 minq = FFMAX(paths[idx][minq].prev, 0);
609 idx--;
611 //set the same quantizers inside window groups
612 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
613 for (g = 0; g < sce->ics.num_swb; g++)
614 for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
615 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
618 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
619 SingleChannelElement *sce,
620 const float lambda)
622 int start = 0, i, w, w2, g;
623 int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->ch_layout.nb_channels * (lambda / 120.f);
624 float dists[128] = { 0 }, uplims[128] = { 0 };
625 float maxvals[128];
626 int fflag, minscaler;
627 int its = 0;
628 int allz = 0;
629 float minthr = INFINITY;
631 // for values above this the decoder might end up in an endless loop
632 // due to always having more bits than what can be encoded.
633 destbits = FFMIN(destbits, 5800);
634 //some heuristic to determine initial quantizers will reduce search time
635 //determine zero bands and upper limits
636 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
637 start = 0;
638 for (g = 0; g < sce->ics.num_swb; g++) {
639 int nz = 0;
640 float uplim = 0.0f;
641 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
642 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
643 uplim += band->threshold;
644 if (band->energy <= band->threshold || band->threshold == 0.0f) {
645 sce->zeroes[(w+w2)*16+g] = 1;
646 continue;
648 nz = 1;
650 uplims[w*16+g] = uplim *512;
651 sce->band_type[w*16+g] = 0;
652 sce->zeroes[w*16+g] = !nz;
653 if (nz)
654 minthr = FFMIN(minthr, uplim);
655 allz |= nz;
656 start += sce->ics.swb_sizes[g];
659 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
660 for (g = 0; g < sce->ics.num_swb; g++) {
661 if (sce->zeroes[w*16+g]) {
662 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
663 continue;
665 sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
669 if (!allz)
670 return;
671 s->aacdsp.abs_pow34(s->scoefs, sce->coeffs, 1024);
672 ff_quantize_band_cost_cache_init(s);
674 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
675 start = w*128;
676 for (g = 0; g < sce->ics.num_swb; g++) {
677 const float *scaled = s->scoefs + start;
678 maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
679 start += sce->ics.swb_sizes[g];
683 //perform two-loop search
684 //outer loop - improve quality
685 do {
686 int tbits, qstep;
687 minscaler = sce->sf_idx[0];
688 //inner loop - quantize spectrum to fit into given number of bits
689 qstep = its ? 1 : 32;
690 do {
691 int prev = -1;
692 tbits = 0;
693 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
694 start = w*128;
695 for (g = 0; g < sce->ics.num_swb; g++) {
696 const float *coefs = sce->coeffs + start;
697 const float *scaled = s->scoefs + start;
698 int bits = 0;
699 int cb;
700 float dist = 0.0f;
702 if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
703 start += sce->ics.swb_sizes[g];
704 continue;
706 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
707 cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
708 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
709 int b;
710 dist += quantize_band_cost_cached(s, w + w2, g,
711 coefs + w2*128,
712 scaled + w2*128,
713 sce->ics.swb_sizes[g],
714 sce->sf_idx[w*16+g],
715 cb, 1.0f, INFINITY,
716 &b, NULL, 0);
717 bits += b;
719 dists[w*16+g] = dist - bits;
720 if (prev != -1) {
721 bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
723 tbits += bits;
724 start += sce->ics.swb_sizes[g];
725 prev = sce->sf_idx[w*16+g];
728 if (tbits > destbits) {
729 for (i = 0; i < 128; i++)
730 if (sce->sf_idx[i] < 218 - qstep)
731 sce->sf_idx[i] += qstep;
732 } else {
733 for (i = 0; i < 128; i++)
734 if (sce->sf_idx[i] > 60 - qstep)
735 sce->sf_idx[i] -= qstep;
737 qstep >>= 1;
738 if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
739 qstep = 1;
740 } while (qstep);
742 fflag = 0;
743 minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
745 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
746 for (g = 0; g < sce->ics.num_swb; g++) {
747 int prevsc = sce->sf_idx[w*16+g];
748 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
749 if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
750 sce->sf_idx[w*16+g]--;
751 else //Try to make sure there is some energy in every band
752 sce->sf_idx[w*16+g]-=2;
754 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
755 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
756 if (sce->sf_idx[w*16+g] != prevsc)
757 fflag = 1;
758 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
761 its++;
762 } while (fflag && its < 10);
765 static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
767 FFPsyBand *band;
768 int w, g, w2, i;
769 int wlen = 1024 / sce->ics.num_windows;
770 int bandwidth, cutoff;
771 float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
772 float *NOR34 = &s->scoefs[3*128];
773 uint8_t nextband[128];
774 const float lambda = s->lambda;
775 const float freq_mult = avctx->sample_rate*0.5f/wlen;
776 const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
777 const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
778 const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
779 const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
781 int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
782 / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
783 * (lambda / 120.f);
785 /** Keep this in sync with twoloop's cutoff selection */
786 float rate_bandwidth_multiplier = 1.5f;
787 int prev = -1000, prev_sf = -1;
788 int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
789 ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
790 : (avctx->bit_rate / avctx->ch_layout.nb_channels);
792 frame_bit_rate *= 1.15f;
794 if (avctx->cutoff > 0) {
795 bandwidth = avctx->cutoff;
796 } else {
797 bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
800 cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
802 memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
803 ff_init_nextband_map(sce, nextband);
804 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
805 int wstart = w*128;
806 for (g = 0; g < sce->ics.num_swb; g++) {
807 int noise_sfi;
808 float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
809 float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
810 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
811 float min_energy = -1.0f, max_energy = 0.0f;
812 const int start = wstart+sce->ics.swb_offset[g];
813 const float freq = (start-wstart)*freq_mult;
814 const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
815 if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
816 if (!sce->zeroes[w*16+g])
817 prev_sf = sce->sf_idx[w*16+g];
818 continue;
820 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
821 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
822 sfb_energy += band->energy;
823 spread = FFMIN(spread, band->spread);
824 threshold += band->threshold;
825 if (!w2) {
826 min_energy = max_energy = band->energy;
827 } else {
828 min_energy = FFMIN(min_energy, band->energy);
829 max_energy = FFMAX(max_energy, band->energy);
833 /* Ramps down at ~8000Hz and loosens the dist threshold */
834 dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
836 /* PNS is acceptable when all of these are true:
837 * 1. high spread energy (noise-like band)
838 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
839 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
841 * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
843 if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
844 ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
845 (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
846 min_energy < pns_transient_energy_r * max_energy ) {
847 sce->pns_ener[w*16+g] = sfb_energy;
848 if (!sce->zeroes[w*16+g])
849 prev_sf = sce->sf_idx[w*16+g];
850 continue;
853 pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
854 noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
855 noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
856 if (prev != -1000) {
857 int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
858 if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
859 if (!sce->zeroes[w*16+g])
860 prev_sf = sce->sf_idx[w*16+g];
861 continue;
864 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
865 float band_energy, scale, pns_senergy;
866 const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
867 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
868 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
869 s->random_state = lcg_random(s->random_state);
870 PNS[i] = s->random_state;
872 band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
873 scale = noise_amp/sqrtf(band_energy);
874 s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
875 pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
876 pns_energy += pns_senergy;
877 s->aacdsp.abs_pow34(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
878 s->aacdsp.abs_pow34(PNS34, PNS, sce->ics.swb_sizes[g]);
879 dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
880 NOR34,
881 sce->ics.swb_sizes[g],
882 sce->sf_idx[(w+w2)*16+g],
883 sce->band_alt[(w+w2)*16+g],
884 lambda/band->threshold, INFINITY, NULL, NULL);
885 /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
886 dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
888 if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
889 dist2 += 5;
890 } else {
891 dist2 += 9;
893 energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
894 sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
895 if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
896 sce->band_type[w*16+g] = NOISE_BT;
897 sce->zeroes[w*16+g] = 0;
898 prev = noise_sfi;
899 } else {
900 if (!sce->zeroes[w*16+g])
901 prev_sf = sce->sf_idx[w*16+g];
907 static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
909 FFPsyBand *band;
910 int w, g, w2;
911 int wlen = 1024 / sce->ics.num_windows;
912 int bandwidth, cutoff;
913 const float lambda = s->lambda;
914 const float freq_mult = avctx->sample_rate*0.5f/wlen;
915 const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
916 const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
918 int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
919 / ((avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : avctx->ch_layout.nb_channels)
920 * (lambda / 120.f);
922 /** Keep this in sync with twoloop's cutoff selection */
923 float rate_bandwidth_multiplier = 1.5f;
924 int frame_bit_rate = (avctx->flags & AV_CODEC_FLAG_QSCALE)
925 ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
926 : (avctx->bit_rate / avctx->ch_layout.nb_channels);
928 frame_bit_rate *= 1.15f;
930 if (avctx->cutoff > 0) {
931 bandwidth = avctx->cutoff;
932 } else {
933 bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
936 cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
938 memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
939 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
940 for (g = 0; g < sce->ics.num_swb; g++) {
941 float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
942 float min_energy = -1.0f, max_energy = 0.0f;
943 const int start = sce->ics.swb_offset[g];
944 const float freq = start*freq_mult;
945 const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
946 if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
947 sce->can_pns[w*16+g] = 0;
948 continue;
950 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
951 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
952 sfb_energy += band->energy;
953 spread = FFMIN(spread, band->spread);
954 threshold += band->threshold;
955 if (!w2) {
956 min_energy = max_energy = band->energy;
957 } else {
958 min_energy = FFMIN(min_energy, band->energy);
959 max_energy = FFMAX(max_energy, band->energy);
963 /* PNS is acceptable when all of these are true:
964 * 1. high spread energy (noise-like band)
965 * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
966 * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
968 sce->pns_ener[w*16+g] = sfb_energy;
969 if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
970 sce->can_pns[w*16+g] = 0;
971 } else {
972 sce->can_pns[w*16+g] = 1;
978 static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
980 int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
981 uint8_t nextband0[128], nextband1[128];
982 float *M = s->scoefs + 128*0, *S = s->scoefs + 128*1;
983 float *L34 = s->scoefs + 128*2, *R34 = s->scoefs + 128*3;
984 float *M34 = s->scoefs + 128*4, *S34 = s->scoefs + 128*5;
985 const float lambda = s->lambda;
986 const float mslambda = FFMIN(1.0f, lambda / 120.f);
987 SingleChannelElement *sce0 = &cpe->ch[0];
988 SingleChannelElement *sce1 = &cpe->ch[1];
989 if (!cpe->common_window)
990 return;
992 /** Scout out next nonzero bands */
993 ff_init_nextband_map(sce0, nextband0);
994 ff_init_nextband_map(sce1, nextband1);
996 prev_mid = sce0->sf_idx[0];
997 prev_side = sce1->sf_idx[0];
998 for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
999 start = 0;
1000 for (g = 0; g < sce0->ics.num_swb; g++) {
1001 float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
1002 if (!cpe->is_mask[w*16+g])
1003 cpe->ms_mask[w*16+g] = 0;
1004 if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
1005 float Mmax = 0.0f, Smax = 0.0f;
1007 /* Must compute mid/side SF and book for the whole window group */
1008 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1009 for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1010 M[i] = (sce0->coeffs[start+(w+w2)*128+i]
1011 + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
1012 S[i] = M[i]
1013 - sce1->coeffs[start+(w+w2)*128+i];
1015 s->aacdsp.abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
1016 s->aacdsp.abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
1017 for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
1018 Mmax = FFMAX(Mmax, M34[i]);
1019 Smax = FFMAX(Smax, S34[i]);
1023 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
1024 float dist1 = 0.0f, dist2 = 0.0f;
1025 int B0 = 0, B1 = 0;
1026 int minidx;
1027 int mididx, sididx;
1028 int midcb, sidcb;
1030 minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
1031 mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
1032 sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
1033 if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
1034 && ( !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
1035 || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
1036 /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
1037 continue;
1040 midcb = find_min_book(Mmax, mididx);
1041 sidcb = find_min_book(Smax, sididx);
1043 /* No CB can be zero */
1044 midcb = FFMAX(1,midcb);
1045 sidcb = FFMAX(1,sidcb);
1047 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1048 FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
1049 FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
1050 float minthr = FFMIN(band0->threshold, band1->threshold);
1051 int b1,b2,b3,b4;
1052 for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1053 M[i] = (sce0->coeffs[start+(w+w2)*128+i]
1054 + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
1055 S[i] = M[i]
1056 - sce1->coeffs[start+(w+w2)*128+i];
1059 s->aacdsp.abs_pow34(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
1060 s->aacdsp.abs_pow34(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
1061 s->aacdsp.abs_pow34(M34, M, sce0->ics.swb_sizes[g]);
1062 s->aacdsp.abs_pow34(S34, S, sce0->ics.swb_sizes[g]);
1063 dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
1064 L34,
1065 sce0->ics.swb_sizes[g],
1066 sce0->sf_idx[w*16+g],
1067 sce0->band_type[w*16+g],
1068 lambda / (band0->threshold + FLT_MIN), INFINITY, &b1, NULL);
1069 dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
1070 R34,
1071 sce1->ics.swb_sizes[g],
1072 sce1->sf_idx[w*16+g],
1073 sce1->band_type[w*16+g],
1074 lambda / (band1->threshold + FLT_MIN), INFINITY, &b2, NULL);
1075 dist2 += quantize_band_cost(s, M,
1076 M34,
1077 sce0->ics.swb_sizes[g],
1078 mididx,
1079 midcb,
1080 lambda / (minthr + FLT_MIN), INFINITY, &b3, NULL);
1081 dist2 += quantize_band_cost(s, S,
1082 S34,
1083 sce1->ics.swb_sizes[g],
1084 sididx,
1085 sidcb,
1086 mslambda / (minthr * bmax + FLT_MIN), INFINITY, &b4, NULL);
1087 B0 += b1+b2;
1088 B1 += b3+b4;
1089 dist1 -= b1+b2;
1090 dist2 -= b3+b4;
1092 cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
1093 if (cpe->ms_mask[w*16+g]) {
1094 if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
1095 sce0->sf_idx[w*16+g] = mididx;
1096 sce1->sf_idx[w*16+g] = sididx;
1097 sce0->band_type[w*16+g] = midcb;
1098 sce1->band_type[w*16+g] = sidcb;
1099 } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
1100 /* ms_mask unneeded, and it confuses some decoders */
1101 cpe->ms_mask[w*16+g] = 0;
1103 break;
1104 } else if (B1 > B0) {
1105 /* More boost won't fix this */
1106 break;
1110 if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
1111 prev_mid = sce0->sf_idx[w*16+g];
1112 if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
1113 prev_side = sce1->sf_idx[w*16+g];
1114 start += sce0->ics.swb_sizes[g];
1119 const AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
1120 [AAC_CODER_ANMR] = {
1121 search_for_quantizers_anmr,
1122 encode_window_bands_info,
1123 quantize_and_encode_band,
1124 ff_aac_encode_tns_info,
1125 ff_aac_encode_ltp_info,
1126 ff_aac_encode_main_pred,
1127 ff_aac_adjust_common_pred,
1128 ff_aac_adjust_common_ltp,
1129 ff_aac_apply_main_pred,
1130 ff_aac_apply_tns,
1131 ff_aac_update_ltp,
1132 ff_aac_ltp_insert_new_frame,
1133 set_special_band_scalefactors,
1134 search_for_pns,
1135 mark_pns,
1136 ff_aac_search_for_tns,
1137 ff_aac_search_for_ltp,
1138 search_for_ms,
1139 ff_aac_search_for_is,
1140 ff_aac_search_for_pred,
1142 [AAC_CODER_TWOLOOP] = {
1143 search_for_quantizers_twoloop,
1144 codebook_trellis_rate,
1145 quantize_and_encode_band,
1146 ff_aac_encode_tns_info,
1147 ff_aac_encode_ltp_info,
1148 ff_aac_encode_main_pred,
1149 ff_aac_adjust_common_pred,
1150 ff_aac_adjust_common_ltp,
1151 ff_aac_apply_main_pred,
1152 ff_aac_apply_tns,
1153 ff_aac_update_ltp,
1154 ff_aac_ltp_insert_new_frame,
1155 set_special_band_scalefactors,
1156 search_for_pns,
1157 mark_pns,
1158 ff_aac_search_for_tns,
1159 ff_aac_search_for_ltp,
1160 search_for_ms,
1161 ff_aac_search_for_is,
1162 ff_aac_search_for_pred,
1164 [AAC_CODER_FAST] = {
1165 search_for_quantizers_fast,
1166 codebook_trellis_rate,
1167 quantize_and_encode_band,
1168 ff_aac_encode_tns_info,
1169 ff_aac_encode_ltp_info,
1170 ff_aac_encode_main_pred,
1171 ff_aac_adjust_common_pred,
1172 ff_aac_adjust_common_ltp,
1173 ff_aac_apply_main_pred,
1174 ff_aac_apply_tns,
1175 ff_aac_update_ltp,
1176 ff_aac_ltp_insert_new_frame,
1177 set_special_band_scalefactors,
1178 search_for_pns,
1179 mark_pns,
1180 ff_aac_search_for_tns,
1181 ff_aac_search_for_ltp,
1182 search_for_ms,
1183 ff_aac_search_for_is,
1184 ff_aac_search_for_pred,