avformat/mpeg: demux ivtv captions
[ffmpeg.git] / libavcodec / ac3enc_template.c
blob049666fdca4570e4a5d2dab42184dbfbe563ca5d
1 /*
2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file
26 * AC-3 encoder float/fixed template
29 #include "config_components.h"
31 #include <stdint.h>
33 #include "libavutil/attributes.h"
34 #include "libavutil/avassert.h"
35 #include "libavutil/mem_internal.h"
37 #include "audiodsp.h"
38 #include "ac3enc.h"
39 #include "eac3enc.h"
41 #if AC3ENC_FLOAT
42 #define RENAME(element) element ## _float
43 #else
44 #define RENAME(element) element ## _fixed
45 #endif
48 * Apply the MDCT to input samples to generate frequency coefficients.
49 * This applies the KBD window and normalizes the input to reduce precision
50 * loss due to fixed-point calculations.
52 static void apply_mdct(AC3EncodeContext *s, uint8_t * const *samples)
54 av_assert1(s->num_blocks > 0);
56 for (int ch = 0; ch < s->channels; ch++) {
57 const SampleType *input_samples0 = (const SampleType*)s->planar_samples[ch];
58 /* Reorder channels from native order to AC-3 order. */
59 const SampleType *input_samples1 = (const SampleType*)samples[s->channel_map[ch]];
60 int blk = 0;
62 do {
63 AC3Block *block = &s->blocks[blk];
64 SampleType *windowed_samples = s->RENAME(windowed_samples);
66 s->fdsp->vector_fmul(windowed_samples, input_samples0,
67 s->RENAME(mdct_window), AC3_BLOCK_SIZE);
68 s->fdsp->vector_fmul_reverse(windowed_samples + AC3_BLOCK_SIZE,
69 input_samples1,
70 s->RENAME(mdct_window), AC3_BLOCK_SIZE);
72 s->tx_fn(s->tx, block->mdct_coef[ch+1],
73 windowed_samples, sizeof(*windowed_samples));
74 input_samples0 = input_samples1;
75 input_samples1 += AC3_BLOCK_SIZE;
76 } while (++blk < s->num_blocks);
78 /* Store last 256 samples of current frame */
79 memcpy(s->planar_samples[ch], input_samples0,
80 AC3_BLOCK_SIZE * sizeof(*input_samples0));
86 * Calculate coupling channel and coupling coordinates.
88 static void apply_channel_coupling(AC3EncodeContext *s)
90 LOCAL_ALIGNED_32(CoefType, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
91 #if AC3ENC_FLOAT
92 LOCAL_ALIGNED_32(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
93 #else
94 int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
95 #endif
96 int av_uninit(blk), ch, bnd, i, j;
97 CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
98 int cpl_start, num_cpl_coefs;
100 memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
101 #if AC3ENC_FLOAT
102 memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
103 #endif
105 /* align start to 16-byte boundary. align length to multiple of 32.
106 note: coupling start bin % 4 will always be 1 */
107 cpl_start = s->start_freq[CPL_CH] - 1;
108 num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
109 cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
111 /* calculate coupling channel from fbw channels */
112 for (blk = 0; blk < s->num_blocks; blk++) {
113 AC3Block *block = &s->blocks[blk];
114 CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
115 if (!block->cpl_in_use)
116 continue;
117 memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
118 for (ch = 1; ch <= s->fbw_channels; ch++) {
119 CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
120 if (!block->channel_in_cpl[ch])
121 continue;
122 for (i = 0; i < num_cpl_coefs; i++)
123 cpl_coef[i] += ch_coef[i];
126 /* coefficients must be clipped in order to be encoded */
127 clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
130 /* calculate energy in each band in coupling channel and each fbw channel */
131 /* TODO: possibly use SIMD to speed up energy calculation */
132 bnd = 0;
133 i = s->start_freq[CPL_CH];
134 while (i < s->cpl_end_freq) {
135 int band_size = s->cpl_band_sizes[bnd];
136 for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
137 for (blk = 0; blk < s->num_blocks; blk++) {
138 AC3Block *block = &s->blocks[blk];
139 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
140 continue;
141 for (j = 0; j < band_size; j++) {
142 CoefType v = block->mdct_coef[ch][i+j];
143 MAC_COEF(energy[blk][ch][bnd], v, v);
147 i += band_size;
148 bnd++;
151 /* calculate coupling coordinates for all blocks for all channels */
152 for (blk = 0; blk < s->num_blocks; blk++) {
153 AC3Block *block = &s->blocks[blk];
154 if (!block->cpl_in_use)
155 continue;
156 for (ch = 1; ch <= s->fbw_channels; ch++) {
157 if (!block->channel_in_cpl[ch])
158 continue;
159 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
160 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
161 energy[blk][CPL_CH][bnd]);
166 /* determine which blocks to send new coupling coordinates for */
167 for (blk = 0; blk < s->num_blocks; blk++) {
168 AC3Block *block = &s->blocks[blk];
169 AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
171 memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
173 if (block->cpl_in_use) {
174 /* send new coordinates if this is the first block, if previous
175 * block did not use coupling but this block does, the channels
176 * using coupling has changed from the previous block, or the
177 * coordinate difference from the last block for any channel is
178 * greater than a threshold value. */
179 if (blk == 0 || !block0->cpl_in_use) {
180 for (ch = 1; ch <= s->fbw_channels; ch++)
181 block->new_cpl_coords[ch] = 1;
182 } else {
183 for (ch = 1; ch <= s->fbw_channels; ch++) {
184 if (!block->channel_in_cpl[ch])
185 continue;
186 if (!block0->channel_in_cpl[ch]) {
187 block->new_cpl_coords[ch] = 1;
188 } else {
189 CoefSumType coord_diff = 0;
190 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
191 coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
192 cpl_coords[blk ][ch][bnd]);
194 coord_diff /= s->num_cpl_bands;
195 if (coord_diff > NEW_CPL_COORD_THRESHOLD)
196 block->new_cpl_coords[ch] = 1;
203 av_assert1(s->fbw_channels > 0);
205 /* calculate final coupling coordinates, taking into account reusing of
206 coordinates in successive blocks */
207 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
208 blk = 0;
209 while (blk < s->num_blocks) {
210 int av_uninit(blk1);
211 AC3Block *block = &s->blocks[blk];
213 if (!block->cpl_in_use) {
214 blk++;
215 continue;
218 for (ch = 1; ch <= s->fbw_channels; ch++) {
219 CoefSumType energy_ch, energy_cpl;
220 if (!block->channel_in_cpl[ch])
221 continue;
222 energy_cpl = energy[blk][CPL_CH][bnd];
223 energy_ch = energy[blk][ch][bnd];
224 blk1 = blk+1;
225 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
226 if (s->blocks[blk1].cpl_in_use) {
227 energy_cpl += energy[blk1][CPL_CH][bnd];
228 energy_ch += energy[blk1][ch][bnd];
230 blk1++;
232 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
234 blk = blk1;
238 /* calculate exponents/mantissas for coupling coordinates */
239 for (blk = 0; blk < s->num_blocks; blk++) {
240 AC3Block *block = &s->blocks[blk];
241 if (!block->cpl_in_use)
242 continue;
244 #if AC3ENC_FLOAT
245 s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
246 cpl_coords[blk][1],
247 s->fbw_channels * 16);
248 #endif
249 s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
250 fixed_cpl_coords[blk][1],
251 s->fbw_channels * 16);
253 for (ch = 1; ch <= s->fbw_channels; ch++) {
254 int bnd, min_exp, max_exp, master_exp;
256 if (!block->new_cpl_coords[ch])
257 continue;
259 /* determine master exponent */
260 min_exp = max_exp = block->cpl_coord_exp[ch][0];
261 for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
262 int exp = block->cpl_coord_exp[ch][bnd];
263 min_exp = FFMIN(exp, min_exp);
264 max_exp = FFMAX(exp, max_exp);
266 master_exp = ((max_exp - 15) + 2) / 3;
267 master_exp = FFMAX(master_exp, 0);
268 while (min_exp < master_exp * 3)
269 master_exp--;
270 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
271 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
272 master_exp * 3, 0, 15);
274 block->cpl_master_exp[ch] = master_exp;
276 /* quantize mantissas */
277 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
278 int cpl_exp = block->cpl_coord_exp[ch][bnd];
279 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
280 if (cpl_exp == 15)
281 cpl_mant >>= 1;
282 else
283 cpl_mant -= 16;
285 block->cpl_coord_mant[ch][bnd] = cpl_mant;
290 if (AC3ENC_FLOAT && CONFIG_EAC3_ENCODER && s->eac3)
291 ff_eac3_set_cpl_states(s);
296 * Determine rematrixing flags for each block and band.
298 static void compute_rematrixing_strategy(AC3EncodeContext *s)
300 int nb_coefs;
301 int blk, bnd;
302 AC3Block *block, *block0 = NULL;
304 if (s->channel_mode != AC3_CHMODE_STEREO)
305 return;
307 for (blk = 0; blk < s->num_blocks; blk++) {
308 block = &s->blocks[blk];
309 block->new_rematrixing_strategy = !blk;
311 block->num_rematrixing_bands = 4;
312 if (block->cpl_in_use) {
313 block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
314 block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
315 if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
316 block->new_rematrixing_strategy = 1;
318 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
320 if (!s->rematrixing_enabled) {
321 block0 = block;
322 continue;
325 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
326 /* calculate sum of squared coeffs for one band in one block */
327 int start = ff_ac3_rematrix_band_tab[bnd];
328 int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
329 CoefSumType sum[4];
330 sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
331 block->mdct_coef[2] + start, end - start);
333 /* compare sums to determine if rematrixing will be used for this band */
334 if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
335 block->rematrixing_flags[bnd] = 1;
336 else
337 block->rematrixing_flags[bnd] = 0;
339 /* determine if new rematrixing flags will be sent */
340 if (blk &&
341 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
342 block->new_rematrixing_strategy = 1;
345 block0 = block;
350 static void encode_frame(AC3EncodeContext *s, uint8_t * const *samples)
352 apply_mdct(s, samples);
354 s->cpl_on = s->cpl_enabled;
355 ff_ac3_compute_coupling_strategy(s);
357 if (s->cpl_on)
358 apply_channel_coupling(s);
360 compute_rematrixing_strategy(s);
362 #if AC3ENC_FLOAT
363 scale_coefficients(s);
364 #endif