avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / aacsbr_fixed.c
blob06d07e19413b50f0323af22645d3e4e74c801926
1 /*
2 * Copyright (c) 2013
3 * MIPS Technologies, Inc., California.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
17 * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * AAC Spectral Band Replication decoding functions (fixed-point)
30 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
31 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
33 * This file is part of FFmpeg.
35 * FFmpeg is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU Lesser General Public
37 * License as published by the Free Software Foundation; either
38 * version 2.1 of the License, or (at your option) any later version.
40 * FFmpeg is distributed in the hope that it will be useful,
41 * but WITHOUT ANY WARRANTY; without even the implied warranty of
42 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
43 * Lesser General Public License for more details.
45 * You should have received a copy of the GNU Lesser General Public
46 * License along with FFmpeg; if not, write to the Free Software
47 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
50 /**
51 * @file
52 * AAC Spectral Band Replication decoding functions (fixed-point)
53 * Note: Rounding-to-nearest used unless otherwise stated
54 * @author Robert Swain ( rob opendot cl )
55 * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
57 #define USE_FIXED 1
59 #include "aac.h"
60 #include "sbr.h"
61 #include "aacsbr.h"
62 #include "aacsbrdata.h"
63 #include "aacps.h"
64 #include "sbrdsp.h"
65 #include "libavutil/internal.h"
66 #include "libavutil/libm.h"
67 #include "libavutil/avassert.h"
69 #include <stdint.h>
70 #include <float.h>
71 #include <math.h>
73 static void aacsbr_func_ptr_init(AACSBRContext *c);
74 static const int CONST_LN2 = Q31(0.6931471806/256); // ln(2)/256
75 static const int CONST_RECIP_LN2 = Q31(0.7213475204); // 0.5/ln(2)
76 static const int CONST_076923 = Q31(0.76923076923076923077f);
78 static const int fixed_log_table[10] =
80 Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
81 Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
84 static int fixed_log(int x)
86 int i, ret, xpow, tmp;
88 ret = x;
89 xpow = x;
90 for (i=0; i<10; i+=2){
91 xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
92 tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
93 ret -= tmp;
95 xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
96 tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
97 ret += tmp;
100 return ret;
103 static const int fixed_exp_table[7] =
105 Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
106 Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
109 static int fixed_exp(int x)
111 int i, ret, xpow, tmp;
113 ret = 0x800000 + x;
114 xpow = x;
115 for (i=0; i<7; i++){
116 xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
117 tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
118 ret += tmp;
121 return ret;
124 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
126 int k, previous, present;
127 int base, prod, nz = 0;
129 base = (stop << 23) / start;
130 while (base < 0x40000000){
131 base <<= 1;
132 nz++;
134 base = fixed_log(base - 0x80000000);
135 base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
136 base = fixed_exp(base);
138 previous = start;
139 prod = start << 23;
141 for (k = 0; k < num_bands-1; k++) {
142 prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
143 present = (prod + 0x400000) >> 23;
144 bands[k] = present - previous;
145 previous = present;
147 bands[num_bands-1] = stop - previous;
150 /// Dequantization and stereo decoding (14496-3 sp04 p203)
151 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
153 int k, e;
154 int ch;
156 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
157 int alpha = sbr->data[0].bs_amp_res ? 2 : 1;
158 int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
159 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
160 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
161 SoftFloat temp1, temp2, fac;
163 temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14;
164 if (temp1.exp & 1)
165 temp1.mant = 759250125;
166 else
167 temp1.mant = 0x20000000;
168 temp1.exp = (temp1.exp >> 1) + 1;
169 if (temp1.exp > 66) { // temp1 > 1E20
170 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
171 temp1 = FLOAT_1;
174 temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha;
175 if (temp2.exp & 1)
176 temp2.mant = 759250125;
177 else
178 temp2.mant = 0x20000000;
179 temp2.exp = (temp2.exp >> 1) + 1;
180 fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
181 sbr->data[0].env_facs[e][k] = fac;
182 sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
185 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
186 for (k = 0; k < sbr->n_q; k++) {
187 SoftFloat temp1, temp2, fac;
189 temp1.exp = NOISE_FLOOR_OFFSET - \
190 sbr->data[0].noise_facs_q[e][k] + 2;
191 temp1.mant = 0x20000000;
192 av_assert0(temp1.exp <= 66);
193 temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1;
194 temp2.mant = 0x20000000;
195 fac = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
196 sbr->data[0].noise_facs[e][k] = fac;
197 sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
200 } else { // SCE or one non-coupled CPE
201 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
202 int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
203 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
204 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
205 SoftFloat temp1;
207 temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12;
208 if (temp1.exp & 1)
209 temp1.mant = 759250125;
210 else
211 temp1.mant = 0x20000000;
212 temp1.exp = (temp1.exp >> 1) + 1;
213 if (temp1.exp > 66) { // temp1 > 1E20
214 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
215 temp1 = FLOAT_1;
217 sbr->data[ch].env_facs[e][k] = temp1;
219 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
220 for (k = 0; k < sbr->n_q; k++){
221 sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
222 sbr->data[ch].noise_facs_q[e][k] + 1;
223 sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
229 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
230 * (14496-3 sp04 p214)
231 * Warning: This routine does not seem numerically stable.
233 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
234 int (*alpha0)[2], int (*alpha1)[2],
235 const int X_low[32][40][2], int k0)
237 int k;
238 int shift, round;
240 for (k = 0; k < k0; k++) {
241 SoftFloat phi[3][2][2];
242 SoftFloat a00, a01, a10, a11;
243 SoftFloat dk;
245 dsp->autocorrelate(X_low[k], phi);
247 dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
248 av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
249 av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
251 if (!dk.mant) {
252 a10 = FLOAT_0;
253 a11 = FLOAT_0;
254 } else {
255 SoftFloat temp_real, temp_im;
256 temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
257 av_mul_sf(phi[0][0][1], phi[1][1][1])),
258 av_mul_sf(phi[0][1][0], phi[1][0][0]));
259 temp_im = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
260 av_mul_sf(phi[0][0][1], phi[1][1][0])),
261 av_mul_sf(phi[0][1][1], phi[1][0][0]));
263 a10 = av_div_sf(temp_real, dk);
264 a11 = av_div_sf(temp_im, dk);
267 if (!phi[1][0][0].mant) {
268 a00 = FLOAT_0;
269 a01 = FLOAT_0;
270 } else {
271 SoftFloat temp_real, temp_im;
272 temp_real = av_add_sf(phi[0][0][0],
273 av_add_sf(av_mul_sf(a10, phi[1][1][0]),
274 av_mul_sf(a11, phi[1][1][1])));
275 temp_im = av_add_sf(phi[0][0][1],
276 av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
277 av_mul_sf(a10, phi[1][1][1])));
279 temp_real.mant = -temp_real.mant;
280 temp_im.mant = -temp_im.mant;
281 a00 = av_div_sf(temp_real, phi[1][0][0]);
282 a01 = av_div_sf(temp_im, phi[1][0][0]);
285 shift = a00.exp;
286 if (shift >= 3)
287 alpha0[k][0] = 0x7fffffff;
288 else if (shift <= -30)
289 alpha0[k][0] = 0;
290 else {
291 shift = 1-shift;
292 if (shift <= 0)
293 alpha0[k][0] = a00.mant * (1<<-shift);
294 else {
295 round = 1 << (shift-1);
296 alpha0[k][0] = (a00.mant + round) >> shift;
300 shift = a01.exp;
301 if (shift >= 3)
302 alpha0[k][1] = 0x7fffffff;
303 else if (shift <= -30)
304 alpha0[k][1] = 0;
305 else {
306 shift = 1-shift;
307 if (shift <= 0)
308 alpha0[k][1] = a01.mant * (1<<-shift);
309 else {
310 round = 1 << (shift-1);
311 alpha0[k][1] = (a01.mant + round) >> shift;
314 shift = a10.exp;
315 if (shift >= 3)
316 alpha1[k][0] = 0x7fffffff;
317 else if (shift <= -30)
318 alpha1[k][0] = 0;
319 else {
320 shift = 1-shift;
321 if (shift <= 0)
322 alpha1[k][0] = a10.mant * (1<<-shift);
323 else {
324 round = 1 << (shift-1);
325 alpha1[k][0] = (a10.mant + round) >> shift;
329 shift = a11.exp;
330 if (shift >= 3)
331 alpha1[k][1] = 0x7fffffff;
332 else if (shift <= -30)
333 alpha1[k][1] = 0;
334 else {
335 shift = 1-shift;
336 if (shift <= 0)
337 alpha1[k][1] = a11.mant * (1<<-shift);
338 else {
339 round = 1 << (shift-1);
340 alpha1[k][1] = (a11.mant + round) >> shift;
344 shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
345 (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
346 0x40000000) >> 31);
347 if (shift >= 0x20000000){
348 alpha1[k][0] = 0;
349 alpha1[k][1] = 0;
350 alpha0[k][0] = 0;
351 alpha0[k][1] = 0;
354 shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
355 (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
356 0x40000000) >> 31);
357 if (shift >= 0x20000000){
358 alpha1[k][0] = 0;
359 alpha1[k][1] = 0;
360 alpha0[k][0] = 0;
361 alpha0[k][1] = 0;
366 /// Chirp Factors (14496-3 sp04 p214)
367 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
369 int i;
370 int new_bw;
371 static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
372 int64_t accu;
374 for (i = 0; i < sbr->n_q; i++) {
375 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
376 new_bw = 1288490189;
377 else
378 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
380 if (new_bw < ch_data->bw_array[i]){
381 accu = (int64_t)new_bw * 1610612736;
382 accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
383 new_bw = (int)((accu + 0x40000000) >> 31);
384 } else {
385 accu = (int64_t)new_bw * 1946157056;
386 accu += (int64_t)ch_data->bw_array[i] * 201326592;
387 new_bw = (int)((accu + 0x40000000) >> 31);
389 ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
394 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
395 * and Calculation of gain (14496-3 sp04 p219)
397 static void sbr_gain_calc(SpectralBandReplication *sbr,
398 SBRData *ch_data, const int e_a[2])
400 int e, k, m;
401 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
402 static const SoftFloat limgain[4] = { { 760155524, 0 }, { 0x20000000, 1 },
403 { 758351638, 1 }, { 625000000, 34 } };
405 for (e = 0; e < ch_data->bs_num_env; e++) {
406 int delta = !((e == e_a[1]) || (e == e_a[0]));
407 for (k = 0; k < sbr->n_lim; k++) {
408 SoftFloat gain_boost, gain_max;
409 SoftFloat sum[2];
410 sum[0] = sum[1] = FLOAT_0;
411 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
412 const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
413 av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
414 sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
415 sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
416 if (!sbr->s_mapped[e][m]) {
417 if (delta) {
418 sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
419 av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
420 av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
421 } else {
422 sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
423 av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
425 } else {
426 sbr->gain[e][m] = av_sqrt_sf(
427 av_div_sf(
428 av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
429 av_mul_sf(
430 av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
431 av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
433 sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN);
435 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
436 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
437 sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
439 gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
440 av_sqrt_sf(
441 av_div_sf(
442 av_add_sf(FLOAT_EPSILON, sum[0]),
443 av_add_sf(FLOAT_EPSILON, sum[1]))));
444 if (av_gt_sf(gain_max, FLOAT_100000))
445 gain_max = FLOAT_100000;
446 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
447 SoftFloat q_m_max = av_div_sf(
448 av_mul_sf(sbr->q_m[e][m], gain_max),
449 sbr->gain[e][m]);
450 if (av_gt_sf(sbr->q_m[e][m], q_m_max))
451 sbr->q_m[e][m] = q_m_max;
452 if (av_gt_sf(sbr->gain[e][m], gain_max))
453 sbr->gain[e][m] = gain_max;
455 sum[0] = sum[1] = FLOAT_0;
456 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
457 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
458 sum[1] = av_add_sf(sum[1],
459 av_mul_sf(
460 av_mul_sf(sbr->e_curr[e][m],
461 sbr->gain[e][m]),
462 sbr->gain[e][m]));
463 sum[1] = av_add_sf(sum[1],
464 av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
465 if (delta && !sbr->s_m[e][m].mant)
466 sum[1] = av_add_sf(sum[1],
467 av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
469 gain_boost = av_sqrt_sf(
470 av_div_sf(
471 av_add_sf(FLOAT_EPSILON, sum[0]),
472 av_add_sf(FLOAT_EPSILON, sum[1])));
473 if (av_gt_sf(gain_boost, FLOAT_1584893192))
474 gain_boost = FLOAT_1584893192;
476 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
477 sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
478 sbr->q_m[e][m] = av_mul_sf(sbr->q_m[e][m], gain_boost);
479 sbr->s_m[e][m] = av_mul_sf(sbr->s_m[e][m], gain_boost);
485 /// Assembling HF Signals (14496-3 sp04 p220)
486 static void sbr_hf_assemble(int Y1[38][64][2],
487 const int X_high[64][40][2],
488 SpectralBandReplication *sbr, SBRData *ch_data,
489 const int e_a[2])
491 int e, i, j, m;
492 const int h_SL = 4 * !sbr->bs_smoothing_mode;
493 const int kx = sbr->kx[1];
494 const int m_max = sbr->m[1];
495 static const SoftFloat h_smooth[5] = {
496 { 715827883, -1 },
497 { 647472402, -1 },
498 { 937030863, -2 },
499 { 989249804, -3 },
500 { 546843842, -4 },
502 SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
503 int indexnoise = ch_data->f_indexnoise;
504 int indexsine = ch_data->f_indexsine;
506 if (sbr->reset) {
507 for (i = 0; i < h_SL; i++) {
508 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
509 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
511 } else if (h_SL) {
512 for (i = 0; i < 4; i++) {
513 memcpy(g_temp[i + 2 * ch_data->t_env[0]],
514 g_temp[i + 2 * ch_data->t_env_num_env_old],
515 sizeof(g_temp[0]));
516 memcpy(q_temp[i + 2 * ch_data->t_env[0]],
517 q_temp[i + 2 * ch_data->t_env_num_env_old],
518 sizeof(q_temp[0]));
522 for (e = 0; e < ch_data->bs_num_env; e++) {
523 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
524 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
525 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
529 for (e = 0; e < ch_data->bs_num_env; e++) {
530 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
531 SoftFloat g_filt_tab[48];
532 SoftFloat q_filt_tab[48];
533 SoftFloat *g_filt, *q_filt;
535 if (h_SL && e != e_a[0] && e != e_a[1]) {
536 g_filt = g_filt_tab;
537 q_filt = q_filt_tab;
538 for (m = 0; m < m_max; m++) {
539 const int idx1 = i + h_SL;
540 g_filt[m].mant = g_filt[m].exp = 0;
541 q_filt[m].mant = q_filt[m].exp = 0;
542 for (j = 0; j <= h_SL; j++) {
543 g_filt[m] = av_add_sf(g_filt[m],
544 av_mul_sf(g_temp[idx1 - j][m],
545 h_smooth[j]));
546 q_filt[m] = av_add_sf(q_filt[m],
547 av_mul_sf(q_temp[idx1 - j][m],
548 h_smooth[j]));
551 } else {
552 g_filt = g_temp[i + h_SL];
553 q_filt = q_temp[i];
556 sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
557 i + ENVELOPE_ADJUSTMENT_OFFSET);
559 if (e != e_a[0] && e != e_a[1]) {
560 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
561 q_filt, indexnoise,
562 kx, m_max);
563 } else {
564 int idx = indexsine&1;
565 int A = (1-((indexsine+(kx & 1))&2));
566 int B = (A^(-idx)) + idx;
567 unsigned *out = &Y1[i][kx][idx];
568 int shift;
569 unsigned round;
571 SoftFloat *in = sbr->s_m[e];
572 for (m = 0; m+1 < m_max; m+=2) {
573 int shift2;
574 shift = 22 - in[m ].exp;
575 shift2= 22 - in[m+1].exp;
576 if (shift < 1 || shift2 < 1) {
577 av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2);
578 return;
580 if (shift < 32) {
581 round = 1 << (shift-1);
582 out[2*m ] += (int)(in[m ].mant * A + round) >> shift;
585 if (shift2 < 32) {
586 round = 1 << (shift2-1);
587 out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2;
590 if(m_max&1)
592 shift = 22 - in[m ].exp;
593 if (shift < 1) {
594 av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift);
595 return;
596 } else if (shift < 32) {
597 round = 1 << (shift-1);
598 out[2*m ] += (int)(in[m ].mant * A + round) >> shift;
602 indexnoise = (indexnoise + m_max) & 0x1ff;
603 indexsine = (indexsine + 1) & 3;
606 ch_data->f_indexnoise = indexnoise;
607 ch_data->f_indexsine = indexsine;
610 #include "aacsbr_template.c"